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1 Introduction

1.1 Motivation

Conformal field theory (CFT) has been an important tool in theoretical physics in the

last 30 years. This is linked to the fact that conformal field theories play an important

role in many different areas of physics, for example in studying critical systems in sta-

tistical mechanics or as an example for exactly solvable models in algebraic/axiomatic

quantum field theory. The mathematical structure of conformal field theories is stud-

ied in pure mathematics under the name vertex operator algebras. But it is string

theory which especially in the recent past brought most interest to conformal field

theory. We will take a moment to discuss the different appearances of CFT in more

detail.

In statistical mechanics conformal field theories are used to describe the continuum

limit of well-known models at their critical points. Perhaps the most prominent ex-

ample in this regard is the Ising modell which corresponds to a certain minimal model

in conformal field theory. At the critical point the correlation length which is the typ-

ical length scale over which the spins are correlated becomes infinite. Thus this scale

becomes large in comparison to the lattice spacing, the other scale in the system and

the whole system can be considered as scale invariant in this limit. This motivates the
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1 Introduction

emergence of a conformal field theory in this particular example, but is by no means

restricted to it. The idea of universality in statistical physics states that models at

their critical points can be classified according to their behaviour at the critical point

to fit in a discrete set of universality classes. As we will see conformal field theory

is especially suited to two dimensions and may thus be helpful in the classification

of universality classes of two-dimensional critical systems. A text which approaches

CFT from the point of view of critical systems in statistical mechanics is the article

[2] by Cardy. Additional material on this topic can be found in the book [18] by Di

Francesco, Mathieu and Sénéchal.

Conformal field theories are also studied in the context of algebraic/axiomatic quan-

tum field theory. One rigorous approach is given in the article [8] by Gaberdiel and

Goddard. A bit less rigorous but with the same background is the review article [5]

by Gaberdiel. In algebraic quantum field theory there is interest in CFT as an ex-

ample for a two-dimensional quantum field theory because these theories are strongly

constrained due to their high degree of symmetry and may thus serve as test ground

for algebraic methods or axiomatic approaches. This may then help indirectly to gain

a better understanding of higher dimensional theories. The articles [25, 12] may serve

as starting points in this direction.

The impact of conformal field theory is not limited to the area of physics. The

theory of vertex operator algebras in pure mathematics may be seen as mathematically

rigorous formulation of the algebraic foundations which underlie conformal field theory.

We cite [9] as an exemplary reference for the large number of mathematical texts on

this subject.

The last motivation which was mentioned at the beginning of this section is string

theory. String theory is inseparably linked to CFT via the worldsheet description of the

2



1.2 Outline

string. The worldsheet is the two-dimensional surface which the string sweeps out while

propagating through space-time and the formulation of string theory on the worldsheet

is a conformal field theory. Another link is between so-called boundary conformal field

theories (BCFTs) i.e. CFTs on manifolds with a boundary and Dirichlet branes in

string theory. The last point to be mentioned is the AdS/CFT-Correspondence, a

very active area of current research, where a (super) conformal field theory usually in

4 dimensions plays an important role on the gauge-theory side of the correspondence.

As examples for references which contain sections about CFT in particular in regard

to application in string theory we recommend the books [15, 21, 17, 13].

We conclude this section with a short word on the literature available on this topic

in addition to the references cited above. A good starting point is perhaps the short

review article [7] by Gaberdiel. Virtually any topic of the next chapter is treated

in great detail in the book [18] by Di Francesco, Mathieu and Sénéchal and in the

book [14] by Ketov. During the preparation of this thesis also the review articles

[4, 27, 23, 10, 1] by Fuchs, Zuber, Schellekens, Ginsparg and Belavin, Polyakov and

Zamolodchikov were very useful.

1.2 Outline

The following first part of the thesis will cover the foundations of conformal field

theory in detail but we will restrict the discussion to the case where the chiral algebra

coincides with the Virasoro algebra and we will cover mainly the sphere and the torus

as underlying manifolds.

Our starting point will be the conformal (symmetry) group in d dimensions. This

is the group of coordinate transformation under which the metric stays invariant up

3



1 Introduction

to a scale factor. We will find that the global conformal group contains in addition to

the Poincaré group dilations and special conformal transformations. One significant

feature of conformal field theories is that they severely restrict correlation functions be-

tween distinguished fields, the so-called primary fields. In fact 2- and 3-point functions

are determined up to a constant just by giving the conformal dimensions of the fields

involved. We will mostly focus on two-dimensional CFTs because conformal methods

are especially powerful in this case as the conformal algebra is infinite dimensional.

The next step will be the transition from the classical field theory to the quantized

theory. The well-known mechanism of time-ordering will carry over as radial ordering

after mapping the two-dimensional cylinder to the complex plane. We will see that the

transformation properties of a conformal field is linked to the singular terms occurring

in its operator product expansion with the stress-energy tensor. The operator product

expansion (OPE) is a central concept in conformal field theory. It indicates that

the product of two conformal fields evaluated at different points can be expanded as

another local field times a numerical coefficient depending on the difference between

the points in question or written schematically

φi(y)φj(z) =
∑
k

Cijk(y − z)φk(y). (1.2.1)

In a two-dimensional CFT the OPE of the stress-energy tensor with itself will lead us

to another central concept, the Virasoro algebra, giving the algebra of the conformal

generators of the quantized theory i.e. of the modes Ln of the stress-energy tensor:

[Ln, Lm] = (n−m)Ln+m +
c

12
(m3 −m)δ0,m+n (1.2.2)

4



1.2 Outline

Afterwards we will discuss the construction of the Hilbert space of a conformal field

theory, which means studying the representation theory of the Virasoro algebra. The

representations will be highest-weight representations where highest weight states will

be characterized by being annihilated by all Ln, n > 0 and correspond to primary fields

via the state-operator correspondence. Descendant states can be obtained from highest

weight states by acting with L−n on them. A remarkable result in two-dimensional

CFTs is that a general n-point function can be computed just from knowing the central

charge c, the conformal weights of the corresponding primary fields and the coefficients

appearing in the 3-point functions. The latter may be calculated in principle from the

conformal bootstrap procedure.

The requirement of unitary representations will severely restrict the central charges

and highest weights and will lead us for c < 1 to a discrete set of combinations of

central charges c and highest weights hp,q, the so-called minimal models which are

examples for the so-called rational conformal field theories. The first minimal models

can be identified with models known from statistical mechanics at their critical points

e.g. with the Ising model.

We will also discuss conformal field theories on the torus, which can be represented

by a complex modular parameter. Modular transformations of this parameter give rise

to the same torus, but place constraints on the field content of a modular invariant

CFT and link in particular the chiral and antichiral parts of the theory. We will

discuss fusion rules and Verlinde’s formula and conclude the chapter with a look at

the simplest examples for conformal field theories namely free bosons and free fermions.

The next chapter is devoted to possible extensions of the Virasoro algebra which

occur if there are more conserved currents in the theory in addition to the stress-
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energy tensor. In these cases the chiral algebra is extended but still contains the

Virasoro algebra as a subalgebra. The representation theory is very similar to the

representation theory of the Virasoro algebra discussed previously. After a discussion

of general features we will treat the two most important extensions namely Kac-Moody

algebras and superconformal algebras in more detail. As an explicit example for a

conformal field theoretic model with extended symmetry algebra we will give a very

brief introduction to WZW models.

Finally the third part of the thesis gives a flavour of another way of generalizing con-

formal field theory. We consider boundary conformal field theories which are defined

on manifolds with a boundary. Our prototypical example will be a boundary confor-

mal field theory defined on the upper half plane. We will discuss conformal boundary

conditions and their implications for the boundary states. A consideration of partition

functions will lead us to consistency conditions, the Cardy conditions. We conclude

the thesis by a discussion of an explicit method for constructing the boundary states

in a diagonal conformal field theory.

6



2 Foundations of CFT

This chapter is the main part of the thesis from the conceptual point of view. We will

restrict ourselves to the case where the chiral algebra coincides with the Virasoro alge-

bra and will restrict the manifolds which underlie the CFTs to be manifolds without

boundaries. The generalizations to conformal field theories with extended symmetry

algebras and boundary conformal field theory will be sketched in the two subsequent

chapters.

2.1 The Conformal Symmetry Group

In this section we look at the Conformal Group in detail. We consider Rd with flat

metric gµν = ηµν with signature (p, q) where p+ q = d. We allow arbitrary dimensions

d at this point, since it helps us to understand the special role of the d = 2 case

later. Furthermore we can study the implications of conformal invariance in this more

general setting first.

Under a general coordinate transformation xµ → x′µ the metric transforms accord-

ing to

g′µν(x′) =
∂xα

∂x′µ
∂xβ

∂x′ν
gαβ(x). (2.1.1)

A conformal transformation is defined as a mapping x→ x′ leaving the metric invari-
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2 Foundations of CFT

ant up to a scale factor:

g′µν(x′) = Ω2(x)gµν where Ω2(x) = eω(x) (2.1.2)

Here we look at perturbations around a flat metric gµν = ηµν . We see immediately

that the d dimensional Poincaré group forms a subgroup of the Conformal Group in

d dimensions as these transformations leave gµν invariant.

It follows directly from the definition that conformal transformations preserve an-

gles: Assuming we are dealing with Rd and gµν = δµν then cos(φ](a,b)) = a·b√
a2·b2

(where

a · b = gµνa
µbν) remains invariant under a conformal transformation.

2.1.1 The (Global) Conformal Group in d dimensions

To identify the generators of the Conformal Group consider the variation of gµν under

an infinitesimal coordinate transformation xµ → xµ + εµ. To first order we have:

δgµν = −∂µελ(x)gλν − ∂νελ(x)gµλ − ελ(x)∂λgµν(x) (2.1.3)

In order to have a conformal transformation around a flat metric ηµν , we have to

require that

∂µεν + ∂νεµ = ω(x)ηµν . (2.1.4)

The function ω can be fixed by taking the trace on both sides of the last equation

which yields ω = d
2(∂ · ε). Thus we get

∂µεν + ∂νεµ =
d

2
(∂ · ε)ηµν . (2.1.5)
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2.1 The Conformal Symmetry Group

If we apply the operator ∂µ to the last equation, we get

�ε =
(d

2
− 1
)
∂ν(∂ · ε) = 0. (2.1.6)

Acting with the operator � on both sides of eq. (2.1.5) gives

∂µ�εν + ∂ν�εµ =
d

2
ηµν�(∂ · ε). (2.1.7)

Combining the last two we obtain equations which constrains (∂ · ε):

(
ηµν� + (d− 2)∂µ∂ν

)
(∂ · ε) = 0 (2.1.8)

(d− 1) ·�(∂ · ε) = 0, (2.1.9)

where (2.1.9) follows by taking the trace of eq. (2.1.8).

From eq. (2.1.9) we deduce that in d = 1 dimensions every smooth transforma-

tion is a conformal transformation. Furthermore these equations show that in d > 2

dimensions ∂µ∂ν(∂ · ε) = 0 which means that ∂ · ε can be at most linear in x.

There are four different expressions for εµ which are consistent with eq. (2.1.5).

The easiest way to find them is to start with a general ansatz for εµ which is at most

quadratic in x and to derive conditions for the coefficients by plugging them back into

eq. (2.1.5). The four cases are:

1. Translations: εµ = aµ is generated by Pµ = −i∂µ. Exponentiating gives finite

translations xµ → xµ +Aµ

2. Lorentz transformations: εµ = ωµνx
ν (where ωµν = −ωνµ) is generated by

Jµν = i(xµ∂ν − xν∂µ). Exponentiating gives Lorentz transformations xµ →

9



2 Foundations of CFT

Λµνxν where Λµν ∈ SO(p, q) (for q = 0 we have just rotations)

3. Dilations: εµ = λxµ is generated by D = −ixµ∂µ. Exponentiating gives scale

transformations xµ → Λxµ.

4. Special conformal transformations: εµ = bµx2 − 2xµb · x is generated by

Kµ = −i(2xµxν∂ν − x2∂µ). The corresponding finite transformations are given

by xµ → xµ−Bµx2

1−2B·x+B2x2 . These transformations can be understood as a translation

preceded and followed by an inversion xµ → xµ

x2 .

The generators given above represent the action of these transformations on a space of

functions. We say that Ô generates the transformation if f(x)→ f(x)+ iεÔf +O(ε2).

We are rather familiar with finite and infinitesimal translations or Lorentz trans-

formations and the corresponding generators. The result of the exponentiation of an

infinitesimal dilation is easy to check. For the special conformal transformations it

is easier to start with the finite transformation and to confirm that the correspond-

ing infinitesimal transformation is given as claimed before. The generators obey the

following commutation relations:

[D,Pµ] = iPµ [Kµ, P ν ] = 2i(ηµνD − Jµν)

[D,Kµ] = iKµ [Kρ, Jµν ] = i(ηρµKν − ηρνKµ)

[P ρ, Jµν ] = i(ηρµP ν − ηρνPµ)

[Jµν , Jρσ] = i(ηνρJµσ + ηµσJνρ − ηµρJνσ − ηνσJµρ)

(2.1.10)

The algebra of generators is isomorphic to so(p+1, q+1) which can be made explicit by

reorganizing the generators and checking that these generators obey the so(p+1, q+1)

commutation relations [18]. Here we will simply convince ourselves that the dimensions

10



2.1 The Conformal Symmetry Group

agree in both cases:

p+ q︸ ︷︷ ︸
translations

+
1
2

(p+ q)(p+ q − 1)︸ ︷︷ ︸
Lorentz transformations

+ 1︸︷︷︸
dilations

+ p+ q︸ ︷︷ ︸
SCTs

=
1
2

(p+ q + 2)(p+ q + 1) (2.1.11)

We call this algebra the conformal algebra and the corresponding group the (global)

conformal group. The designation global distinguishes these transformations from the

larger transformation group in the case of d = 2 dimensions which we will discuss in

a moment.

2.1.2 Correlation functions

As one example for the strong constraints which conformal symmetry places on the

underlying (classical) field theory we discuss the form of correlation functions consis-

tent with conformal symmetry. In d dimensions we look at the n-point correlation

function of (spinless) quasiprimary fields i.e. of fields that transform under a global

conformal transformation x→ x′ as

φi(x)→ φ′i(x
′) =

∣∣∣∣∂x′∂x

∣∣∣∣∆i/d

φi(x′), (2.1.12)

where ∆i is the so-called scaling dimension of φi. In a conformally invariant theory

the correlation functions involving these fields then satisfy

〈φ1(x1) . . . φn(xn)〉 =
∣∣∣∣∂x′∂x

∣∣∣∣∆1/d

x=x1

· · ·
∣∣∣∣∂x′∂x

∣∣∣∣∆n/d

x=xn

〈φ1(x′1) . . . φn(x′n)〉. (2.1.13)

In particular we look at two-point functions 〈φ1(x1)φ2(x2)〉 which are restricted by

inserting expressions for translations and rotations in eq. (2.1.13) to be functions of

11



2 Foundations of CFT

|x1 − x2|. The Jacobians simply give a factor 1 in this case. Next we insert dilations

x → λx into the equation and deduce that the 2- point functions have to be of the

form

〈φ1(x1)φ2(x2)〉 =
C12

|x1 − x2|∆1+∆2
, (2.1.14)

where C12 is a numerical coefficient which depends on the normalization of the fields

φ1 and φ2. The last condition on the form of the 2-point function is imposed by

inserting a special conformal transformation xµ → xµ−Bµx2

1−2B·x−B2x2 into eq. (2.1.13). For

these transformation we find the Jacobian
∣∣∣∂x′∂x ∣∣∣ = (1− 2B · x+ B2x2)−d and get the

following condition from eq. (2.1.13):

α1
∆1α2

∆2 = (α1α2)
1
2

(∆1+∆2), (2.1.15)

where αi = 1−2B ·xi+B2x2
i . This condition requires ∆1 = ∆2 so we obtain the final

result:

〈φ1(x1)φ2(x2)〉 =


C12

|x1−x2|2∆ if ∆1 = ∆2 = ∆

0 else
(2.1.16)

This result is a demonstration of the strong constraints conformal invariance imposes

on a conformal field theory because it follows from symmetry properties alone and

does for example not depend on the way how the theory is formulated. An argument

similar to the one presented above gives us the possible form of 3-point functions in a

conformally invariant field theory [18]:

〈φ1(x1)φ2(x2)φ3(x3)〉 =
C123

x∆1+∆2−∆3
12 x∆2+∆3−∆1

23 x∆3+∆1−∆2
31

, (2.1.17)
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2.1 The Conformal Symmetry Group

where xij = |xi−xj |. One might suspect that all n-point will have the structure of eq.

(2.1.17) namely being determined by the conformal weights of the scaling dimensions

up to a constant. The analysis of the 4-point functions shows that this is not the case.

The reason is that we can form another kind of conformally invariant quantities with

four points, the so-called anharmonic ratios or cross-ratios. For n distinct points there

are n(n− 3)/2 independent of these ratios which take the form xijxkl
xikxjl

for a collection

of pairwise distinct indices i, j, k, l.

The 4-point function is determined up to an arbitrary function of the two indepen-

dent anharmonic ratios [18]:

〈φ1(x1) · · ·φ4(x4)〉 = f

(
x12x34

x13x24
,
x12x34

x23x14

) ∏
1≤i<j≤4

xij
∆/3−∆i−∆j , (2.1.18)

where f(x, y) is an arbitrary function and ∆ = ∆1+. . .+∆4. We find similar expression

for a general n- point function, which is determined by conformal invariance up to an

arbitrary function of the anharmonic ratios.

2.1.3 The Witt algebra

For the rest of the thesis we will now concentrate on two-dimensional conformal field

theories. Already by looking at eq. (2.1.9) we can infer that the conformal field theory

in two dimensions plays a special role among the conformal field theories. In two

dimensions and for an euclidean metric ηµν = δµν the condition (2.1.5) reads:

∂1ε
1 = ∂2ε

2 ∂2ε
1 = −∂1ε

2 (2.1.19)

13



2 Foundations of CFT

These conditions have the form of the Cauchy-Riemann differential equations. Hence

we choose complex variables, which will allow us to make use of methods from complex

analysis:

z ≡ xz = x1 + ix1 z̄ ≡ xz̄ = x0 − ix1

∂ ≡ ∂z =
∂

∂xz
=
∂xµ

∂xz
∂µ =

1
2

(∂1 − i∂2)

∂̄ ≡ ∂z̄ =
∂

∂xz̄
=
∂xµ

∂xz̄
∂µ =

1
2

(∂1 + i∂2)

ε ≡ εz =
∂xz

∂xµ
εµ = ε1 + iε2

ε̄ ≡ εz̄ =
∂xz̄

∂xµ
εµ = ε1 − iε2

(2.1.20)

Note that the components of the metric in these coordinates are given by

gz̄z̄ = gzz =
∂xµ

∂xz
∂xν

∂xz
gµν = 0 and gzz̄ = gz̄z =

∂xµ

∂xz
∂xν

∂xz̄
gµν =

1
2
, (2.1.21)

which may sometimes be a source of confusion. In these variables the conditions from

(2.1.19) take the form

∂z̄ε(z, z̄) = 0 ∂z ε̄(z, z̄) = 0. (2.1.22)

This means that ε(z, z̄) is a function of z alone, which is called a holomorphic function

in the physics literature whereas in mathematical texts often the term meromorphic

is used. ε̄(z, z̄) only depends on z̄, which is called antiholomorphic.

Note that z and z̄ are treated as independent variables here. This is a perfectly

acceptable approach if we image looking at a field theory defined on C2 instead of

C ' R2. This allows us to treat the holomorphic and the antiholomorphic parts in-

dependently. At the end we can still impose the reality condition z̄ = z∗ to return to
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2.1 The Conformal Symmetry Group

the physically relevant case. We will often write down only the holomorphic contri-

butions. The corresponding antiholomorphic contributions can then be obtained by

adding bars at appropriate places.

An infinitesimal conformal transformation is given by z → z + ε(z) where

ε(z) =
∑
n∈Z

εnz
n+1 and ε̄(z̄) =

∑
n∈Z

ε̄nz̄
n+1. (2.1.23)

It is generated by ln = −zn+1∂ and l̄n = −z̄n+1∂̄ which follows from

φ(z′, z̄′) = φ(z, z̄)

= φ(z, z̄)− ε(z)∂φ(z, z̄)− ε̄(z̄)∂̄φ(z, z̄) + . . .

= φ(z, z̄) +
∑
n∈Z

(εnln∂ + ε̄n l̄n∂̄)φ(z, z̄) + . . . .

(2.1.24)

The generators form the so-called Witt algebra which is infinite dimensional unlike the

global conformal algebra we encountered previously:

[ln, lm] = (n−m) ln+m

[l̄n, l̄m] = (n−m) l̄n+m

[ln, l̄m] = 0 where n,m ∈ Z

(2.1.25)

In the quantum theory the analogue of the Witt algebra is the Virasoro algebra which

is a central extension of the Witt algebra.

Note that the transformations generated by ln respectively l̄n are only globally

defined on the complex plane if n = −1, 0, 1. The transformations generated by ln+ l̄n

and i(ln− l̄n) preserve the real line (c.f. our previous discussion on treating holomophic

and antiholomorphic parts independently), for example l0 + l̄0 generates dilations and
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2 Foundations of CFT

i(l0 − l̄0) rotations in the complex plane. This subgroup generated by ln + l̄n and

i(ln − l̄n) for n = −1, 0, 1 is in fact the global conformal group we discussed earlier.

Formulated in complex coordinates the transformations in the subgroup generated

by l−1, l0, l1 can be written as the group of Möbius transformations:

z → az + b

cz + d
where ad− bc = det

(
a b
c d

)
= 1 (2.1.26)

The reason why we can impose the condition ad − bc = 1 is, that a global conformal

transformations is parametrized by 3 complex parameters whereas the map (2.1.26)

without the condition imposed admits four parameters. The group of Möbius trans-

formations is isomorphic to SL(2,C)/Z2 where the factor Z2 originates from the fact

that a Möbius transformation and the transformation with the signs of all parameters

inverted are identical. As locally SL(2,C) ' SO(3, 1) our result here is consistent

with our result so(p+ 1, q + 1) for p = 2 and q = 0 from the preceding section.

2.1.4 Correlation functions in two dimensions

In this section we will have another look at correlation functions, but not in the general

case of d dimensions like in section 2.1.2 but with focus on the two-dimensional theory.

The main difference to the previous considerations will be that we do not restrict

ourselves to fields with vanishing conformal spin. We will only cite the results in this

section for comparison with the results from section 2.1.2 and for later reference. As

these results are of central importance their derivation is sketched in appendix A.

The 2-point functions are restricted to the form

〈φ1(z1)φ2(z2)〉 = C12(z1 − z2)−2h(z̄1 − z̄2)−2h̄ (2.1.27)
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2.1 The Conformal Symmetry Group

for h1 = h2 = h and h̄1 = h̄2 = h̄. In a theory with only a finite number of primary

fields we can chose their normalization such that Cij = δij . The 3-point functions are

of the form

〈φ1(z1, z̄1)φ2(z2, z̄2)φ3(z3, z̄3)〉 = Cijk z
h3−h1−h2
12 zh1−h2−h3

23 zh2−h3−h1
31

· z̄h̄3−h̄1−h̄2
12 z̄h̄1−h̄2−h̄3

23 z̄h̄2−h̄3−h̄1
31 , (2.1.28)

where zij = zi−zj and z̄ij = z̄i− z̄j . The coefficients Cijk depend on the normalization

of the 2-point function which is chosen as above.

Our results can be understood as follows: The global conformal group is generated

by translations, rotations/dilations and special conformal transformations. A global

conformal transformation is fixed by the images of three points ζ1 = f(z1), ζ2 = f(z2)

and ζ3 = f(z3) in the complex plane. The three equations ζi = azi+b
czi+d

together with

the condition ad− bc = 1 fix the transformation. The 3-point function is determined

if we know its values at just 3 points.

This argument already indicates that the 4-point function will not be fixed in a

similar way. The 4-point functions in a conformally invariant two-dimensional field

theory are constrained to the form (c.f. eq. (2.1.18))

〈φ1(z1, z̄1) · · ·φ4(z4, z̄4)〉 = f(x, x̄)
∏

1≤i<j≤4

zij
h/3−hi−hj z̄

h̄/3−h̄i−h̄j
ij , (2.1.29)

where h =
∑

i hi and h̄ =
∑

i h̄i and the anharmonic ratios are given by x = z12z34
z13z24

and x̄ = z̄12z̄34
z̄13z̄24

. Note that for h − h̄ = 0, which we will call vanishing conformal spin

in section 2.2.2, all relations reduce to the expressions obtained in section 2.1.2.
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2 Foundations of CFT

2.2 Operator formalism

The aim of this section is to look at the quantization of two dimensional conformal field

theories in detail. We will see that the procedure of time-ordering in usual quantum

field theory corresponds to radial ordering of operators defined on the complex plane.

The process is called radial quantization. The main result of this section is the Virasoro

algebra which is formed by the conformal generators of the quantized theory.

2.2.1 The Stress-Energy tensor

Definition and properties

The stress-energy tensor is of special importance in conformal field theories because

operator product expansions with it determine the transformation behaviour of other

fields under conformal transformations. In a d-dimensional field theory we may define

the stress-energy tensor via Noether’s theorem or as variation of the action with respect

to the metric:

δS =
1
2

∫
ddx
√
gTµνδgµν (2.2.1)

In general the two definitions of the stress-energy tensor do not coincide, especially

in the definition via Noether’s theorem the stress-energy tensor does not have to be

symmetric, but can be made so by adding the derivative of an appropriate tensor

which does not spoil energy-momentum conservation, whereas in our definition Tµν is

manifestly symmetric.

From scaling invariance in a CFT we can deduce that Tµν has to be traceless:

Tµµ = 0. Energy-momentum conservation implies ∂µTµν = 0.
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2.2 Operator formalism

The Stress-Energy tensor in two dimensions

Now we specialise to the case d = 2 and rewrite the stress-energy tensor in terms of

complex coordinates:

Tzz =
∂xµ

∂xz
∂xν

∂xz
Tµν =

1
4

(T11 − T22 + 2iT12)

Tz̄z̄ =
1
4

(T11 − T22 − 2iT12)

Tzz̄ = Tz̄z =
1
4
Tµµ = 0

(2.2.2)

Here we used the fact that Tµν is traceless and symmetric. Energy momentum con-

servation together with the traceless condition yields (c.f. eq. (2.1.20))

∂z̄Tzz = 0 ∂zTz̄z̄ = 0, (2.2.3)

which implies that T (z) ≡ Tzz(z) is holomorphic and T̄ (z̄) ≡ Tz̄z̄(z̄) is antiholomorphic.

Thus we can expand them in modes which can be expressed as contour integrals using

Cauchy’s integral formula:

T (z) =
∑
n∈Z

z−n−2L̂n where L̂n =
∮

dz T (z)zn+1

T (z̄) =
∑
n∈Z

z̄−n−2 ˆ̄Ln where ˆ̄Ln =
∮

dz̄ T̄ (z̄)z̄n+1

(2.2.4)

Conserved currents

Noether’s theorem implies that we can associate conserved currents to continuous

symmetries. In the case of conformal symmetry these are given by

Jµ(ε) = Tµνε
ν . (2.2.5)
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2 Foundations of CFT

The current is conserved because

∂µJµ = (∂µTµν)εν + Tµν∂
µεν = 0. (2.2.6)

The first term vanishes because Tµν is conserved and the second term because Tµν is

symmetric and traceless using eq. (2.1.5). In d = 2 dimensions the current (2.2.5) can

be written as

Jz = Tzzε(z) Jz̄ = T̄z̄z̄ ε̄(z̄). (2.2.7)

Here current conservation ∂z̄Jz = ∂zJz̄ = 0 is manifest because Jz̄ and Jz are (anti-)

holomorphic. The conserved charges are then given by

Qε =
∫

dz
2πi

ε(z)T (z) and Qε̄ =
∫

dz̄
2πi

ε̄(z̄)T̄ (z̄). (2.2.8)

These are the generators of infinitesimal conformal transformations in the sense of

δε,ε̄ φ(w, w̄) = [Qε, φ(w, w̄)] + [Qε̄, φ(w, w̄)]. (2.2.9)

2.2.2 Radial quantization

Schwinger’s time splitting technique

We consider a two dimensional quantum field theory with time coordinate τ and

space coordinate σ. We assume the signature to be euclidean which corresponds to

the situation after performing a Wick rotation τ → −iτ and furthermore we will

compactify the space direction by identifying σ ∼ σ + L. The cylinder created in this
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2.2 Operator formalism

Figure 2.1: Mapping the cylinder to the complex plane

way can be mapped to the extended complex plane using the conformal map

(τ, σ)→ z = e
2π
L

(τ+iσ) and (τ, σ)→ z̄ = e
2π
L

(τ−iσ). (2.2.10)

This is shown in figure 2.1. The surface in the infinite past corresponds to z = 0 and

the infinite future to z = ∞ on the extended complex plane. Slices of equal time on

the cylinder correspond to circles centred at z = 0.

Time-ordering is a well-known concept in usual QFTs and carries over as radial

ordering in the complex domain. Therefore we define a radial ordering operator R:

Rψ(z)φ(w) =


ψ(z)φ(w) if |w| < |z|

±φ(w)ψ(z) if |z| < |w|,
(2.2.11)

where the minus sign is used if both ψ and φ are fermionic fields.

Now we want to evaluate the variation of φ(z, z̄) under an infinitesimal conformal

transformation generated by Qε given in eq. (2.2.8). This can be written as a contour
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2 Foundations of CFT

Figure 2.2: Deforming the integration contour

integral of the stress-energy tensor with the field in question:

δε φ(w, w̄) = [Qε, φ(w, w̄)]

=
1

2πi

∮
dz ε(z) (T (z)φ(w, w̄)− φ(w, w̄)T (z))

=
1

2πi

(∮
�0:|z|>|w|

dz −
∮
�0:|z|<|w|

dz

)
ε(z)R(T (z), φ(w, w̄))

=
1

2πi

∮
�w

dz ε(z)R(T (z), φ(w, w̄))

(2.2.12)

In the last step we used Cauchy’s theorem to deform the integration path in a path

enclosing w like it is shown in figure 2.2. We clearly get a non-vanishing contribution if

the operator product expansion is singular as w → z. Thus we should be interested in

analysing operator product expansions of the fields with the stress-energy tensor T or

T̄ respectively in order to understand their transformation properties under conformal

transformations.

Primary fields

A field Φ(z, z̄) which transforms as

Φ(z, z̄)→
(
∂f(z)
∂z

)h(∂f̄(z̄)
∂z̄

)h̄
Φ
(
f(z), f̄(z̄)

)
(2.2.13)
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2.2 Operator formalism

under a conformal mapping z → f(z) is called primary field and (h, h̄) where h, h̄ ∈ R

are called conformal dimensions of Φ. If this relation holds only for f ∈ SL(2,C) the

field is called quasi-primary.

Dilations are generated by L0 + L̄0 and map z → λz (λ ∈ R). Under these trans-

formations a (quasi-)primary field transforms as Φ → λh+h̄Φ and the combination

h+ h̄ is thus called scaling dimension. Rotations z → eiθz are generated by i(L0− L̄0)

and (quasi-)primary fields transform according to Φ → eiθ(h−h̄)Φ. This justifies the

designation conformal spin for the combination h− h̄.

Under an infinitesimal conformal transformation of the form z → z + ε(z), z̄ →

z̄ + ε̄(z̄) the variation of a primary field Φ is

δε,ε̄Φ(w, w̄) =
(

(h∂ε+ ε∂) + (h̄∂̄ε̄+ ε̄∂̄)
)

Φ(w, w̄). (2.2.14)

If we compare this result to the last line in eq. (2.2.12) we can infer the operator

product expansion of a primary field with the stress-energy tensor using the residue

theorem:

R(T (z)Φ(w, w̄)) ∼ h

(z − w)2
Φ(w, w̄) +

1
z − w

∂wΦ(w, w̄) , (2.2.15)

where we considered for notational simplicity only contributions from the holomorphic

parts. The OPE in eq. (2.2.15) and the corresponding OPE with T̄ can be used as an

alternative definition of a primary field. The symbol ∼ in eq. (2.2.15) denotes equality

up to terms which are regular as w → z. We will use this notation in the following

when we consider operator product expansions.
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2 Foundations of CFT

2.2.3 Operator product expansions and Ward identities

The Operator product expansion (OPE)

In the last section we saw one example for an operator product expansion of a primary

field with the stress-energy tensor. This concept is valid under more general circum-

stances and is a central concept in conformal field theory. In the following we will

omit the radial ordering operator for notational convenience and simply assume that

operator products are always radially ordered.

We study the short-distance limit of a (radially ordered) product of two operators

Φ(z) and Ψ(w). In general this has the form

Φ(z)Ψ(w) =
∑
λ

Cλ(z − w)Oλ(w), (2.2.16)

where {Oλ} is a complete set of local operators and Cλ are (potentially singular)

C-valued coefficient functions of (z − w).

Expressions like eq. (2.2.16) always have to be understood as being inserted into

arbitrary correlation functions i.e. in the sense of

lim
z→w
〈
(
Φ(z)Ψ(w)−

∑
λ

Cλ(z − w)Oλ(w)
)
φ1(x1) · · ·φN (xN )〉 = 0. (2.2.17)

Of particular interest is the OPE of the stress-energy tensor with itself as this de-

termines the transformation properties of T (z) under a conformal transformation.

Therefore we consider the variation of a primary field φ under two successive infinites-

imal conformal transformations. Using the relation [δξ1 , δξ2 ] = δ(∂ξ1ξ2−∂ξ2ξ1) applied

to φ and eq. (2.2.12) and comparing both sides of the equation, we can derive an
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expression for the OPE of the stress-energy tensor with itself. We find that T has to

be of weight h = 2, but that the argument remains valid if the OPE contains a quartic

term with a yet unfixed coefficient c in addition to the terms from eq. (2.2.15):

T (z)T (w) ∼ c/2
(z − w)4

+
2

(z − w)2
T (w) +

∂T (w)
z − w

(2.2.18)

This is in fact the most general OPE for a conformal field of weight h = 2 which is

consistent with scaling invariance and analyticity.

As pointed out above, apart from the first term involving c we recognize the OPE

of a primary field of weight (2, 0). For non-vanishing c we conclude that T is not

a primary field. The central charge or conformal anomaly c does not occur in the

classical theory and is thus a purely quantum effect. As we will see in section 2.7.2

the central charge is proportional to the Casimir energy i.e. the change in the vacuum

energy caused by imposing periodicity conditions on the cylinder. In section 2.9 we

will calculate the central charge in free theories with help of Wick’s theorem.

Note that in string theory the content of the theory is chosen such that the overall

central charge vanishes i.e. the theory possesses full conformal invariance. The sim-

plest example is the quantization of the bosonic string where the extra contributions to

the central charge from the ghost fields which arise during the gauge fixing procedure

exactly cancel the central charge c = 26 from the matter degrees of freedom in the

critical dimension.

The Ward identities

In this subsection we look at insertions of the stress-energy tensor into general n-point

functions, which will give the so-called Ward identities. Thus we look at correlation
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functions of the form

Fn(z, zi, z̄i) = 〈T (z)φ1(z1, z̄1) · · ·φn(zn, z̄n)〉, (2.2.19)

where φi is a primary field of weight (hi, h̄i) for i = 1, . . . , N . Therefore we consider

for a closed path γ encircling z1, . . . , zN and calculate

〈
∮
γ
dz T (z)ε(z)φ1(z1, z̄1) · · ·φn(zn, z̄n)〉

=
n∑
i=1

〈φ1(z1, z̄1) · · ·

(∮
�zi

dz T (z)ε(z)φi(zi, z̄i)

)
· · ·φn(zn, z̄n)〉

=
n∑
i=1

〈φ1(z1, z̄1) · · · δεφi(zi, z̄i) · · ·φn(zn, z̄n)〉

=
n∑
i=1

〈φ1(z1, z̄1) · · ·

(∮
�zi

dz ε(z)
(

hi
(z − zi)2

+
∂zi
z − zi

)
φi(zi, z̄i)

)
· · ·φN (zn, z̄n)〉.

(2.2.20)

In the last step we used eq. (2.2.14) and rewrote the result as a contour integral. As

the relation holds for arbitrary ε(z) we obtain the conformal Ward identities:

〈T (z)φ1(z1, z̄1) · · ·φn(zn, z̄n)〉 =
n∑
i=1

(
hi

(z − zi)2
+

∂zi
z − zi

)
〈φ1(z1, z̄1) · · ·φn(zn, z̄n)〉

(2.2.21)

This result states that Fn(z, zi, z̄i) seen as a function of z while fixing all other variables

is a meromorphic function with poles at the insertion points zi of the fields φi. The

residues can be calculated from the n-point correlation functions using eq. (2.2.21).
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2.2.4 The Virasoro algebra

Now we have the necessary tools to investigate the algebra of the conformal generators

in the quantized theory i.e. the commutators of the modes Ln of the stress-energy

tensor defined in eq. (2.2.4):

[L̂n, L̂m] =
[

1
2πi

∮
dz T (z)zn+1,

1
2πi

∮
dwT (w)wm+1

]
=

1
2πi

∮
dwwm+1 1

2πi

∮
�w

dz zn+1

(
c/2

(z − w)4
+

2
(z − w)2

T (w) +
∂wT (w)
z − w

)
=

1
2πi

∮
dwwm+1

( c
12
wn−2(n3 − n) + 2T (w)(n+ 1)wn + ∂wT (w)wn−1

)
(2.2.22)

In the second line we used the argument from eq. (2.2.12) again and inserted the

OPE from eq. (2.2.18). The only contributions come from the singular parts of the

OPE here. The first contour integral can be evaluated using the residue theorem and

e.g. Resz=w zn+1

(z−w)m = 1
(m−1)! limz→w

dm−1

dzm−1 z
n+1. We integrate the first term in the last

line of eq. (2.2.22) again by applying the residue theorem. The remaining two terms

can be combined after integrating by parts the third addend. The final result is the

Virasoro algebra:

[L̂n, L̂m] = (n−m)L̂n+m +
c

12
(m3 −m)δ0,m+n (2.2.23)

To justify the use of the term algebra, we should consider c as additional generator

which commutes with all other elements of the algebra i.e. [L̂n, c] = 0. For the

antiholomorphic generators ˆ̄Ln we obtain the same algebra with central charge1 c̄ and

1We know from (2.2.2) that T + T̄ is real and hence we deduce from the reality of the OPE (T +
T̄ )(T + T̄ ) that c = c̄.
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we have [L̂n, ˆ̄Lm] = 0 as there are no singular terms in the OPE of T (z) with T̄ (z̄). So

in total we find two commuting copies of the Virasoro algebra to which we will refer

in the following as holomorphic/antiholomorphic or equivalently as chiral/antichiral

algebras.

We note that the commutation relations of the finite dimensional sl(2,C) subalgebra

generated by L̂−1, L̂0, L̂1 are not affected by the central charge term.

2.3 Representation theory

In the last section we finally derived the Virasoro algebra which determines the com-

mutation relations of the conformal generators. Now we will proceed by showing how

the Hilbert space of the theory is constructed.

We represent some observable algebra W (which will be identical with the Virasoro

algebra for the remainder of this chapter) on a representation space H. We demand

that the representation is unitary2 and assume in the following that H is a Hilbert

space. Finally we impose the spectrum condition on the space of physical states which

implies that the energy (i.e. the L0 eigenvalue) is bounded from below.

We look at a special class of representations namely the highest weight representa-

tions3. All states in a highest weight or Verma module Vh are obtained from a so-called

highest weight state |h〉 which we label by its L0 eigenvalue (choosing L0 as Cartan

2In the context of quantum field theories this is an obvious requirement which is linked to the
probability interpretation. There are some interesting non-unitary models in statistical physics
which may motivate the study of non-unitary representations. In this thesis however we will
restrict our attention to unitary representations.

3Highest weight representations exist for any observable algebra which possesses a triangular decom-
position [4] like the Virasoro algebra.
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subalgebra). The highest weight state is characterized by

L0|h〉 = h|h〉, Ln|h〉 = 0 for n > 0. (2.3.1)

We obtain the other elements of the Verma module Vh by acting with all possible

combinations of L−n (n > 0) on the highest weight state |h〉. There is a natural

inner product defined on Vh if we set 〈h|h〉 = 1 and represent the Virasoro generators

obeying L†n = L−n. In general these representations will not be irreducible which is

linked to the fact that the inner product defined in this way is degenerate (c.f. section

(2.3.4). We may then construct irreducible Verma modules by considering the quotient

space of the original Hilbert space by the space spanned by all null vectors.

The Hilbert space can be decomposed into a (possibly infinite) direct sum of irre-

ducible highest weight modules Vh of the Virasoro algebra:

H =
⊕
h

Vh (2.3.2)

The highest weight vector |h〉 is both a highest weight vector with respect to the Vi-

rasoro algebra and with respect to the sl(2,C) subalgebra generated by {L−1, L0, L1}.

So far we considered only the chiral half of the actual conformal field theory. As

the chiral and the antichiral algebra commute we simply have to duplicate the whole

structure and demand e.g. that |h, h̄〉 is a highest weight state both with respect to the

chiral and the antichiral algebra (with L0 and L̄0 eigenvalues h and h̄ respectively).

The full Hilbert space then decomposes into a direct sum of tensor products

H =
⊕
h,h̄

Mhh̄Vh ⊗ V h̄, (2.3.3)
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where Mhh̄ denotes the multiplicity with which a certain tensor product occurs.

2.3.1 The state-operator correspondence

In this section we make the connection between the highest weight states and the

primary fields in a conformal field theory. The key is the state-operator correspondence

which links conformal fields with states in the Hilbert space and in particular primary

fields with highest weight states. Let Φ be a conformal field with weight (h, h̄). Then

we define the state |h, h̄〉 as the asymptotic state

|h, h̄〉 = lim
z,z̄→0

Φ(z, z̄)|0〉. (2.3.4)

The state |0〉 corresponding to the identity operator is called vacuum state and is

assumed to be unique in the following. The conditions imposed on the vacuum state

can be derived from the condition that T (z)|0〉 should be non-singular at z = 0 (c.f.

eq.(2.2.4)):

Ln|0〉 = 0 for n > −1 (2.3.5)

In particular we notice that the vacuum state is annihilated by L−1, L0, L1 which

means that the vacuum is SL(2,C) invariant. Another point worth noting is that

we cannot demand Ln|0〉 = 0 for all n ∈ Z which might have been an intuitive guess,

because this would be inconsistent with the central charge term in the Virasoro algebra

in eq. (2.2.23). Here we use the notation |0〉 as a shorthand for the tensor product

|0〉 ⊗ |0〉 consisting of the respective vacuum states for the chiral/antichiral Virasoro

algebra.

In order to define the inner product we first define the adjoint operator A† of an

30
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operator A(z, z̄) with conformal dimension (h, h̄) as

A†(z, z̄) = z−2h̄z̄−2hA
(1
z̄
,

1
z

)
. (2.3.6)

This definition may look unnatural but is in fact closely related to our choice of an

euclidean signature. The euclidean version of the time evolution operator e−Ht differs

from the time evolution operator in Minkowski space-time e−iHt by a factor of i which

has to be compensated in the definition of the adjoint by an euclidean time inversion

τ → −τ which corresponds z → 1
z̄ on the complex plane. Note that unlike in usual

QFT the asymptotic states are defined as eigenstates of the full Hamiltonian and not

of some non-interacting free Hamiltonian.

If we apply the definition given above to the (holomorphic) stress-energy tensor T (z)

which has conformal weight (2,0), we get

T (z)† =
∑
m∈Z

L†m
z̄m+2

=
∑
m∈Z

Lm
z̄m+2

z̄−4. (2.3.7)

From the hermiticity of T it follows L†n = L−n i.e. the Virasoro modes are represented

just as demanded in the previous section.

Also for quasi-primary fields Φ of weight (h, h̄) we can define asymptotic in- and

out- states via

|Φ〉 = lim
z,z̄→0

Φ(z, z̄)|0〉 〈Φ| = lim
z,z̄→0

〈0|Φ†(z, z̄) (2.3.8)

and we have |Φ〉† = 〈Φ|. But if Φ is only quasi-primary and not primary the state is

not a highest weight state with respect to the Virasoro algebra but with respect to the

sl(2,C) subalgebra.
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2.3.2 Primary fields

In this section we convince ourselves that the state corresponding to a primary field

Φ of weight (hΦ, h̄Φ) is actually a highest weight state with the expected L0 and L̄0

eigenvalues hΦ and h̄Φ respectively. Starting from eq. (2.2.12) with ε(z) = zn+1 and

inserting the OPE for the primary field Φ with the stress-energy tensor eq. (2.2.15)

one obtains

[L̂n,Φ(z)] = zn[z∂ + (n+ 1)hΦ]Φ(z). (2.3.9)

It is another way of defining a primary field to require that the relation (2.3.9) holds

for all modes n. It can then be used to verify that

L0|Φ〉 = hΦ|Φ〉 and Ln|Φ〉 = 0 for n > 0, (2.3.10)

which shows that the primary field Φ indeed gives rise to an highest weight state with

L0 eigenvalue hΦ. In a similar way one shows that |Φ〉 is a highest weight state with

respect to the antichiral Virasoro algebra.

2.3.3 Descendant fields

Descendant or secondary fields originate from non-singular terms of the OPE of the

field in question with the stress-energy tensor. For example we can extract such fields

from the OPE of a primary field Φ with the stress-energy tensor (c.f. eq. (2.2.15)):

T (w)Φ(z, z̄) =
∑
n≥0

(w − z)n−2L̂−nΦ(z, z̄), (2.3.11)
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where

Φ(−n)(z, z̄) ≡ L̂−nΦ(z, z̄) =
1

2πi

∮
dw

1
(w − z)n−1

T (w)Φ(z, z̄) (2.3.12)

By comparison with eq. (2.2.15) we find explicit expressions for the first two descen-

dants:

Φ(0)(z, z̄) = hΦ(z, z̄) and Φ(−1)(z, z̄) = ∂zΦ(z, z̄) (2.3.13)

On the level of the Hilbert space these fields then correspond to states obtained by

acting with L−n for n > 0 on a highest weight state:

Φ(−n)(0, 0)|0〉 =
1

2πi

∮
dw

1
(w − z)n−1

T (w)Φ(0, 0)|0〉 = L−nΦ(0, 0)|0〉 (2.3.14)

We can obtain further descendants from the fields occurring in the OPE of a given

descendant field with the stress-energy tensor. These fields are then denoted by

Φ(−n1,...,−nN ) and correspond to states L−n1 . . . L−nNΦ(0, 0)|0〉 on the Hilbert space.∑
i ni is called level of the descendant of the primary field Φ. We may assume that

n1 ≥ . . . ≥ nN ≥ 1 because an arbitrary state can be written as linear combination of

ordered states using the Virasoro algebra.

A simple example of a descendant field which is present in any conformal field theory

is given by the stress-energy tensor itself being the level 2 descendant of the identity

operator:

1(−2)(z, z̄) = L̂−2 1(z, z̄) =
1

2πi

∮
dw

1
w − z

T (w) = T (z) (2.3.15)

One can easily deduce the conformal weight (h + n, h̄) of a level n descendant of
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a primary field of weight (h, h̄) using the relation [L0, Ln] = nLn from the Viraso

algebra eq. (2.2.23). This is another way of showing that the stress-energy tensor T

has conformal weight (2, 0).

Correlation functions involving descendant fields

A special property of a CFT in two dimensions is that we can calculate correlators

involving descendant fields from correlators just involving primary fields. To justify

this claim we look at n-point correlation functions involving one descendant field. With

X(z1, z̄1, . . . , zn−1, z̄n−1) = φ1(z1, z̄1) · · ·φn−1(zn−1, z̄n−1) we have using eq. (2.3.12)

〈Xφ(−m)(z, z̄)〉 =
∮
�z

dw
2πi

(w − z)−m+1〈XT (z)φ(w)〉

= −
∮

�z1...zn−1

dw
2πi

(w − z)−m+1
n−1∑
i=1

(
1

w − zi
∂zi +

hi
(w − zi)2

)
〈Xφ(z, z̄)〉

= L−m〈Xφ(z, z̄)〉.

(2.3.16)

The contour in the first line encircles z only. We can see it as a contour of opposite

direction encircling z1, . . . zn−1 and use the residue theorem together with the OPE

for primary fields in eq. (2.2.15) to arrive at the second resp. third line.

The differential operators4 L−m from the last line are given by

L−m =
n−1∑
i=1

(
(m− 1)hi
(zi − z)m

− 1
(zi − z)m−1

∂zi

)
. (2.3.17)

4A short note on the notation used here and in the following: We distinguish the notation L̂n for the
operator modes acting on conformal fields, Ln for the Virasoro generators acting on states of the
respective Hilbert spaces and Ln for the realization as differential operator acting on correlation
functions.
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This means the evaluation of a correlation function involving a descendant field φ(−m)

reduces to applying the differential operator L−m to the correlation function 〈Xφ〉

which involves only primary fields. Note that the operator L−1 is equivalent to ∂z when

applied to correlation functions, because the operator ∂z + ∂z1 + . . . ∂zn−1 annihilates

any correlation function by translation invariance (c.f. eq. (A.1.2)). The procedure

discussed here generalizes to descendant fields of the form φ(−n1,...,−nN ) and also to

correlation functions involving multiple descendant fields [18].

2.3.4 Null state decoupling

We start this section by defining a null state. A null state is a level N descendant

state |χ〉 of a highest weight state |h〉 satisfying

L0|χ〉 = (h+N)|χ〉, Ln|χ〉 = 0 for n > 0. (2.3.18)

This implies in particular that 〈ψ|χ〉 = 0 for any state |ψ〉 of the Verma module. The

definition above means that |χ〉 is a descendant state of |h〉 but at the same time

a highest weight state with its own corresponding Verma module whose states are

orthogonal to the states of the original module. This is why we speak of null state

decoupling. Setting |χ〉 = 0 corresponds to taking the quotient of the original module

by the Verma module associated to the null state. Eq. (2.3.18) then ensures the

conformal invariance of the condition |χ〉 = 0.

For further discussions about existence of null states and their implications it is

enlightening to study a simple example. Therefore let us look at a general level 2

descendant |χ〉 = L−2|h〉 + αL−1
2|h〉 and find conditions under which this is a null

state. To ensure that (2.3.18) is satisfied we only have to check that L1|χ〉 = 0
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and L2|χ〉 = 0 as L1 and L2 generate the Virasoro algebra in an algebraic sense.

The first equation leads to the condition α = −3/(2 · (2h + 1)) and the second to

c = 2(−6αh−4h) = 2h(5−8h)/(2h+ 1) where in both cases the Virasoro algebra was

used. For this central charge c the state L−2|h〉 − 3
2(2h+1)L

2
−1|h〉 is a null descendant

at level 2 or also called degenerate at level 2.

We can rewrite this as an expression for the primary field φ(z, z̄) corresponding to

|h〉:

L̂−2φ(z, z̄) =
3

2(2h+ 1)
L̂−1

2φ(z, z̄) =
3

2(2h+ 1)
∂2

∂z2
φ(z, z̄), (2.3.19)

where we used (2.3.13). In this way we obtain differential equations for correlation

functions involving φ using the definition of L−2 in eq. (2.3.17):

3
2(2h+ 1)

∂2

∂z2
〈φ(z, z̄)φ1(z1, z̄1) . . . φn−1(zn−1, z̄n−1)〉

= 〈(L̂−2φ(z, z̄))φ1(z1, z̄1) . . . φn−1(zn−1, z̄n−1)〉

= L−2〈φ(z, z̄)φ1(z1, z̄1) . . . φn−1(zn−1, z̄n−1)〉

=
∑

1≤j<n

(
hj

(z − zj)2
+

1
z − zj

∂j

)
〈φ(z, z̄)φ1(z1, z̄1) . . . φn−1(zn−1, z̄n−1)〉

(2.3.20)

Thus all n-point functions involving φ have to obey the second order partial differential

equation above. In a similar way every primary field φ with a degenerate state at a

level m gives rise to a mth order differential equation for the n-point functions involving

the corresponding primary field.

Solving these differential equations is actually a very powerful approach for calcu-

lating analytical expressions for n-point functions involving primary fields with null

descendants [10, 1, 18]. In [10] this is shown explicitly for the Ising model. Even if for
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example the 3-point functions are not fixed completely by these equations, we obtain

selection rules indicating which coefficients Cijk may be non-zero.

2.4 Unitarity, Kac Determinant and Minimal models

2.4.1 Unitarity and the Kac Determinant

In section 2.3 we required the representation to be unitary but did not have a closer

look at the implications of this requirement yet. As Virasoro representations are

specified by the conformal weight h of the highest weight state (once again restricting

to the chiral sector) and the central charge c the requirement of unitarity will simply

lead to constraints on the possible combinations of the parameters c and h.

The first requirement comes from the simple observation that

0 ≤ 〈h|LnL−n|h〉 = 〈h|[Ln, L−n]|h〉 =
(

2nh+
c

12
(n3 − n)

)
〈h|h〉. (2.4.1)

From n = 1 we learn that the highest weight h has to be non-negative. Furthermore we

can infer from the limit of large n that also the central charge c has to be non-negative.

More systematically we analyse the Gram matrix G whose elements are formed by

taking inner products between all basis states i.e. Gij = 〈i|j〉 if we denote the basis

states of the Verma module by |i〉. G is obviously a hermitian matrix and thus can be

diagonalized. Writing a general vector in terms of the basis in which G is diagonal we

conclude that there are negative norm states if and only if G has negative eigenvalues.

The structure of the Virasoro algebra requires G to be block diagonal with non-

zero entries occurring only between descendants of the same level. We denote the

corresponding submatrices at level n by G(n). For example the first two of these
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matrices are given by

G(1) = 〈h|L1L−1|h〉 = 2h,

G(2) =
( 〈h|L2

1L
2
−1|h〉 〈h|L2

1L−2|h〉
〈h|L2L2

−1|h〉 〈h|L2L−2|h〉

)
=
(

4h(2h+1) 6h
6h 4h+c/2

)
.

(2.4.2)

A necessary condition for G(2) to be positive definite is that the determinant

detG(2) = 2 · (16h3 − 10h2 + 4h2c+ 2hc)

= 32(h− h1,1)(h− h2,1)(h− h1,2)

where h1,1 = 0 h1,2, h2,1 =
1
16

(5− c)∓ 1
16

√
(1− c)(25− c)

(2.4.3)

is positive.

The procedure can be generalized to the submatrix G(n) involving level n descen-

dants. For the determinant of this matrix, the so-called Kac-determinant, there is a

formula due to Kac [10]:

detG(n) = αn
∏
p,q≥1
pq≤n

(h− hp,q(c))P (n−pq) , where

hp,q(m) =
[(m+ 1)p−mq]2 − 1

4m(m+ 1)
and c = 1− 6

m(m+ 1)

(2.4.4)

Here αn is a positive constant and P (k) denotes the number of partitions of the integer

k. The conformal weights hp,q and the central charge c are given above as functions

of a generally complex variable m.

In the (c, h)-plane, the Kac-determinant vanishes along the curves h = hp,q(c) which

are therefore called vanishing curves. The Verma modules corresponding to these

values of c and h are reducible. We may obtain irreducible modules by taking quotients
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by the null subspaces contained in the Verma module (c.f. section 2.3.4).

It is important to note that a non-negative determinant is only a necessary condition

for having a non-negative definite matrix and thus a unitary representation as the

matrix may have an even number of negative eigenvalues.

We can use the explicit expressions for the Kac determinant in eq. (2.4.4) to learn

more about unitary representations for different central charges c. One can show that

the vanishing curves do not intersect the region c ≥ 1, h ≥ 0 and that the determinant

detG(n) is strictly positive in this region. In the literature [18] it is shown that for at

least one point in that region the matrices G(n) are actually positive definite. Thus

we conclude that all representations with c ≥ 1, h ≥ 0 are unitary.

The case c < 1 is much more difficult to analyse. A graphical argument given in

[18] shows that all points in the (c, h) plane with 0 ≤ c < 1 and h > 0 which do

not lie on a vanishing curve correspond to non-unitary representations. The same

is true for points on the vanishing curves themselves apart from the so-called first

intersections of vanishing curves. A first intersection of a given vanishing curve is the

intersection point with another vanishing curve of the same level which lies closest to

the axis c = 1. Hence we expect to find unitary representations only for a discrete set

of parameters. These are given by eq. (2.4.4) with the restrictions m, p, q ∈ N, m ≥

2, 1 ≤ p ≤ m, 1 ≤ q < p. The argument presented in this section is useful to rule out

non-unitary representations but does not allow us to prove unitarity. In appendix B

we will see that there is an explicit realization of these models as coset theories which

form unitary representations.

Theories which satisfy the conditions on central charge and highest weight from the

last paragraph are known as minimal models. The minimal models are a subset of the
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rational conformal field theories which possess by definition only a finite number of

primary fields. Correspondingly the direct sum in the decomposition (2.3.3) is finite.

The attribute rational stems from the fact that they occur at rational values for c and

h.

Surprisingly the first minimal models can be associated with the continuum limit

of well-known models from statistical physics at their critical points. For example

m = 2, 3, 4 and thus c = 1
2 ,

7
10 ,

4
5 can be associated with the Ising model, the tricritical

Ising model and the 3-state Potts model at their respective critical points [1, 10, 18].

2.4.2 The Ising model

We will sketch briefly the explicit identification of operators in the Ising model with

the left-right symmetric conformal fields Φp,q(z, z̄) = φp,q(z)φ̄p,q(z̄) where Φ1,1 has

conformal weight (0, 0), Φ2,1 (1
2 ,

1
2) and Φ1,2 ( 1

16 ,
1
16).

In the Ising model we have the spin σ = ±1 as order parameter with 〈σ〉 = 0 in the

high temperature and 〈σ〉 6= 0 in the low temperature regime. The typical behaviour

away from the critical point is 〈σnσ0〉 ∼ exp(−|n|/ξ) where ξ is the correlation length.

When approaching the critical point the correlations length tends to infinity and the

correlation is described by a power law with critical exponent η i.e. 〈σnσ0〉 ∼ 1
|n|d−2+η .

We also have 〈εnε0〉 ∼ 〈σnσn+1σ0σ1〉 ∼ 1
|n|2(d−1/ν) .

For the two-dimensional Ising model the critical exponents are known from statistical

mechanics [18] to be η = 1
4 and ν = 1 hence 〈σnσ0〉 ∼ 1

|n|
1
4

and 〈εnε0〉 ∼ 1
|n|2 . By

comparing with the exponents occurring in the two point functions of the primary

fields with itself (2.1.27) we identify the spin operator σ with Φ1,2 and the energy

operator ε with Φ2,1. The identity operator is naturally identified with Φ1,1.
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Both Φ1,2 and Φ2,1 possess null descendants at level 2. According to our discussion in

section 2.3.4 these give rise to differential equations for the n-point functions involving

these fields. In [10] this is used to derive analytical expressions for 4-point functions

like G(4) = 〈σσσσ〉.

2.5 Correlation functions revisited

The actual task in investigating a quantum field theory is to calculate correlation func-

tions as these correspond to physically measurable quantities. During our discussion

about conformal invariance at the very beginning of this chapter we already saw that

the form of n-point function is strongly constrained in a conformally invariant field

theory. Nevertheless the correlators are not completely fixed by conformal invariance.

Hence our aim is to specify the information which fixes the operator algebra i.e. the

operator product expansion (including finite parts of the expansions) of all primary

fields with each other.

2.5.1 Orthogonality of Verma modules

First we choose a normalization of the primary fields in the way discussed in section

2.1.4 namely such that the normalization factors Cij are given by Cij = δij . This is

orthonormality for primary fields in the sense of 2-point functions. This immediately

leads to orthonormality of the corresponding highest weight states:

〈hi, h̄i|hj , h̄j〉 = lim
w,w̄→∞

w2hiw̄2h̄i〈φi(w, w̄)φj(0, 0)〉 = δij (2.5.1)
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A simple consequence is orthogonality of the associated Verma modules in the sense

that the scalar product of any state from one Verma module with an arbitrary state

from a second distinct Verma module vanishes. This follows by using the Virasoro

algebra, the definition of a highest weight state and their orthogonality property.

2.5.2 OPE and 3-point function coefficients

Using the orthogonality property of Verma modules established above we will prove

in this section that the most singular term in the OPE of two fields coincides with the

coefficient of the corresponding 3-point function.

The starting point is the most general expression for the OPE of two primary fields

φ1 and φ2 which is compatible with scaling invariance:

φ1(z, z̄)φ2(0, 0) =
∑
p

∑
{k,k̄}

C
p{−k,−k̄}
12 zhp−h1−h2+K z̄h̄p−h̄1−h̄2+K̄φ({−k,−k̄})

p (0, 0) (2.5.2)

Here a short word on notation is necessary. The first sum is over the primary fields in

the theory. The notation {k, k̄} from the second sum is adopted from [1, 18] and stands

for an arbitrary collection of non-negative integers k1, . . . kN ; k̄1, . . . k̄M and φ({−k,−k̄})
p

is a descendant field with the notation from section 2.3.3 with levels K =
∑

i ki and

K̄ =
∑

i k̄i respectively. To make contact with the coefficients occurring in the 3-point

functions, we look at the 3-point function involving another primary field φr:

〈φrφ1(z, z̄)φ2〉 = lim
w,w̄→∞

w2hr w̄2h̄r〈φr(w, w̄)φ1(z, z̄)φ2(0, 0)〉

= Cr12 z
hr−h1−h2 z̄h̄r−h̄1−h̄2 ,

(2.5.3)

where we used the general expression for the 3-point function from eq. (2.1.28). There
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is another way to calculate the same correlator by using the expansion in eq. (2.5.2).

We find

〈φrφ1(z, z̄)φ2〉 =
∑
p

∑
{k,k̄}

C
p{−k,−k̄}
12 zhp−h1−h2+K z̄h̄p−h̄1−h̄2+K̄〈φr|φ({−k,−k̄})

p 〉

= C
r{0,0̄}
12 zhr−h1−h2 z̄h̄r−h̄1−h̄2 ,

(2.5.4)

where the second line follows from the orthogonality of the Verma modules and the

orthonormality of the highest weight states discussed before. Comparing the last two

equations yields the desired result

Cr12 = C
r{0,0}
12 , (2.5.5)

which means that the coefficient of the most singular term in the OPE is given by the

coefficient in the corresponding 3-point function.

2.5.3 Determining the operator algebra

Descendant fields can only be correlated if the corresponding primary fields are. Thus

the coefficients Cr{k,k̄}ij which have to be determined in order to obtain the operator

algebra may be written as

C
r{−k,−k̄}
ij = Crijβ

r{−k}β̄r{−k̄}, (2.5.6)

which is known as BPZ-theorem. Holomorphic and antiholomorphic parts may be

treated independently and hence factorize. In [14, 1] it is sketched how one can derive

recursive relations between the coefficients βr{−k} which may then be used together

with the initial value βr{0}ij = 1 to determine all coefficients βr{−k} (as functions of the
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central charge and the conformal weights of the primary fields only c.f. [1]) and hence

to derive the operator algebra.

Knowing the complete operator algebra we can in principle calculate any n-point

function by successive use of the expansion eq. (2.5.2) and our knowledge about

calculating correlation functions involving descendant fields from correlation functions

involving only primary fields (c.f. section 2.3.3).

The correlation functions in a conformal field theory and thus the theory itself are

completely determined by the central charge c, the conformal weights of the primary

fields (hi, h̄i) and the coefficients Cijk of the 3-point functions. One way of determining

the remaining coefficients Cijk is known as conformal bootstrap and will be discussed

in the following section.

2.6 Conformal blocks and Crossing symmetry

In this section we will look at crossing symmetry which originates from the associativity

of the operator product expansion. In particular we will look at two different ways to

evaluate 4-point functions. This procedure will give us an infinite number of equations

involving the coefficients occurring in the 4-point functions. The starting point of our

discussion is the general 4-point function 〈φ1(z1, z̄1)φ2(z2, z̄2)φ3(z3, z̄3)φ4(z4, z̄4)〉. By

SL(2,C) invariance we may fix 3 points. The 4-point function then depends on two

single coordinates z and z̄. The conventional choice is z1 → ∞, z2 = 1, z3 = z and

z4 = 0. The 4-point function G21
34(z, z̄) can be written in terms of so-called conformal
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blocks F21
34 (p; z) and F̄21

34 (p; z̄):

G21
34(z, z̄) =

∑
p

Cp34Cp12F21
34 (p; z)F̄21

34 (p; z̄)

F21
34 (p; z) = zhp−h3−h4

∑
{k}

β
p{−k}
34 zK

〈h1|φ2(1, 1)L−k1 . . . L−kN |hp〉
〈h1|φ2(1, 1)|hp〉

F̄21
34 (p; z̄) = z̄h̄p−h̄3−h̄4

∑
{k̄}

β̄
p{−k̄}
34 z̄K̄

〈h̄1|φ2(1, 1)L̄−k̄1
. . . L̄−k̄M |h̄p〉

〈h̄1|φ2(1, 1)|h̄p〉

(2.6.1)

We can check this relation by direct calculation using eq. (2.5.2) and eq. (2.5.6):

∑
p

Cp34Cp12F21
34 (p; z)F̄21

34 (p; z̄)

=
∑
p

Cp12

〈h1, h̄1|φ2(1, 1)|hp, h̄p〉
zhp−h3−h4 z̄h̄p−h̄3−h̄4

∑
{k,k̄}

(Cp34β
p{−k}
34 β̄

p{−k̄}
34 )

· zK z̄K̄〈h1, h̄1|φ2(1)φ({−k,−k̄})
p (0, 0)|0〉

= 〈h1, h̄1|φ2(1, 1)
∑
p

∑
{k,k̄}

C
p{−k,−k̄}
34 zhp−h3−h4+K z̄h̄p−h̄3−h̄4+K̄φ({−k,−k̄})

p (0, 0)|0〉

= 〈h1, h̄1|φ2(1, 1)φ3(z, z̄)φ4(0, 0)|0〉

= lim
z1,z̄1→∞

z2h1
1 z̄2h̄1

1 〈φ1(z1, z̄1)φ2(1, 1)φ3(z, z̄), φ4(0, 0)〉

= G21
34(z, z̄)

(2.6.2)

The conformal blocks F21
34 (p; z) can in principle be calculated from the definition (2.6.1)

by commuting the Virasoro generators through the field φ2 or by expanding in powers

of z and solving for the coefficients starting from the definition [18, 14].

The particular order in which the fields occur in the 4-point function should have

no effect on the final result (up to signs when dealing with fermions). The underlying
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2 Foundations of CFT

Figure 2.3: Diagrammatic representation of the Crossing symmetry

reason is the associativity of the operator product expansion. Under the SL(2,C)

transformation z → 1− z we have

G21
34(z, z̄) = G41

32(1− z, 1− z̄) (2.6.3)

or equivalently written in terms of conformal blocks (after replacing 1, 2, 3, 4 by generic

labels n,m, k, l)

∑
p

CpklCpmnFmnkl (p; z)F̄mnkl (p; z̄) =
∑
q

CqkmCqlnF lnkm(q; 1− z)F̄ lnkm(q; 1− z̄). (2.6.4)

These relations are called crossing symmetries in analogy to the same term in quantum

field theory. The analogy becomes even more obvious if we represent equation (2.6.4)

diagrammatically as shown in figure 2.3 corresponding to Feynman diagrams in QFT.

The above relations constrain the coefficients Cijk and the conformal dimensions

of the primary fields which appear in the conformal blocks. Decoupling equations

(c.f. section 2.3.4) for primary fields with null descendants place further constraints

on the conformal blocks. It is believed that these equations are sufficient to calculate

the values of the coefficients Cijk in a general conformal field theory although this is

very complicated in practice and was only accomplished for a few special cases. This

method is known as conformal bootstrap.
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2.7 CFT on the torus and Modular invariance

2.7 CFT on the torus and Modular invariance

So far we only looked at conformal field theory on the complex plane which is topologi-

cally equivalent to the Riemann sphere and thus a genus zero Riemann surface. In this

section we will consider conformal field theories defined on Riemann surfaces of genus

g > 1. In string theory this is a quite natural generalization as higher genus surfaces

correspond to loop diagrams in a perturbative expansion. In the theory of critical

phenomena at least the case g = 1 is of physical relevance as the torus is equivalent

to a plane with periodic boundary conditions in two directions.

It should however be pointed out that modular invariance is not a property of a

generic conformal field theory as such but has to be imposed as an additional require-

ment for CFTs with respect to a particular application e.g. in string theory.

We will limit ourselves to the case g = 1 namely the CFT on the torus, on the one

hand because this is the simplest higher genus surface but on the other hand because

it is believed that there are no more constraints coming from higher genus (g > 2)

modular invariance [5]. The generalization to higher genus Riemann surfaces which is

particularly relevant for string theory is discussed for example in [23, 17].

2.7.1 Representing the torus via a complex lattice

The most convenient way of representing a torus for use in conformal field theory is

in terms of a complex plane modulo a lattice. Hence we essentially see the torus as

a parallelogram with vertices (0, 1, τ, τ + 1) where opposite sides are identified. On

the complex plane this amounts to seeing the torus T as complex plane with the

identification ω ∼ ω + n + mτ where τ = τ1 + iτ2 ∈ C with τ1, τ2 ∈ R, n,m ∈ Z

and hence T = C/(Z ⊕ τZ). The lattice is shown in figure 2.4. This construction
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2 Foundations of CFT

Figure 2.4: Representing the torus as complex plane modulo a lattice

immediately gives us a complex structure on the torus which is necessary to define a

conformal field theory on it. The parameter τ which parametrizes the torus is called

modular parameter.

2.7.2 The Partition function

We are interested in deriving an expression for the partition function i.e. for the

vacuum functional as a function of the modular parameter L · τ which is given by

Z(τ) =
∫
Dφ e−S(φ) = Tr e−τ2LHe−τ1LP (2.7.1)

in generalization of the well-known relation Z = Tr e−βH from ordinary quantum

mechanics. Here H generates a translation along the imaginary and P generates a

translation along the real axis in the complex plane.

The next step is to find expressions for the Hamiltonian and momentum operator

on the cylinder in terms of Virasoro modes on the plane. The Hamiltonian and the

momentum operator are generators of time (τ) and space (σ) translation respectively.
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2.7 CFT on the torus and Modular invariance

They can be calculated from the stress-energy tensor [2] via

H =
1

2π

∫ L

0
dσ TCyl

ττ (σ) and P =
1

2π

∫ L

0
dσ TCyl

τσ (σ). (2.7.2)

We will need an expression for the relation between the stress-energy tensor T on the

plane and the corresponding quantity TCyl on the cylinder. Thus we have to study

the transformation of the stress-energy under finite conformal transformations first.

The transformation properties of the stress-energy tensor T under an infinitesimal

conformal transformation can be deduced using the OPE of the stress-energy tensor

with itself eq. (2.2.18) and formula (2.2.12):

δεT (z) = ε(z)∂T (z) + 2∂ε(z)T (z) +
c

12
d3ε(z)

dz3
(2.7.3)

The corresponding finite transformation under z → f(z) is more complicated because

of the central term in the OPE and is given by

T (z)→ (∂f)2T (f(z)) +
c

12
S(f(z), z), (2.7.4)

where S(f(z), z) = ∂f∂3f− 3
2

(∂2f)2

(∂f)2 is the so-called Schwartzian derivative which has the

property that it vanishes identically if and only if f is a global conformal transformation

i.e. of the form f(z) = az+b
cz+d .

Now we can use eq. (2.7.4) to derive an expression for the stress-energy tensor TCyl

on the cylinder where w(z) = L
2π ln z:

TCyl(w) =
(2π
L

)2(
z2T (z)− c

24

)
(2.7.5)
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2 Foundations of CFT

Returning to our original question we may represent the cylinder as an infinite strip

−∞ < τ <∞, 0 < σ < L in the real (τ, σ)-plane with the identification (τ, 0) ∼ (τ, L).

We may consider the complex plane of the complex variable w = τ + iσ instead. We

demonstrate the calculation for the Hamiltonian H:

H =
1

2π

∫ L

0
dσ TCyl

ττ (σ)

=
1

2π

∫ L

0
dσ (TCyl(σ) + T̄Cyl(σ))

=
1

2πi

∫ iL

0
dwTCyl(w)− 1

2πi

∫ −iL

0
dw̄ T̄Cyl(w̄)

=
L

2π

(∮ dz
2πi

TCyl(z)
z

+
∮

dz̄
2πi

T̄Cyl(z̄)
z̄

)
.

(2.7.6)

Using (2.7.5) and (2.2.4) we obtain finally

H =
2π
L

(
(L0 −

c

24
) + (L̄0 −

c̄

24
)
)
. (2.7.7)

A similar calculation for P reveals

P = −2πi
L

(
(L0 −

c

24
)− (L̄0 −

c̄

24
)
)
. (2.7.8)

We obtain the following expression for the partition function in eq. (2.7.1):

Z(τ) = Tr e2πiτ(L0− c
24

)e−2πiτ̄(L̄0− c̄
24

)

= Tr qL0− c
24 q̄L̄0− c̄

24

= q−
c
24 q̄−

c̄
24 Tr qL0 q̄L̄0 ,

(2.7.9)

where q = e2πiτ and q̄ = e−2πiτ̄ . Note that the trace is over the physical states in the
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2.7 CFT on the torus and Modular invariance

Hilbert space and thus does not include null-states.

2.7.3 Modular invariance on the torus

Obviously there is no one-to-one correspondence between the modular parameter τ

and the complex structure of the torus. The group of transformations of τ which give

rise to the same complex structure are called modular transformations. The lattice

generated by 1 and τ is given by {m · 1 + n · τ |m,n ∈ Z}. Clearly we get the same

lattice if we replace τ by τ + 1 which corresponds to the modular transformation

T : τ → τ + 1.

We might as well consider the equivalent parallelogram formed by (0, τ, τ+1, 2τ+1).

To bring this into the conventional form with one vertex at 1 we have to multiply by

1
τ+1 which clearly leaves the complex structure of the torus invariant. This gives rise

to a torus with modular parameter τ
τ+1 . Instead of the modular transformation X :

τ → τ
τ+1 which corresponds to the aforementioned transformation one conventionally

considers the combination S = T −1XT −1 : τ → − 1
τ instead. The two modular

transformations

T : τ → τ + 1 and S : τ → −1
τ

with (ST )3 = 1, S2 = 1
(2.7.10)

generate the modular group of the torus. A general element is given by

τ → aτ + b

cτ + c
where a, b, c, d ∈ Z, ad− bc = 1. (2.7.11)

The group is isomorphic to SL(2,Z)/Z2.
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2 Foundations of CFT

2.7.4 Characters and their transformation properties

As it is known from general representation theory the character characterizes a par-

ticular representation. In the context of (chiral) Virasoro representation we define the

character of a highest weight representation (h) via

χ(h)(τ) = Tr(h)e
2πiτ(L0− c

24
) = qh−

c
24

∑
n≥0

d(n)qn (2.7.12)

where the trace is over all states contained in the Verma module associated to h.

The second equation follows for a highest weight representation with highest weight

h if we denote the degeneracy of the Verma module at level n by d(n). The reason

for including the factor of c
24 into the definition above is linked to the particular

transformation properties of these characters under modular transformations.

Following from the decomposition of the Hilbert space into a direct sum of tensor

products of chiral and antichiral Verma modules in eq. (2.3.3) the partition function

from eq. (2.7.9) can be written as sum over products of characters of the chiral and

antichiral representations:

Z(τ, τ̄) =
∑
i,j

Mijχi(τ)χ̄j(τ̄) (2.7.13)

The entries Mij are non-negative integers and give the multiplicity with which a par-

ticular representation (i.e. a tensor product of a representation of the holomorphic

and of the antiholomorphic Virasoro algebra) occurs. The existence and uniqueness

of the vacuum requires M00 = 1. The further entries are however strongly constrained

by the requirement of modular invariance.

First we a have to know how characters transform under the generating transfor-
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2.7 CFT on the torus and Modular invariance

mations S and T of the modular group. For T it is fairly easy to see from eq. (2.7.12)

that χi(τ + 1) = e2πi(hi− c
24

)χi(τ) and thus

χi(τ + 1) =
∑
j

Tijχj(τ) where Tij = δije
2πi(hi− c

24
). (2.7.14)

The characters transform also linearly under the modular transformation S although

this is highly non-trivial to see5:

χi

(
−1
τ

)
=
∑
j

Sijχj(τ), (2.7.15)

where S is a symmetric and unitary matrix. Using the unitarity of S and T the

modular invariance of (2.7.13) is found to be equivalent to the conditions

[M,T ] = 0 and [M,S] = 0. (2.7.16)

These conditions are trivially satisfied for Mij = δij . Such a theory is called diagonal

CFT. One example is the Ising model from section 2.4 which contains only primary

fields of weights (0, 0), (1
2 ,

1
2) and ( 1

16 ,
1
16).

There may of course be other non-diagonal solutions M of eq. (2.7.16) for given

matrices S and T . For rational CFTs there typically is only a finite number of solu-

tions. These have been classified for the minimal models [18] and a few affine theories

(ADE classification [27, 5]).

5In [18] this is proven in the context of minimal models by explicitly calculating the matrix S. For
the general case c.f. [5] and references therein.
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2.8 Fusion rules

Often we are not interested in the full complexity of the operator product expansions

of all fields in the theory. It may be sufficient to know which conformal fields may

appear in certain operator product expansions.

First we define the concept of a conformal family. To the conformal family [φ] of a

primary field φ belong the field itself and its descendant fields.

Then we denote the Fusion product of two conformal families [φ1] and [φ2] by

[φi]× [φj ] = Nij
k[φk]. (2.8.1)

The Fusion rule coefficients Nij
k are non-negative integers and have to be understood

as multiplicities counting distinct ways two fields from the left hand side may cou-

ple to give a field contained in the conformal family [φk] from the right hand side.

Nij
k > 0 means in particular that a field from the conformal family [φk] occurs in the

operator product expansion of some fields from the conformal family [φi] with some

field from [φj ]. Following from the arguments in section 2.5.2 Nij
k = 0 means that

the corresponding coefficients in the 3-point functions Cijk have to vanish.

2.8.1 Verlinde’s formula

Remarkably there is a formula due to Verlinde6 which links the fusion rule coefficients

Nij
k with an expression involving the modular transformation matrix S defined in eq.

(2.7.15):

Nij
k =

∑
n

SinSjn(S†)nk
S0n

=
∑
n

SinSjnSkn
S0n

, (2.8.2)

6c.f. [4] for a list of proofs of Verlinde’s formula and further references or [18]
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2.9 Free field representations

where the second equality follows from the fact that pure Virasoro representations are

self-conjugate (S2 = 1), S is symmetric and unitary and thus real. We can interpret

Nij
k as components (Ni)jk of a collection of matrices labelled by the index i. This

allows us to rewrite eq. (2.8.2) as

(S†NiS)mn = (Sim/S0m)δmn, (2.8.3)

which means that S simultaneously diagonalizes all matrices Ni.7

2.9 Free field representations

We conclude this chapter by discussing some simple examples namely free bosons and

free fermions. A discussion of the ghost system which is important for the application

in string theory but which is not covered here can be found in [17, 21, 15, 18]. Both

examples are not only interesting theories for the application of the theory developed

so far but also serve as starting point for the construction of other theories (e.g. for

theories with background charge or orbifolds).

2.9.1 The free boson

The action for a free boson in two dimensions is given by

S = α

∫
d2x ∂µX∂

µX =
1

4π

∫
d2z ∂X∂̄X, (2.9.1)

7It is not the fact that such a matrix exists, which follows from the commutativity of the fusion ring
and the consequence that its representations (and thus in particular the adjoint representation) are
isomorphic to direct sums of irreducible one-dimensional representations [4, 5], but the fact that it
is precisely the matrix S defined in the context of modular transformations that makes Verlinde’s
formula so remarkable.
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where d2z = idz ∧ dz̄ = 2dx1dx2 and we set α = 1
4πl2s

= 1
8π which corresponds to

setting l2s = 2 in the convention used in string theory. The operators ∂ and ∂̄ are

defined in (2.1.20). The propagator is found to be given up to a constant by

〈X(z, z̄)X(z′, z̄′)〉 = − ln |z − z′|2. (2.9.2)

This can be checked by using the identity [18] ∂ 1
z̄ = 2πδ(2)(z, z̄) where δ(2)(z, z̄) =

1
2δ

(2)(x1, x2) to calculate ∂∂̄ ln |z|2 = ∂∂̄ ln z̄ = ∂ 1
z̄ = 2πδ(2)(z, z̄).

We can split X into an holomorphic and antiholomorphic part via X(z, z̄) = x(z) +

x̄(z̄) and find the propagators

〈x(z)x(w)〉 = − ln(z − w) 〈x̄(z̄)x̄(w̄)〉 = − ln(z̄ − w̄) 〈x(z)x̄(w̄)〉 = 0. (2.9.3)

Because of the logarithmic singularities x(z) is not a conformal field but ∂x(z) and

the vertex operators : eiαx(z) : are. By differentiating (2.9.3) we find

〈∂x(z)∂x(w)〉 = − 1
(z − w)2

〈∂̄x̄(z̄)∂̄x̄(w̄)〉 = − 1
(z̄ − w̄)2

. (2.9.4)

From the action we derive the (holomorphic) stress-energy tensor

T (z) = −1
2

: ∂x∂x := lim
w→z
−1

2
∂x(z)∂x(w) +

1
2(z − w)2

, (2.9.5)

where normal ordering is defined as above by subtracting the singular parts of the

OPE of the field with itself. For the transition to the quantized theory we had to

normal order to ensure a vanishing vacuum expectation value. We work out the OPE
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with the stress-energy tensor T using Wick’s theorem:

T (z)∂x(w, w̄) = −1
2 : ∂x(z)∂x(z) : ∂x(w)

= − : ∂x(z)∂ x(z) : ∂x(w) + . . .

= ∂x(z)
1

(z − w)2
+ . . .

∼ ∂x(w)
(z − w)2

+
∂(∂x(w))
z − w

(2.9.6)

The last line follows from a Taylor expansion of ∂x(z) around z = w. This shows that

∂x(z) is a primary field with conformal weight h = 1. We can also work out the OPE

of the stress-energy tensor with itself:

T (z)T (w) = 1
4 : ∂x(z)∂x(z) :: ∂x(w)∂x(w) :

= 2
4 : ∂ x(z)∂ x(z) :: ∂x(w)∂x(w) : +4

4 : ∂ x(z)∂x(z) :: ∂x(w)∂x(w) : + . . .

=
1
2

1
(z − w)4

− 1
(z − w)2

: ∂x(z)∂x(w) : + . . .

=
1
2

1
(z − w)4

− 1
(z − w)2

: ∂x(w)∂x(w) : − 1
(z − w)

: ∂∂x(w)∂x(w) : + . . .

∼ 1
2

1
(z − w)4

+
2T (w)

(z − w)2
+

∂T (w)
(z − w)

.

(2.9.7)

The OPE has exactly the form anticipated in eq. (2.2.18) and we can immediately

identify the central charge c = 1. For the vertex operators : eiαx(z) : we find a conformal

weight h = α2/2 using similar methods [18].
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We can expand the primary field i∂x into modes via

i∂x =
∑
n∈Z

αnz
−n−1 where αn =

∮
dz
2πi

i∂x(z) zn. (2.9.8)

The OPE ∂x(z)∂x(w) ∼ − 1
(z−w)2 derived from eq. (2.9.4) then leads to the commu-

tation relations [αn, αm] = nδn+m,o for the modes.

We might also consider a free boson with twisted boundary conditions but we will

postpone the discussion of twisted boundary conditions until the next section.

2.9.2 The free fermion

We start with the action for a free Majorana-Weyl fermion in two dimensions:

S = α

∫
d2xΨ†γ0γµ∂µΨ =

1
4π

∫
d2z (ψ∂̄ψ + ψ̄∂ψ̄) (2.9.9)

The gamma matrices γ0 and γ1 obey the Dirac algebra {γi, γj} = 2δij (euclidean

metric) where we chose the particular representation γ0 = σ1 and γ1 = σ2 in terms

of Pauli matrices. The second equality in eq. (2.9.9) then results from writing the

two-component spinor Ψ as Ψ =
(
ψ
ψ̄

)
and choosing α = 1

4π . We find the propagators

〈ψ(z)ψ(w)〉 =
1

z − w
〈ψ̄(z̄)ψ̄(w̄)〉 =

1
z̄ − w̄

〈ψ(z)ψ̄(w̄)〉 = 0 (2.9.10)

and the (anti)holomorphic stress-energy tensor is given by

T (z) = −1
2

: ψ(z)∂ψ(z) : and T̄ (z̄) = −1
2

: ψ̄(z̄)∂̄ψ̄(z̄) : . (2.9.11)
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2.9 Free field representations

Using Wick’s theorem and the propagators from above we can work out the OPEs just

like in the last section for example:

ψ(z)ψ(w) ∼ 1
z − w

(2.9.12)

T (z)ψ(w) ∼ 1
2

1
(z − w)2

ψ(w) +
1

z − w
∂ψ(w) (2.9.13)

T (z)T (w) ∼ 1
4

1
(z − w)4

+
2T (w)

(z − w)2
+

∂T (w)
(z − w)

(2.9.14)

We find that ψ(z) and ψ̄(z̄) are primary fields of weight (1
2 , 0) and (0, 1

2) respectively.

The central charge c = 1
2 is found from the most singular part in the OPE of the

stress-energy tensor with itself.

The Z2 symmetry of the action allows us to define periodic or antiperiodic boundary

conditions for ψ(z) on the cylinder. As h = 1
2 these correspond to antiperiodic or

periodic boundary conditions on the plane (c.f. (2.2.13) under the map (2.2.10) with

h = 1
2). These are called Neveu-Schwarz (NS) and Ramond (R) sectors:

NS :ψ(e2πiz) = ψ(z) (2.9.15)

R :ψ(e2πiz) = −ψ(z) (2.9.16)

On the level of modes this corresponds to

NS :ψ(z) =
∑

n∈Z+ 1
2

ψnz
−n− 1

2 where ψn =
∮

dz
2πi

ψ(z)zn−
1
2 , (2.9.17)

R :ψ(z) =
∑
n∈Z

ψnz
−n− 1

2 where ψn =
∮

dz
2πi

ψ(z)zn−
1
2 . (2.9.18)

Note that ψ(z) is single-valued in the NS-sector but double-valued with a branch cut
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singularity in the R-sector. From the OPE we find the anti-commutation relations

{ψn, ψm} = δn+m,0.

We may understand the anti-periodic case by introducing a twist field σ with OPE

ψ(z)σ(w) ∼ (z − w)−
1
2µ(w), (2.9.19)

where µ is another (conformal) twist field with the same conformal weight as σ. It

can be shown by considering OPEs with the stress-energy tensor that the conformal

weight hσ has to be 1
16 . Because of its square root singularity in the OPE the twist

may be understood as boundary changing field and we can consider σ(0)|0〉 as new

vacuum state to which only R-fields may be applied (which then results in single-valued

correlation functions). The 2-point correlator in the R-sector can then be written as

〈ψ(z)ψ(w)〉R = 〈0|σ(∞)ψ(z)ψ(w)σ(0)|0〉 =
1
2(
√

z
w +

√
w
z )

z − w
, (2.9.20)

where we used the mode expansion (2.9.18) together with ψ2
0 = 1

2 to derive the second

equality. In the same way we can work out the 2-point correlator in the NS-sector

again and find that it is indeed given by (2.9.10). As expected the short-distance

behaviour agrees in both cases.

Let us have a look at the ground state in the Ramond sector. First we introduce

the fermion parity operator (−1)F by requiring {(−1)F , ψ(z)}=0 and
(
(−1)F

)2 = 1.

On the level of modes this corresponds to {(−1)F , ψn} = 0. The action of ψ0 does

not change the L0 eigenvalue and thus we need a ground state which represents the

two-dimensional Clifford algebra given by ψ0 and (−1)F . The smallest non-trivial
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representation is two-dimensional. The states |+〉 and |−〉 obey

(−1)F |±〉 = ±|±〉 ψ0|±〉 =
1√
2
|∓〉. (2.9.21)

We may identify |+〉 with σ(0)|0〉 and |−〉 with µ(0)|0〉 from above.

It is instructive to study also the free fermion on the torus [23, 10], where we can find

4 different spin structures depending on whether we choose periodic or anti-periodic

boundary conditions in the space and time direction. We can define specialized char-

acters for each of these types by inserting or not inserting the fermion parity operator

(−1)F into the trace which is taken in the periodic or anti-periodic sector. These

characters can be written in terms of the Jacobi theta functions and the Dedekind eta

function which possess nice transformation properties under modular transformations.
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3 Extensions of the Virasoro algebra

Conformal field theories may contain additional conserved currents apart from the

stress-energy tensor. The corresponding algebras which extend the Virasoro algebra

can be classified according to their conformal spin. First we will look at general features

of conformal field theories with extended algebras and in particular at the implications

for their representation theory. Then we will have a closer look at Kac-Moody algebras

and superconformal algebras, which are very important for applications e.g. in string

theory.

3.1 General procedure

This first section is based on the discussion in [23]. We assume that there is an

additional conserved (holomorphic) current J(z). The Virasoro generators Ln are the

modes of the stress-energy tensor T which is of conformal spin 2. When discussing

extensions we may have bosonic (h−h̄ ∈ N), fermionic (h−h̄ ∈ N+ 1
2) or parafermionic

(h − h̄ ∈ Q) currents. In the following we will only consider bosonic and fermionic

currents. Restricting ourselves to the holomorphic part again we have the following

classification:

62



3.1 General procedure

h = 1
2 free fermions

h = 1 affine Lie Algebras/ Kac Moody algebras

h = 3
2 superconformal algebras

h = 2 Virasoro tensor products

h > 2 W-Algebras (c.f. [26, 14])

Just like in the case of the stress-energy tensor before (c.f. eq. (2.2.4)), we can

decompose the current into modes:

J(z) =
∑
r

z−r−hĴr where Ĵr =
∮

dz
2πi

J(z)zr+h−1 (3.1.1)

For integer h the sum is restricted to integer values r ∈ Z. For half-integer values of

h the sum may run over integer (R- sector) or half- integer values (NS- sector) as we

already saw it in our discussion of the free fermion in section 2.9.2.

As the currents are conformal fields of weight h we can use the usual technique

to work out the commutator between the modes of the current and the Virasoro

generators. Therefore we make use of eq. (2.2.12) and the OPE in eq. (2.2.15) and

get after an integration by parts:

[L̂n, Ĵr] = (n(h− 1)− r)Ĵr+n (3.1.2)

In particular if we look at the case n = 0 we infer that applying Ĵ−r to some conformal

field increases its conformal weight by r. In a later section we will also work out

commutation relations between the current modes themselves, which can be calculated

in the same way as before once the OPE of the currents with themselves is specified.

These modes form an algebra whose representations we will discuss in the next section.
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3 Extensions of the Virasoro algebra

3.1.1 Representations of the extended algebra

The aim of this section is not to give a complete overview, but rather to stress similar-

ities of the representation theory of the extended algebra to the representation theory

of the Virasoro algebra discussed in section 2.3. And even in this regard this section is

by no means complete. For example [14] discusses many more concepts which gener-

alize to extended algebras with only small modifications such as Ward identities, the

form of 2-point functions, null state decoupling or crossing symmetry.

The construction of representations of the extended algebra follows the discussion

in section 2.3. On highest weight states |Φ〉 of the extended algebra we now impose

Jr|Φ〉 = 0 for all r > 0 in addition to Ln|Φ〉 = 0 for all n > 0. A primary field

which corresponds to a highest weight state via the state-operator correspondence will

be characterized by a particular OPE with the additional current and its OPE with

the stress-energy tensor given in eq. (2.2.15). Generalizing (2.3.11) we require for

integer-moded currents

J(z)Φ(w, w̄) =
1

(z − w)h
Φ̃(w, w̄) + · · · , (3.1.3)

where Φ̃ = Ĵ0 Φ has the same conformal weight as Φ and the dots denote terms which

are are less singular than the first term. Note that the first term only indicates the

most singular term which might appear in the OPE. For example if J0 annihilates the

state Φ(0, 0)|0〉 the leading power in the OPE could be at most (−h+ 1).

For half-integer currents we may have integer-moded (Ramond) operators or half-

integer-moded (Neveu-Schwarz) operators. The first case is discussed above. In the
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3.1 General procedure

latter case the most singular part in the OPE is given by

J(z)Φ(w, w̄) =
1

(z − w)h−
1
2

Φ̃(w, w̄) + · · · , (3.1.4)

where Φ̃ = Ĵ− 1
2
Φ is a conformal field with conformal weight increased by 1

2 compared

to Φ. Just like in the discussion above we note that the first term is not present if J− 1
2

annihilates Φ(0, 0)|0〉.

Another change in comparison to the representation of the pure Virasoro algebra

concerns the descendant states. Descendant states are now obtained by applying

combinations of J−r with r ≥ 0 and L−n with n > 0 on a highest weight state

corresponding to some primary field.

We conclude this section with a short remark on rational conformal field theories.

These were defined in section 2.4 as conformal field theories with a finite number of

primary fields. Primary fields should now be understood as primary fields with respect

to a possibly extended algebra as defined in this section. This means that there are

CFTs which contain an infinite number of (Virasoro-) primary fields but which are

however rational CFTs with respect to some extended symmetry algebra.

3.1.2 Modular invariance

We briefly discuss implications of modular invariance for theories with extended alge-

bras [18] to illustrate the similarities to our earlier discussion in section 2.7.

In the pure Virasoro case we found the result that the 2-point function vanishes un-

less both conformal fields have equal conformal weights. In the presence of extended

symmetries the constant appearing in the 2-point function which is not fixed by con-

formal invariance vanishes unless the two fields are charge conjugates which we define
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3 Extensions of the Virasoro algebra

by the normalization of the non-zero 2-point functions i.e. 〈φiφj〉 ∼ δji∗ . Then we

define a symmetric matrix Cji = δji∗ which obeys C2 = 1 and maps every field to its

charge conjugate.

When we look at transformations of characters under modular transformations the

definitions of the matrices T from eq. (2.7.14) and S from eq. (2.7.15) remain valid

with the only difference that the matrix S may no longer be fixed completely. This is

the case because there may be multiple representations of the extended algebra with

the same character. A way of circumventing this is to define non-specialized characters

[27] which include generators of the Cartan subalgebra of the extended algebra and to

require that S is a symmetric and unitary matrix.

The relations among the generators given in (2.7.10) are now modified in the fol-

lowing way:

(ST )3 = S2, S2 = C (3.1.5)

Under these more general conditions Verlinde’s formula from eq. (2.8.2) still holds in

the form

Nij
k =

∑
n

SinSjnS
†
nk

S0n
. (3.1.6)

The indices of Nij
k can be lowered using the matrix C which yields

Nijl = ClkNij
k =

∑
n

SinSjnSnl
S0n

, (3.1.7)

where we used S = CS† which follows from (3.1.5) by multiplying with S†.
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3.2 Kac-Moody algebras

3.2 Kac-Moody algebras

As first application of the general concepts discussed in the last section we consider

a collection Ja of conformal fields of weight (1, 0). The operator product expansion

between two of these fields is given by

Ja(z)Jb(w) ∼ κab

(z − w)2
+

ifabc

z − w
Jc, (3.2.1)

because by dimensional reasons the first term involving (z − w)−2 has to multiply

an operator of spin 0 and thus has to be proportional to the identity operator. The

second term has to be multiplied with an operator of spin 1 which has to be one of

the currents itself.

As the Ja are bosonic fields we conclude that κ has to be symmetric and fabc has

to be antisymmetric in the first two indices. Using the associativity of the operator

product expansion one can show that fabc satisfies the Jacobi identity and can thus

be seen as structure constants of some Lie algebra g with corresponding Lie group

G which is assumed to be compact which corresponds to a positive definite Killing

metric. The symmetric matrix κ is identified with the Cartan-Killing-metric.

It is possible to choose a basis in which κ is proportional to the identity operator

in each simple component and thus given by κab = δabK if we restrict ourselves to

simple Lie algebras like it will be done in the following. We may now insert the mode

expansion (3.1.1) with h = 1 and work out their commutators in the usual way using

eq. (2.2.12) and the OPE eq. (3.2.1):

[Jam, J
b
n] = ifabcJcm+n +mKδabδm+n,0 (3.2.2)
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3 Extensions of the Virasoro algebra

These are the commutation relations of a centrally extended loop algebra1. Together

with the Derivation operator D = −L0 which is present in any conformal field theory

and which satisfies [D,Jan] = nJan and [K,D] = 0 we obtain the structure of an affine

Lie algebra. An affine Lie algebra is a special Kac-Moody algebra, but especially in

physics literature both terms are often used synonymously.

Note that the zero modes Ja0 form an ordinary Lie algebra, the so-called horizontal

Lie subalgebra, with the structure constants fabc from the Lie algebra g mentioned

above.

Turning to representation theory we infer from the regularity of J(z)|0〉 at z = 0

that the vacuum state has to satisfy

Jan|0〉 = 0 for n ≥ 0. (3.2.3)

On primary fields we now impose in addition the condition that it has to have the

following OPE consistent with eq. (3.1.3):

Ja(z)Φ(r)(w, w̄) ∼
ta(r)

z − w
Φ(r)(w, w̄) (3.2.4)

This should be seen as Φ(r) transforming under some representation (r) of g where ta(r)

are understood as representation matrices. This becomes even more transparent on

the level of the corresponding highest weight states. Just like for the pure Virasoro

case we define the (multiplet of) highest weight states corresponding to the primary

field Φ(r) as

|Φ(r)〉 = Φ(r)(0)|0〉. (3.2.5)

1For details on this construction c.f. [11, 4, 18]
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3.2 Kac-Moody algebras

Using eq. (3.2.3) and eq. (3.2.4) we have

Ja0 |Φ(r)〉 = ta(r)|Φ(r)〉, Jan|Φ(r)〉 = 0 for n > 0 (3.2.6)

i.e. the highest weight states transform into themselves under a representation (r) of

the horizontal Lie subalgebra.

3.2.1 The Sugawara construction

Until now the stress-energy tensor and the additional currents seemed to be completely

independent objects. However there is a method, the Sugawara construction, which

allows us to construct the stress-energy tensor from a combination of Kac-Moody

generators. As the stress-energy tensor has conformal weight (2, 0) and the currents

are of weight (1, 0) the most natural ansatz is to write T as the normal ordered sum

of terms bilinear in the currents:

TSW(z) =
1
β

dimG∑
a=1

: Ja(z)Ja(z) :, (3.2.7)

where normal ordering should be understood in the sense of operator modes here:

: JanJ
b
m :=


JanJ

b
m if n < 0

JbmJ
a
n if n ≥ 0

(3.2.8)

Following [10] we can fix the constant β by requiring that the currents Ja have con-

formal weight (1,0) with respect to TSW .

From (3.2.7) we get in particular the following expression for L−1:

L−1 =
1
β

dimG∑
a=1

∞∑
n=−∞

: Jan−1J
a
−n : (3.2.9)
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3 Extensions of the Virasoro algebra

Using eq. (3.2.6) we can work out the action of this operator on a highest weight state

|Φ(r)〉:

L−1|Φ(r)〉 =
2
β
Ja−1t

a
(r)|Φ(r)〉 (3.2.10)

Now we apply the operator Jb1 to both sides of this equation. The left hand side yields

Jb1L−1|Φ(r)〉 = 1 · Jb0 |Φ(r)〉 = tb(r)|Φ(r)〉, (3.2.11)

where we made use of eq. (3.1.2) for h = 1. Here our requirement of having spin

1 currents was actually invoked. The right hand side can be evaluated using the

commutation relations (3.2.2):

2
β
Jb1J

a
−1t

a
(r)|Φ(r)〉 =

2
β

(if bacJc0 +Kδab)ta(r)|Φ(r)〉

=
2
β

(if bact[c(r)t
a]
(r) +Ktb(r))|Φ(r)〉

=
2
β

(
1
2
facbfacdtd(r) +Ktb(r)

)
|Φ(r)〉

=
2
β

(
1
2
CA +K)tb(r)|Φ(r)〉

(3.2.12)

Hence consistency of (3.2.11) and (3.2.12) requires

β = CA + 2K = 2(g∨ +K), (3.2.13)

where CA is the quadratic Casimir of the adjoint representation2 defined by fabcfabd =

CAδ
dc. In a calculation similar to the free boson case in eq. (2.9.7) we can calculate

2This is equal to twice the dual Coxeter number g∨ of g if the longer roots of g are normalized to
square length 2.
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3.2 Kac-Moody algebras

the central charge [18]:

cSW =
K dimG

K + CA/2
=
K dimG

K + g∨
(3.2.14)

So far the level K was assumed to be arbitrary. Unitarity restricts K to be a positive

integer3.

3.2.2 Application: The WZW model

In this section we introduce an explicit example for a conformal field theoretic model

with additional conserved currents. The Wess-Zumino-Witten (WZW) model can

be formulated in terms of an action as a nonlinear sigma model supplemented by a

topological term know as Wess-Zumino topological term. The action is given by [16]

SWZW =
k

16π

∫
S2

d2xTr(∂ag∂ag−1)

+
k

24π

∫
B3

d3y εabc Tr(g−1(∂ag)g−1(∂bg)g−1(∂cg)).
(3.2.15)

The field g defined on the sphere S2 takes values in some semisimple Lie group G

and obeys the boundary conditions g(τ, 0) = g(τ, 2π). Note that the integrand of the

second term is a total derivative. Thus Stokes theorem allows us to rewrite this term as

an integral over the boundary S2 of the ball B3 = {y ∈ R3 : |y|2 ≤ 1}. The coefficients

3We present this argument following [17, 10] in a footnote as it requires more knowledge about
representation theory than assumed as prerequisite for the rest of the thesis. Consider for a root
of g the su(2) subalgebra generated by E−α1 Eα−1 and (k − α · H0). The latter is identified with
2Jz and we require from our knowledge about su(2) representations that the highest weight state
|m〉 has an integer eigenvalue under (k − α · H0) thus k − α · m ∈ Z or k ∈ Z as α · m ∈ Z.
Furthermore from ||Eα−1|m〉||2 = 〈m|E−α1 Eα−1|m〉 = (k − α ·m)|||m〉||2 ≥ 0 follows k ≥ α ·m. We
maximize this inequality by taking α to be the highest root and m to be the highest weight in the
given representation. For fixed value of k only a finite number of highest weights can satisfy this
inequality. Thus the theory is a rational CFT.
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3 Extensions of the Virasoro algebra

of both terms were chosen already such that the model becomes conformally invariant

also in the quantized theory [16]. Topological quantization requires k to be an integer

[14]. Apart from conformal invariance the remarkable property of this model is the

invariance under transformations of the form

g(z = x1 + ix2, z̄ = x1 − ix2) = Ω(z)g(z, z̄)Ω̄−1(z̄), (3.2.16)

where Ω(z) and Ω̄(z̄) are arbitrary G-valued functions of z and z̄ respectively. The

currents associated to this symmetry are given by [16]

J(z) = −k
2
∂gg−1 and J̄(z̄) = −k

2
g−1∂̄g (3.2.17)

and are conserved (∂̄J = ∂J̄ = 0) which follows from the equations of motion [18].

We can expand the currents in components Ja in terms of generators ta ∈ g of G via

J =
∑

a J
ata. The components can then be shown to obey an OPE of the form (3.2.1)

with level K = k. The same is true J̄a and hence the two conserved currents generate

two independent Kac-Moody algebras.

More detailed introductions to WZW models in the context of conformal field theory

can be found for example in [11, 18, 4, 14].

3.3 Superconformal algebras

In this section we will look at superconformal field theories i.e. theories which have

at least one additional conserved current of weight h = 3
2 . Due to space limitations

we will just discuss the N = 1 superconformal algebra. For theories with extended

supersymmetry we refer the reader to the literature [14, 15, 17]. For a superspace
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3.3 Superconformal algebras

formulation compare [14]. We just consider one chiral half of the conformal field theory

as this corresponds for example to the situation found in heterotic string theories.

As an illustration we start with a very simple example. Consider the action of a

free boson and a free Majorana-Weyl fermion:

S =
1

4π

∫
d2z(∂X∂̄X + ψ∂̄ψ + ψ̄∂ψ̄). (3.3.1)

The action is invariant under the infinitesimal (left-moving) supersymmetry transfor-

mation parametrized by the Grassmann valued field ε(z):

δεX = ε(z)ψ δεψ = −ε(z)∂X δεψ̄ = 0 (3.3.2)

The associated conserved current is given by G = iψ∂X. We work out the following

OPEs involving the stress-energy tensor T = −1
2 : ∂X∂X : −1

2 : ψ∂ψ : using Wick’s

theorem:

T (z)T (w) ∼
3
4 ĉ

(z − w)4
+

2T (w)
(z − w)2

+
∂T (w)
z − w

(3.3.3)

T (z)G(w) ∼
3
2G(w)

(z − w)2
+
∂G(w)
z − w

(3.3.4)

G(z)G(w) ∼ ĉ

(z − w)3
+

2T (w)
z − w

(3.3.5)

with ĉ = 1. The general N = 1 superconformal algebra exists for arbitrary ĉ and

obeys the OPE [14] given above. Note in particular that (3.3.4) means that G(z) is

a (Virasoro-) primary field with h = 3
2 . The value ĉ, sometimes called supercharge, is

related to the central charge c via 3
2 ĉ = c. In our example we find a central charge of

3
2 = 1 + 1

2 as expected for an action which is just the sum of a free boson and a free
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3 Extensions of the Virasoro algebra

fermion action.

As before we can decompose G into modes via

G(z) =
∑
n

Gnz
−n− 3

2 where Gn =
∮

dz
2πi

G(z)zn+ 1
2 . (3.3.6)

Just like in the case of the free fermion treated earlier we can impose anti-periodic or

periodic boundary conditions for G(z) on the cylinder corresponding to the Ramond-

or Neveu-Schwarz sector. In the first case the sum in eq. (3.3.6) runs over integer

values and in the second case over half-integer values. From the OPE given above we

can work out the algebra of modes in the usual way:

[Ln, Lm] = (m− n)Lm+n +
ĉ

8
(m3 −m)δm+n,0

[Ln, Gr] =
(n

2
− r
)
Gn+r

{Gr, Gs} = 2Lr+s +
ĉ

2

(
r2 − 1

4

)
δr+s,0

(3.3.7)

We get anti-commutation relations between the modes of G because of the additional

sign in the definition of the radial ordering operator (2.2.11). The result is the N = 1

superconformal algebra. It hold both for the Neveu-Schwarz sector (r, s ∈ Z + 1
2) and

the Ramond sector (r, s ∈ Z).

The representation theory follows the general principles sketched in section 3.1.1.

For ĉ < 1 i.e. c < 3
2 we find just like in the pure Virasoro theory (c.f. eq. (2.4.4)) only

a discrete set of charges ĉ for which unitary representations can occur [14]:

ĉ = 1− 8
(l + 2)(l + 4)

, (3.3.8)

where l is a non-negative integer.
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4 Boundary Conformal Field Theory

Boundary conformal field theory (BCFT) is the study of conformal field theories on

manifolds with a boundary. Apart from a straightforward generalization in a math-

ematical sense of CFT to manifolds with boundaries, there are physical reasons for

considering these theories. In string theory there is a characterization of D-Branes by

the property that open strings may end on them. From the worldsheet perspective

they can be described by a boundary conformal field theory [6]. Another application

of BCFT is the study of quantum impurity problems in condensed matter physics

[22]. The main references for this chapter are the review articles [3, 27, 20, 22] and

the corresponding chapter in [18]. In the whole section we will restrict ourselves to

the situation discussed in the first part of the thesis and not consider BCFTs with

extended symmetry algebras.

The first question we have to address is how to impose boundary conditions consis-

tently. The only possibility in a general CFT is to impose conditions on components

of the stress-energy tensor normal/parallel to the boundary. We impose the conformal

boundary condition T⊥‖ = T‖⊥ = 0 which has the physical interpretation of no momen-

tum flowing across the boundary if the time axis is chosen parallel to the boundary.
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4 Boundary Conformal Field Theory

4.1 BCFT on the upper halfplane

It is useful to discuss the situation with a prototypical example in mind. A convenient

choice here is the upper half plane for which according to eq. (2.2.2) the conformal

boundary conditions become

T (z) = T̄ (z) for z ∈ R. (4.1.1)

This means that we can obtain T̄ (z̄) by analytic continuation of T (z) in the lower half

plane and thus define T (z) in the lower half plane via T (z) = T̄ (z̄). In analogy to the

theory in the bulk we define Virasoro modes Ln via

Ln =
∫
C+

dz
2πi

T (z)zn+1 −
∫
C+

dz̄
2πi

T̄ (z̄)z̄n+1

=
∮

dz
2πi

T (z)zn+1,

(4.1.2)

where C+ is a half circle in the upper half plane centred at the origin and the contour

of the last integral is a circle around the origin. The modes Ln form a Virasoro

algebra just like in ordinary CFT. The crucial difference here is that we obtain only

one Virasoro algebra and not two commuting copies as before which is due to the

additional condition on the real line which constrains the conformal transformations.

In the following we will consider the upper half-plane punctured at the origin which

introduces a distinction between the negative and the positive real axis and allows us to

define different boundary conditions on the positive/negative real axis. The Virasoro

algebra formed by the modes from eq. (4.1.2) is not spoiled by this construction.
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4.2 BCFT on the annulus and the Cardy conditions

4.2 BCFT on the annulus and the Cardy conditions

In section 2.7 we saw how the requirement of modular invariance on the torus lead to

restrictions on the field content of the theory. This is the motivation for considering a

BCFT defined on the annulus which is obtained by identifying left and right edges in

a rectangle of height L and width T . We will label the two boundary conditions on the

boundaries of the strip as a, b. The outline of the argument is as follows: We derive two

different expressions for the partition function of the theory and obtain consistency

conditions from them, the so-called Cardy conditions. In string theoretical terms we

would refer to the first construction as tree-level propagation of a closed string and

would call the second construction a one-loop evolution of an open string.

We start with the theory on the upper half plane (corresponding to the complex

variable z) with boundary conditions labelled b, a for the negative and positive real

axis. The half plane can be conformally mapped to an infinite strip via w = L
π log z.

We obtain the Hamiltonian Hba by calculations similar to those leading to eq. (2.7.7)

using the transformation properties of the stress-energy tensor

Tw(w) =
(π
L

)2(
z2T z(z)− c

24

)
(4.2.1)

and eq. (4.1.2):

Hba =
π

L

(
Lz0 −

c

24

)
(4.2.2)

Similar to the torus we considered before we make the transition to the theory on the

annulus by restricting the the w-plane to 0 ≤ Rew ≤ T ; 0 ≤ Imw ≤ L and identifying

0 + il ∼ T + il for 0 ≤ l ≤ L. Via ζ = e−2πiw/T this domain is mapped to an area

of the shape of a circular ring in the complex ζ-plane. The respective stress-energy
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4 Boundary Conformal Field Theory

tensors are related via

Tw(w) =
(2π
T

)(
−ζ2T ζ(ζ) +

c

24

)
. (4.2.3)

The conformal boundary conditions (4.1.1) translate to the conditions

T ζ(ζ)ζ2 = T̄ ζ(ζ̄)ζ̄2 for |ζ| = 1, e2πL/T . (4.2.4)

Using the mode expansion of the stress-energy tensor (2.2.4) we find that the boundary

states |a〉 and |b〉 which represent the boundary conditions a, b after radial quantization

on the Hilbert space of the bulk theory have to satisfy

Lζn|a〉 = L̄ζ−n|a〉 and Lζn|b〉 = L̄ζ−n|b〉 wheren ∈ Z. (4.2.5)

4.2.1 First construction

The first way of calculating the partition function is from the perspective of the in-

finitely long strip. The generator of a translations along the strip is Hab from (4.2.2)

and we have to propagate by T . Hence the first expression for the partition function

is

Z
(1)
ab (q) = Tr e−THba =

∑
i

niabχi(q) =
∑
i,j

niabSijχj(q̃), (4.2.6)

where q = exp(2πiτ), τ = iT/2L, q̃ = exp(−2πi/τ) and χi(q) = q−
c
24 TriqL0 . The

last equality follows by using the transformation properties (2.7.15) of the characters

under the modular transformation S. The positive integers niab are the analogues of the
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4.2 BCFT on the annulus and the Cardy conditions

Figure 4.1: The annulus in different coordinates

coefficients Mij in (2.7.13) and indicate how many copies of a particular representation

are contained in the spectrum. Note that here the partition function is only linear

in the characters as the Hilbert space decomposes into a direct sum of irreducible

representations of just one Virasoro algebra.

4.2.2 Second construction

For the second construction assume that the time axis coincides with the symmetry

axis of the cylinder. The theory on the annulus may then be interpreted as CFT

of the circle propagated by L. The boundaries a, b, then correspond to boundary

states |a〉, |b〉 in the full Hilbert space. These have to satisfy the conformal boundary

condition (4.2.5). The constraint is satisfied by the so-called Ishibashi (coherent) states

[27]

|h〉〉 =
∑
k

|h; k〉 ⊗ |h; k〉, (4.2.7)
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4 Boundary Conformal Field Theory

where |h; k〉 denotes the kth vector in an orthonormal basis of the Verma module

corresponding to the highest weight state |h〉.

The Hamiltonian H = 2π
T (Lζ0 + L̄ζ0 − c

12) of the bulk theory (c.f. eq. (2.7.7))

generates translations along the symmetry axis of the cylinder which corresponds to

translations parallel to the imaginary axis in the w-plane. The partition function may

then be written as matrix element of the time-evolution operator exp(−HL):

Z
(2)
ab (q) = 〈a| exp(−HL)|b〉 = 〈a|(q̃)

1
2

(Lζ0+L̄ζ0−c/12)|b〉 (4.2.8)

Now we expand1 the boundary states in terms of the Ishibashi states e.g. |a〉 =∑
h |h〉〉〈〈h|a〉. With the property 〈〈h|(q̃)

1
2

(Lζ0+L̄ζ0−c/12)|h′〉〉 = δhh′χh(q̃) which holds in

diagonal CFTs we obtain the following expression for the partition function:

Z
(2)
ab (q) =

∑
h

〈a|h〉〉〈〈h|b〉χh(q̃) (4.2.9)

4.2.3 The Cardy conditions

The consistency of the expressions (4.2.6) and (4.2.9) for a diagonal CFT together with

the linear independence of the characters finally leads us to the Cardy conditions:

niab =
∑
j

Sij〈a|j〉〉〈〈j|b〉 (4.2.10)

1It is not obvious that the Ishibashi states form a basis of the space of boundary states [27]. The
completeness is simply taken as an assumption here.
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4.3 Explicit construction of boundary states

4.3 Explicit construction of boundary states

4.3.1 General construction

In this last section we present an explicit construction based on the modular transfor-

mation matrix S to obtain the boundary states within a diagonal CFT. First we set

〈〈h|0〉 = (S0h)
1
2 and thus

|0〉 =
∑
h

(S0h)
1
2 |h〉〉. (4.3.1)

From the Cardy conditions (4.2.10) together with the properties of S we obtain nh00 =

δh0 . In the next step we set 〈〈h|h′〉 = Sh′h/(S0h)
1
2 for h′ 6= 0 and therefore we get

|h′〉 =
∑
h

Sh′h/(S0h)
1
2 |h〉〉. (4.3.2)

The Cardy conditions imply nhh′0 = δh′h. In this way we have constructed one boundary

state |h′〉 for each highest weight h′ from the original theory.

In order to check if this ansatz is really consistent with the Cardy conditions, we

have to verify that

nhh′h′′ =
∑
k

ShkSh′kSh′′k
S0k

(4.3.3)

is a positive integer. But this is satisfied because of Verlinde’s formula (c.f. eq.

(2.8.2)) which states that the right hand side of the equation above equals the fusion

rule coefficient Nh
h′h′′ . This reveals nice cross connections between boundary conformal

field theory and the conformal field theory in the bulk and illustrates an application

of concepts such as modular invariance or the fusion rules discussed in the first part

of the thesis.
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4.3.2 Application to the Ising model

We will demonstrate the construction of boundary states for the Ising model [3, 18]

which was discussed in section 2.4.2. This will not only illustrate the general construc-

tion but will also give us an intuitive understanding of the boundary states.

The modular transformation matrix S is given by [3]

S =
1
2

(
1 1

√
2

1 1 −
√

2√
2 −
√

2 0

)
(4.3.4)

if we choose (with the the notation from section 2.4.2) the ordering (1, ε, σ) for the

primary fields corresponding to the highest weight states (|0, 0〉, |12 ,
1
2〉, |

1
16 ,

1
16〉). A

straightforward application of the procedure from above leads to the following three

boundary states given in terms of the Ishibashi states |0〉〉,|12〉〉 and | 1
16〉〉:

|0〉 = 1√
2
|0〉〉+ 1√

2
|12〉〉+ 2−

1
4 | 1

16〉〉 (4.3.5)

|12〉 = 1√
2
|0〉〉+ 1√

2
|12〉〉 − 2−

1
4 | 1

16〉〉 (4.3.6)

| 1
16〉 = |0〉〉 − |12〉〉 (4.3.7)

We expect to find the continuum analogues of the fixed σ = 1, σ = −1 or free boundary

conditions known from the lattice realization of the Ising model. The expressions from

above suggest to identify |0〉 and |12〉 with the fixed and | 1
16〉 with the free boundary

conditions.
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In this thesis we wanted to give an overview about general features of conformal field

theories without focussing on a particular application for example in string theory or

the in theory of critical phenomena.

In the first part the topics ranged from the conformal group over the Virasoro

algebra and its representations to modular invariance and fusion rules. The chapter is

intended to be complete in the sense that all important subtopics were at least touched.

In addition to the references given at the appropriate places in text the standard

reference [18] is in most cases a good starting point for more detailed discussions.

For pedagogical reasons we decided to present the pure Virasoro theory in the first

part at the expense of a less compact presentation compared to [4] for example. In

the second part we presented general consequences arising from an extended sym-

metry algebra and studied some general features of their representations. For Kac-

Moody algebras we saw the Sugawara construction for the stress-energy tensor and

the WZW- models as an explicit example for a conformal field theoretical model with

a Kac-Moody symmetry. A more detailed discussion of these topics would require, in

particular, a better understanding of the representation theory of (affine) Lie algebras

in terms of roots and weights. Nice introductions particularly suited for the applica-
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tion to CFT are the corresponding chapters in [18, 4, 11, 17]. The other important

example for extended symmetry algebras, superconformal algebras, was discussed very

briefly. Especially the superspace formulation, theories with extended supersymmetry

and their applications to string theory were not be covered due to space limitations.

In the third part of the thesis we considered CFTs on manifolds with a boundary,

saw how to impose boundary conditions and found important differences to the theory

in the bulk such as the occurrence of only one single Virasoro algebra. We derived the

Cardy conditions as consistency conditions from the partition function on the annulus

and found an explicit construction for the boundary states in a diagonal CFT. A more

detailed treatment would have to include a discussion of Bulk-Boundary OPEs [3] and

BCFTs with extended symmetry algebras.

We conclude this thesis with a few remarks on other important topics which could

not be covered in this thesis. The first is the question of a rigorous formulation of

conformal field theory for example in an axiomatic framework. There has been a

lot of work on this subject and we refer the reader to references mentioned in the

introduction.

Secondly we did not cover general construction methods for CFTs such as scalars

with background charge or orbifolds [5, 18, 14]. The Coset construction was discussed

only very briefly in the appendix because of its significance for minimal models.

The third point is a yet unsolved problem namely the classification of modular

invariant partition functions both in ordinary CFT and in BCFT and the relation to

graphical methods such as ADE Dynkin diagramms [27].
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A Correlation functions in 2D CFT

A.1 Differential equations for n-point functions

In this short appendix we sketch the derivation of the results from section 2.1.4. First

we derive three differential equations which every n-point function in conformally

invariant field theory has to satisfy. The key idea is here to exploit the SL(2,C)

invariance of the vacuum.

We consider the correlation function 〈φ(−m)(z, z̄))φ1(z1, z̄1) · · ·φn(zn, z̄n)〉 where φ

and φ1, . . . φn are primary fields and rewrite it using (2.3.17):

〈(L̂−mφ(z, z̄))φ1(z1, z̄1) · · ·φn(zn, z̄n)〉

= L−m〈φ(z, z̄)φ1(z1, z̄1) · · ·φn(zn, z̄n)〉

=
n∑
i=1

(
(m− 1)hi
(zi − z)m

− 1
(zi − z)m−1

∂zi

)
〈φ(z, z̄)φ1(z1, z̄1) · · ·φn(zn, z̄n)〉

(A.1.1)

By the SL(2,C) invariance of the vacuum these correlation functions vanish for m =

1, 0,−1. We set φ(z, z̄) ≡ 1 and z = 0 and obtain the following three differential

equations which every conformally invariant n-point function has to satisfy (in addition
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A Correlation functions in 2D CFT

to the corresponding equations in z̄i):

0 =
n∑
i=1

∂zi〈φ1(z1, z̄1) · · ·φn(zn, z̄n)〉 (A.1.2)

0 =
n∑
i=1

(hi + zi∂zi) 〈φ1(z1, z̄1) · · ·φn(zn, z̄n)〉 (A.1.3)

0 =
n∑
i=1

(
2hizi + z2

i ∂zi
)
〈φ1(z1, z̄1) · · ·φn(zn, z̄n)〉 (A.1.4)

They correspond to translational, dilational and special conformal invariance.

A.2 Form of the 2-point functions

For n = 2 (A.1.2) and its counterpart involving z̄i imply that the 2-point function

G(z1, z̄1, z2, z̄2) depends only on z1− z2 and z̄1− z̄2. Then (A.1.3) constrains it to the

form C12/(zh1+h2
12 z̄h̄1+h̄2

12 ). Finally eq. (A.1.4) enforces h1 = h2 and h̄1 = h̄2 unless the

2-point function vanishes identically.

By a similar analysis for the 3- and 4-point functions one can show that these are

constrained to the forms given in section 2.1.4.
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In this appendix we sketch the Goddard-Kent-Olive (GKO) coset construction [5, 18,

14, 11] which allows us to construct a CFT from two existing CFTs . This will give us

an explicit realization of the minimal models from section 2.4 as Coset CFTs and will

finally allows us to understand why these are unitary representations of the Virasoro

algebra.

B.1 Coset Conformal Field Theories

Our starting point are two affine Lie algebras ĝ and ĥ with the property that the

horizontal Lie subalgebra h of ĥ can be embedded in the horizontal Lie subalgebra g

of ĝ. For simplicity we assume that g and h are finite dimensional simple Lie algebras.

Because of the embedding property the generators Ja of ĥ are primary fields (with

weight h = 1) both with respect to the Virasoro algebra Lgm associated to ĝ and with

respect to Lhm associated to ĥ. On the level of modes this is formulated as

[Lgm, J
a
n] = −nJam+n [Lhm, J

a
n] = −nJam+n. (B.1.1)

Now we define

Lg/hm ≡ Lgm − Lhm (B.1.2)
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and get from the previous two equations [Lg/hm , Jan] = 0. It follows that [Lg/hm , Lhn] = 0

because Lhn is bilinear in the currents according to the Sugawara construction in eq.

(3.2.7). Thus we have the decomposition

Lgm = Lhm + Lg/hm (B.1.3)

into the two commuting modes Lhm and Lg/hm . As both Lhm and Lgm satisfy the Virasoro

algebra it is now easy to verify that the same is true for Lg/hm . We find a central charge

cg/h = cg−ch if we denote the central charges of the affine theories associated to ĝ and

ĥ by cg and ch. We then refer to the quotient theory associated with the stress-energy

tensor T g/h = T g − T h as coset theory ĝ/ĥ.

It is possible to generalize the construction by considering also semisimple Lie al-

gebras and one can even consider arbitrary conformal field theories which contain an

affine theory as a subtheory i.e. without assuming that the larger theory is an affine

theory.

The representation of T g/h created from the vacuum is unitary by construction as

it is realized on a subspace of a unitary representation of T g.

B.2 Minimal conformal series realized as Coset CFTs

The proof that the minimal models from section are indeed unitary representation of

the Virasoro algebra works by looking at the following coset theory (with the notation

from the last section):

ĝ = ŝu(2)K ⊗ ŝu(2)1 and ĥ = ŝu(2)K+1, (B.2.1)
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B.2 Minimal conformal series realized as Coset CFTs

where the subscripts denote the levels of the affine Lie algebras (c.f. (3.2.2)). From

3.2.14 with g∨ = 2 for su(2) we find for the central charge of the coset theory

cg/h =
K · 3
K + 2

+ 1− (K + 1) · 3
(K + 1) + 2

= 1− 6
(K + 2)(K + 3)

. (B.2.2)

These are precisely the central charges we found in (2.4.4) with m = K + 2. As

these are the only possibly unitary representations of the Virasoro algebra for these

central charges, the coset theories from above must provide an explicit realization of

the minimal models. The precise argument leading to this identification is given in

[19].

The coset theories (ŝu(2)K⊗ ŝu(2)2)/ŝu(2)K+2 provide an explicit realization of the

N = 1 superconformal minimal models mentioned in section 3.3 [19, 14].
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