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Abstract. This review investigates and presents entanglement

and reference frames as two rich subjects of Quantum Theory and

how they can be treated in quantum information theory as useful

physical resources. Use of entanglement to perform quantum infor-

mational tasks as such as quantum teleportation will be presented

to illustrate entaglement as a resource and to highlight shared ref-

erence frames as a harnessable resource. The importance of con-

sidering reference frame in quantum information theory will be

suggested and its connection to foundational problem of quantum

theory as such as superselection rule will be explored. Then pos-

sible extension or further aspects of interest and perhaps further

research will be discussed as such as problem of quantifying the re-

sources and possible questions concerning both entanglement and

reference frames as such as whether they are interconvertable will

be raised.
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Introduction

In classical and quantum information theory, identifying possible

resources and investigating treatment of resources in various consider-

ation as such as efficiency, distillability, longevity and so on to name

a few, are very important and interesting problems. In both classi-

cal and quantum computation, which falls under broad spectrum of

information theory, physical resources as such as data storage space,

computation time and energy have been important factors to consider

for theory of computation, implementation of algorithms and realisa-

tion of computing devices. Physical space to store and implement data,

number of gates required for algorithms and whether computation is re-

versible or not has been of much interest to classical information theory,

for optimising these resources are crucial for application and therefore

development of specific protocols. Same problems are equally applied

to quantum information theory, for example, finding reversible gates

and therefore reversible computation to account for unitary quantum

gates studied in quantum information theory which are invertible by

nature.

However in quantum information, new phenomenons as such as en-

tanglement shows strange behaviour unique to quantum theory that is

not present in classical information theory. As Einstein famously crit-

icised entanglement and its non local property as ’spooky action at a

distance’, seemingly violating certain rules of physics, the non locality

v



vi INTRODUCTION

exhibited by a pair of entangled states is precisely one of the phenome-

non we can harness as resources to use in quantum information theory.

As we shall see in the quantum teleportation example, shared entan-

glement pair between two parties, Alice and Bob, and some classical

communication channels, can transmit a qubit from Alice to Bob and

transfer information, thereby depleting the entangled pair and using

up the entanglement as a resource in exchange of using ’cheap’ clas-

sical channel and certainty of the outcome. Also in this example, we

identify the role of shared reference frame as a resource and begin our

investigation of reference frame in quantum information.

Identifying entanglement and reference frame as resources of quan-

tum information was a crucial step to study these fields and to apply

these physical objects for better understanding the quantum theory.

Therefore these two have suffered and still suffer bombardment of ques-

tions and investigation, bearing fruitful results, and we will attempt to

raise some of these questions and glimpse still partial answers to some

of the major problems.

Since entanglement is relatively widely known phenomenon, the

definition was omitted. On the otherhand reference frames in quantum

information theoretical sense needs some clear presentation and intro-

duction. However before the definition of reference frame is given, the

motivation for such definition will be revisited. Hence we look to the

nature of the information we are dealing with for information process

tasks.

As Landauer (1993) [1] claimed ’Information is physical’ and from

’Quantum Information is physical too’ (Rudolph, 1999) [2] emphasis

on the importance of physical nature of the quantum information has
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been frequently restated to remind that high abstraction of informa-

tion and treating information in forms of different physical medium

as equivalent, somewhat obscures additional benefits quantum infor-

mation theory can offer due to the quantum nature of the framework.

Further to this, careful examination of nature of information is nec-

essary. Fungible information [3] is information for which the physical

nature of the information carrier is not important. The method of

encoding the information is not important whether classic bit, cbit,

is encoded via a laser being on or off, or an atom in excited state or

in ground state. This type of information is typically dealt by classi-

cal information theory and such generalisation have allowed to focus

the research on more abstract and inherent nature of the information

theory, yielding great results as such as Shannon’s theorem for coding

information in noisy channel. However there are variety of information

processing tasks that can not be implemented by using fungible infor-

mation, as such as synchronising two atom clocks on different space-

ships. This can not be done by just sending classical bits (which is

fungible) but needs some kind of token physical system to share which

has natural oscillation for the synchronisation. For the case of align-

ing a spatial direction in different Cartesian frames, a token physical

system to share must have a direction to point to, for example spin

1
2

particle with its axis of spin representing vertical-direction. These

information is not describable with words or instructions or classical

information without token physical system to compare to. These sort

of information is called nonfungible information. Fungible and non-

fungible information are also known as ’speakable’ and ’unspeakable’

information respectively (Peres and Scudo, 2002b) [4].
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The physical nature of the quantum object which act as a infor-

mation carrier, wether it be spin-1/2 particle (electron), or coherent

superposition of ground and excited states of a two-level atom, needs

some other system with respect to these can be relatively defined. Each

observer does not define unspeakable information as such as directional

information or phase information, against some absolute Newtonian

space or absolute time, but can only describe them relative to another

system at their disposal as such as gyroscopes, clocks, metre rule and

so on in their laboratory for example. As with analogy to revelation

of this non existence of abolute Newtonian space and time leading

to theories of special relativity and general relativity, these systems

with respect to which unspeakable information is defined are known

as reference frames [3]. So the nonfungible or unspeakable informa-

tions exhibit obvious needs of a corresponding refernce frames in each

communicating parties, Alice and Bob, in which to make any sense of

the information. To the recipient, Bob, of a unspeakable information,

since Bob would measure this respect to his own reference frame and

Alice with respect to her own reference frame, the same unspeakable

information could be described completely differently. Also agreeing on

same measurements scheme would not be trivial as for example, their

measurement of spin 1
2

particles would not necessarily be aligned due

to differing reference frames (Rudolph 1999 [2] identifies the problem of

non-universal natural basis for example of spin measurements, unlike

the energy eigenstates measurements, due to the Hamiltonian of the

universe - lacking universal static magnetic field for example). This

need of consideration of reference frames for unspeakable information

is the crucial point for the case of importance of reference frames.
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Now we have the definition of a reference frame. However it is not

just unspeakable information that needs reference frames. Speakable

information can be encoded into any degree of freedom of a system (for

example, horizontal polarisation of a photon) but it still requires some

reference frame to be chosen, corresponding to the degree of freedom

that has been used. Therefore to lack the reference frame for a chosen

degree of freedom for encoding information, for both speakable and

unspeakable information, would entail some consequences for the in-

formation processing tasks that utilise them. It can be shown that this

lack of reference frame can be viewed in quantum formalism as a form

of decoherence or a quantum noise due to interaction of the system

with the inaccessable reference frame. This is analogous to correlation

of a system to an environment, which we have no access, to be treated

as decoherence or noise and so both types of noises can possibly be

treated via methods in quantum information theory which eradicates

noise (such as use of decoherence-free subsystems) [3].

This generalisation of reference frame incorporated into quantum

formalism as a form of decoherence will be further developed to show

that it is equivalent to imposing superselection rule as additional re-

striction on the quantum theory. Superselection rule, mathematical

restriction on possible states that can be prepared under certain con-

ditions, as forbidding coherence between different eigenspaces of some

observables, is additional restriction to the selection rule(conservation

rule) in an attempt to adapt the theory to accomodate the experimental

results. This restriction on coherence and therefore forcing decoherence

is equivalent to lacking specific reference frame and this connection can

be further developed to show that by choosing appropriate reference
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frame, superselection rule can be violated [7] and give some insight

to the important question of whether superselection rule is fundamen-

tal axiomatic restriction of quantum theory. This point highlights that

the study of reference frames is both motivated via application of quan-

tum information theory and also via study of foundational problems of

quantum theory and construction of quantum formalism.

From non locality of quantum theory, with aid of bipartite pure

states between two parties, the bell states, notion of entanglement [12]

emerged with powerful results and consequences for the quantum the-

ory and in application into quantum information theory. This identified

entanglement as useful resources in quantum information theory. From

consideration of physical nature of information and absence of univer-

sal basis of some quantum systems [2], lead to discussion of reference

frames in quantum theory with profound insight to its implications.

These two aspects of quantum thoery as useful resources in quantum

information theory and useful tools for investigation of quantum theory

have not yet been fully understood. However they promise to answer

or at least give interesting insights to many questions that they both

share, as such as interconvertability of these two concepts as resources,

how useful they are as resources in terms of longevity, distillablity and

so on and what consequences they bring to formalism of quantum the-

ory.

So now we introduce some notational conventions and basic results

or tools assumed in this review before the discussion of concept of

entanglement.
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Preliminaries

1. Notations

Before we turn to theory of entanglement and theory of reference

frames, we introduce some notations and conventions that will be used

in this review. If not stated specifically as a agreed notation in this

chapter, the most general and common notations have been chosen

where possible.

Classical bit is abbreviated to cbit; qubit for quantum bit; ebit for

entanglement bit; refbit for reference frame bit and lbit or |0L〉 for

logical bit.

|0〉, |1〉 denote standard computational basis or number eigenstates

depending on the context which will be clear.

The 4 Bell states: maximally entangled quantum states of two

qubits are denoted as follows.

|Φ+〉 =
1√
2

(|0A〉 ⊗ |0B〉+ |1A〉 ⊗ |1B〉) =
1√
2

(|00〉+ |11〉)

|Φ−〉 =
1√
2

(|0A〉 ⊗ |0B〉 − |1A〉 ⊗ |1B〉) =
1√
2

(|00〉 − |11〉)

|Ψ+〉 =
1√
2

(|0A〉 ⊗ |1B〉+ |1A〉 ⊗ |0B〉) =
1√
2

(|01〉+ |10〉)

|Ψ−〉 =
1√
2

(|0A〉 ⊗ |1B〉 − |1A〉 ⊗ |0B〉) =
1√
2

(|01〉 − |10〉)

1
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Basic knowledge of group theory, linear algebra and representation

theory will be assumed in this review. Specifically we will focus on finite

groups, continuous (Lie) groups which are compact (ensures group-

invariant Haar measure dg ) and act on the Hilbert space via a unitary

representation (completely reducible) [3], to ensure relatively simple

treatment of our discussion.

Also for group identity notation, IN will be used for identity map

over operators in the space N and 1A will be used for identity map on

system A.

Basic knowledge of quantum mechanics will also be assumed in

this review as such as state space representation |ψ〉 of systems, use of

density matrix representation ρ and their treatments and so on.

2. Schur’s lemmas

Here we state without proof results from group representation the-

ory, Schur’s First Lemma and Schur’s Second Lemma, which later on

will be used to prove a result in considering reference frames. These

form of Schur’s Lemmas are from Bartlett (2007) [3], which follows

Nielsen (2003) [5].

Lemma 2.1 (Schur’s first). If T (g) is an irreducible representation

of the group G on the Hilbert space H, then any operator A satisfying

T (g)AT †(g) = A for all g ∈ G is a multiple of the identity on H.

Lemma 2.2 (Schur’s second). If T1(g) and T2(g) are inequivalent

representations of G, then T1(g)AT †2 (g) = A for all g ∈ G implies

A = 0.
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Entanglement

In this review we mostly consider bipartite entanglement, i.e. en-

tanglement between two parties, Alice and Bob. Some results of theory

of bipartite entanglement extend to higher dimensions as such as Peres-

Horodecki criterion, also known as positive partial transpose criterion

(for example 2 × 2 and 2 × 3 dimensions i.e. two qubits case and one

qubit and one qutrit case), however higher dimensions bipartite entan-

glement is generally difficult and much too complicated for scope of

this review.

The Bell states as was shown in the section 1 in chapter 1, they

are maximally entangled bipartite states. They are states that violate

Bell’s Inequalities maximally and with experimental evidence in favour

of quantum mechanics, helped establish Bell’s Theorem, that quantum

theory is non local. Also these Bell states are the states that exhibit

this non local behaviour maximally and therefore used widely in many

quantum information processing tasks.

These Bell states have entanglement as their resources for doing

information processing and this will be demonstrated in quantum tele-

portation example later on. Then if entanglement is viewed as a re-

source, we can ask several important and interesting questions about

nature of this resource. Among several properties of entanglement as

such as longevity, efficiency of extracting entanglement as resources out

of systems, how hard it is to prepare entangled states or what other

3
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resources are needed to distill entanglement and many more interesing

questions [3].

Entanglement is the property exhibited by bipartite states when

they are not expressable as product states. For example, ρA ⊗ σB,

where ρA is a pure state in system A and σB is a pure state in system

B, is a product state and therefore not a entangled state.

|Φ+〉 =
1√
2

(|0A〉 ⊗ |0B〉+ |1A〉 ⊗ |1B〉) =
1√
2

(|00〉+ |11〉)

One of the Bell states, |Φ+〉, is an example of entangled state where

it is not a product state. Since for general states, |ψ〉 = a|0〉 + b|1〉, a

product state would be,

(a|0〉+ b|1〉)⊗ (c|0〉+ d|1〉) = ac|00〉+ ad|01〉+ bc|10〉+ bd|11〉

Then for this to equal to the Bell state, ac = bd = 1√
2

and ad = bc =

0. However there is no such combination of a, b, c, d since first equation

gives (ac)(bd) = abcd = 1
2

and second equation gives (ad)(bc) = abcd =

0, obtaining contradiction. This shows that Bell state |Φ+〉 is not a

product state and therefore entangled state. The same is true for the

other three Bell states and this can be easily checked as above example.

As will be shown later, this nonseparability into product state is

what classifies entangled states. More precisely, it should be named

non locally preparable states as this emphasis the physical nature of

the states that they can not be prepared by just Local Operation and

Classical Communications (LOCC) from a product state [12].

First we focus on how to measure or qunatify the entanglement in

order to quantify its resourcefulness.
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1. Measure of Entanglement

We begin with the definition of separability which in turn defines

entanglement.

Definition 1.1. A general mixed bipartite state is separable iff it

can be written in the form

ρ =
∑
i,j

pij σ
A
i ⊗ σBj

if it is not separable then it is entangled.

However, with this definition of entanglement, it is often hard to

determine if a bipartite state is entangled or not, since it is left to

optimisation problem to check all the possible convex decompositions

of ρ.

We introduce another definition for decomposing a general bipartite

state.

Definition 1.2. If a general bipartite state between system A and

system B, bipartite state can be written as,

|ΨAB〉 =
∑
i,j

Cij|ai〉|bj〉

then every such state can also be written as,

|ΨAB〉 =
∑
i

√
λi|ei〉A|fi〉B

with |ei〉A as eigenbasis of ρA and |fi〉B as eigenbasis of ρB. This is

called Schmidt decomposition or biorthogonal decomposition.
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ρA is reduced density matrix of A, obtained by partial tracing out

system B in the eigenbasis. Similarly for the ρB is reduced density ma-

trix of B. ρA =
∑

i λi|ei〉〈ei| and so ρA and ρB share same eigenvalues.

Then for the bipartite states that has Schmidt decomposition, a

measure is defined called von-Neumann entropy.

Definition 1.3. von-Neumann entropy of Schmidt decomposable

bipartite system is,

S(ρA) = −
∑
i

λi log λi

This von-Neumann entropy measure is maximised when λi = 1
d

uniformly where d is the dimension of ρA. and takes value 0 when only

one such eigenvalue is 1 and others 0, i.e. when λ1 = 1 and λi 6=1 = 0.

This measure correlates with being maximum for maximally entangled

states of
∑

i
1
d
|ei〉〈ei| and minimally entangled state when it is pure

state of |e1〉〈e1| for example.

Then for bipartite state with density matrix ρ, which does not have

Schmidt decomposition, Peres-Horodecki criterion or otherwise known

as Positive Partial Transpose (PPT) criterion can be used to determine

entangleness of a state.

Definition 1.4. For general state ρ on bipartite system, HA⊗HB,

ρ =
∑
ijkl

pijkl |i〉A ⊗ |j〉B〈k|A ⊗ 〈l|B

its partial transpose (with respect to the B) is defined as

ρTB =
∑
ijkl

pijkl |i〉A ⊗ |l〉B〈k|A ⊗ 〈j|B



2. FURTHER PROPERTIES OF ENTANGLEMENT 7

If ρTB has a negative eigenvalue, ρ is guaranteed to be entangled, if

the dimenstion is not larger than 2×3 (i.e. not more than one qubit

and one qutrit).

Thus these definitions and criterions give brief view of incomplete

picture of how entanglement can be measured, quantified or validated.

The inconclusivity of PPT criterion for higher dimensions and non

Schmidt decomposable systems give huge area for further study of mea-

sure of entanglement and identifying entanglement. However this same

question of finding a method of quantifying entanglement can be asked

to another type of resource that is reference frame. Since study of

quantum unspeakable information theory is very young in its stages,

this area of interest is huge challenge for further investigation for un-

derstanding reference frame in quantum theory.

2. Further Properties of Entanglement

There are several other interesting properties of entanglement which

will be briefly explored in this section. When considering entanglement

of mixed states, as was with above example of identification of entan-

gled states, the theory becomes much more rich and complex [13]. The

new concepts which emerged as the outcome of research include bound

entanglement, distillation, activation [14] and so on. These concepts

give further insight to the role of entanglement as resource in informa-

tion processing tasks.

Distillable states are states such that n copies of the state can be

converted or ’distilled’ into some number of maximally entangled pure

states using LOCC with some fidelity [12]. Identifying which mixed

states are distillable is not just hard unsolved problem, but it is not
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even known if it is possible at all [12]. This property of being able

to use large supply of distillable states to obtain maximally entangled

pure states between two parties illustrate how this resource of entan-

glement can be prepared and what possible resources can convert to

yield entanglement in order to enable LOCC for example, thereby using

cheap information processing methods for communication.

3. Quantum Teleportation

The Quantum Teleportation is perhaps one of the most exciting

results of quantum information theory. As will be demonstrated in

this example, entanglement is used up as a resources to transmit quan-

tum information across two parties. By tapping into this resources,

one can achieve 1 qubit of information transfer for every 1 ebit and 2

cbit transferred via classical communication channel. This is benefi-

cial since using classical communication channel to transmit qubit is

much cheaper and practical solution. This advantage in usage of re-

sources is balanced by depleting the entanglement resources. This type

of paradigm is known as Local Operation and Classical Communication

(LOCC) where efficient and practical local operation and communica-

tion via classical channel is used for non local quantum information

trasfer process.

This is one instant of what rich results in information theories can

arise from restrictions on experimental operation or physical limitation

[6]. Using entanglement as resources to enable cheap LOCC paradigm

and acquiring restriction of being in this paradigm resulted in theory

of entanglement. So using similar logic, one could hope that studying
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the restrictions of lacking a reference frame (and therefore gaining re-

strcition of superselection rule) [3] would open up new scope for the

quantum information theory.

Now we give a simple illustration of quantum teleportation.

Say, Alice and Bob are in spacelike separated position or very far

apart and they want to send a qubit of information to another. Luckily

before they parted for the last time, they shared a bell state |Φ+〉AB =

1√
2

(|00〉+ |11〉), with Alice taking system A and Bob taking system B

on their long journey. Also they have Classical channel between them.

Alice has prepared an unknown state |ψ〉 = α|0〉S +β|1〉S in system

S. She wishes to teleport this state to Bob. Is it possible?

The method goes like this. At Alice’s disposal, she has system A

and system S. She performs a measurement on her System of A and S

which is given by projectors onto the Bell states, namely

|Φ+〉SA =
1√
2

(|00〉+ |11〉)

and so on with |Φ−〉SA , |Ψ+〉SA , |Ψ−〉SA in system S and A. These are

orthogonal and measurement being performed is,

{
|Φ+〉SA〈Φ+| ⊗ 1B, · · · , |Ψ−〉SA〈Ψ−| ⊗ 1B

}
Considering 3 systems, SAB,

(α|0〉S + β|1〉S)⊗ 1√
2

(|0〉A ⊗ |0〉B + |1〉A ⊗ |1〉B)
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If Alice gets the |Φ+〉〈Φ+| outcome from possible 4 outcomes,

(
|Φ+〉〈|Φ+| ⊗ 1B

) 1√
2

(α|00〉SA|0〉B + α|01〉SA|1〉B

+ β|10〉SA|0〉B + β|11〉SA|1〉B)

=
1

2

(
α|Φ+〉SA|0〉B + β|Φ+〉SA|1〉B

)
=

1

2
|Φ+〉SA ⊗ (α|0〉B + β|1〉B)

=
1

2
|Φ+〉SA ⊗ |ψ〉

Thus state |ψ〉 has been teleported to system B, Bob, and entan-

glement between A and B is lost. The probability of obtaining this

scenario is 1
4

and for other three outcomes as such as |Φ−〉, Alice tells

Bob via the 2 cbit channel that she obtained this outcome and Bob

can apply corresponding unitary local transformation on system B, for

this example Z gate, to yield quantum teleportation. Use of the en-

tangle pair, taking measurement by projectors onto the 4 Bell states

as orthogonal basis and using 2 cbit to transmit via classical commu-

nication channel to Bob which outcome Alice obtained and so which

determinable unitary transformation Bob should apply to his system

to obtain teleportation of 1 qubit. Important aspect of this simple

scenario of quantum teleportation is that in order to utilise LOCC

paradigm, use cheap resources and achieve quantum teleportation of 1

qubit, 1 ebit of entanglement was depleted as shown by entanglement

no longer existing between system A and system B. As now system B is

expressable tensor product of density matrix in system A and density

matrix in system B. It is now separable.
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Then the question that can be raised is what is the rate of resources

of entanglement that is consumed in certain quantum information pro-

cessing tasks? How quickly do you use up and how can you replenish

stock of entangled states from the other resources at disposal? Al-

though the general theory of entanglement is not yet complete enough

to answer these questions in generality, some of answers to these ques-

tions can be found. Possibly extending the theory of entanglement

to higher dimensions and sharing entanglement of more general di-

menstional states between multiple parties can lead to much complex

scenarios and rich results.

Now we leave the theory of entanglement briefly and venture into

the theory of reference frames, in which we hope to discover new an-

swers and insights to the questions we have been asking of entanglement

theory and we begin by focusing on a detail in the quantum teleporta-

tion example already discussed.





CHAPTER 3

Reference Frames

In the quantum teleportation example that we looked at in terms

of entanglement as resource for quantum information theory, there are

many other details that a well equipped quantum information theorist

might ask and might study further. Among them are precedures for

doing the projective measurements in Bell states orthonormal basis

which makes use of unitary transformation to change measurement

basis. These are interesting but there is one detail which opens up new

area of theory to explore and to experiment with.

The detail we are looking for is how both Alice and Bob knew what

orientation their Cartesian frames were and how they agreed on the

moment of time to do the measurements. Under certain circumstances

as being in the same lab and sharing same clock, Alice and Bob would

agree that they share same reference frame for Cartesian frame and

clock synchronisation. If they had not shared a reference frame for

the degrees of freedom for which the information was encoded in, even

with the same protocol as already described quantum teleportation,

they would not have been able to achieve it. The problem is that when

Alice tells Bob which outcome out of 4 Bell states she recieved and

therefore which unitary transformation Bob should implement, if they

do not share the same Cartesian frames and therefore Bob’s Z gate ba-

sis for example does not align with Alice’s Z gate basis, Bob would not

necessarily get back the qubit Alice was teleporting through using the

13
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wrongly oriented measurement basis. Orientation of particular Carte-

sian frame for example is an unspeakable information. Unspeakable

information needs reference frame to be measured relative to and if

they do not share reference frame, they would view the same state and

operation differently in their own reference frames. Also if they did not

know each other’s orientation of reference frame or the relationship be-

tween their reference frames. They would only be able to do their best

by averaging over all possible orientation of other’s reference frame to

estimate what states or operations others have used.

The assumed sharing of reference frame of directional orientation

of which way is up and horizontal for example, between Alice and Bob

has unknowingly played a crucial role in the quantum teleportation

example as a resource.

Having a shared reference frame (SRF) enabled LOCC quantum

teleportation useing entangled pair with certainty of success and lacking

that reference frame of the degree of freedom of the system that the

information was encoded into, would possibly jeopardise the success

of the procedure. This share reference frame is acting as a resource

to enable perhaps more efficient and effective quantum information

process.

As the entanglement needed to be treated in quantum mechanics to

apply to quantum information theory [3], reference frames have choice

in being treated as a classical objects like measurement are treated as

classical operation, or being incorporated into the quantum formalism.

The analogous of this is the potential wall in the Hamiltonian of quan-

tum object. If the potentail wall, modeled as infinite parallel potentail

walls, is treated as external and classcial background to the quantum
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process, it breaks the translational symetry of the solution in the per-

pendicular direction to the direction of the potential wall. Possibly

as with in quantum field theory, where symetry breaking is associated

with appearnace of scalars and mass terms, this kind of symetry break-

ing by external system or specific reference frame choice might lead to

explaination of some deep quantum theoretical issue. If the RFs that

are parametrising the position space of the quantum states are taken

as part of the system and described in quantum formalism, then the

solution would remain translational invariant and would not show pre-

vious physical manifestation as such as superselection rule [3]. Also

the treatment of RFs as not just a classical object but as quantised

part of the quantum formalism induces ’back action’ of the reference

frame as a quantum system to other larger systems. These effects could

manifest as deformed special relativity [8]. Here the implied relevence

of these consideration of reference frames to deformed special relativity

and possibly to quantum gravity could shed more light on nature of

quantum information theory and perhaps beyond.

The proposed effect of treating reference frames in quantum for-

malism and lacking the reference framce for some degrees of freedom

of a system is manifestation of superselection rule. superselection rule

is a seemingly axiomatised rule incorporated in to the foundation of

quantum theory and is a mathematical rule that forbids preparation

of quantum states showing coherence between different eigenstates of

certain observables [7]. This superselection rule (SSR) gives further

restriction to the quantum theory further than the selection rule (con-

servation rule). This mathematical rule was enforced to explain ap-

parant decoherence between certain types of observable’s eigenstates.
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The early examples included not being able to prepare states with co-

herence between different eigenstates of electric charge [3]. However

this treatment of RFs as resources, quantising the RFs and using re-

lational encoding to do quantum information, has revealed many new

insights. One of them being ability to violate certain superselection

rules that were observed til rescently. Yet the examples of violation

of superselection rule does not lift its necessity completely from the

foundational explanation or axioms.

We show correlation between reference frames and superselection

rule in the following section.

1. Reference Frames and Superselection Rule

Following proposal of correlation between reference frame theory

and superselection rule and further discussions are heavily depedent

on the review by Bartlett, Rudolph and Spekkens (2007) [3].

The superselection rule (SSR) was a notion introduced by Wick,

Wightman and Wigner [15]. Mathematically, states |ψ1〉 and |ψ2〉 are

separated by a superselection rule if 〈ψ1|A|ψ2〉 = 0 for all physically re-

alisable observables A. What is meant by separated by a selection rule

is that coherence between the two states are not allowed if they are

separated. The above equation implies that there are no possible mea-

surement which can determine relative phase between the two states

and verification or even preparation of such coherence is prohibited.

This restriction of non mixing between states in different superselec-

tion sectors (partition the Hilbert space by the separation) results in

full decoherence between such sectors and inhibit the superposition

principle in preparation of the states.



1. REFERENCE FRAMES AND SUPERSELECTION RULE 17

In quantum theory, several background objects are still considered

as classical objects. There include external potential, or position space

of the particles which is parametrised relative to a spatial reference

frame. The measuring devices are considered classic objects. So the

quantum state of the system naturally relate to some reference frame

in the way they are described.

Carrying on this idea, we consider a Hilbert spaceH and a quantum

state |Ψ0〉 relative to a reference frame. Then consider the active and

passive transformation that changes the relation between the state in

quantum system and the reference frame. This active and passive trans-

formation can both be represented by unitary operator, T (g), where g

denotes the transformation so that initial state |Ψ0〉 is transformed into

T (g)|Ψ0〉 in the new relationship between the state and the reference

frame (either the state is actively transformed or the reference frame

is passively transformed both leading to unitary transformation). This

unitary operator shows properties of composition, associativity, exis-

tence of inverse (assumed unique here although non unique case can

be considered with some complication) [3] and including identity, it is

viewed as a group g ∈ G. g denotes an abstract transformation and

T is the unitary represtation of the group G realised on this quantum

system.

Then for example of simple case of group transformation as U(1), we

consider lack of phase reference and photon-number superselection rule

[3]. Alice with her own phase reference, describes K optical modes as
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Fock state basis for Hilbert spaceH(K) as |n1, · · · , nK〉 with ni the num-

ber of photons in the mode i and N̂i the number operator for the corre-

sponding mode. Charlie, another party, then has a different phase ref-

erence that differ by angle φ. Then by applying Hamiltonian expressed

in terms of the total number operator N̂tot ≡
∑K

i=1 N̂i and therefore un-

dergoing active transformation of unitary U(φ)) = exp(iφN̂tot) actively

advances her system by an angle φ. Then to Charlie, can achieve the

same transformation with passive transformation of φ using U ∈ U(1)

on K modes given by the same unitary U(φ), he can represent Alice’s

state, |ψ〉 relative to Charlie’s own phase referennce, as

U(φ)|ψ〉 = exp(iφN̂tot)|ψ〉.

For simple verification, let Alice prepare the single mode coherent state

[3]

|α〉 ≡
∞∑
n=0

cn|n〉, cn ≡ exp(
−|α|2

2
)
αn√
n!
,

with α complex. From the contribution of coefficients of |n〉, αn, this

state has phase arg(α) relative to Alice’s phase reference. Then in terms

of Charlie’s phase reference, the same state would be just shifted by φ

in phase by passive transformation. So it would be | exp(iφ)α〉. Since

this is single mode state, the eigenvalue to the total number operator

would be 1. Therefore exp(iφN̂)|α〉 = exp(iφ)|α〉 = | exp(iφ)α〉. This

agrees with the result.

Another example of Alice preparing the Bell state, 1√
2

(|01〉 − |10〉).

This is eigenstate of N̂tot since,

N̂tot
1√
2

(|01〉 − |10〉) =
1√
2

(
N̂tot|01〉 − N̂tot|10〉

)
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=
1√
2

(1|01〉 − 1|10〉)

=
1√
2

(|01〉 − |10〉)

with eigenvalue 1.

So when transformtion U(φ) is applied,

U(φ)|Ψ−〉 = exp(iφN̂tot)|Ψ−〉

= exp(iφ1)|Ψ−〉

= exp(iφ)|Ψ−〉

So only overall phase has been changed, which doesn’t affect physics

of the state and therefore is not observed. Charlie then also represents

this state with respect to his own phase reference as |Ψ−〉 and this

Bell state is unchanged. This is an example of an invariant state with

respect to lacking phase reference and therefore defined as maximal

entangled Bell state independently of phase refences. This is impor-

tant point in this example, as we have identified, under lack of phase

reference, that there is still some maximally entangled Bell state which

can be used universally and therefore enable use of entanglement as re-

sources in information processing tasks and also to exploit non-locality

and use of LOCC by using |Ψ−〉 and |Ψ+〉, as this is also an eigenstate

of N̂tot with eigenvalue 1, as two orthogonal basis for measurement.

So for example, quantum teleportation would still be possible without

shared phase reference.

Also we decompose the Hilbert space into direct sum of subspaces

in following way.
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Let the Hilbert space H(K) of K modes decompose into

H(K) = ⊕∞n=0Hn

with Hn subspace consisting of total n photons in K mode and n

eigenvalue of (̂N)tot.

Then any state |ψn〉 ∈ Hn transforms as

U(φ)|ψn〉 = exp(iφN̂tot)|ψn〉 = exp(inφ)|ψn〉

with U representation of U(1), group of transformation or reference

frame corresponding to lack of phase reference.

Then any |ψ〉 ∈ H(K) transforms as

U(φ)|ψ〉 =
∑
n

exp(inφ)
∏
n

|ψ〉

with
∏

n projector onto Hn.

Until now Charlie had knowledge about relative reference difference.

Now assume he has no idea about Alice’s phase reference and tries to

guess Alice’s state as best as possible.

Then to Charlie, averaging over all possible values of φ angle for

relating his reference to Alice’s phase reference, he obtains mixed state,

(Nielsen and Chuang 2000 for more information on operators, super-

operator or quantum operator can be found) [9].

U [|ψ〉〈ψ|] ≡
2π∫
0

dφ

2π
U(φ)|ψ〉〈ψ|U(φ)†

=

2π∫
0

dφ

2π

∑
n,n′

exp(inφ)
∏
n

|ψ〉〈ψ|
∏
n′

exp(−in′φ)



1. REFERENCE FRAMES AND SUPERSELECTION RULE 21

=
∑
n,n′

∏
n

|ψ〉〈ψ|
∏
n′

 2π∫
0

dφ

2π
exp(i(n− n′)φ)


=
∑
n,n′

∏
n

|ψ〉〈ψ|
∏
n′

δn,n′

=
∑
n

∏
n

|ψ〉〈ψ|
∏
n

via substituting previous equation and using Kronecker delta for the

integral.

Thus since this applies to any state, following also holds, applied

to density matrix representation.

U [ρ] =
∑
n

∏
n

ρ
∏
n

So the map U removes all coherence between difference eigenstates

of total photon number operator and also the map commutes with U(φ)

for all φ as, for arbitary φ′

U(φ′)U [ρ]U(φ′)−1 = U(φ′)U [ρ]U(φ′)†

=

2π∫
0

dφ

2π
U(φ′)U(φ)|ψ〉〈ψ|U(φ)†U(φ′)†

=

2π∫
0

dφ

2π
U(φ′ + φ)|ψ〉〈ψ|U(φ′ + φ)†

=

2π∫
0

dφ′′

2π
U(φ′′)|ψ〉〈ψ|U(φ′′)†

= U [ρ]

Therefore U(φ′)U [ρ]U(φ′)−1 = U [ρ] and so U(φ′)U [ρ] = U [ρ]U(φ′) and

then [U [ρ], U(φ′)] = 0, for all φ.
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Then to Charlie there is a restriction of states prepared by Alice,

described relative to his reference frame. Charlie will always see the

states prepared by Alice as block diagonal states in terms of toal photon

number, according to the quantum operation U . Also from the above

commutation relation, it follows that U [ρ] is invariant under transfor-

mation in phase.

Also consideration of how the operations Alice performs on her

states is described in Charlie’s reference frame leads to following results.

Assuming the angle φ is known which relates their phase references, σ

is the description of the state in Charlie’s reference frame and then

unitary operation V is applied to the state by Alice. Then

U(φ)V U(φ)†σU(φ)V †U(φ)†

is what the operation applied to the state would look like to Charlie.

So to Charlie, this can be simplified to unitary Vφ = U(φ)V U(φ)†. If

the phase relationship is unknown and therefore φ is unknown, then

Charlie would average out all the possibility of the relationship and get

this map,

Ṽ [σ] ≡
∫ 2π

0

dφ

2π
U(φ)V U(φ)†σU(φ)V †U(φ)†

Then if the state was prepared by Alice and therefore σ = U [ρ] in terms

of Charlie’s reference frame and the map becomes,

Ṽ [σ] =

∫ 2π

0

dφ

2π
U(φ)V σV †U(φ)†

using commutation relationship of U [ρ] and U(φ),

= U [V σV †]
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This implies that Ṽ [σ] is also descirbed as block diagonal in total

photon number as before and there is also restriction on what opera-

tions Alice can perform if viewed relative to Charlie’s phase reference.

Now we can make the claim that this treatment of lack of reference

frame is equivalent to superselection rule. As shown before this restric-

tion of preparing states and possible operations to perform was what

was described as superselection rule. Thus by lacking knowledge of

reference frames and this leading to mixed state and mixture of oper-

ations in Charlie’s view point, lead to forced decoherence on prepared

states and possible operation Alice can perform.

This simplified example gave the glimpse of this insight of lack of

reference frame showing up as superselection rule for the appropriate

group of transformations. Later it will be discussed that it can be

shown that in general this relationship holds true and perhaps is one

of fundamental property of quantum theory.

The similar kind of treatment for the spatial reference also exhibits

different kind of superselection rule emerging as lack of suitable ref-

erence frame. This can be found from [3] for which we have been

following in this discussion of reference frames.

So if we are able to incorporate reference frame in to quantum sys-

tem as quantised quantum object, then it may be possible to eradicate

superselection rule phenomenon by careful choice of reference frame

and question the necessity of the axiomtic restriction of superselection

rule and perhaps view it as just another lack of information on the sys-

tem as noise, with analogue to entanglement with environment with no

access showing up as noise in quantum information communication.
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2. Reference Frames and Decoherence free subsystem

We view briefly the implication of the general treatment of refer-

ence frame into quantum formalism. Using notions of superoperator

and Positive Operator Valued Measure (POVM) further results can be

derived.

As with the previous example, consider g ∈ G, a group element of

transformations which relates Charlie’s reference frame to Alice’s refer-

ence frame. Assume finite or compact continuous Lie groups that has

group invariant Haar measure and act on H as unitary representation

T so that they are completely reducible [3].

With g completely unknown, Alice’s prepared state ρ on H in her

reference frame would take the following form in Charlie’s frame

ρ̃ =

∫
G

dgT (g)ρT (g)† ≡ G[ρ]

where T (g) is a unitary representation of g on H and dg the group

invariant Haar measure. So all states prepared by Alice in reference

frame of Charlie are of the form ρ̃ = G[ρ] and as was with the previous

section, ρ̃ is G invariant as

[ρ̃, T (g)] = 0,∀g ∈ G

Then define superoperator T (g)[ρ] = T (g)ρT (g)†, unitary represen-

tation of G on B(H). Then G =
∫
G
dgT (g). Also transformations

are represented by completely positivity preserving superoperator E :

B(H)→ B(H) [3] [9]. Then the superoperator in Charlie’s frame is

Ẽ [ρ] =

∫
G

dgT (g)E [T (g)†ρT (g)]T (g)†
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and

Ẽ =

∫
G

dgT (g) ◦ E ◦ T (g−1)

Also considering POVM {Ẽk}, POVMs in Charlie’s frame takes the

form,

Ẽk = G[Ek]

and this POVM is G invariant.

With these form of states, superoperator and the POVMs in Char-

lie’s frame, it can now be shown that these restriction on Alice’s pre-

pared states correspond to the superselection rule.

The Hilbert space H = ⊕qHq decomposes in to charge sectors Hq

labeled by q. Then as each charge sector carries an inequivalent repre-

sentation Tq of G,

Hq =Mq ⊗Nq

decomposes further into tensor product of irreducible representation

Mq of group of transformation and subsystem Nq carrying a trivial

representation of the group. Then the irrep space is identified as de-

coherence full subsystem and the trivial rep space as decoherence free

subsystems [3].

Then the following theorem about how the map G can be decom-

posed to simple form [3], establishes important step to the generalisa-

tion of lack of reference frame corresponding to superselection rule.

Theorem 2.1. The action of G in terms of the decomposition

H = ⊕qMq ⊗Nq



26 3. REFERENCE FRAMES

is given by

G =
∑
q

(
DMq ⊗ INq

)
◦ Pq

where Pq is the superoperator associated with projection into the

charge sector q, that is, Pq[ρ] =
∏

q ρ
∏

q with
∏

q the projection on to

Hq =Mq ⊗Nq , DM denotes the trace-preserving operation that takes

every operator on the Hilbert space M to a constant times the identity

operator on that space, and IN denotes the identity map over operators

in the space N .

This theorem is proved with aid of Schur’s Lemmas presented in the

beginning of the introduction. The representatoin T (g) = ⊕q,λTq,λ(g)

for the group of transformation G is decomposed into a sum of irre-

ducible representations.

G[A] = ⊕q,q′,λ,λ′

∫
dgTq,λ(g)AT †q′,λ′(g)

Then due to invariance of the measure dg,

Tq,λ(g)Aq,q′,λ,λ′T †q′,λ′(g) = Aq,q′,λ,λ′ ,∀g ∈ G

with Aq,q′,λ,λ′ =
∫
dgTq,λ(g)AT †q′,λ′(g).

This with Schur’s second lemma becomes

= ⊕q,λ,λ′

∫
dgTq,λ(g)AT †q,λ′(g)

Then using projection of H onto the carrier space of Tq,λ, yields

G =
∑
q

Gq ◦ Pq
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Then considering decomposing charge sector of the Hilbert space

into decoference full and decoherence free subsystems, projection op-

erators into each subsystems yield

G[A] =
∑
q

(
GMq ⊗ INq

)
◦ Pq[A]

Then by Schurs first lemma, GMq [B] act as multiple of identity on

Mq. Then from trace preserving property, GMq = DMq , the trace pre-

serving map which takes every operator on decoherence full subsystem

Mq to a constant times the identity on this subsystem[3].

Then the restriction for states of ρ̃ commuting with unitary rep-

resentation of transformation T (g), restriction for superoperators of Ẽ

commuting with unitary representation of transformation T (g) of G

on B(H), the set of all bounded operators on H and restriction for

POVMs of Ẽk commuting with T (g), these three restriction of com-

mutation relations of states, superoperators and POVMs with unitary

representation of G are formally equivalent to the restrictions imposed

by superselection rule associated with the group G in quantum infor-

mation theory.

3. Further on Reference Frames

From the previous section, we have demonstrated that lacking a

reference frame completely puts restrictions on the quantum theory,

which is formally equivalent to the axiomatic superselection rule. So

one can aks the question of whether the theory of reference frame puts

forward any evidence of rejection of superselection rule as a axiomatic

rule. This is an interesting area of study with far reaching implications
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in quantum theory and formalism of quantum theory. There is an in-

dication that although this treatment of reference frame gives some

insight to manifestation of superselection rule, there is not enough ev-

idence for rejecting superselection as a axiomatic rule yet [3].

Also as seen from the theorem proved in previous section, the de-

composition of Hilbert space and the action of the transformation on

the Hilbert space gives some insight to possible usage of the subsystems

for doing quantum information processing tasks. Using standard tool

of using decoherence free subsystem to encode information and to do

communication, the decoherence free subsytem of the decomposition

we saw earlier can be used to encode and do secure quantum commu-

nications [3]. It is interesting that with this scheme of doing quantum

information with lack of reference frames, one transmitted qubit can

not send any information as, to Bob, every state prepared by Alice will

look like E1[ρ] = 1
2
I as the completely mixed state [3].

Then by consideration of SU(2), two transmitted qubits and a clas-

sical channel yields communication of one classical bit, via appropriate

choice of orthogonal measurement basis to utilise the decoherence free

subsystem to encode information. For the case of three trasmitted

qubits and a quantum channel, one logical qubit can be communicated

via choosing appropriate protocol [3].

These example illustrate the viewpoint of reference frames as re-

sources in quantum information theory. They do point out that in-

formation processing communication is still possible without shared

reference frame. Although, as we have seen, lacking a shared reference

frame forces the information processing task to use up more expensive

resources as such as quantum channels and multiple transmitted qubits
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for achieving less satisfactory rate of information exchange. However

another suprising result is that asymptotically, the number of logi-

cal qubits being able to be encoded in number of physcal transmitted

qubits approach one to one ratio and therefore recover the efficiency as

if there was shared reference present. Obviously, increasing the dimen-

sionality of the number of qubits to transfer ensures that decoherence

free subsystem gets larger in dimension and this in turn increases the

effectiveness of the information transfer [3].

The intersting questions of whether entanglement is distillable with-

out shared reference frame is one of the quetions that consider both the

entanglement and reference frames as the resources of information the-

ory. The answer to this question is fortunately yes [3] and perhaps this

is suggestion of whether they are interconvertable as resources and this

direction of research will be very fruitful in the future.
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Conclusion

From results seen so far, it is clear that there is much work to be

done in first of all general quantum unspeakable information theory.

These include find measure for quantifying entanglement and reference

frames. We have seen few examples of such a measure for entangle-

ment in special cases, but for reference frames it is wide open problem.

Perhaps relative entropy of frameness as a measure for the reference

frame might shed some insight on the subject [10].

Theory of investigating quantum communication without a shared

reference frames yielded suprising results that you can perform quan-

tum teleportation and send classical and quantum information and also

communicate unspeakable information to certain degree of confidence

[3]. On one qubit of transmitted information, it is strange that reciever

can not extract any information out of it when there is lack of reference

frame as all the states are indistinguishable from the maximally mixed

state, but of course now we have seen shared reference frame is resource

and therefore lacking a shared referece frame require additional other

resources for information process. If there are two transmitted qubits

and a classical channel, one classcial bit can be transfered. With three

transmitted qubits and a quantum channel, it can be shown that [3] by

decomposing into irreducible representation and using orthogonal basis

of the system, decoherence free subsystem can be used as resources to

transfer one logical qubit [3]. The realisation of lack of reference frame

31
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as a noise of the quantum system lead to utilise known methods of

combating these noises as such as decoherence free subsystems.

There are so many questions left to ask in terms of reference frame

in quantum theory. As suggested, this may give some insight to some

problem of quantum gravity [8] via considering quantum reference

frames and its ’back-action’ to produce effects of deformed special rel-

ativity. The problem of distillation of entanglement through shared

or privately shared reference frame [3] and using private shared refer-

ence frame to utilise in quantum key distribution [3] are few of many

questions to the quantum information theory.

The connection of entanglement and reference frames as resources

has not been in perfect correlation in terms of their properties and

how they are implemented quantum theoretically. They do not seem

interconvertible in terms of resources [3] in the way they are deplete,

distilled and implemented. However they both share an important

quality that the questions either one presents and answers seem to

have huge impact on the other in terms of asking the same questions

or finding if there is analogous answer to each other.

Perhaps considering different reference frames for multiple party

correspondence will give easier and more profound insight on the quan-

tum theory and combined with the resources of reference frames har-

nessed to create entanglement and vice versa, therefore giving two dif-

ferent aspect or view to the variety of questions of quantum information

theory can offer.



CHAPTER 5

Appendix

1. Schur’s Lemmas

The two important results from the representation theory, namely,

Schur’s first lemma and Schur’s second lemma, are concerned with

properties of matrix representation which commutes with irreducible

representations, where first lemma deals with commutation with all

matrices of a given irreducible representation and second lemma deal-

ing with communtation with distinct irreducible representations. These

results are important building blocks in formulating the Great orthog-

onality theorem which is central in representation theory in terms of

identifying irreducible representations and in constructing character ta-

bles which is useful in application to physics. It is interesting to note

that these two lemmas from representation theory were evoked to give

proof of theorem 2.1, decomposition of the action of G, transformation

of state ρ between two different uncorrelated reference frames, into sim-

ple forms acting on subsystems of charge sectors of Hilbert space H,

thereby showing lack of knowledge of reference frames corresponds to

emergence of superselection rule associated with the group G, the group

of transformation of reference frames. By formulating the treatment of

reference frames in group theoretic and representation theoretic sense,

with additional restrictions and assumptions, relatively basic properties

of such theories were needed to highlight this correlation of reference

frame and superselection rule. This might suggest that considering

33
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reference frames in this manner readily gives profound insight to the

foundational problems of quantum theory as such as superselection

rule. Also it might be suggested that consideration of reference frames

in quantum theory as fundamental and elementary property is essential

for effective and powerful theory.

The proof of the two lemmas are relatively elementary and only

basic knowledge of representation theory is needed. Therefore the proof

is apologetically omitted and can be found in any representation theory

textbook.
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