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Abstract

Background to the area of PT -symmetric Hamiltonians is pre-
sented, where the idea is put forward to replace the physically-obscure
requirement for the Hamiltonian to be Hermitian with the more phys-
ical condition that the Hamiltonian merely be symmetric under the
combined operations of parity reversal and time reversal — for the
Hamiltonian to be PT -symmetric. The quantum framework required
to be constructed under this guideline in order to create a mechani-
cal description of nature that preserves the remaining axioms of the
quantum theory is summarized, along with the consequences that this
framework appears to suggest with respect to the classical analogues
of the quantum Hamiltonians is question — namely, that of classical
systems extended into the complex domain.

The work done so far in examining particular classical systems
where the dynamical variables are permitted to be complex is sum-
marized, and new numerical analysis is presented of systems where the
potential function is taken to be the Jacobi elliptic function −cn(x).
Quantum behaviour seen in previous complex systems was found to be
reproduced, along with other intriguing dynamics; and, although the
results of the numerical simulations quickly lose accuracy within the
time frame allocated for this study, it is hoped that the qualitative
behaviour of the systems observed is interesting enough to prompt
more detailed and extensive analysis.
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1 Introduction

The quantum theory has been around since the start of the nineteenth cen-

tury, and in the intervening years has undergone much work and revision;

not least concerning its postulates and formalism, which have now gained

widespread acceptance. However, looking at the theory’s axioms it is clear

that the condition that the Hamiltonian must be Hermitian is more of a

mathematical nature than a physical requirement. The Hermiticity of the

Hamiltonian, H, is expressed mathematically as

H = H†, (1)

where the symbol † represents the combined operations of complex conju-

gation and Matrix transposition. Certainly, it appears to be a necessary

requirement within the current quantum framework as a whole, where it is

linked to the requirement that the time evolution operator, e−iHt, be unitar-

ity; but, in and of itself as an axiom of a physical theory it is harder to justify

its presence. Where one finds difficulty in abandoning the requirement that,

for example, the energy spectrum be bounded from below so that there exists

a stable lowest-energy state, there appears to be less such a barrier for asking

for the Hermiticity of the Hamiltonian to be dropped.

Hamiltonians that are not Hermitian are not an entirely new concept

in the history of the quantum theory: they are used as a simplified and

phenomenological description for the decay process [1]; and have been used to

describe the ground state of a quantum system hard spheres [2], Reggeon field

theory [3], and the Lee-Yang edge singularity [4]. However, as a description
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for nuclear decay their use is understood to be a purely simplified and non-

fundamental description from the outset, and their use as a serious attempt

to describe the behaviours of a system has otherwise been criticized [6]. The

problem with their use so far has been that the Hamiltonian plays a very

important role in the quantum theory:

1. The Hamiltonian determines the allowed energy states of the system.

The physical states, represented by the eigenfunction ψ, of the system

obey the time-independent Schrödinger equation

Hψ = Eψ, (2)

and span the Hilbert space of the system. The allowed energy levels

of the system are determined by the eigenvalues E, which must be real

and bounded from below. Here, the part played by the requirement

for the Hamiltonian to be Hermitian is evident: if it were not so, the

energy eigenvalues of the time-independent Schrödinger equation could

not be guaranteed to be real.

2. The Hamiltonian determines the time evolution of the states and op-

erators in the quantum theory. Any state ψ(t) must also satisfy the

time-dependent Schrödinger equation:

i
∂

∂t
ψ(t) = Hψ(t), (3)

where it is assumed here, and onwards, that units have been cho-

sen where ~ = 1. Since the Hamiltonian is presumed to be time-
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independent, the solution, in the Schrödinger picture, is

ψ(t) = e−iHtψ(0), (4)

where e−iHt is the time evolution operator. Again, the importance of

the Hermiticity of the Hamiltonian is evident: it ensures that the time

evolution operator is unitary.

The unitarity of the time evolution operator means that its influence

drops out of the norms of states that are evolved in time, which there-

fore remain identical to norms of initial states. Since the norm of a

state corresponds to a probability of measurement, the Hermiticity of

the Hamiltonian ensures that probabilities are conserved. Although

such a violation of the conservation of probability may be desirable in

phenomenological models for nuclear decay, where the probability of

measuring an isotope decreases with time as it decays, it is clearly not

desirable in a fundamental description of a system.

3. The Hamiltonian incorporates the symmetries of the theory. A Hamil-

tonian that commutes with a linear operator A,

[A,H] = 0, (5)

is said to be invariant under the transformation represented by A. Since

A is a linear operator, any eigenstate ofH is therefore also an eigenstate

of A.

Symmetries play a fundamental role in physics and will help in the
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task of constructing of a new framework that discards the axiom of the

Hermiticity of the Hamiltonian.

Thus, it is evident that although the axiom of the Hermiticity of the Hamilto-

nian seems difficult to understand physically by itself, it plays a fundamental

part in ensuring that the quantum theory as a whole satisfies the other phys-

ical requirements of an acceptable (quantum) mechanical theory: any at-

tempts to abandon it and otherwise keep the rest of the existing framework

will encounter intractable problems. However, in recent years, a quantum

framework has been suggested in which the requirement for the Hamiltonian

to be Hermitian has been dropped, which, importantly, otherwise leaves the

remaining axioms of the quantum theory satisfied.

In 1993 D. Bessis and J. Zinn-Justin, inspired by the earlier work on the

Lee-Yang edge singularity [4], began to examine the Hamiltonian,

H = p̂2 + ix̂3, (6)

and noticed that some of its eigenvalues appeared to be real. Wondering

whether the whole energy spectrum was in fact real they suggested their

conjecture to C. M. Bender [6]. Bender noted that the Hamiltonian was

not Hermitian and therefore surmised that such a hypothesis was absurd,

and left it at that [6]. This was not the first time that it had been noted

that such Hamiltonians had real energy eigenvalues: apart from the work on

Reggeon field theory mentioned previously [3], Caliceti et al. had, based on

Borel summability arguments, observed that the spectrum of a Hamiltonian

similar to (6) was indeed real [5]; Andrianov had, in 1982, found evidence
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that theories involving −x4 potentials could have real eigenvalues [7]; and in

1992 Hollowood [8] and Scholtz et al. [9] had, in their own areas of research,

found examples of non-Hermitian Hamiltonians with real energy spectra.

However, despite the mysterious reality of the energy spectrum of these non-

Hermitian Hamiltonians, it was not until 1997 having not forgotten about

the Hamiltonian (6) that Bender began to seriously investigate it. Bender

surmised that if the spectrum of (6) was real it was most likely due to the

presence of a symmetry, and it indeed does possess PT symmetry — the

symmetry of the combined operations of spacial reflection (also called parity),

P , and time reversal, T .

The parity operator P is linear and, by definition, reverses the sign of the

quantum position operator x̂

Px̂P = −x̂, (7)

and also the sign of the quantum momentum operator

P p̂P = −p̂. (8)

The time reversal operator T similarly reverses the sign of the quantum

momentum operator, but leaves the quantum position operator unchanged:

T x̂T = x̂, (9)

T p̂T = −p̂. (10)
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For P and T symmetries to be consistent in the quantum theory, they

must also leave the fundamental commutation relation,

[x̂, p̂] = i, (11)

invariant, which requires the T operator to reverse the sign of the complex

number i:

T iT = −i. (12)

Note that equation (12) means that T is not a linear operator, but rather

an antilinear operator. Furthermore, since P and T are reflection operators,

their squares are equivalent to the identity operator:

P2 = T 2 = 1, (13)

and, finally, the P and T operators commute:

[P , T ] = 0. (14)

A Hamiltonian, therefore, that is PT -symmetric will satisfy the condition

(PT )H(PT ) = H, (15)

which, using equations (13) and (14) can be readily seen to be equivalent to

the condition that the Hamiltonian must commute with the PT operator:

[H,PT ] = 0. (16)
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Having conjectured that the reality of the energy spectrum was due to

this PT symmetry, Bender and his former graduate student S. Boettcher

decided to analyze the more general Hamiltonian

H = p̂2 + x̂2(ix̂)ǫ, (17)

which is PT -symmetric for all real values of ǫ, but only Hermitian when ǫ = 0

[1]. Their work crucially relies, firstly, on the analytic continuation of eigen-

value problems [1]; and, secondly, on a powerful perturbative analysis called

delta-expansion developed by Bender et al. [11] in order to avoid divergent

perturbation series [1]. The delta-expansion analysis involves introducing a

parameter that quantifies the non-linearity of a problem [6], as the parame-

ter ǫ does in (17). Remarkably, detailed perturbative analysis and numerical

studies of (17) yielded the result that for ǫ ≥ 0 the energy spectrum was

entirely real and positive, but for ǫ < 0 there existed complex eigenvalues

[12]. (See figure 1.) The result that a PT -symmetric, but non-Hermitian,

Hamiltonian did indeed posses a real energy spectrum was enough to conjec-

ture that it was perhaps possible to replace the axiom that the Hamiltonian

be Hermitian with the more physical one that the Hamiltonian merely be

PT -symmetric.

Symmetries involving P and T are already known to exist in the homoge-

neous Lorentz group of spatial rotations and Lorentz boosts, and have been

analyzed and suggested to exist physically before; which is why it appears

to be a more reasonable constraint to place on a quantum framework than

the mathematical and physically-obscure constraint of Hermiticity. The real
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Figure 1: Energy levels of the Hamiltonian H = p̂2 + x̂2(ix̂)ǫ plotted as a
function of the real parameter ǫ. Note that at ǫ = 0 the Hamiltonian is that
of the harmonic oscillator and the energy spectrum displayed corresponds to
the familiar energy levels En = 2n + 1. For the region ǫ ≥ 0 the spectrum
is entirely real, but for ǫ < 0 only a finite number of energy eigenvalues are
real and an infinite number are complex (not displayed).

Lorentz group consists of four disconnected parts: firstly, those elements that

are continuously connected to the identity element, and which is called the

proper orthochronous Lorentz group; secondly, those elements in the proper

orthochronous Lorentz group combined with the P operation; then those el-

ements of the proper orthochronous Lorentz group combined with the T op-

erator; and lastly those elements of the proper orthochronous Lorentz group

combined with the PT operation. The latter three sets of elements are

distinct and are not subgroups of the full Lorentz group since they do not

contain the identity element.

However, physical theories said to be Lorentz-invariant are required to

be invariant only under the transformations of the proper orthochronous

Lorentz group, since experiments have shown that the weak interaction vi-
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olates both P and T symmetry. If, however, the Lorentz group is extended

into the complex domain [10] (which requires the assumption that the eigen-

values of the Hamiltonian are real and bounded from below — an assumption

that we already demanded on physical grounds), the complex Lorentz group

consists of only two disconnected parts: the proper orthochronous Lorentz

group becomes continuously connected in group space to the elements of the

proper orthochronous Lorentz group combined with the PT operator, and

those elements that were combined with either the P or T operator now also

become linked by a continuous path in group space.

What is therefore suggested is that the analysis of complex group theory

be followed in order to justify the suggestion that it is PT symmetry that is

fundamental to nature; and that it be conjectured that this PT symmetry

is a more natural axiom onto which a quantum framework be constructed

rather than on the axiom of the Hermiticity of the Hamiltonian.

One of the important consequences of the suggestion that the Hamiltonian

need only be PT -symmetric is that this is a weaker condition than Hermitic-

ity [6]: many new kinds of Hamiltonians can now be studied and suggested

that do not violate any of the other axioms of the quantum theory, but would

otherwise have been rejected before. As of yet, no experiment has conclu-

sively determined whether non-Hermitian Hamiltonians exist in nature, but

it has been suggested that experiments in condensed matter physics may

reveal evidence of non-Hermitian Hamiltonians [1]. For example, a complex

crystal lattice with potential V (x) = i sin x will have a Hamiltonian

H = p̂2 + i sin x̂, (18)
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which has real energies despite the fact that it is non-Hermitian (precisely

because it is, instead, PT -symmetric) [1]. The wavefunction of a particle in

such a lattice at the edges of the energy bands for that lattice are, however,

bosonic and never fermionic, in contrast to those of ordinary crystal lattices.

Thus, measurements of the energy band structure of this crystal could give

clear evidence of the existence of non-Hermitian Hamiltonians [1].

Another interesting development from the suggestion of PT -symmetric

Hamiltonians is the idea of extending classical physics into the complex do-

main. Indeed, the Hamiltonian (17) can be though of as a complex extension

of the Hamiltonian of the harmonic oscillator

H = p̂2 + x̂2. (19)

It is interesting to speculate that if PT -symmetric Hamiltonians such as

(17) are indeed allowed by nature, they would appear to describe classical

systems in which the force acting on the system is complex in nature. Some

work has already been done on examining purely classical systems in which

the motion is allowed to take place in the complex domain. Some of this

work has yielded surprising results. For example, systems with a cos(x)

potential with motion allowed to take place in the complex domain appear to

recreate the purely quantum phenomena of tunnelling and conduction band

behaviour. As such, some work has now been done and is here presented

in extending this analysis to potentials with the elliptic function, −cn(x),

which is a doubly-periodic function (one that has two distinct periods in the

complex plane).
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The following sections will explain in more detail the process of extend-

ing classical mechanics into the complex domain, the framework developed

to make PT -symmetric Hamiltonians consistent with the remaining axioms

of the quantum theory, and finally the work done on examples of classical

systems of complex variables.

2 PT -Symmetry and Energy Eigenvalues

In this section we shall describe how a PT -symmetric Hamiltonian can have

real energy eigenvalues, even for systems that would appear to preclude such

a result such as with systems with a −x4 potential term; and how they may

be calculated.

2.1 Nonlinearity of the PT Operator, and Broken and

Unbroken PT Symmetry

Recall the Hamiltonian (17), which was found to indeed have real energy

eigenvalues, but only in the parametric region ǫ ≥ 0. Does this pose a prob-

lem with the assertion that PT -symmetric Hamiltonians do have real energy

spectra? The subtlety is the PT operator is not linear. Thus, although

the PT operator commutes with the Hamiltonian, eigenstates of H are not

necessarily also eigenstates of PT [1].

An example of the difficulties that can occur if care is not taken can be

illustrated with the following argument: suppose ψ is an eigenstate of the
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PT operator with eigenvalue λ

PT ψ = λψ. (20)

Since it is trivial to show that (PT )2 = 1 from (13) and (14), multiplying

(20) on the left by PT , and also inserting the identity opertor to the left of

ψ on the right-hand side of the equation, yields:

ψ = (PT )λ(PT )2ψ. (21)

Using (20) and the fact that T is antilinear on λ (12), we get

ψ = λ∗λψ = |λ|2ψ, (22)

which implies that |λ|2 = 1 and that λ is a pure phase:

λ = eiα, (23)

for some real α.

Now, let us assume that ψ is also an eigenstate of H with eigenvalue E:

Hψ = Eψ, (24)

and, again, multiplying on the left by PT and inserting the identity operator

(PT )2 to the left of ψ on the right-hand side of the equation yields:

(PT )Hψ = (PT )E(PT )2ψ. (25)
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Finally, using (24) and (20), along with the antilinearity of T on E, we find

that:

Eλψ = E∗λψ. (26)

Since λ is nonzero from (23), it must be concluded that E is real: E = E∗.

However, the analysis of the energy spectrum of the Hamiltonian (17)

showed that this conclusion is not correct: for any value of the parameter ǫ,

where it must be remembered that the Hamiltonian is PT -symmetric over

all ǫ, the spectrum is not guaranteed to be entirely real (see figure 1). The

energy eigenvalues are only real when the eigenstates of the Hamiltonian are

also eigenstates of the PT operator; and the fact that the Hamiltonian and

the PT operator commute is not sufficient to conclude this, as is normally the

case for linear operators. In situations where eigenstates are common to the

Hamiltonian and also to the PT operator, we say that the PT symmetry

of the Hamiltonian is unbroken; and, conversely, where eigenstates of the

Hamiltonian are not also eigenstates of the PT operator, we say that the PT

symmetry of the Hamiltonian is broken. Thus, before it can be concluded

that the energy spectrum of a PT -symmetric Hamiltonian is entirely real, it

must first be shown that the PT symmetry remains unbroken. This is not

easy to show, but in 2001 Dorey et al. finally constructed a rigorous proof

[13, 14].

Since the role that PT -symmetric Hamiltonians could play in quantum

theory was suggested in 1998, much work has been conducted on the math-

ematical analysis of PT symmetry. Such work remains of interest to the

physical community, but outside the scope of this brief review. Some of the
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work presented since 1998 includes that of Shin [15], Pham [16], Delabaere

[17], Trinh [18], Weigert [19, 20], Mostafazadeh [22, 23, 24, 25], and Scholtz

and Geyer [21].

2.2 The Complex Domain

Given the conclusions of the section 2.1, let us examine how we can calculate

the energy eigenvalues, with a particular emphasis on understanding how to

extend real quantum mechanics into the complex domain.

Starting from the Schrödinger eigenvalue problem (24), we convert the

problem into an ordinary differential equation in coordinate space with the

familiar substitutions:

x̂→ x and p̂→ −i d
dx
. (27)

For the Hamiltonian (17), we obtain the eigenvalue problem

−ψ′′(x) + x2(ix)ǫψ(x) = Eψ(x), (28)

where we must also identify the correct boundary conditions on ψ(x). This

equation cannot be solved for arbitrary ǫ, but we can examine the asymp-

totic behaviour of ψ(x) using the WKB approximation [1]: for differential

equations of the form −y′′(x)+V (x)y(x) = 0, where V (x) grows as |x| → ∞,

y has the form

y(x) ∼ exp

[

±
∫ x

ds
√

V (s)

]

, (29)

for |x| → ∞. Let us first examine the familiar case of ǫ = 0, which corre-
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sponds to the harmonic oscillator. It is evident from (29) that the asymptotic

behaviour is then ψ(x) ∼ exp(±1

2
x2). With the usual condition of square in-

tegrability, we are compelled to choose the solution with the negative sign

in the exponent and we recover Gaussian-like solutions for large |x|. This

result, however, also extends into the complex plane: if the eigenfunctions

vanish exponentially on the real axis for large |x|, then they must also vanish

in regions called Stokes wedges, which are wedges of opening angle 1

2
π in the

complex plane centred on the positive-real and negative-real axes [26].

Figure 2: Stokes wedges in the complex-x plane and a suitable contour. The
wedges rotate towards the negative-imaginary axis and become narrower as
ǫ in (28) increases.

There are many wedges in the complex plane in which we can create a

contour on which the eigenvalue problem can be posed that has ψ(x) → 0

as |x| → ∞; so there are many eigenvalue problems associated with (28).

Thus, in order to examine the problem for arbitrary ǫ > 0, we start from

the harmonic oscillator case at ǫ = 0 and smoothly continue ǫ to the desired

value [6] (a detailed description on how to extend eigenvalue problems into the

complex plane is provided in reference [27]). As the value of ǫ is increased, the
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Stokes wedges become narrower and rotate downwards towards the negative-

imaginary axis, and we simply choose a contour that asymptotically remains

within the wedges (see figure 2).

It should be noted that the wedges in figure 2 are reflections of one another

in the imaginary axis. This symmetry is a manifestation of the PT symmetry

of the Hamiltonian (17) since, for any complex x, the parity reflections maps

x → −x and the time reversal maps x → x∗ (12). Thus the PT symmetry

will map x→ −x∗, which indeed corresponds to a reflection symmetry along

the imaginary axis.

2.3 Dyson’s Argument

In 1952 Freeman Dyson argued, for the first time, about analytically contin-

uing a Hamiltonian into the complex plane in a heuristic argument for the

divergence of perturbation theory in quantum electrodynamics [28]. Dyson’s

argument concerned rotating the electric charge e into the complex plane

e → ie; applied to the anharmonic oscillator Hamiltonian H = p̂2 + gx̂4,

Dyson’s argument would proceed analogously in the following manner [1]:

if the parameter g were to be rotated anticlockwise in the complex-g plane

from g to −g, the resulting potential term in the Hamiltonian would slope

downwards to negative infinity. Such a potential term would have no lowest

energy state. Thus, the ground state energy must have an abrupt transition

from the region g > 0, where there exists a ground state, to the region g < 0,

where there exists no lowest energy state; and so there must be a singularity

at g = 0.
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Dyson assumed that a potential term like −x4 could not have a lowest

energy state, but the Hamiltonian (17) with ǫ = 2 contains precisely such

a potential term, and figure 1 shows the energy spectrum to be entirely

real. The flaw in näıvely following Dyson’s argument is that, although the

anharmonic oscillator does indeed have a singularity at g = 0, the energy

spectrum that an analytic continuation of the parameter g produces remains

ambiguous whilst the boundary conditions remain unspecified.

The eigenvalues of the Hamiltonian H = p̂2 − gx̂4 depend crucially on

how the parameter g is allowed to become negative, since that determines

what the boundary conditions of the problem are. If one begins with the

Hamiltonian H = p̂2 + gx̂4 and substitutes g = |g|eiθ, then the rotation from

θ = 0 to θ = π produces a complex ground state energy when g does become

negative, as Dyson presumed. If however one begins with the Hamiltonian

H = p̂2 + gx2(ix)ǫ, then the variation of ǫ from ǫ : 0 → 2 produces the

exact same resulting Hamiltonian with a negative g parameter, but the en-

ergy spectrum remains always real, as seen in figure 1. The reason why the

same Hamiltonian can produce two different spectra is because the boundary

conditions satisfied by the eigenfunctions of the Hamiltonian are different in

either case. In the rotation of g used by Dyson both the Stokes wedges ro-

tate together by the same amount and in the same direction: ψ(x) vanishes

in the complex-x plane as |x| → ∞ in wedges at −π/3 < arg x < 0 and

−4π/3 < arg x < −π. In the ǫ parameterization case, the wedges rotate by

the same amount but towards one another: ψ(x) now vanishes as |x| → ∞ in

wedges at −π/3 < arg x < 0 and −π < arg x < −2π/3. In this latter case,

the wedges are PT symmetries of one another, and therefore onto the solu-
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tion of ψ is forced the reality of the energy spectrum that the PT symmetry

induces.

3 The Quantum Framework

The fact that classes of PT -symmetric Hamiltonians have real energy spec-

tra is not enough to justify their use to describe physical phenomena. Within

the quantum theory, as was mentioned in section 1, the Hermiticity condition

plays a greater role than simply ensuring that the Hamiltonian eigenvalues

are real. To be able to construct an acceptable quantum framework from PT

symmetry, that framework must also be able to construct a Hilbert space of

state vectors along with an inner product whereby norms are positive; and

also to construct a unitary time evolution operator, so that norms are pre-

served in time. Such a framework has been constructed [1], and it is presented

here in comparison the that of the quantum theory. The novelty that will

be found is that the PT -symmetric framework will utilize an inner product

that cannot be known a priori and that the Hamiltonian itself constructs!

3.1 The Inner Product

In the quantum theory, the inner product of two eigenfunctions is:

(ψ, φ) ≡
∫

dx ψ∗(x)φ(x). (30)

With this inner product, any two eigenfunctions of the Hamiltonian op-

erator having different energy eigenvalues (we shall ignore the complication
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of degeneracy), ψ(x) and φ(x), are said to be orthonormal if:

(ψ, φ) = 0, (31)

and

(ψ, ψ) = (φ, φ) = 1. (32)

In the PT framework, we can at first try to construct an inner product

analogously:

(ψ, φ) ≡
∫

C

dxψ∗(−x)φ(x), (33)

where C is a contour in the Stokes wedges shown in figure 2. We have

chosen the factor ψ∗(−x) since it corresponds to the PT symmetry just as

the complex conjugation in (30) corresponds to the Hermiticity condition.

However, although distinct eigenfunctions are orthogonal, norms con-

structed with such an inner product are not guaranteed to be positive. In

fact, working with the eigenfunctions of the Hamiltonian (17), we find that

these PT norms have the result:

(φn, φm) = (−1)nδnm, (34)

for all n and for all values of ǫ > 0 [29]. Note that the eigenfunctions used here

have been scaled φn(x) → e−iα/2φn(x), recalling (23), so that φ now has an

eigenvalue of 1 with respect to the PT operator. Using these PT -normalized
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eigenfunctions, a strange completeness relation can be found:

∞
∑

n=0

(−1)nφn(x)φn(y) = δ(x− y), (35)

which has been verified numerically and analytically for all ǫ > 0 [30, 31],

and for which a mathematical proof has also been given [20]. It is clear

that the result (35), with the aid of (34), is an acceptable representation for

the identity operator since it verifies the integration rule for delta-functions:
∫

dy δ(x− y)δ(y − z) = δ(x− z).

Although these results themselves are not acceptable to us in forming

a quantum framework, they can nonetheless still be used to create some of

the usual operators and operator reconstructions in the quantum theory [1].

Using (35) we can define the parity operator in terms of the eigenstates:

P(x, y) = δ(x+ y) =
∞

∑

n=0

(−1)nφn(x)φn(−y). (36)

And we can also reconstruct the Hamiltonian and Green’s function, just as

is possible in the quantum theory,

H(x, y) =
∞

∑

n=0

(−1)nEnφn(x)φn(y), (37)

G(x, y) =
∞

∑

n=0

(−1)n 1

En

φn(x)φn(y). (38)

With (34), it is trivial to show that (37) satisfies the time-independent

Schrödinger equation, Hφn = Enφn, and also to reproduce the statement that

the Green’s function is the inverse of the Hamiltonian:
∫

dy H(x, y)G(y, z) =
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δ(x− z).

However, an inner product with positive norm is still required. The prob-

lem is that the result (34) implies that the Hilbert space of states is spanned

by equal numbers of states that have a positive norm and ones that have a

negative norm. This situation is analogous to the problem that Dirac faced

when trying to incorporate the relativistic dispersion relation into the theory

of quantum mechanics [32]; and the solution is to mirror Dirac’s method of

finding an interpretation for the negative norm states [1]. Since a Hamil-

tonian with unbroken PT symmetry has equal numbers of positive- and

negative-norm states, there therefore exists an additional symmetry of the

Hamiltonian, which may be represented by an operator that shall be called

C. The linear operator C can be represented in position space as a sum over

the eigenfunctions as:

C(x, y) =
∞

∑

n=0

φn(x)φn(y). (39)

This C operator is similar to the charge conjugation operator since, with

the aid of equations (34) and (35), its square can be shown to be equal to

unity:
∫

dy C(x, y) C(y, z) = δ(x− z), (40)

which implies that eigenstates φ of C have eigenvalues ±1. It should be noted

that although both the C operator and the parity operator P have squares

equal to unity, they are not equivalent since the parity operator is real (as is

clear from its position space representation as the delta function) whilst the

C operator is complex (as it is constructed from complex eigenfunctions, in
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position space).

Since C is a linear operator, and is a symmetry of H — which implies

that it commutes with H — all eigenstates of H are also eigenstates of C

with eigenvalue ±1:

Cφn(x) =

∫

dy C(x, y)φn(y) =
∞

∑

m=0

φm(x)

∫

dy φm(y)φn(y) = (−1)nφn(x).

(41)

Thus, the proper interpretation of the C operator is that it simply represents

the measurement of the sign of the PT norm in (34).

Having identified this C operator, a modified CPT inner product can be

defined as:

〈ψ|χ〉CPT ≡
∫

dxψCPT (x)χ(x), (42)

where ψCPT (x) ≡
∫

dy C(x, y)ψ∗(−y). This inner product is sufficient for

our requirements [1]. Because of the presence of the complex conjugation

operation, the norms are independent of the phase of the eigenstates. It is

also now positive definite since the C operator produces an extra factor of

(−1)n. Norms are also preserved in time since the time evolution operator,

unchanged from that of the quantum theory, e−iHt, commutes with the CPT

operator (as a result of the fact that H commutes with the CPT operator),

and so cancels with its complex conjugate within the CPT inner product.

With the CPT operation, the completeness condition is

∞
∑

n=0

φn(x)[CPT φn(y)] = δ(x− y), (43)

which is perfectly analogous to the completeness relation in the quantum
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theory.

In general, the C operator is not easy to construct via the definition

(39) since it requires an evaluation of all the eigenfunctions of H. However,

another procedure exists which can be readily generalizes to quantum field

theory, where no simple analogue exists for the Schrödinger eigenvalue equa-

tion and its associated coordinate space eigenfunctions [1]. That procedure

is detailed in the references [36], [37], [38].

Finally, it is to be noted that the CPT inner product (42) is independent

of the choice of the integration contour as long as the contour asymptotically

lies within the wedges associated with the eigenvalue problem (see section

2.2). In the standard quantum theory, the inner product
∫

dx f ∗(x)g(x) must

be done over the real axis since the integration path cannot be deformed into

the complex plane as the integrand is not analytic. The PT inner product

is analytic in the complex plane [1], but at the cost of the loss of positive

definiteness. It is therefore remarkable that the CPT inner product retains

the path-independence of the PT inner product along with desirable trait of

positive definiteness.

3.2 Observables

In the quantum theory, a linear operator A is an observable if A is Hermitian:

A = A†. In the Heisenberg picture, operators evolve as A(t) = eiHtA(0)e−iHt;

so, this Hermiticity condition is retained by A(t) and A represents a mea-

surement for all times. In the PT framework, an operator must satisfy the

condition AT = CPT A CPT , where AT is the transpose of A [29]. This con-

24



dition will hold for all times if the Hamiltonian is assumed to be symmetric:

H = HT . The condition on A involving matrix transposition is more restric-

tive than is necessary [33, 22, 34], but then requires the use of biorthogonal

bases: see [20] and [35].

Note that, although C and the Hamiltonian are observables, x̂ and p̂ are

not [1]; and that this situation, where it makes no sense to talk of the position

of a particle, mirrors that of fermionic quantum field theories, where the field

is complex and has no classical limit. This analogy between PT -symmetric

quantum mechanics and quantum field theory is interesting, and it may be

that PT -symmetric quantum mechanics naturally describes extended, rather

than point-like, objects [1].

3.3 Comparison with the Quantum Theory

The PT framework differs, interestingly, from the quantum theory in that

the PT -symmetric Hamiltonian itself chooses the Hilbert space in which it

desires to live! This is in stark contrast to the standard quantum theory,

where the Hilbert space and inner product are clearly defined before the

Hamiltonian is even decided upon. In the PT framework, the inner product

depends on the C operator, which is constructed only once the eigenfunctions

of the Hamiltonian have been calculated.

Given the importance played by the C operator in the PT framework, it is

interesting to note that, in some sense, it can be said to play an identical role

in the standard quantum theory. In the quantum theory of Hermitian Hamil-

tonians, the C operator is, however, no longer a distinct operation, and be-
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comes equivalent to the parity operator P . The CPT operation then becomes

equivalent to T , which is simply the operation of complex conjugation. The

CPT inner product thus becomes equivalent to the standard quantum theory

inner product, along with reduction of the completeness relation (43) to the

standard quantum theory completeness relation,
∑

n φn(x)φ∗
n(y) = δ(x− y).

4 Classical Mechanics

Having analyzed the role that PT -symmetric Hamiltonians could play within

a quantum framework, it is interesting to examine those Hamiltonians in the

context of classical mechanics. Although classical mechanics is not funda-

mental, and so it is not necessarily correct to imbue quantum hypotheses

to the classical domain, interesting results have nonetheless been discovered

that warrant further investigation. A summary is presented here of several

papers published in this area [39, 40, 41, 42, 43, 44, 45, 46, 47, 48].

The objective of classical mechanics is to determine trajectories of parti-

cles subject to Newton’s dynamical equation, F = ma. These trajectories,

x(t), are real functions of a real variable, t, since their values correspond to

an observable measurement for all times, t. However, PT -symmetric Hamil-

tonians are in general complex, and describe scenarios where a particle is

subject to complex forces. As such, the particle trajectories are not confined

to the real axis, but to the complex plane. Complex analysis has been useful

in providing an understanding of many problems posed in the real domain,

and it is interesting to ask whether the same could be true of quantum phe-

nomena: is it possible for hitherto purely quantum results to be understood
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in terms of classical dynamics extended into the complex plane?

4.1 Energy Quantization

An illustration of the power of complex analysis can be demonstrated with the

understanding that it provides for the quantization of energy [50]. Suppose

we have a simple quantum system perturbed by some interaction quantified

by a real parameter ǫ. Let the Hamiltonian be

H =







a 0

0 b






+ ǫ







0 c

c 0






, (44)

where ǫ is a real parameter. This is a straightforward problem to solve, and

yields two eigenvectors with eigenvalues

E± =
1

2

[

a+ b±
√

(a− b)2 + 4ǫ2c2
]

. (45)

Let us now define the energy function to be

E(ǫ) ≡ 1

2

[

a+ b+
√

(a− b)2 + 4ǫ2c2
]

, (46)

and analytically continue the parameter ǫ into the complex domain. Now, E

as function of complex ǫ is evidently double-valued, and so must be defined on

a two-sheeted Riemann surface: the branch cut lies between the branch points

of the square-root operation at values ǫ = ±i(a − b)/(2c) in the complex-

ǫ plane, as shown in figure 3 [50]. The values of E(ǫ) on the first sheet

correspond to those of the positive root, E+, and those on the second sheet to

27



those of the negative root, E−. Since the two sheets are connected smoothly

Figure 3: The two-sheeted Riemann surface for (46). The sheets are con-
nected to one another via a branch cut (wavy line), which allows a smooth
and continuous path to connect energies that would appear to be discrete
if ǫ were confined to the real-ǫ axis. In this way, the observed energies of a
quantum system would appear to be quantized, but are nothing more than
specific energies on a path in the complex domain.

and paths across the branch cut are continuous, a path may be constructed

that begins at ǫ0 on the real-ǫ axis on the first sheet, crosses the branch

cut, and ends on the corresponding point ǫ0 on the real-ǫ axis of the second

sheet. The system described by such an energy curve would appear to an

observer to represent a quantized energy system, since only those points on

the curve that cross the real-ǫ axis may be measured. Thus, the quantization

of energies, which is such an abrupt departure from classical mechanics, could

be explained as nothing more than the extension of an energy function into

the complex domain!

Taking a cue from such a conjecture, we will analyze both conventional

and strange-looking Hamiltonians, but with the dynamics not constrained

to the real axis. We will start, however, by returning to the Hamiltonian in

(17).
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4.2 Complex Forces

In section 2 we argued why the quantum system with Hamiltonian (17) had

a real energy spectrum in terms of complex analysis and the boundary condi-

tions on the associated coordinate-space eigenvalue problem. Let us analyze

the problem classically and attempt to find a more intuitive reason why such

strange systems with a −x4 potential, for example, can have a positive energy

spectrum.

The Hamiltonian (17), viewed classically, can be described by Hamilton’s

equations

dx

dt
=
∂H

∂p
= 2p and

dp

dt
= −∂H

∂x
= i(2 + ǫ)(ix)1+ǫ, (47)

which can be combined to give

d2x

dt2
= 2i(2 + ǫ)(ix)1+ǫ. (48)

This is a Newton’s second law, but describing an inherently complex dynam-

ics: it is the description of a system under the influence of a complex force.

The complex nature of the force in (48) compels us to take x as being com-

plex, but we extend no such liberties to t, which shall remain a real variable.

Integrating (48) yields:

1

2

dx

dt
= ±

√

E + (ix)1+ǫ, (49)

where the constant of integration, E, is the energy of the particle. Again,
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this is simply a classical equation for the velocity of the particle, of which is

now able to move in the complex plane.

Let us examine the system for different values of ǫ in order to see if the

results of figure 1 can be understood.

4.2.1 The Case ǫ = 0

The simplest case is for ǫ = 0, which corresponds to the familiar system

of simple harmonic motion. Since, from figure 1, we know that the energy

spectrum is real, we are free to choose some real energy to define the exact

dynamics of the system, and without loss of generality we can take E = 1.

In this case, the system has turning points at x = ±1, and the dynamics

of a particle initially placed at any point on the real-x axis between these

two turning points (except at the trivial point x = 0 of course) will undergo

simple harmonic motion.

However, since (49) is valid for all complex x, we can take any point

in the complex plane as our initial condition on x. For points not on the

real-x axis, or for points on the real-x axis outside the usual bounds for the

dynamics of the harmonic system, the paths traced by x are ellipses with

foci at the turning points, as shown in figure 4 [1]. The period of these

trajectories can be expressed as a integral with a complex contour, which by

Cauchy’s theorem can be shrunk to a contour kept finite by the branch cut

between the two branch points of the square-root function at x = ±1; thus,

all the elliptic trajectories have periods equal to that of the usual harmonic

oscillator confined to the real-x axis.
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Figure 4: Classical trajectories for the simple harmonic system in the
complex-x plane. The turning points at x = ±1 correspond to the famil-
iar coordinate turning points of the simple harmonic system, and the path
shown between these points is that of the familiar harmonic motion in the
real-x axis. The elliptical trajectories correspond to an initial displacement
off the real-x axis, or of an initial real displacement not confined to the usual
region of classical motion. All trajectories have the same period by virtue of
Cauchy’s theorem.

4.2.2 The Case ǫ = 1

Again, we may take E = 1 without loss of generality. With ǫ = 1 in (49),

dx

dt
= ±

√

1 + (ix)3, (50)

(where the sign ambiguity is simply a choice of which direction to move along

the trajectories) there are evidently three turning points, which occur at:

x0 = i, x+ = e−iπ/6, and x− = e−5iπ/6. (51)
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Similar to the ǫ = 1 case, a particle placed at either of the turning points

x− or x+ will undergo an oscillatory motion that will take the particle to the

other turning point before returning to its starting displacement (see figure

5) [1]. Also, similarly, other initial displacements in the complex plane will

follow closed elliptic-like paths around these two turning points. The differ-

ence in this case, however, is that the third turning point, x0 acts as a sort

of repelling influence: a particle placed at x0 will travel along the imaginary-

x axis to +i∞ (in a finite amount of time), along an open trajectory; and

particles placed on the imaginary-x axis above x0 will either travel to +i∞

directly or else move to and reach x0 first and then move off to +i∞. The

turning point x0 and the segment of the imaginary-x axis above it also “re-

pels” the closed trajectory paths into the forms shown in figure 5 since no

trajectories may cross. Again, all closed trajectories have similar periods by

virtue of Cauchy’s theorem.

4.2.3 The Case ǫ = 2

Again, taking E = 1 without loss of generality, the system will now have four

turning points located at:

x1 = e−3iπ/4 and x2 = e−iπ/4,

x3 = eiπ/4 and x4 = e3iπ/4.
(52)

The trajectory between the turning points x1 and x2 is oscillatory, as is the

one between the turning points x3 and x4 (see figure 6) [1]. The trajectories

with initial displacements in the negative-imaginary half of the complex-

x plane are closed orbits around the turning points x1 and x2, whilst those
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Figure 5: Classical trajectories for the Hamiltonian (17) with ǫ = 1. Initial
displacements at the turning points x− or x+ follow oscillatory trajectories
to the other turning point, and all other trajectories in the plane are closed;
except for those at x0 or on the imaginary-x line above x0, which are open.

displacements in the positive-imaginary half of the complex-x plane are closed

orbits around the turning points x3 and x4. All these closed orbits have equal

periods. A particle with an initial displacement on the real-x axis, however,

will travel along an open trajectory that will end at ±∞.

4.2.4 The Energy Spectrum

Given the results of subsections 4.2.1–4.2.3, we can now heuristically under-

stand the reality of the energy spectrum of figure 1. The trajectories of figures

4, 5, 6 resemble those of orbits, and if it were supposed that the Hamiltonian

(17) for the values ǫ = 0, 1, 2 described systems of complex atoms, then it

would be clear that such systems should have real energies. The quantization

procedure one could follow could then use Bohr-Sommerfeld quantization to
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Figure 6: Classical trajectories for the Hamiltonian (17) with ǫ = 2. Oscil-
latory motion exists for trajectories between the turning points x1 and x2,
and between the turning points between x3 and x4. Trajectories are open
for particles with initial displacements along the real-x axis, which end up at
±∞; and all other initial displacements in the complex plane follow closed
paths without crossing the real-x line.

Figure 7: Classical trajectories for the Hamiltonian (17) with ǫ = −0.2. The
trajectories are open (and do not cross since they move on different sheets of
the Riemann surface) and so no Bohr-Sommerfeld quantization (53) can be
performed in order to calculate their energy.
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calculate the energies of the system:

∮

C

dx p =

∮

C

dx
√

E − x2(ix)ǫ =

(

n+
1

2

)

π, (53)

where C is the classical orbit of the particle around the complex atoms. Just

as with the periods of the orbits, the energies calculated with the integral

(53) would be identical due to Cauchy’s theorem, and also real because of

the PT symmetry of the integrand.

This explanation can also be extended to the region ǫ < 0. An example

is given in figure 7, which is a plot of two trajectories for ǫ = −0.2 [1]. The

two trajectories are from an initial displacement just below the origin on

the negative-imaginary axis, and one travels forward in time, and the other

backwards in time. The trajectories are open, and spiral outwards to infinity.

Note that the trajectories do not cross since they move on different sheets of

the Riemann surface due to the branch cut of the function (ix)−0.2, which is

taken to lie on the positive-imaginary axis. Such open orbits, as exist when

ǫ < 0, mean that no Bohr-Sommerfeld quantization (53) can be performed,

since the contours defined by the particle trajectories are open, and so no

value for the energy can be calculated.

4.2.5 Non-Integer ǫ > 0

In general, as ǫ increases from 0, the turning points at x = ±1 in figure 4

rotate towards the negative-imaginary axis and more pairs of PT -symmetric

turning points appear, all lying on the unit circle (when the energy is taken

to be E = 1, without loss of generality), and finite in number when ǫ is
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Figure 8: The classical trajectory for the Hamiltonian (17) with ǫ = π − 2.
The initial displacement is at −7.1i and visits 11 sheets of the Riemann
surface. The plot shown is for trajectory projected onto the principal sheet.

Figure 9: A close-up of the origin of figure 8.

rational [1]. The trajectories all remain closed, except for special cases that

occur when ǫ is real (as seen in figures 5 and 6). Some of the trajectories are

very complicated, and visit many sheets of the Riemann surface: see figures

8 and 9 [1].

The period of the trajectories is a function the pairs of turning points
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encircled by the orbits and of the number of times that they circle those

turning points. The exact formula for the period is complicated, but known

[41], and an analysis of the periods highlights some interesting behaviour.

For any given pair of turning points the periods of the orbits that oscillate

directly between those turning points may be plotted as a function of ǫ. For

the turning points shown in figure 4, the plot of the periods versus ǫ is shown

in figure 10 [1], and for the next pair of turning points that appear — those

of x3 and x4 in figure 6 — in figure 11 [1]. As is clear from figures 10 and 11,

Figure 10: The period of trajectories oscillating between the turning points
in figure 4 as a function of ǫ. The region marked II is for 1 < ǫ < 4 and
displays the erratic behaviour of the periods in this region.

the periods smoothly decrease except for a region of very erratic behaviour.
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Figure 11: The period of trajectories oscillating between the turning points
x3 and x4 in figure 6 as a function of ǫ. The region marked II is for 1

2
< ǫ < 8

and displays the erratic behaviour of the periods in this region.

If the appearance of new pairs of turning points is labelled by K, such that

figure 10 concerns the pair of turning pointsK = 1, and figure 11 concerns the

pair of turning points K = 2, then the region of erratic behaviour lies for the

values 1

K
< ǫ < 4K. Within this region, sections of small-period behaviour

are broken by values of ǫ where the period grows large, and possibly infinite

[1]. The values of ǫ when this occurs have been found to be always rational

[49], and correspond to orbits that are not PT -symmetric. To such cases,

the PT symmetry is said to have been spontaneously broken.

The orbits at which the PT symmetry is spontaneously-broken coincide

38



with orbits that have unexpectedly hit another turning point, reflecting the

particle back to its originating turning point: see figures 12 and 13 [1]. In

such cases, the trajectories must always occur between complex-conjugate

pairs of turning points, leading to complex-conjugate (up-down) symmetry

[1].

Figure 12: A spontaneously-broken PT symmetry trajectory at ǫ = 4

5
. The

symmetry is instead complex-conjugate (up-down) symmetry.

This is just a taste of the fascinating things that can occur when classical

mechanics is extended into the complex domain; but the systems examined

so far have only had real energies, and it is to systems with complex energies

that we now turn to.
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Figure 13: A more complicated trajectory where the PT symmetry has been
spontaneously broken, his time for ǫ = 16

9
. Note again the complex-conjugate

symmetry.

4.3 Complex Energies

Having decided to allow the dynamical variables of a system to take complex

values, it is perhaps not unjustified to ask what were to happen if the energy

were allowed to take complex values as well. Indeed, it can be argued that

such an assumption would not be too unprecedented given that one of the

important results of the quantum theory already stipulates that the exact

energy of a particle can never be known exactly — namely, Heisenberg’s

uncertainty principle.

Taking such a hypothesis, we look to see what effects a complex energy

has on classical systems.
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4.3.1 The Anharmonic Oscillator

We begin by examining the anharmonic oscillator, whose Hamiltonian is

H =
1

2
p2 + x4. (54)

For a system with energy E = 1 the coordinate turning points are at

x = ±1,±i, and the usual classical motion is the oscillatory motion along

the real-x axis between the points x = 1 and x = −1. Analytically continuing

the problem into the complex domain, a system with initial displacement at

±i will follow a trajectory that will take it to ±i∞ respectively, and all

other initial displacements in the complex plane will follow closed ellipse-like

trajectories pinched at ±i, as shown in figure 14 [50]. As usual, by Cauchy’s

theorem, all closed trajectories have equal periods. Let us now take a complex

energy to see what trajectories the system will follow. We now take an energy

E = 1 + 0.1i, and an initial displacement at x = 1; the resultant particle

trajectory is shown in figure 15 [50]. The trajectories of this system, as seen

in figure 15, are no longer closed. In fact, the major departure from those

complex classical systems of real energies to those of complex energies is that

the hitherto abundance of closed trajectories disappears, and the systems

begin to exhibit more interesting dynamics where the particle is apparently

more free to move. As such, we will move now to a double-well potential to

see if this “freedom” of movement still expresses itself.
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Figure 14: The trajectories of the classical anharmonic system (54) with
energy E = 1. The oscillatory trajectory between the turning points at x =
±1 correspond to the familiar real classical motion. All other trajectories in
the plane are closed, except those with initial displacements on the imaginary-
x axis at and above the turning point x = i, and at and below the turning
point x = −i.

Figure 15: The classical trajectory of the anharmonic system (54) with energy
E = 1 + 0.1i. The trajectory, as in previous examples of classical systems
extended into the complex plane, does not cross itself; but is now no longer
closed.

4.3.2 A Double-Well Potential

We now move onto a classical system with a double-welled potential x4−5x2.

A particle with energy E = −1 will oscillate in either of the wells of the
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potential, as shown by the real-x trajectories shown in figure 16 [50]. Again,

the trajectories for complex initial displacements are also shown to be closed

orbits around pairs of turning points. The double-well system for real energies

Figure 16: Classical trajectories for a system of potential x4−5x2 with energy
E = −1. As seen before, the trajectories are invariably closed for all but a
few special points in the plane if the energy is real. Here, six such closed
trajectories are shown.

is, therefore, seemingly that of a system where the particle orbits are confined

to their own local neighbourhood.

Let us now choose a complex energy and observe the particle trajectories:

we will take E = −1 − i, and an initial displacement x = 0. The resultant

trajectory taken is shown in figure 17 [50]. Now, the trajectories are open and

the particle is no longer confined to motion about one of the pairs of turning

points. Instead, the particle revolves around one pair, spiralling outwards as

it does so, crosses the imaginary-x axis, and then begins to spiral inwards

about the other pair of turning points. The particle then turns back on

itself and spirals outwards again, crosses the imaginary-x axis again and then

spirals back towards the first pair of turning points. This spiralling behaviour
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Figure 17: The classical trajectory of a particle initially placed at x = 0 in a
double-welled potential x4− 5x2 with complex energy E = −1− i. We again
see that the trajectory is no longer closed, but open. The path followed by
this particle is particularly interesting because it appears to tunnel between
the turning points in the positive-real half of the plane and those of the
negative-real half of the plane.

between the two pairs of turning points continues unabated (and without

crossing itself at any point), and is highly reminiscent of the tunnelling that

occurs across the potential barrier in a quantum system.

We see here a classical system exhibiting what was hitherto a purely

quantum effect. Whereas tunnelling is a conceptually difficult concept to

understand in the quantum theory, in the complex classical system above it

is merely a case of a particle moving along a complex orbit. The appearance

of the particle in either well of the potential function without seemingly

taking any measurable path is now a trivial consequence of motion in the

44



complex domain, where only real values may be actually measured.

Yet the analogy between the quantum theory and complex classical dy-

namics does not stop there. Stationary states of a particle wavefunction in

a double-well potential have a definite parity, and the trajectory in figure 17

also exhibits a parity of sorts. If the points at which the trajectory crosses

the imaginary-x axis is recorded against the direction in which it crosses, as

shown in table 1 [50], the particle trajectory can be said to have a definite

parity: if the system is parity (spatially) reflected, the directions in which

the particle crosses the imaginary-x axis is also reflected; so, the trajectory

in figure 17 is said to have odd parity.

Let us choose another complex value for the energy of the system: let us

take E = −2−i, and an initial displacement of x = 0. The trajectory is shown

in figure 18 [50]. Whilst the particle still displays a tunnelling-like behaviour,

the trajectory of the particle is now confined to narrow bands. Moreover,

the frequency of crossings has lessened, which is not totally unexpected since

the real component of the energy has been decreased. More importantly,

however, is that this trajectory appears now to have even parity: a spatial

reflection of this system does not swap the direction in which the particle

crosses the imaginary-x axis, as shown in table 2 [50].

The case of a double-well potential has provided an intriguing analogy

between complex classical systems and quantum effects. This analogy is

worth exploring further, which the subsequent subsections will explore.
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Imaginary crossing point Direction Time of crossing
0.909592i → 45.728640
0.781619i ← 5.366490
0.441760i → 34.347705
0.407514i ← 16.764145
0.253436i → 22.909889
0.231656i ← 28.205183
0.118499i → 11.457463
0.100556i ← 39.658755

0i → 0
0.017057i ← 51.116500
0.082877i → 90.775058
0.136772i ← 62.573579
0.210728i → 79.320501
0.276231i ← 74.024673
0.376304i → 67.876728
0.479881i ← 85.458656
0.690666i → 56.467388
1.121155i ← 96.812583

Table 1: Table of the trajectory crossings of the imaginary-x axis in figure

17, along with the relative direction of the crossing, and the time at which it
dis so. A parity reflection of the system (swapping the sign of the numbers
in the first column and also swapping the direction of the arrows) causes
the arrows to point in the opposite direction; so, the particular trajectory in
figure 17 is said to have odd parity.

4.3.3 A Cubic Potential

Cubic potentials provide a model for nuclear decay, since they provide a

model whereby a particle confined in a potential well has the ability to tun-

nel through the potential barrier and escape to infinity. We find that the

tunnelling behaviour seen in section 4.3.2 also applies to cubic potentials,

where we can qualitatively reproduces the quantum effect of nuclear decay.

We take a Hamiltonian H = 1

2
p2 + 1

2
x2− gx3, and first examine a system

with g = 1

3
, and energy E = 0.1. Trajectories for this real energy are shown
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Figure 18: The classical trajectory of a particle initially placed at x = 0
in a double-welled potential x4 − 5x2 with complex energy E = −2 − i.
The particle behaviour, whilst still displaying a tunnelling behaviour, is now
confined to narrow bands; and the frequency of crossings has decreased, which
is not unexpected since the real part of the energy has been decrease from
that in figure 16.

in figure 19 [50]. The trajectories are, as usual, closed except for special

points where the particle moves to +∞ (such behaviour is expected from a

cubic potential since it is present in the case of real dynamics also).

We then take g = 2/
√

125 and complex energy of E = 0.456 − 0.0489i.

The trajectory of a particle initially placed at x = 0 is shown in figure 20 [50].

The plot on the left shows runs up to t = 50, and shows the particle revolving

around the left two turning points, “confined” to the well defined by those

two turning points. The plot on the right runs up to t = 200 and shows how
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Imaginary crossing point Direction Time of crossing
0.212966i ← 85.604840
0.114590i ← 47.557393
0.068159i ← 28.534298
0.407514i ← 16.764145
0.022623i ← 9.511410

0i → 0
0.045318i → 19.022837
0.091223i → 38.045810
0.187424i → 57.069065
0.210728i → 76.092765
0.239354i → 95.117102

Table 2: Table of the trajectory crossings of the imaginary-x axis in figure

18, along with the relative direction of the crossing, and the time at which
it dis so. This system now exhibits even parity since a parity reflection of
the system (swapping the sign of the numbers in the first column and also
swapping the direction of the arrows) causes the arrows to point in the same
direction as they do now. Also note that the number of crossing is less than
before. Such a result can be explained as, since the real component of the
energy has been decreased, the relative size of the barrier has increased.

the particle’s trajectory now comes under the influence of the right turning

point, quantitatively, at the moment that the trajectory switches from being

convex, from he point of view of an observer at the right turning point, to

concave. Thus, we stress that we can again say that the qualitative effect of

quantum tunnelling has been reproduced in a purely classical system, albeit

with complex dynamics and complex energies.

4.3.4 A Cosine Potential

Perhaps the most interesting work so far has been on a periodic potential.

Such potentials provided a model for crystal lattices, which exhibit rich quan-

tum behaviour, and it is wondered to what extent can a complex classical
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Figure 19: Classical trajectories for a system with Hamiltonian H = 1

2
p2 +

1

2
x2 − 1

3
x3, and energy E = 0.1. The trajectories are all closed, representing

confinement to the potential well, except for those on the real-x axis at and
to the right of the rightmost turning point, which represents a particle sliding
down the potential and escaping to infinity.

system qualitatively emulate it.

For a Hamiltonian H = 1

2
p2− cos(x) with real energy E = −0.09754, the

trajectories are closed and localized around pairs of turning points defining

successive wells in the periodic cosine potential: see figure 21 [50].

Now, if we take a complex energy E = −0.1 − 0.15i the trajectory of a

particle initially located at x = 0 is shown in figure 22 [50]. The particle

trajectory is now open and “tunnels” between adjacent wells in the potential

function by spiralling out of one site and into another before spiralling out

again. Moreover, the motion of the particle exhibits a kind of deterministic

“random walk” moving right twice, the left five times before moving right

again. Such behaviour mirrors that of a quantum particle hopping from site

to site in a crystal by tunnelling in a random direction.
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Figure 20: The classical trajectory for a system with Hamiltonian H = 1

2
p2 +

1

2
x2 − 2x3/

√
125, and energy E = 0.456− 0.0489i at an initial displacement

at x = 0. The plot to the left runs up to t = 50 and shows the particle
initially under the influence of the left two turning points, before coming
under the influence of the rightmost turning point, as shown in the right plot
which runs up to t = 200. The point at which the particle comes under the
influence of the rightmost turning point is a quantitative measure of when
the particle can be said to have “tunnelled” from the well defined by the left
two turning points.

Figure 21: Classical trajectories for a system with Hamiltonian H = 1

2
p2 −

cos(x) with real energy E = −0.09754. The particle is localized about each
well in the periodic cosine potential.
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Figure 22: The classical trajectory for a − cos(x) potential with energy E =
−0.1−0.15i with an initial displacement at x = 0. The particle now moves in
an open trajectory that spirals outwards from one well in the potential and
then spirals into an adjacent well before spiralling out again. The particle
moves from the well at the origin to the right, and then to right again before
moving left five successive times and then right again. This “random walk”
behaviour is deterministic, yet analogous to the probabilistic tunneling of a
quantum particle in a crystal.

The tunnelling rate of the classical particle can also be quantified as the

number of turns the particle undergoes in each site, which has been found

to depend on the imaginary component of the energy. A plot of the number

of turns taken by the particle versus the imaginary component of the energy

is given in figure 23, from which it is evident that the relationship between

the two is hyperbolic in nature. The time-energy Heisenberg uncertainty

principle, with ~ = 1, sets a lower limit of 1

2
for the product of energy and

time uncertainties: the product of the imaginary component of the energy,

which is a measure of the uncertainty of the energy (since only real energies

can be measured), and the number of turns the particle undergoes in figure

23 is approximately 17 [50].
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However, the “random walk” behaviour is not the most intriguing result

found for the cosine potential. Quantum particles in a crystal can also exhibit

delocalized behaviour whereby, for certain ranges of energies — within so

called conduction bands — the particles are able to drift freely from site to

site in one direction. Extraordinarily, such behaviour has been observed in

this complex classical system too: a plot of the particle trajectory for energy

E = −0.09754−0.1278i, with the particle initially located at x = 0, is shown

in figure 24 [50]; which shows the particle moving in only one direction at an

almost constant rate.

The hopping behaviour of this classical system has been analyzed over

Figure 23: A graph of the number of turns the particle takes in a particular
site versus the imaginary component of the energy for that trajectory. The
product of the tunnelling time, as measured by the number of turns spent in
a site, and the imaginary part of the energy is a constant. The time-energy
Heisenberg uncertainty principle states that this product must be greater
than 1

2
, and for this system is approximately 17.
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Figure 24: The classical trajectory of a particle in a −cox(x) potential with
energy E = −0.09754 − 0.1278i at an initial displacement of x = 0. In
this scenario the particle undergoes an almost constant drift in strictly one
direction, mirroring the behaviour of a delocalized quantum particle in a
crystal.

Figure 25: A graph of the hopping behaviour of classical particle trajectories
for a range of energies in the complex-E plane. Delocalized behaviour is
marked with a ‘x’, hopping behaviour with a ‘-’, and the lack of hopping
behaviour with a ‘&’. The “conduction bands” for which the particle behaves
as if was delocalized are clearly visible, which broaden as the imaginary
component of the energy decreases.
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a range of energies, and bands of energies have been found at which the

particle appears to behave as if is delocalized [51]. The plot in figure 25 [51]

marks the behaviour of trajectories with ten hops, and those where the hops

were in one direction only are marked with a cross; the “conduction bands”

are clearly visible and one such band is marked with arrows. The conduction

bands are well defined, and have sharp edges — the arrowed portions of figure

25 are shown in more detail in figures 26 and 27 [51].

Figure 26: A detailed portion of the complex-E plane of figure 25. Again,
energies where “delocalized” behaviour occur are marked with a ‘x’, and the
plot shows that the bands are sharply defined.

5 An Elliptic Potential

The aim of this section is to present the findings from the analysis of a com-

plex classical system with the cosine potential of section 4.3.4 generalized to

that of the Jacobi elliptic function cn(x,m) where m is the elliptic parameter.
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Figure 27: As in figures 26, this is a detailed portion of the complex-E plane
where the delocalized behaviour of the classical particle can be seen; again,
the conduction bands are sharply defined.

The Hamiltonian considered is:

H =
1

2
p2 − cn(x,m), (55)

where, again, m is the elliptic parameter.

The elliptic function cn(x,m) is an interesting potential to consider for

several reasons. Firstly, it is a generalization of the cosine potential, since

cn(x, 0) ≡ cos(x), and is periodic in two distinct directions in the complex

plane. Thus, it would be interesting to see how the hopping behaviour seen

for the cosine function would occur for a function that is doubly periodic.

Secondly, the cn(x) function has singularities is the complex plane, and it

would be interesting to see how this would affect trajectories for this poten-

tial.

The equation (55) is solved numerically using a Runge-Kutta iterative

method, and, explicitly, a Prince-Dormand Runge-Kutta method so that
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estimates for the error of an iterative step can be made in order that the

step sizes can be altered. This so called adaptive step-size procedure will be

important to us since we do not want to waste computing time with small

iterative steps where the trajectory is not changing much.

The code is written in C++ and is presented in appendix A. The Runge-

Kutta routine is taken directly from the source code of the GNU Scientific

Library (version 1.12), and modified to use arbitrary precision data types

using the GNU MPFR library (version 2.4.1) and the GNU Multiple Precision

Arithmetic library (version 4.3.1). Values for the Jacobi elliptic function are

provided by Mathematica (version 7.0.0), and fed to the C++ program via

the MathLink library, which is provided with Mathematica: in effect, the

Mathematica kernel is used as a computational engine for which the C++

program is a front-end.

The program was built on a Linux machine (kernel 2.6.28), and the various

parameters needed by the simulation can be provided with runtime flags;

these include the time for which to run up to, the value for the elliptic

parameter, the particle’s initial complex displacement, and the value for the

complex energy. The program then creates some parameters needed by the

Runge-Kutta routine, sets up a link with the Mathematica kernel, and begins

to run the Runge-Kutta method.

The program implements the Runge-Kutta routine by calling the function

evolve apply (see appendix A) which moves the system forward in a time that

is determined by calling the function rk8pd apply to apply the iteration. The

function evolve apply then checks the errors produced by such an iteration

and can call the function h adjust to adjust the size of the time steps and
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re-implement an iteration. Values of the Jacobi elliptic function are obtained

by the function func, and are also called by evolve apply as they are needed

by the Runge-Kutta method. The function func obtains values of the elliptic

function by sending a C++ string to the Mathematica kernel of the expression

to calculate, and is likewise returned a string that contains the answer, which

is then parsed for real and imaginary components and entered into the C++

data types for the system’s dynamical variables.

The output produced by the program is placed directly into a text file

named data, which can then be read by a suitable plotting program for the

real and imaginary components of the system’s dynamical variables. The

plotting program used in this work is Gnuplot (version 4.2 patchlevel 4).

The first obstacle that the numerical simulation faced was that of time:

numerical procedures for calculating complex values for elliptic functions

with complex inputs are much slower than for the cosine potential. Another

obstacle is that, with time being a significant constraint, simulations could

not always be completed without large errors accruing in the trajectory:

the energy of the system should remain constant, and energies that deviate

from that constant value provide us with a reasonably reliable condition for

knowing whether the trajectory is inaccurate. Checking that the energy of

the particle agrees with what it should be would not, however, guarantee that

errors have not accrued. Both problems are unavoidable in practical terms,

but the accuracy of the simulations could be managed by taking relatively

small values for the elliptic parameter m. This work presents data using only

two values of m for the majority of its runs: for m = 0.1 and m = 0.2. Some

data was collected for values of m = 0.5, but the time taken for the run
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to complete and the iterative errors accumulated rendered opportunities for

the collection of data for higher values of m to be limited. Indeed, even with

relatively small values of m, the runs still accrue errors that are hard to avoid

without spending too long a time running the simulation. On the system used

in this work the runs could sometimes take up to a week to complete, and

normally several days, and problems with accuracy still remain.

With computations limited by accuracy and time, interesting results were

nonetheless seen, and they are described qualitatively here; and what is hoped

is that these can be followed up with more detailed work. We begin by

examining the case for real energies.

5.1 Real Energies

The results of previous cases of complex classical dynamics for a range of

potentials, examined in sections 4.2–4.3, with real energies found that tra-

jectories were typically closed, except for special cases of values for which

they were open. The trajectories for an elliptic potential were also found to

be closed except that, whereas before there was only a measure-zero set of

open trajectories (typically, for initial displacements along a line in the com-

plex plane), there now are now a comparable number of open trajectories as

there are closed ones.

The trajectories for particles with energy E = 0 and elliptic parameter

m = 0.5 are shown in figure 28. The closed trajectory lying wholly on

the real-x axis is for an initial displacement x = 6.5 and shows the usual

oscillatory motion of a cosine-like potential; it has a period of about 13.2
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seconds. The “closed” trajectories are for initial displacements x = 2, 2, 1, 4+

3i, 6, 9.5 and have energies that wander from E = 0; and so the fact that they

do not close and appear to cross other particle paths can be conjectured to be

only because the iterative method looses accuracy. A plot of the trajectory

starting from x = 2 is shown in figure 29. The remaining trajectories are for

initial displacements at x = 2.2, 2.5, 3, 3.5, 3.6, 3.7, 3.8, 3.9, 4, 4.5, 5, 5.5 and

then for x = 10, 10.5, 11, 11.5 and are all clearly open; again, the fact that

some paths cross is believed to be due only to the fact that the iterative

method is loosing accuracy. Thus, figure 28 clearly demonstrates some of
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Figure 28: Classical trajectories in the complex-x plane for the system (55)
with energy E = 0 and elliptic parameter m = 0.5. Visible are the open
trajectories that run up-down in the plane, and the “closed” trajectories that
are believed to not actually close due only to computational inaccuracies. A
close-up of the “closed” trajectory for a particle placed initially at x = 2 is
shown in figure 29.
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Figure 29: Classical trajectory in the complex-x plane for E = 0, elliptic
parameter m = 0.5, and initial displacement x = 2. It is here evident some
of the inaccuracy problems for higher m values since such trajectories are
believed to be closed.

the accuracy problems encountered by the simulation runs.

A second plot of trajectories was taken for elliptic parameter m = 0.1 and

energy E = 0, and is shown in figure 30. From this figure it can be see that

there truly exist closed trajectories (for trajectories with initial displacements

at x = 1, and x = 2, 4.5), and so it is believed that those similar trajectories

in figure 28 are also closed. The remaining open trajectories are for initial

displacements at x = 2.5, 3, 3.5, 4.

From the trajectories in figure 30 it can also be inferred that the existence

of regions of open trajectories is not unique to a particular elliptic param-

eter value. It is perhaps not unexpected that there exist regions of open

trajectories based on the fact that the elliptic function is doubly periodic;
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Figure 30: Classical trajectories in the complex-x plane for the system (55)
with energy E = 0 and elliptic parameter m = 0.1. Here, the “closed”
trajectories similar to the ones in figure 28 are indeed closed.

but certainly the fact that there exist large portions of the complex plane for

which the trajectories are open is somewhat interesting. Further work could

be conducted on the points at which the open trajectories appear in order to

determine if there exists some explanation for their appearance.

For the cosine potential, figure 21 could be understood as particles con-

fined to regions around their own respective lattice sites; now, for the elliptic

potential, the open trajectories in figures figure 28 and 30 could represent

some propensity for the particle to undergo hops between lattice sites along

constant imaginary-component lines. Such a tentative hypothesis could ex-

plain the qualitative features found for trajectories followed when complex

energies are specified; which is where we turn to in the next section. But,
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before we do so, we lastly remark that the poles of the elliptic function in

the complex plane do not seem to affect the particle trajectories.

5.2 Complex Energies

We now turn to systems with complex energies. The first plot done is shown

in figure 31 and is for a system with energy E = 0.25+0.25i, initial displace-

ment x = 0 and with elliptic parameter m = 0.1. As expected, the trajectory

is not closed; and also, as with the cosine potential, it spirals from one site

to another. However, there is one striking feature of the plot and it is that it

appears to only hop to and fro along one direction: the particle spirals out

from the origin and skips past two sites and spirals into the third and out

again (a close-up is shown in figure 32) before spiralling into the fourth, all

of whom lie on a diagonal direction that is qualitatively from bottom-left to

top-right.

To see if the same behaviour was observed for other values of complex

energies, plots were generated by varying the real component of the energy,

but keeping the initial displacements at x = 0 and the elliptic parameter of

m = 0.1: the plot for E = 0.75 + 0.25i is shown in figure 33, E = 0.1 + 0.25i

in figure 34, E = −0.1 + 0.25i in figure 35, E = −0.25 + 0.25i in figure 36,

and E = −0.75 + 0.25i in figure 37.

All the plots from figures 33–37 display the roughly diagonal hopping

behaviour seen in figure 31; yet, the manner in which they do so is different.

In figure 33 the particle spirals away from the origin immediately and spirals

once into the site below it, and then spirals once out into the site below it
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Figure 31: Classical trajectory for E = 0.25 + 0.25i, m = 0.1, and initial
displacement x = 0. The particle appears to move only along a diagonal ori-
entated from bottom-left to top-right. The particle also only moves along this
diagonal in one direction, spiralling in and out of some sites, and bypassing
others, on its way.
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Figure 32: A close-up of figure 31 of the spiralling in the second site spiralled
into on the particles trajectory.
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Figure 33: Classical trajectory for E = 0.75 + 0.25i, m = 0.1, and initial
displacement x = 0. Here, the particle still spirals between sites lying on a
diagonal, and spirals into two sites below it and then up past its initial site
again.
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Figure 34: Classical trajectory for E = 0.1 + 0.25i, m = 0.1, and initial
displacement x = 0. Here, the particle again moves along the same diagonal
observed in figures 31 and 33, but now moves past many sites before spiralling
into one.
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Figure 35: Classical trajectory for E = −0.1 + 0.25i, m = 0.1, and initial
displacement x = 0. The particle trajectory is qualitatively the similar to the
trajectory shown in figure 35, but now only ever moves along one direction
along the diagonal.
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Figure 36: Classical trajectory for E = −0.25 + 0.25i, m = 0.1, and initial
displacement x = 0. The particle here spends much more time spiralling
between sites, but still remains on a bottom-left to top-right diagonal.
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Figure 37: Classical trajectory for E = −0.75 + 0.25i, m = 0.1, and initial
displacement x = 0. As in figure 36, the particle spends much more time
spiralling than in figures 34 and 35.

before spiralling once in and once out again back past the first two sites. A

close up of the intermediate site in figure 33 is shown in figure 38

It should also be noted in figure 38 that the trajectory appears to cross

itself. The energy of the particle does wander away from E = 0.75 + 0.25i,

and the crossing of the trajectory may be because the iterative method is

loosing accuracy. However, it may also be that the trajectory is moving on

different sheets of a Riemann surface, with branch cuts emanating from the

poles of the elliptic function. More detailed runs where the accuracies of the

iterative method can be kept in check are required to determine whether the

trajectory is wholly reliable, but some of qualitative description of the various

differences of the trajectories that the particle takes for different energies can

still be tentatively made.

In figure 34 the particle spirals out from the initial site twice before hop-
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Figure 38: A close-up of the particle motion in the intermediate site of figure

33. The particle trajectory crosses itself, which may be due to inaccuracies
in the iterative method. The trajectory could, however, also be moving on
different sheets of a Riemann surface, and more accurate runs are required
in order to be sure whether the trajectory truly crosses itself.

ping several times to a site further down the diagonal before hopping back

up the diagonal again and then jumping to a site not on the diagonal.

In figure 35 the particle moves roughly as it does in figure 34, but in the

opposite direction: the particle spirals out three times before moving upwards

along the diagonal many times before it gets to a site where it spirals in once,

and then out once to the next site along before spiralling in once and out

once again. Here, however, the particle never moves back to a site that

it has already been to, and this behaviour is analogous to the conduction

band behaviour for the cosine potential. More plots were observed with this

delocalized behaviour of the particle and will be discussed in the following

sections.

In figure 36 the particle motion is different yet again. This time the
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particle spirals within sites many times: it spirals three times outwards from

the initial site before moving to a relatively nearby site before spiralling in

five times. Similarly, in figure 37 the particle spirals outwards six times from

its initial site before moving to another one.

The differences in the qualitative nature of the trajectories is something

that was not observed in the cosine potential and was worth investigating

further over more values in the complex-E plane. Plots were conducted for

energies

E = Er + iEi,

Er, Ei ∈ {−0.75,−0.5,−0.25,−0.10, 0.01, 0.1, 0.25, 0.75},
(56)

so that any patterns across ranges of the real- and imaginary-component of

the energy could be studied; and, certainly, some interesting plots were found.

However, we again note that the observations being made are hounded by

inaccuracies in the particle trajectories. More work is needed over longer

periods of time in order to draw clear conclusions: those made here are

tentative, and only indicative of some of the interesting behaviour that might

be seen.

5.2.1 Hopping Behaviour

For all the plots with energies (56) the trajectories always qualitatively moved

along a diagonal: at the very least the hop from the initial site is never

to an adjacent site on the real-x axis. The diagonals are always bottom-

left to top-right for positive-imaginary components, and top-left to bottom-

right for negative-imaginary components (see figures 39 and 40 for two such
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examples). This is very curious behaviour, and it wondered whether this
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Figure 39: Classical trajectory in the complex-x plane for E = −0.1− 0.25i,
m = 0.1 and an initial displacement x = 0. Note that the particle still moves
on a diagonal, but which is now orientated top-left to bottom-right. This
is due to the sign swap of the imaginary component of the energy: negative
imaginary-components all have the diagonal direction of hopping behaviour
orientated in this way.

hopping behaviour and the open trajectories seen in figures 28 and 30 for

real energies are related. Plots were made with energies in (56) for elliptic

parameterm = 0.1 and m = 0.2, and it appears that hops off the diagonal are

more likely to occur for m = 0.2: see figures 41 and 42 for two comparisons.

It is wondered whether the open trajectories observed in figures 28 and

30 indicate some propensity to move along in the imaginary-x direction. Of

course, to produce diagonal hopping motion one would also need to assume

that hops along adjacent sites in the real-x direction are more likely to occur

than between sites adjacent in the imaginary-x direction. The open trajec-
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Figure 40: Classical trajectory in the complex-x plane for E = 0.25− 0.75i,
m = 0.1 and an initial displacement x = 0. As in figure 39, the negative sign
of the imaginary-component of the energy means that the diagonal on which
the particle generally tunnels along is orientated top-left to bottom-right.

tories seen in figures 28 and 30 do show an “asymmetry” between what one

observes moving along the real-x axis and what one observes moving along

the imaginary-x axis: the open trajectories are always up-down and never

left-right. Perhaps this is a manifestation of a deeper asymmetry that favours

left-right hops to up-down ones? In any case, the reason why the hops ap-

pear to favour moving along diagonals, and always orientated one way for

positive-imaginary components and the opposite way for negative-imaginary

components, is striking and certainly deserving of more investigation.

The tentative observation that hops off the diagonal appear more fre-

quently for those systems with elliptic parameter m = 0.2 than for those

with elliptic parameter m = 0.1 may be explained by the observation that

the distance between adjacent closed trajectories along the real-x axis (but

not along the imaginary-x axis, interestingly) diminishes as m increases in
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(a) m = 0.2
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(b) m = 0.1

Figure 41: Trajectories for E = −0.5−0.75i starting from x = 0. This is one
case where the particle leaves the diagonal for a higher value of the elliptic
parameter m.
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(a) m = 0.2
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(b) m = 0.1

Figure 42: Trajectories for E = −0.5+0.75i starting from x = 0. As in figure

41, another example where the particle appears to move off the diagonal more
readily for a higher value of m.
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figures figures 28 and 30 respectively. However, such a conjecture is only

tentative for now since much more data would need to be analyzed before a

conclusion can be met at since, for one thing, some counter examples exist

where hops off the diagonal occur for m = 0.1 and not for m = 0.2: see

figure 43 for one such example. Furthermore, these comparisons of plots of

equal energies are not sufficient for any conclusion to be drawn since different

values of the elliptic parameter would necessarily describe different systems.

Thus, what is really required is an analysis of trajectories for a close range of

energies across many elliptic parameter values, which was unfortunately not

achievable here due to the prohibitive times that such an analysis would con-

sume; but, the speculation that the elliptic parameter m might affect hops

off the diagonal is certainly another area worth investigating.

5.2.2 Localized Behaviour

Another interesting behaviour that the particle undergoes is for energies

where the imaginary component is close to zero. An example of such a

trajectory is shown in figure 44 for energy E = 0.75 + 0.01i and elliptic pa-

rameter m = 0.1. Here, a particle that starts at x = 0 continues to spiral

about its initial position never hopping to another site — the particle ap-

pears to remain “localized” but with a trajectory that is not closed. The

particle trajectory crosses itself and, again, calculations of the energy of the

particle do see it stray from its expected value. More detailed runs are re-

quired, but it is interesting to speculate that the particle may be moving on

different sheets of the Riemann surface and whether it does so indefinitely

on the infinitely-sheeted surface. Alternatively, it may be, however, that the
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(b) m = 0.2

Figure 43: Trajectories for E = −0.25 − 0.5i starting from x = 0. This
is a counter-example to figures 41 and 42 where the particle jumps off the
diagonal at m = 0.1. This is only indicative of the more extensive study of
the particle trajectories that is required before conclusions on the propensity
for the particle to jump of the diagonal for higher values of m can be made.
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particle is simply spiralling many times before it would eventually hop to

another site. Such an alternative hypothesis would still agree with the idea

that the particle is loath to tunnel from one site to another when the energies

are close to being purely real.
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Figure 44: Classical trajectory in the complex-x plane for E = 0.75 + 0.01i,
m = 0.1 and an initial displacement x = 0. Here the particle displays
“localized” behaviour: the particle spirals many times about its initial site.
The particle trajectory crosses itself, and more detailed runs are required in
order to tell whether the particle stays spiralling about this one site moving
indefinitely on the infinitely-sheeted Riemann surface, or whether the particle
will eventually move off to another site. In any case, the particle still spirals
many times about its initial site, indicating some willingness to remain where
it is: the small value of the imaginary-component of the energy indicates some
a difficulty that the particle shows in being able to tunnel to another site.

In any case, this same behaviour occurs across several values of the real-

component of the complex energy, but with an interesting pattern: the tra-

jectories begin to slant from bottom-left to top-right — the same orientation

of the diagonal that the hops move along when the imaginary component

of the energy is positive — as the real component of the energy decreases
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with the imaginary component of the energy kept small and positive. For

comparison to figure 44 the trajectories for E = −0.75 + 0.01i in shown in

figure 45 and for E = −0.99 + 0.01i in figure 46 (all for elliptic parameter

m = 0.1 and initial displacements at x = 0).
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Figure 45: Classical trajectory for E = −0.75 + 0.01i, m = 0.1, and an
initial displacement x = 0. As in figure 44, the particle displays “localized”
behaviour. However, the decrease in the real-component of the energy causes
the trajectory to slant along the diagonal that is orientated in the same way
that the positive imaginary-component of the energy causes hops to occur in
figure 31, for example.

The particle trajectory for a small negative imaginary component of the

energy similarly slants from top-left to bottom-right as the energy is de-

creased, and the system with E = −0.99− 0.01i with m = 0.1 starting from

x = 0 is shown in figure 47.

We note that the limit of energies where the imaginary component tends

to zero is clearly a purely real energy. Thus, again, it is wondered whether

the open trajectories found in figures 28 and 30 have any bearing on the
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Figure 46: Classical trajectory for E = −0.99 + 0.01i, m = 0.1, and initial
displacement x = 0. Again, we see that as the real-component of the energy
decreases the particle slant becomes more pronounced.
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Figure 47: Classical trajectory for E = −0.99 − 0.01i, m = 0.1, and initial
displacement x = 0. Compare to figure 46, where the swap in the sign of the
imaginary-component of the energy causes the particle directory to slant in
the opposite direction.
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diagonal directions being expressed by figures 46 and 47.

This was not the only relationship observed with the decrease of the real

component of the energy: the range of values of the imaginary component

for which this “localized” behaviour of the trajectory occurs increases as

the real component of the energy decreases. For example (all trajectories

are with m = 0.1, but the qualitative results are similar for m = 0.2), for

E = −0.75 + 0.1i the particle trajectory still appears localized (see figure

48), but for E = −0.1 + 0.1i shown in figure 49 the particle moves in many

spirals about its initial position before eventually moving off. The times are

all run up to t = 100 in these graphs, and when we look at E = 0.25+0.1i in

figure 50 the particle has spent less time spiralling about its initial position

before moving on: the particle spirals five times in figure 50 as opposed to

nine times in figure 49. As we move to E = 0.75 + 0.1i the particle hardly

spends any time spiralling before moving to another site: see figure 51.

This may be evidence that the particle may not be truly “localized” at all,

but simply that it spirals many times before moving on. Again, only more

accurate runs up to longer times will confirm this or not.

The trajectories in figures 49 and 50 are also interesting because they seem

to indicate that the particle moves some distance before spiralling many times

again. This behaviour is seen across all the real components of the energy

examined where the imaginary component has strayed just enough from zero

to lose its “localized” behaviour: for example, figure 52 shows the trajectory

for E = −0.25 + 0.25i (with m = 0.1 and an initial displacement at x = 0).

It is striking that the trajectories of figures 50 and 50 look so similar, and

it is worth further investigation to see if, for longer times and more accurate
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Figure 48: Classical trajectory for E = −0.75 + 0.1i, m = 0.1, and initial
displacement x = 0. For low values of the real-component of the energy the
particle still displays “localized” behaviour away from small values of the
imaginary-component of the energy. Compare this with figures 49–51 where,
as the imaginary-component is kept fixed, the real-component is increased,
leading to the particle to take many less spirals about its initial site.
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Figure 49: Classical trajectory for E = −0.1 + 0.1i, m = 0.1, and initial
displacement x = 0. Here the particle still spirals many times about its
initial site — about nine times — before tunnelling to adjacent sites.
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Figure 50: Classical trajectory for E = 0.25 + 0.1i, m = 0.1, and initial
displacement x = 0. Compared to figure 49, the particle spirals less about
its initial site — only five times now — before moving to another site.
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Figure 51: Classical trajectory for E = 0.75 + 0.1i, m = 0.1, and initial
displacement x = 0. Compared to figures 48–50, the particle is now no
longer disposed to spiral about any one site.

runs, whether the particle moves to other sites or not.

80



-30

-25

-20

-15

-10

-5

 0

 5

-6 -5 -4 -3 -2 -1  0  1  2

Im
(x

)

Re(x)

Figure 52: Classical trajectory for E = −0.25 + 0.25i, m = 0.1, and initial
displacement x = 0. Again, we see that the particle spends much time
spiralling between its initial site and another one that it tunnels to. The
interesting question posed by such particle trajectories is whether the particle
ever moves to other sites, and why they always look so strikingly similar.

5.2.3 Delocalized Behaviour

As for the cosine potential, energies were found for which the particle only

ever moves in one direction. The energies appear at relatively diverse en-

ergies: figure 53 is for E = −0.25 − 0.25i and m = 0.2, figure 54 is for

E = 0.1 − 0.75i and m = 0.2, and figure 55 is for E = 0.7 + 0.25i and

m = 0.1 (all the figures 53–55 run up to t = 100 with the particle initially at

x = 0).

To check to see if there existed bands for which the particle behaves as

if it were delocalized an energy was chosen close to the one in figure 55, and

also ran for a longer time in order to verify that the particle was behaving as

if it were delocalized. In figure 56 the trajectory for a particle with energy

E = 0.697+0.25i is shown for m = 0.1 with an initial displacement at x = 0.
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Figure 53: Classical trajectory for E = −0.25 − 0.25i, m = 0.2, and initial
displacement x = 0. As for the cosine potential, the particle appears to
behave as if it were delocalized, and only ever moves in one direction.
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Figure 54: Another example of delocalized behaviour, this time for energy
E = 0.1− 0.75i, m = 0.2, and initial displacement x = 0.

The particle moves a considerable distance before turning back on itself right

at the end for the first time: figure 57 shows this more clearly. The energy

of the particle in figure 57 was checked and it does begin to diverge from its
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Figure 55: A further example of delocalized, this time for energy E = 0.7 +
0.25i, m = 0.1, and initial displacement x = 0. Compared to the values of the
energies in figures 53 and 54, the results seems to indicate that delocalized
behaviour is occurring at different regions of the complex-E range.

expected value of E = 0.697 + 0.25i, and so the fact that it turns back on

itself it probably due to an iterative inaccuracy of the trajectory.

Just as with the cosine potential, the presence of delocalized particles in a

complex classical system represents an extraordinary replication of quantum

phenomena. However, the propensity for the trajectories to lose accuracy

means that detailed runs are required in order to locate any conduction

bands.

6 Conclusion

The analysis of classical complex systems with an elliptic potential hints at

behaviour that is not only richer than for a cosine potential, but also more

intriguing in its peculiarities. Although we stress, here, that the analysis
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Figure 56: This the particle trajectory for energy E = 0.697+0.25i, m = 0.1,
and initial displacement x = 0. As an energy close to that of figure 55, we
see that there exist conduction bands as with the cosine potential. The
trajectory does turn back on itself right at the end (see figure 57 for a close-
up), but this may be due to iterative inaccuracies since the particle’s energy
does begin to deviate, especially for longer times.

presented here has been constrained by time and that the runs begin to lose

accuracy, it is hoped that some of the basic qualitative behaviour of the

system that has been seen is enough to warrant further work.

It is a remarkable consequence of classical systems extended into the com-

plex domain that they can reproduce what is regarded as inherently quantum

behaviour. This remarkable idea of how to view classical systems, based on

the work done to make PT -symmetric Hamiltonians acceptable within a

quantum framework, may provide a deeper understanding of quantum phe-

nomena than that of the current quantum theory, and only makes the need

to further study PT -symmetric Hamiltonians more important.
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Figure 57: A close-up of the particle moving back on itself in figure 56. More
accurate runs need to be made in order to locate conduction bands especially,
since any loss in the accuracy of the particle trajectory could take it out of
the conduction band energy range.

Appendices

A Source Code

The C++ source code that generated the plots in section 5 is given here.
Since it uses GNU code, it is released under the terms of the GNU General
Public License version 3 or higher.

#include <stdio.h>

#include <iostream>

#include <string>

#include <sstream>

#include <cmath>

#include <cfloat>

#include <gmp.h>

#include <mpfr.h>

#include <mathlink.h>

using namespace std;

int evolve_apply(mpfr_t t, const mpfr_t t1, mpfr_t h, mpfr_t y[]);
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int h_adjust(const mpfr_t y[], mpfr_t h);

int rk8pd_apply(mpfr_t h, mpfr_t y[]);

int func (const mpfr_t p[], mpfr_t f[]);

int init_mathlink(void);

MLEnvironment mlenv;

MLINK mlink;

int read_input(const int argc, const char* const argv[]);

//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

#define MPFR_PRECISION 64

#define OUTPUT_PRECISION 15

#define MATHEMATICA_PRECISION "15"

#define ABS_STEP_ERROR "1.0e-6" // allowed absolute error

#define REL_STEP_ERROR "1.0e-6" // allowed relative error

#define START_STEP_SIZE "1.0e-6" // starting step size

#ifndef END_TIME

# define END_TIME "100.0"

#endif

#ifndef END_TIME_STEP

# define END_TIME_STEP "100.0"

#endif

#ifndef M_PARAM

# define M_PARAM "0.5"

#endif

#define INIT_X_R "2.0"

#define INIT_X_I "0.0"

#ifndef ENERGY

# define ENERGY "0.0"

#endif

//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

class inits_t {

public:

string end_time;

string end_time_step;

string init_x_r;

string init_x_i;

string energy;

string param;

inits_t(const char* const et, const char* const ets,
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const char* const ixr, const char* const ixi,

const char* const nrg, const char* const m) :

end_time(et),

end_time_step(ets),

init_x_r(ixr),

init_x_i(ixi),

energy(nrg),

param(m)

{}

~inits_t(void) {}

} inits(END_TIME,END_TIME_STEP,INIT_X_R,INIT_X_I,ENERGY,M_PARAM);

class temps_t {

public:

mpfr_t t1;

mpfr_t t2;

temps_t(void) {

mpfr_init2(t1,MPFR_PRECISION);

mpfr_init2(t2,MPFR_PRECISION);

}

~temps_t(void) {

mpfr_clear(t1);

mpfr_clear(t2);

}

} temp;

//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

int func (const mpfr_t y[], mpfr_t f[]) {

mpfr_set(f[0],y[2],GMP_RNDN);

mpfr_set(f[1],y[3],GMP_RNDN);

char* c_str = 0;

mp_exp_t exp = 0;

c_str = mpfr_get_str(0,&exp,10,0,y[0],GMP_RNDN);

if(!c_str) {

cerr << "error getting mpfr value.\n";

return 1;

}

string y0_str = c_str;

87



mpfr_free_str(c_str);

bool negative = false;

if ( y0_str[0]==’-’ ) {

y0_str.erase(0,1);

negative = true;

}

if (exp > 0) {

y0_str.insert(exp,".");

}

else {

y0_str.insert(0,static_cast<size_t>(-exp),’0’);

y0_str = "0." + y0_str;

}

if(negative) y0_str = "-" + y0_str;

c_str = mpfr_get_str(0,&exp,10,0,y[1],GMP_RNDN);

if(!c_str) {

cerr << "error getting mpfr value.\n";

return 1;

}

string y1_str = c_str;

mpfr_free_str(c_str);

if ( y1_str[0]==’-’ ) {

y1_str.erase(0,1);

negative = true;

}

else negative = false;

if (exp > 0) {

y1_str.insert(exp,".");

}

else {

y1_str.insert(0,static_cast<size_t>(-exp),’0’);

y1_str = "0." + y1_str;

}

if(negative) y1_str = "-" + y1_str;

string mathlink_string = "SetPrecision[ Chop [ -JacobiSN[ "

+ y0_str + " + " + y1_str + " I , " + inits.param

+ " ] JacobiDN[ " + y0_str + " + " + y1_str

+ " I , " + inits.param + " ] ] , "

+ MATHEMATICA_PRECISION + "]";

MLPutFunction(mlink, "EvaluatePacket", 1);
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MLPutFunction(mlink, "ToString", 1);

MLPutFunction(mlink, "ToExpression", 1);

MLPutString(mlink,mathlink_string.c_str());

MLEndPacket(mlink);

int pkt = 0;

while( (pkt = MLNextPacket(mlink), pkt) && pkt != RETURNPKT )

MLNewPacket(mlink);

// if MathLink encounters an error, then it will return 0 and the

// ‘while’ loop will evaluate (false && true) -- false since

// (pkt=..., pkt) evaluates pkt, which is equal to 0 (i.e. false);

// and true since pkt!=RETURNPKT is true.

if(!pkt) { // pkt = 0 ==> some MathLink error occurred.

cerr << "error: some mathlink error.\n";

return 1;

}

const char* str;

MLGetString(mlink,&str);

string answer = str;

size_t i_pos = answer.find(’I’);

if ( i_pos == string::npos ) {

mpfr_set_str(f[2],str,10,GMP_RNDN);

mpfr_set_str(f[3],"0.0",10,GMP_RNDN);

}

else {

size_t split = answer.find_first_of("-+",1);

if ( split == string::npos ) {

mpfr_set_str(f[2],"0.0",10,GMP_RNDN);

mpfr_set_str(f[3],answer.substr(0U,i_pos-1U).c_str(),10,GMP_RNDN);

}

else {

mpfr_set_str(f[2], (answer.substr(0U,split)).c_str(),10,GMP_RNDN);

string imag = answer.substr( split, answer.length()-split-1U );

imag.erase(1,1);

mpfr_set_str(f[3],imag.c_str(),10,GMP_RNDN);

}

}

MLDisownString(mlink,str);

#ifdef DIAG

print("y[0]",y[0]);
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print("y[1]",y[1]);

print("y[2]",y[2]);

print("y[3]",y[3]);

print("f[0]",f[0]);

print("f[1]",f[1]);

print("f[2]",f[2]);

print("f[3]",f[3]);

#endif

return 0;

}

//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

class step_t {

public:

mpfr_t k[13][4];

mpfr_t ytmp[4];

step_t(void) {

for(unsigned short i=0U ; i<13U ; i++) {

for(unsigned short j=0U ; j<4U ; j++) {

mpfr_init2(k[i][j],MPFR_PRECISION);

}

}

for(unsigned short i=0U ; i<4U ; i++) {

mpfr_init2(ytmp[i],MPFR_PRECISION);

}

}

~step_t(void) {

for(unsigned short i=0U ; i<13U ; i++) {

for(unsigned short j=0U ; j<4U ; j++) {

mpfr_clear(k[i][j]);

}

}

for(unsigned short i=0U ; i<4U ; i++) {

mpfr_clear(ytmp[i]);

}

}

} step;

class control_t {
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public:

mpfr_t eps_abs;

mpfr_t eps_rel;

control_t(const char* abs, const char* rel) {

mpfr_init2(eps_abs,MPFR_PRECISION);

mpfr_init2(eps_rel,MPFR_PRECISION);

mpfr_set_str(eps_abs,abs,10,GMP_RNDN);

mpfr_set_str(eps_rel,rel,10,GMP_RNDN);

}

~control_t(void) {

mpfr_clear(eps_abs);

mpfr_clear(eps_rel);

}

} control(ABS_STEP_ERROR,REL_STEP_ERROR);

class evolve_t {

public:

mpfr_t y0[4];

mpfr_t yerr[4];

mpfr_t dydt_in[4];

mpfr_t last_step;

unsigned long int count;

unsigned long int failed_steps;

evolve_t(void) : count(0UL), failed_steps(0UL) {

for(unsigned short i=0U ; i<4U ; i++) {

mpfr_init2(y0[i],MPFR_PRECISION);

mpfr_init2(yerr[i],MPFR_PRECISION);

mpfr_init2(dydt_in[i],MPFR_PRECISION);

}

mpfr_init2(last_step,MPFR_PRECISION);

}

~evolve_t(void) {

for(unsigned short i=0U ; i<4U ; i++) {

mpfr_clear(y0[i]);

mpfr_clear(yerr[i]);

mpfr_clear(dydt_in[i]);

}

mpfr_clear(last_step);

}

} evolve;
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class rkvars_t {

public:

mpfr_t Abar[13];

mpfr_t A[12];

mpfr_t ah[10];

mpfr_t b21;

mpfr_t b3[2];

mpfr_t b4[3];

mpfr_t b5[4];

mpfr_t b6[5];

mpfr_t b7[6];

mpfr_t b8[7];

mpfr_t b9[8];

mpfr_t b10[9];

mpfr_t b11[10];

mpfr_t b12[11];

mpfr_t b13[12];

rkvars_t(void) {

for(unsigned short i=0U ; i<13U ; i++)

mpfr_init2(Abar[i],MPFR_PRECISION);

for(unsigned short i=0U ; i<12U ; i++) {

mpfr_init2(A[i],MPFR_PRECISION);

mpfr_init2(b13[i],MPFR_PRECISION);

}

for(unsigned short i=0U ; i<11U ; i++)

mpfr_init2(b12[i],MPFR_PRECISION);

for(unsigned short i=0U ; i<10U ; i++) {

mpfr_init2(ah[i],MPFR_PRECISION);

mpfr_init2(b11[i],MPFR_PRECISION);

}

for(unsigned short i=0U ; i<9U ; i++)

mpfr_init2(b10[i],MPFR_PRECISION);

for(unsigned short i=0U ; i<8U ; i++)

mpfr_init2(b9[i],MPFR_PRECISION);

for(unsigned short i=0U ; i<7U ; i++)

mpfr_init2(b8[i],MPFR_PRECISION);

for(unsigned short i=0U ; i<6U ; i++)

mpfr_init2(b7[i],MPFR_PRECISION);

for(unsigned short i=0U ; i<5U ; i++)

mpfr_init2(b6[i],MPFR_PRECISION);

for(unsigned short i=0U ; i<4U ; i++)

mpfr_init2(b5[i],MPFR_PRECISION);
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for(unsigned short i=0U ; i<3U ; i++)

mpfr_init2(b4[i],MPFR_PRECISION);

for(unsigned short i=0U ; i<2U ; i++)

mpfr_init2(b3[i],MPFR_PRECISION);

mpfr_init2(b21,MPFR_PRECISION);

// now, let’s set them...

mpfr_set_str(temp.t1,"14005451.0",10,GMP_RNDN);

mpfr_set_str(temp.t2,"335480064.0",10,GMP_RNDN);

mpfr_div(Abar[0],temp.t1,temp.t2,GMP_RNDN);

mpfr_set_str(Abar[1],"0.0",10,GMP_RNDN);

mpfr_set_str(Abar[2],"0.0",10,GMP_RNDN);

mpfr_set_str(Abar[3],"0.0",10,GMP_RNDN);

mpfr_set_str(Abar[4],"0.0",10,GMP_RNDN);

mpfr_set_str(temp.t1,"-59238493.0",10,GMP_RNDN);

mpfr_set_str(temp.t2,"1068277825.0",10,GMP_RNDN);

mpfr_div(Abar[5],temp.t1,temp.t2,GMP_RNDN);

mpfr_set_str(temp.t1,"181606767.0",10,GMP_RNDN);

mpfr_set_str(temp.t2,"758867731.0",10,GMP_RNDN);

mpfr_div(Abar[6],temp.t1,temp.t2,GMP_RNDN);

mpfr_set_str(temp.t1,"561292985.0",10,GMP_RNDN);

mpfr_set_str(temp.t2,"797845732.0",10,GMP_RNDN);

mpfr_div(Abar[7],temp.t1,temp.t2,GMP_RNDN);

mpfr_set_str(temp.t1,"-1041891430.0",10,GMP_RNDN);

mpfr_set_str(temp.t2,"1371343529.0",10,GMP_RNDN);

mpfr_div(Abar[8],temp.t1,temp.t2,GMP_RNDN);

mpfr_set_str(temp.t1,"760417239.0",10,GMP_RNDN);

mpfr_set_str(temp.t2,"1151165299.0",10,GMP_RNDN);

mpfr_div(Abar[9],temp.t1,temp.t2,GMP_RNDN);

mpfr_set_str(temp.t1,"118820643.0",10,GMP_RNDN);

mpfr_set_str(temp.t2,"751138087.0",10,GMP_RNDN);

mpfr_div(Abar[10],temp.t1,temp.t2,GMP_RNDN);

mpfr_set_str(temp.t1,"-528747749.0",10,GMP_RNDN);

mpfr_set_str(temp.t2,"2220607170.0",10,GMP_RNDN);

mpfr_div(Abar[11],temp.t1,temp.t2,GMP_RNDN);

mpfr_set_str(Abar[12],"0.25",10,GMP_RNDN);

mpfr_set_str(temp.t1,"13451932.0",10,GMP_RNDN);

mpfr_set_str(temp.t2,"455176623.0",10,GMP_RNDN);

mpfr_div(A[0],temp.t1,temp.t2,GMP_RNDN);

mpfr_set_str(A[1],"0.0",10,GMP_RNDN);

mpfr_set_str(A[2],"0.0",10,GMP_RNDN);

mpfr_set_str(A[3],"0.0",10,GMP_RNDN);

mpfr_set_str(A[4],"0.0",10,GMP_RNDN);

mpfr_set_str(temp.t1,"-808719846.0",10,GMP_RNDN);
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mpfr_set_str(temp.t2,"976000145.0",10,GMP_RNDN);

mpfr_div(A[5],temp.t1,temp.t2,GMP_RNDN);

mpfr_set_str(temp.t1,"1757004468.0",10,GMP_RNDN);

mpfr_set_str(temp.t2,"5645159321.0",10,GMP_RNDN);

mpfr_div(A[6],temp.t1,temp.t2,GMP_RNDN);

mpfr_set_str(temp.t1,"656045339.0",10,GMP_RNDN);

mpfr_set_str(temp.t2,"265891186.0",10,GMP_RNDN);

mpfr_div(A[7],temp.t1,temp.t2,GMP_RNDN);

mpfr_set_str(temp.t1,"-3867574721.0",10,GMP_RNDN);

mpfr_set_str(temp.t2,"1518517206.0",10,GMP_RNDN);

mpfr_div(A[8],temp.t1,temp.t2,GMP_RNDN);

mpfr_set_str(temp.t1,"465885868.0",10,GMP_RNDN);

mpfr_set_str(temp.t2,"322736535.0",10,GMP_RNDN);

mpfr_div(A[9],temp.t1,temp.t2,GMP_RNDN);

mpfr_set_str(temp.t1,"53011238.0",10,GMP_RNDN);

mpfr_set_str(temp.t2,"667516719.0",10,GMP_RNDN);

mpfr_div(A[10],temp.t1,temp.t2,GMP_RNDN);

mpfr_set_str(temp.t1,"2.0",10,GMP_RNDN);

mpfr_set_str(temp.t2,"45.0",10,GMP_RNDN);

mpfr_div(A[11],temp.t1,temp.t2,GMP_RNDN);

mpfr_set_str(temp.t1,"1.0",10,GMP_RNDN);

mpfr_set_str(temp.t2,"18.0",10,GMP_RNDN);

mpfr_div(ah[0],temp.t1,temp.t2,GMP_RNDN);

mpfr_set_str(temp.t1,"1.0",10,GMP_RNDN);

mpfr_set_str(temp.t2,"12.0",10,GMP_RNDN);

mpfr_div(ah[1],temp.t1,temp.t2,GMP_RNDN);

mpfr_set_str(temp.t1,"1.0",10,GMP_RNDN);

mpfr_set_str(temp.t2,"8.0",10,GMP_RNDN);

mpfr_div(ah[2],temp.t1,temp.t2,GMP_RNDN);

mpfr_set_str(temp.t1,"5.0",10,GMP_RNDN);

mpfr_set_str(temp.t2,"16.0",10,GMP_RNDN);

mpfr_div(ah[3],temp.t1,temp.t2,GMP_RNDN);

mpfr_set_str(temp.t1,"3.0",10,GMP_RNDN);

mpfr_set_str(temp.t2,"8.0",10,GMP_RNDN);

mpfr_div(ah[4],temp.t1,temp.t2,GMP_RNDN);

mpfr_set_str(temp.t1,"59.0",10,GMP_RNDN);

mpfr_set_str(temp.t2,"400.0",10,GMP_RNDN);

mpfr_div(ah[5],temp.t1,temp.t2,GMP_RNDN);

mpfr_set_str(temp.t1,"93.0",10,GMP_RNDN);

mpfr_set_str(temp.t2,"200.0",10,GMP_RNDN);

mpfr_div(ah[6],temp.t1,temp.t2,GMP_RNDN);

mpfr_set_str(temp.t1,"5490023248.0",10,GMP_RNDN);

mpfr_set_str(temp.t2,"9719169821.0",10,GMP_RNDN);
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mpfr_div(ah[7],temp.t1,temp.t2,GMP_RNDN);

mpfr_set_str(temp.t1,"13.0",10,GMP_RNDN);

mpfr_set_str(temp.t2,"20.0",10,GMP_RNDN);

mpfr_div(ah[8],temp.t1,temp.t2,GMP_RNDN);

mpfr_set_str(temp.t1,"1201146811.0",10,GMP_RNDN);

mpfr_set_str(temp.t2,"1299019798.0",10,GMP_RNDN);

mpfr_div(ah[9],temp.t1,temp.t2,GMP_RNDN);

mpfr_set_str(temp.t1,"1.0",10,GMP_RNDN);

mpfr_set_str(temp.t2,"18.0",10,GMP_RNDN);

mpfr_div(b21,temp.t1,temp.t2,GMP_RNDN);

mpfr_set_str(temp.t1,"1.0",10,GMP_RNDN);

mpfr_set_str(temp.t2,"48.0",10,GMP_RNDN);

mpfr_div(b3[0],temp.t1,temp.t2,GMP_RNDN);

mpfr_set_str(temp.t1,"1.0",10,GMP_RNDN);

mpfr_set_str(temp.t2,"16.0",10,GMP_RNDN);

mpfr_div(b3[1],temp.t1,temp.t2,GMP_RNDN);

mpfr_set_str(temp.t1,"1.0",10,GMP_RNDN);

mpfr_set_str(temp.t2,"32.0",10,GMP_RNDN);

mpfr_div(b4[0],temp.t1,temp.t2,GMP_RNDN);

mpfr_set_str(b4[1],"0.0",10,GMP_RNDN);

mpfr_set_str(temp.t1,"3.0",10,GMP_RNDN);

mpfr_set_str(temp.t2,"32.0",10,GMP_RNDN);

mpfr_div(b4[2],temp.t1,temp.t2,GMP_RNDN);

mpfr_set_str(temp.t1,"5.0",10,GMP_RNDN);

mpfr_set_str(temp.t2,"16.0",10,GMP_RNDN);

mpfr_div(b5[0],temp.t1,temp.t2,GMP_RNDN);

mpfr_set_str(b5[1],"0.0",10,GMP_RNDN);

mpfr_set_str(temp.t1,"-75.0",10,GMP_RNDN);

mpfr_set_str(temp.t2,"64.0",10,GMP_RNDN);

mpfr_div(b5[2],temp.t1,temp.t2,GMP_RNDN);

mpfr_set_str(temp.t1,"75.0",10,GMP_RNDN);

mpfr_set_str(temp.t2,"64.0",10,GMP_RNDN);

mpfr_div(b5[3],temp.t1,temp.t2,GMP_RNDN);

mpfr_set_str(temp.t1,"3.0",10,GMP_RNDN);

mpfr_set_str(temp.t2,"80.0",10,GMP_RNDN);

mpfr_div(b6[0],temp.t1,temp.t2,GMP_RNDN);

mpfr_set_str(b6[1],"0.0",10,GMP_RNDN);

mpfr_set_str(b6[2],"0.0",10,GMP_RNDN);

mpfr_set_str(temp.t1,"3.0",10,GMP_RNDN);

mpfr_set_str(temp.t2,"16.0",10,GMP_RNDN);

mpfr_div(b6[3],temp.t1,temp.t2,GMP_RNDN);

mpfr_set_str(temp.t1,"3.0",10,GMP_RNDN);

mpfr_set_str(temp.t2,"20.0",10,GMP_RNDN);
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mpfr_div(b6[4],temp.t1,temp.t2,GMP_RNDN);

mpfr_set_str(temp.t1,"29443841.0",10,GMP_RNDN);

mpfr_set_str(temp.t2,"614563906.0",10,GMP_RNDN);

mpfr_div(b7[0],temp.t1,temp.t2,GMP_RNDN);

mpfr_set_str(b7[1],"0.0",10,GMP_RNDN);

mpfr_set_str(b7[2],"0.0",10,GMP_RNDN);

mpfr_set_str(temp.t1,"77736538.0",10,GMP_RNDN);

mpfr_set_str(temp.t2,"692538347.0",10,GMP_RNDN);

mpfr_div(b7[3],temp.t1,temp.t2,GMP_RNDN);

mpfr_set_str(temp.t1,"-28693883.0",10,GMP_RNDN);

mpfr_set_str(temp.t2,"1125000000.0",10,GMP_RNDN);

mpfr_div(b7[4],temp.t1,temp.t2,GMP_RNDN);

mpfr_set_str(temp.t1,"23124283.0",10,GMP_RNDN);

mpfr_set_str(temp.t2,"1800000000.0",10,GMP_RNDN);

mpfr_div(b7[5],temp.t1,temp.t2,GMP_RNDN);

mpfr_set_str(temp.t1,"16016141.0",10,GMP_RNDN);

mpfr_set_str(temp.t2,"946692911.0",10,GMP_RNDN);

mpfr_div(b8[0],temp.t1,temp.t2,GMP_RNDN);

mpfr_set_str(b8[1],"0.0",10,GMP_RNDN);

mpfr_set_str(b8[2],"0.0",10,GMP_RNDN);

mpfr_set_str(temp.t1,"61564180.0",10,GMP_RNDN);

mpfr_set_str(temp.t2,"158732637.0",10,GMP_RNDN);

mpfr_div(b8[3],temp.t1,temp.t2,GMP_RNDN);

mpfr_set_str(temp.t1,"22789713.0",10,GMP_RNDN);

mpfr_set_str(temp.t2,"633445777.0",10,GMP_RNDN);

mpfr_div(b8[4],temp.t1,temp.t2,GMP_RNDN);

mpfr_set_str(temp.t1,"545815736.0",10,GMP_RNDN);

mpfr_set_str(temp.t2,"2771057229.0",10,GMP_RNDN);

mpfr_div(b8[5],temp.t1,temp.t2,GMP_RNDN);

mpfr_set_str(temp.t1,"-180193667.0",10,GMP_RNDN);

mpfr_set_str(temp.t2,"1043307555.0",10,GMP_RNDN);

mpfr_div(b8[6],temp.t1,temp.t2,GMP_RNDN);

mpfr_set_str(temp.t1,"39632708.0",10,GMP_RNDN);

mpfr_set_str(temp.t2,"573591083.0",10,GMP_RNDN);

mpfr_div(b9[0],temp.t1,temp.t2,GMP_RNDN);

mpfr_set_str(b9[1],"0.0",10,GMP_RNDN);

mpfr_set_str(b9[2],"0.0",10,GMP_RNDN);

mpfr_set_str(temp.t1,"-433636366.0",10,GMP_RNDN);

mpfr_set_str(temp.t2,"683701615.0",10,GMP_RNDN);

mpfr_div(b9[3],temp.t1,temp.t2,GMP_RNDN);

mpfr_set_str(temp.t1,"-421739975.0",10,GMP_RNDN);

mpfr_set_str(temp.t2,"2616292301.0",10,GMP_RNDN);

mpfr_div(b9[4],temp.t1,temp.t2,GMP_RNDN);
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mpfr_set_str(temp.t1,"100302831.0",10,GMP_RNDN);

mpfr_set_str(temp.t2,"723423059.0",10,GMP_RNDN);

mpfr_div(b9[5],temp.t1,temp.t2,GMP_RNDN);

mpfr_set_str(temp.t1,"790204164.0",10,GMP_RNDN);

mpfr_set_str(temp.t2,"839813087.0",10,GMP_RNDN);

mpfr_div(b9[6],temp.t1,temp.t2,GMP_RNDN);

mpfr_set_str(temp.t1,"800635310.0",10,GMP_RNDN);

mpfr_set_str(temp.t2,"3783071287.0",10,GMP_RNDN);

mpfr_div(b9[7],temp.t1,temp.t2,GMP_RNDN);

mpfr_set_str(temp.t1,"246121993.0",10,GMP_RNDN);

mpfr_set_str(temp.t2,"1340847787.0",10,GMP_RNDN);

mpfr_div(b10[0],temp.t1,temp.t2,GMP_RNDN);

mpfr_set_str(b10[1],"0.0",10,GMP_RNDN);

mpfr_set_str(b10[2],"0.0",10,GMP_RNDN);

mpfr_set_str(temp.t1,"-37695042795.0",10,GMP_RNDN);

mpfr_set_str(temp.t2,"15268766246.0",10,GMP_RNDN);

mpfr_div(b10[3],temp.t1,temp.t2,GMP_RNDN);

mpfr_set_str(temp.t1,"-309121744.0",10,GMP_RNDN);

mpfr_set_str(temp.t2,"1061227803.0",10,GMP_RNDN);

mpfr_div(b10[4],temp.t1,temp.t2,GMP_RNDN);

mpfr_set_str(temp.t1,"-12992083.0",10,GMP_RNDN);

mpfr_set_str(temp.t2,"490766935.0",10,GMP_RNDN);

mpfr_div(b10[5],temp.t1,temp.t2,GMP_RNDN);

mpfr_set_str(temp.t1,"6005943493.0",10,GMP_RNDN);

mpfr_set_str(temp.t2,"2108947869.0",10,GMP_RNDN);

mpfr_div(b10[6],temp.t1,temp.t2,GMP_RNDN);

mpfr_set_str(temp.t1,"393006217.0",10,GMP_RNDN);

mpfr_set_str(temp.t2,"1396673457.0",10,GMP_RNDN);

mpfr_div(b10[7],temp.t1,temp.t2,GMP_RNDN);

mpfr_set_str(temp.t1,"123872331.0",10,GMP_RNDN);

mpfr_set_str(temp.t2,"1001029789.0",10,GMP_RNDN);

mpfr_div(b10[8],temp.t1,temp.t2,GMP_RNDN);

mpfr_set_str(temp.t1,"-1028468189.0",10,GMP_RNDN);

mpfr_set_str(temp.t2,"846180014.0",10,GMP_RNDN);

mpfr_div(b11[0],temp.t1,temp.t2,GMP_RNDN);

mpfr_set_str(b11[1],"0.0",10,GMP_RNDN);

mpfr_set_str(b11[2],"0.0",10,GMP_RNDN);

mpfr_set_str(temp.t1,"8478235783.0",10,GMP_RNDN);

mpfr_set_str(temp.t2,"508512852.0",10,GMP_RNDN);

mpfr_div(b11[3],temp.t1,temp.t2,GMP_RNDN);

mpfr_set_str(temp.t1,"1311729495.0",10,GMP_RNDN);

mpfr_set_str(temp.t2,"1432422823.0",10,GMP_RNDN);

mpfr_div(b11[4],temp.t1,temp.t2,GMP_RNDN);
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mpfr_set_str(temp.t1,"-10304129995.0",10,GMP_RNDN);

mpfr_set_str(temp.t2,"1701304382.0",10,GMP_RNDN);

mpfr_div(b11[5],temp.t1,temp.t2,GMP_RNDN);

mpfr_set_str(temp.t1,"-48777925059.0",10,GMP_RNDN);

mpfr_set_str(temp.t2,"3047939560.0",10,GMP_RNDN);

mpfr_div(b11[6],temp.t1,temp.t2,GMP_RNDN);

mpfr_set_str(temp.t1,"15336726248.0",10,GMP_RNDN);

mpfr_set_str(temp.t2,"1032824649.0",10,GMP_RNDN);

mpfr_div(b11[7],temp.t1,temp.t2,GMP_RNDN);

mpfr_set_str(temp.t1,"-45442868181.0",10,GMP_RNDN);

mpfr_set_str(temp.t2,"3398467696.0",10,GMP_RNDN);

mpfr_div(b11[8],temp.t1,temp.t2,GMP_RNDN);

mpfr_set_str(temp.t1,"3065993473.0",10,GMP_RNDN);

mpfr_set_str(temp.t2,"597172653.0",10,GMP_RNDN);

mpfr_div(b11[9],temp.t1,temp.t2,GMP_RNDN);

mpfr_set_str(temp.t1,"185892177.0",10,GMP_RNDN);

mpfr_set_str(temp.t2,"718116043.0",10,GMP_RNDN);

mpfr_div(b12[0],temp.t1,temp.t2,GMP_RNDN);

mpfr_set_str(b12[1],"0.0",10,GMP_RNDN);

mpfr_set_str(b12[2],"0.0",10,GMP_RNDN);

mpfr_set_str(temp.t1,"-3185094517.0",10,GMP_RNDN);

mpfr_set_str(temp.t2,"667107341.0",10,GMP_RNDN);

mpfr_div(b12[3],temp.t1,temp.t2,GMP_RNDN);

mpfr_set_str(temp.t1,"-477755414.0",10,GMP_RNDN);

mpfr_set_str(temp.t2,"1098053517.0",10,GMP_RNDN);

mpfr_div(b12[4],temp.t1,temp.t2,GMP_RNDN);

mpfr_set_str(temp.t1,"-703635378.0",10,GMP_RNDN);

mpfr_set_str(temp.t2,"230739211.0",10,GMP_RNDN);

mpfr_div(b12[5],temp.t1,temp.t2,GMP_RNDN);

mpfr_set_str(temp.t1,"5731566787.0",10,GMP_RNDN);

mpfr_set_str(temp.t2,"1027545527.0",10,GMP_RNDN);

mpfr_div(b12[6],temp.t1,temp.t2,GMP_RNDN);

mpfr_set_str(temp.t1,"5232866602.0",10,GMP_RNDN);

mpfr_set_str(temp.t2,"850066563.0",10,GMP_RNDN);

mpfr_div(b12[7],temp.t1,temp.t2,GMP_RNDN);

mpfr_set_str(temp.t1,"-4093664535.0",10,GMP_RNDN);

mpfr_set_str(temp.t2,"808688257.0",10,GMP_RNDN);

mpfr_div(b12[8],temp.t1,temp.t2,GMP_RNDN);

mpfr_set_str(temp.t1,"3962137247.0",10,GMP_RNDN);

mpfr_set_str(temp.t2,"1805957418.0",10,GMP_RNDN);

mpfr_div(b12[9],temp.t1,temp.t2,GMP_RNDN);

mpfr_set_str(temp.t1,"65686358.0",10,GMP_RNDN);

mpfr_set_str(temp.t2,"487910083.0",10,GMP_RNDN);
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mpfr_div(b12[10],temp.t1,temp.t2,GMP_RNDN);

mpfr_set_str(temp.t1,"403863854.0",10,GMP_RNDN);

mpfr_set_str(temp.t2,"491063109.0",10,GMP_RNDN);

mpfr_div(b13[0],temp.t1,temp.t2,GMP_RNDN);

mpfr_set_str(b13[1],"0.0",10,GMP_RNDN);

mpfr_set_str(b13[2],"0.0",10,GMP_RNDN);

mpfr_set_str(temp.t1,"-5068492393.0",10,GMP_RNDN);

mpfr_set_str(temp.t2,"434740067.0",10,GMP_RNDN);

mpfr_div(b13[3],temp.t1,temp.t2,GMP_RNDN);

mpfr_set_str(temp.t1,"-411421997.0",10,GMP_RNDN);

mpfr_set_str(temp.t2,"543043805.0",10,GMP_RNDN);

mpfr_div(b13[4],temp.t1,temp.t2,GMP_RNDN);

mpfr_set_str(temp.t1,"652783627.0",10,GMP_RNDN);

mpfr_set_str(temp.t2,"914296604.0",10,GMP_RNDN);

mpfr_div(b13[5],temp.t1,temp.t2,GMP_RNDN);

mpfr_set_str(temp.t1,"11173962825.0",10,GMP_RNDN);

mpfr_set_str(temp.t2,"925320556.0",10,GMP_RNDN);

mpfr_div(b13[6],temp.t1,temp.t2,GMP_RNDN);

mpfr_set_str(temp.t1,"-13158990841.0",10,GMP_RNDN);

mpfr_set_str(temp.t2,"6184727034.0",10,GMP_RNDN);

mpfr_div(b13[7],temp.t1,temp.t2,GMP_RNDN);

mpfr_set_str(temp.t1,"3936647629.0",10,GMP_RNDN);

mpfr_set_str(temp.t2,"1978049680.0",10,GMP_RNDN);

mpfr_div(b13[8],temp.t1,temp.t2,GMP_RNDN);

mpfr_set_str(temp.t1,"-160528059.0",10,GMP_RNDN);

mpfr_set_str(temp.t2,"685178525.0",10,GMP_RNDN);

mpfr_div(b13[9],temp.t1,temp.t2,GMP_RNDN);

mpfr_set_str(temp.t1,"248638103.0",10,GMP_RNDN);

mpfr_set_str(temp.t2,"1413531060.0",10,GMP_RNDN);

mpfr_div(b13[10],temp.t1,temp.t2,GMP_RNDN);

mpfr_set_str(b13[11],"0.0",10,GMP_RNDN);

}

~rkvars_t(void) {

for(unsigned short i=0U ; i<13U ; i++)

mpfr_clear(Abar[i]);

for(unsigned short i=0U ; i<12U ; i++) {

mpfr_clear(A[i]);

mpfr_clear(b13[i]);

}

for(unsigned short i=0U ; i<11U ; i++)

mpfr_clear(b12[i]);

for(unsigned short i=0U ; i<10U ; i++) {

mpfr_clear(ah[i]);
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mpfr_clear(b11[i]);

}

for(unsigned short i=0U ; i<9U ; i++)

mpfr_clear(b10[i]);

for(unsigned short i=0U ; i<8U ; i++)

mpfr_clear(b9[i]);

for(unsigned short i=0U ; i<7U ; i++)

mpfr_clear(b8[i]);

for(unsigned short i=0U ; i<6U ; i++)

mpfr_clear(b7[i]);

for(unsigned short i=0U ; i<5U ; i++)

mpfr_clear(b6[i]);

for(unsigned short i=0U ; i<4U ; i++)

mpfr_clear(b5[i]);

for(unsigned short i=0U ; i<3U ; i++)

mpfr_clear(b4[i]);

for(unsigned short i=0U ; i<2U ; i++)

mpfr_clear(b3[i]);

mpfr_clear(b21);

}

} rk;

int main(int argc, char* argv[]) {

switch( read_input(argc,argv) ) {

case 0: break;

case 1: return 0;

default:

case 2: return 1;

}

if ( init_mathlink() ) return 1;

FILE* pdata;

pdata = fopen("data","w");

mpfr_t t_now, t_end, t_end_inter, t_step, h_step, y[4];

mpfr_init2(t_now,MPFR_PRECISION);

mpfr_set_str(t_now,"0.0",10,GMP_RNDZ);

mpfr_init2(t_end,MPFR_PRECISION);

mpfr_set_str(t_end,inits.end_time.c_str(),10,GMP_RNDN);
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mpfr_init2(t_end_inter,MPFR_PRECISION);

mpfr_set_str(t_end_inter,inits.end_time_step.c_str(),10,GMP_RNDN);

mpfr_init2(t_step,MPFR_PRECISION);

mpfr_set_str(t_step,inits.end_time_step.c_str(),10,GMP_RNDN);

mpfr_init2(h_step,MPFR_PRECISION);

mpfr_set_str(h_step,START_STEP_SIZE,10,GMP_RNDN);

mpfr_init2(y[0],MPFR_PRECISION);

mpfr_init2(y[1],MPFR_PRECISION);

mpfr_init2(y[2],MPFR_PRECISION);

mpfr_init2(y[3],MPFR_PRECISION);

mpfr_set_str(y[0],inits.init_x_r.c_str(),10,GMP_RNDN);

mpfr_set_str(y[1],inits.init_x_i.c_str(),10,GMP_RNDN);

{ // save some memory

stringstream ss;

ss << "SetPrecision[ Chop [ (2(JacobiCN[ " << inits.init_x_r

<< " + " << inits.init_x_i << " I , " << inits.param

<< " ] + " << inits.energy << " ) )^0.5 ] , "

<< MATHEMATICA_PRECISION << "]";

MLPutFunction(mlink, "EvaluatePacket", 1);

MLPutFunction(mlink, "ToString", 1);

MLPutFunction(mlink, "ToExpression", 1);

MLPutString(mlink, (ss.str()).c_str() );

MLEndPacket(mlink);

int init_pkt = 0;

while( (init_pkt = MLNextPacket(mlink),init_pkt)

&& init_pkt != RETURNPKT )

MLNewPacket(mlink);

if(!init_pkt) {

cerr << "error: mathlink error for initial p calculation.\n";

mpfr_clear(t_now);

mpfr_clear(t_end);

mpfr_clear(t_end_inter);

mpfr_clear(t_step);

mpfr_clear(h_step);

mpfr_clear(y[0]);

mpfr_clear(y[1]);
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mpfr_clear(y[2]);

mpfr_clear(y[3]);

mpfr_free_cache();

MLClose(mlink);

MLDeinitialize(mlenv);

return 1;

}

const char* str;

MLGetString(mlink,&str);

string answer = str;

size_t i_pos = answer.find(’I’);

if ( i_pos == string::npos ) {

mpfr_set_str(y[2],str,10,GMP_RNDN);

mpfr_set_str(y[3],"0.0",10,GMP_RNDN);

}

else {

size_t split = answer.find_first_of("-+",1);

if ( split == string::npos ) {

mpfr_set_str(y[2],"0.0",10,GMP_RNDN);

mpfr_set_str(y[3],

answer.substr(0U,i_pos-1U).c_str(),

10,GMP_RNDN);

}

else {

mpfr_set_str(y[2],

(answer.substr(0U,split)).c_str(),

10,GMP_RNDN);

string imag = answer.substr( split, answer.length()-split-1U );

imag.erase(1,1);

mpfr_set_str(y[3],imag.c_str(),10,GMP_RNDN);

}

}

MLDisownString(mlink,str);

}

int status = 0;

cout << "starting...\n";

evolve_loop:

status = evolve_apply(t_now,t_end_inter,h_step,y);

if( status ) {

mpfr_clear(t_now);

mpfr_clear(t_end);

mpfr_clear(t_end_inter);
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mpfr_clear(t_step);

mpfr_clear(h_step);

mpfr_clear(y[0]);

mpfr_clear(y[1]);

mpfr_clear(y[2]);

mpfr_clear(y[3]);

mpfr_free_cache();

MLClose(mlink);

MLDeinitialize(mlenv);

return status;

}

mpfr_fprintf(pdata,"%.15RNf\t%.15RNf\t%.15RNf\t%.15RNf\t%.15RNf\n",

t_now,y[0],y[1],y[2],y[3]);

if ( mpfr_cmp(t_now,t_end_inter) < 0 ) goto evolve_loop;

if ( mpfr_cmp(t_end_inter,t_end) < 0 ) {

mpfr_add(t_end_inter,t_end_inter,t_step,GMP_RNDN);

goto evolve_loop;

}

cout << "done.\n";

mpfr_clear(t_now);

mpfr_clear(t_end);

mpfr_clear(t_end_inter);

mpfr_clear(t_step);

mpfr_clear(h_step);

mpfr_clear(y[0]);

mpfr_clear(y[1]);

mpfr_clear(y[2]);

mpfr_clear(y[3]);

mpfr_free_cache();

MLClose(mlink);

MLDeinitialize(mlenv);

return status;

}

int evolve_apply(mpfr_t t, const mpfr_t t1, mpfr_t h, mpfr_t y[]) {

mpfr_t t0, h0, dt;

mpfr_init2(t0,MPFR_PRECISION);

mpfr_set(t0,t,GMP_RNDN);
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mpfr_init2(h0,MPFR_PRECISION);

mpfr_set(h0,h,GMP_RNDN);

mpfr_init2(dt,MPFR_PRECISION);

mpfr_sub(dt,t1,t0,GMP_RNDN);

int step_status;

bool final_step = false;

mpfr_set(evolve.y0[0],y[0],GMP_RNDN);

mpfr_set(evolve.y0[1],y[1],GMP_RNDN);

mpfr_set(evolve.y0[2],y[2],GMP_RNDN);

mpfr_set(evolve.y0[3],y[3],GMP_RNDN);

int status = func(y,evolve.dydt_in);

if( status ) return status;

int c1, c2;

try_step:

c1 = mpfr_cmp_d(dt,0.0);

c2 = mpfr_cmp(h0,dt);

if( (c1>=0 && c2>0) || (c1<0 && c2<0) )

{

mpfr_set(h0,dt,GMP_RNDN);

final_step = true;

}

else final_step = false;

step_status = rk8pd_apply(h0,y);

/* Check for stepper internal failure */

if (step_status != 0)

{

mpfr_set(h,h0,GMP_RNDN);

/* notify user of step-size which caused the failure */

return step_status;

}

evolve.count++;

mpfr_set(evolve.last_step,h0,GMP_RNDN);
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if (final_step)

mpfr_set(t,t1,GMP_RNDN);

else

mpfr_add(t,t0,h0,GMP_RNDN);

/* Check error and attempt to adjust the step. */

const int h_adjust_status = h_adjust(y,h0);

if (h_adjust_status == -1)

{

/* Step was decreased. Undo and go back to try again. */

mpfr_set(y[0],evolve.y0[0],GMP_RNDN);

mpfr_set(y[1],evolve.y0[1],GMP_RNDN);

mpfr_set(y[2],evolve.y0[2],GMP_RNDN);

mpfr_set(y[3],evolve.y0[3],GMP_RNDN);

evolve.failed_steps++;

goto try_step;

}

mpfr_set(h,h0,GMP_RNDN);

/* suggest step size for next time-step */

mpfr_clear(t0);

mpfr_clear(h0);

mpfr_clear(dt);

return step_status;

}

int h_adjust(const mpfr_t y[], mpfr_t h) {

mpfr_t h_old;

mpfr_init2(h_old,MPFR_PRECISION);

mpfr_set(h_old,h,GMP_RNDN);

mpfr_t rmax, D0, r;

mpfr_init2(rmax,MPFR_PRECISION);

mpfr_set_d(rmax,LDBL_MIN,GMP_RNDN); // DBL_MIN? What else?

mpfr_init2(D0,MPFR_PRECISION);

mpfr_init2(r,MPFR_PRECISION);

for(int i=0; i<4; i++) { // ‘4’ for the dimension of the system.
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mpfr_abs(D0,y[i],GMP_RNDN);

mpfr_mul(D0,D0,control.eps_rel,GMP_RNDN);

mpfr_add(D0,D0,control.eps_abs,GMP_RNDN);

mpfr_div(r,evolve.yerr[i],D0,GMP_RNDN);

mpfr_abs(r,r,GMP_RNDN);

mpfr_max(rmax,r,rmax,GMP_RNDN);

}

if ( mpfr_cmp_d(rmax,1.1) > 0 ) {

/* decrease step, no more than factor of 5, but a fraction S more

than scaling suggests (for better accuracy) */

// N.B. THIS REUSES D0 AND r FROM BEFORE.

mpfr_set_str(D0,"0.125",10,GMP_RNDN);

mpfr_pow(D0,rmax,D0,GMP_RNDN);

mpfr_d_div(r,0.9,D0,GMP_RNDN);

if ( mpfr_cmp_d(r,0.2) < 0 )

mpfr_set_str(r,"0.2",10,GMP_RNDN);

mpfr_mul(h,r,h_old,GMP_RNDN);

// return GSL_ODEIV_HADJ_DEC; // (-1)

mpfr_clear(h_old);

mpfr_clear(rmax);

mpfr_clear(D0);

mpfr_clear(r);

return -1;

}

else if ( mpfr_cmp_d(rmax,0.5) < 0 ) {

/* increase step, no more than factor of 5 */

mpfr_set_str(temp.t1,"1.0",10,GMP_RNDN);

mpfr_set_str(temp.t2,"9.0",10,GMP_RNDN);

mpfr_div(D0,temp.t1,temp.t2,GMP_RNDN);

mpfr_pow(D0,rmax,D0,GMP_RNDN);

mpfr_d_div(r,0.9,D0,GMP_RNDN);

if ( mpfr_cmp_d(r,5.0) > 0 )

{

mpfr_set_str(r,"5.0",10,GMP_RNDN);

}

else if( mpfr_cmp_d(r,1.0) < 0 )
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mpfr_set_str(r,"1.0",10,GMP_RNDN);

mpfr_mul(h,r,h_old,GMP_RNDN);

// return GSL_ODEIV_HADJ_INC; // (1)

mpfr_clear(h_old);

mpfr_clear(rmax);

mpfr_clear(D0);

mpfr_clear(r);

return 1;

}

else {

/* no change */

// return GSL_ODEIV_HADJ_NIL; // (0)

mpfr_clear(h_old);

mpfr_clear(rmax);

mpfr_clear(D0);

mpfr_clear(r);

return 0;

}

}

int rk8pd_apply(mpfr_t h, mpfr_t y[])

{

int status;

// k1 step

mpfr_set(step.k[0][0],evolve.dydt_in[0],GMP_RNDN);

mpfr_set(step.k[0][1],evolve.dydt_in[1],GMP_RNDN);

mpfr_set(step.k[0][2],evolve.dydt_in[2],GMP_RNDN);

mpfr_set(step.k[0][3],evolve.dydt_in[3],GMP_RNDN);

int i;

for (i=0 ; i < 4 ; i++ ) {

mpfr_mul(step.ytmp[i], h , step.k[0][i], GMP_RNDN);

mpfr_mul(step.ytmp[i], step.ytmp[i], rk.b21 , GMP_RNDN);

mpfr_add(step.ytmp[i], step.ytmp[i], y[i] , GMP_RNDN);

}

// k2 step

status = func (step.ytmp, step.k[1]);

if ( status != 0 ) return status;
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for (i = 0; i < 4; i++) {

mpfr_mul(temp.t1 , rk.b3[1] , step.k[1][i], GMP_RNDN);

mpfr_mul(step.ytmp[i], rk.b3[0] , step.k[0][i], GMP_RNDN);

mpfr_add(step.ytmp[i], step.ytmp[i], temp.t1 , GMP_RNDN);

mpfr_mul(step.ytmp[i], step.ytmp[i], h , GMP_RNDN);

mpfr_add(step.ytmp[i], step.ytmp[i], y[i] , GMP_RNDN);

}

// k3 step

status = func(step.ytmp, step.k[2]);

if ( status != 0 ) return status;

for (i = 0; i < 4; i++) {

mpfr_mul(temp.t1 , rk.b4[2] , step.k[2][i], GMP_RNDN);

mpfr_mul(step.ytmp[i], rk.b4[0] , step.k[0][i], GMP_RNDN);

mpfr_add(step.ytmp[i], step.ytmp[i], temp.t1 , GMP_RNDN);

mpfr_mul(step.ytmp[i], step.ytmp[i], h , GMP_RNDN);

mpfr_add(step.ytmp[i], step.ytmp[i], y[i] , GMP_RNDN);

}

// k4 step

status = func(step.ytmp, step.k[3]);

if ( status != 0 ) return status;

for (i = 0; i < 4; i++) {

mpfr_mul(temp.t1 , rk.b5[3] , step.k[3][i], GMP_RNDN);

mpfr_mul(step.ytmp[i], rk.b5[2] , step.k[2][i], GMP_RNDN);

mpfr_add(step.ytmp[i], step.ytmp[i], temp.t1 , GMP_RNDN);

mpfr_mul(temp.t1 , rk.b5[0] , step.k[0][i], GMP_RNDN);

mpfr_add(step.ytmp[i], step.ytmp[i], temp.t1 , GMP_RNDN);

mpfr_mul(step.ytmp[i], step.ytmp[i], h , GMP_RNDN);

mpfr_add(step.ytmp[i], step.ytmp[i], y[i] , GMP_RNDN);

}

// k5 step

status = func(step.ytmp, step.k[4]);

if ( status != 0 ) return status;

for (i = 0; i < 4; i++) {

mpfr_mul(temp.t1 , rk.b6[4] , step.k[4][i], GMP_RNDN);

mpfr_mul(step.ytmp[i], rk.b6[3] , step.k[3][i], GMP_RNDN);

mpfr_add(step.ytmp[i], step.ytmp[i], temp.t1 , GMP_RNDN);

mpfr_mul(temp.t1 , rk.b6[0] , step.k[0][i], GMP_RNDN);
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mpfr_add(step.ytmp[i], step.ytmp[i], temp.t1 , GMP_RNDN);

mpfr_mul(step.ytmp[i], step.ytmp[i], h , GMP_RNDN);

mpfr_add(step.ytmp[i], step.ytmp[i], y[i] , GMP_RNDN);

}

// k6 step

status = func(step.ytmp, step.k[5]);

if ( status != 0 ) return status;

for (i = 0; i < 4; i++) {

mpfr_mul(temp.t1 , rk.b7[5] , step.k[5][i], GMP_RNDN);

mpfr_mul(step.ytmp[i], rk.b7[4] , step.k[4][i], GMP_RNDN);

mpfr_add(step.ytmp[i], step.ytmp[i], temp.t1 , GMP_RNDN);

mpfr_mul(temp.t1 , rk.b7[3] , step.k[3][i], GMP_RNDN);

mpfr_add(step.ytmp[i], step.ytmp[i], temp.t1 , GMP_RNDN);

mpfr_mul(temp.t1 , rk.b7[0] , step.k[0][i], GMP_RNDN);

mpfr_add(step.ytmp[i], step.ytmp[i], temp.t1 , GMP_RNDN);

mpfr_mul(step.ytmp[i], step.ytmp[i], h , GMP_RNDN);

mpfr_add(step.ytmp[i], step.ytmp[i], y[i] , GMP_RNDN);

}

// k7 step

status = func(step.ytmp, step.k[6]);

if ( status != 0 ) return status;

for (i = 0; i < 4; i++) {

mpfr_mul(temp.t1 , rk.b8[6] , step.k[6][i], GMP_RNDN);

mpfr_mul(step.ytmp[i], rk.b8[5] , step.k[5][i], GMP_RNDN);

mpfr_add(step.ytmp[i], step.ytmp[i], temp.t1 , GMP_RNDN);

mpfr_mul(temp.t1 , rk.b8[4] , step.k[4][i], GMP_RNDN);

mpfr_add(step.ytmp[i], step.ytmp[i], temp.t1 , GMP_RNDN);

mpfr_mul(temp.t1 , rk.b8[3] , step.k[3][i], GMP_RNDN);

mpfr_add(step.ytmp[i], step.ytmp[i], temp.t1 , GMP_RNDN);

mpfr_mul(temp.t1 , rk.b8[0] , step.k[0][i], GMP_RNDN);

mpfr_add(step.ytmp[i], step.ytmp[i], temp.t1 , GMP_RNDN);

mpfr_mul(step.ytmp[i], step.ytmp[i], h , GMP_RNDN);

mpfr_add(step.ytmp[i], step.ytmp[i], y[i] , GMP_RNDN);

}

// k8 step

status = func(step.ytmp, step.k[7]);

if ( status != 0 ) return status;
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for (i = 0; i < 4; i++) {

mpfr_mul(temp.t1 , rk.b9[7] , step.k[7][i], GMP_RNDN);

mpfr_mul(step.ytmp[i], rk.b9[6] , step.k[6][i], GMP_RNDN);

mpfr_add(step.ytmp[i], step.ytmp[i], temp.t1 , GMP_RNDN);

mpfr_mul(temp.t1 , rk.b9[5] , step.k[5][i], GMP_RNDN);

mpfr_add(step.ytmp[i], step.ytmp[i], temp.t1 , GMP_RNDN);

mpfr_mul(temp.t1 , rk.b9[4] , step.k[4][i], GMP_RNDN);

mpfr_add(step.ytmp[i], step.ytmp[i], temp.t1 , GMP_RNDN);

mpfr_mul(temp.t1 , rk.b9[3] , step.k[3][i], GMP_RNDN);

mpfr_add(step.ytmp[i], step.ytmp[i], temp.t1 , GMP_RNDN);

mpfr_mul(temp.t1 , rk.b9[0] , step.k[0][i], GMP_RNDN);

mpfr_add(step.ytmp[i], step.ytmp[i], temp.t1 , GMP_RNDN);

mpfr_mul(step.ytmp[i], step.ytmp[i], h , GMP_RNDN);

mpfr_add(step.ytmp[i], step.ytmp[i], y[i] , GMP_RNDN);

}

// k9 step

status = func(step.ytmp, step.k[8]);

if ( status != 0 ) return status;

for (i = 0; i < 4; i++) {

mpfr_mul(temp.t1 , rk.b10[8] , step.k[8][i], GMP_RNDN);

mpfr_mul(step.ytmp[i], rk.b10[7] , step.k[7][i], GMP_RNDN);

mpfr_add(step.ytmp[i], step.ytmp[i], temp.t1 , GMP_RNDN);

mpfr_mul(step.ytmp[i], rk.b10[6] , step.k[6][i], GMP_RNDN);

mpfr_add(step.ytmp[i], step.ytmp[i], temp.t1 , GMP_RNDN);

mpfr_mul(temp.t1 , rk.b10[5] , step.k[5][i], GMP_RNDN);

mpfr_add(step.ytmp[i], step.ytmp[i], temp.t1 , GMP_RNDN);

mpfr_mul(temp.t1 , rk.b10[4] , step.k[4][i], GMP_RNDN);

mpfr_add(step.ytmp[i], step.ytmp[i], temp.t1 , GMP_RNDN);

mpfr_mul(temp.t1 , rk.b10[3] , step.k[3][i], GMP_RNDN);

mpfr_add(step.ytmp[i], step.ytmp[i], temp.t1 , GMP_RNDN);

mpfr_mul(temp.t1 , rk.b10[0] , step.k[0][i], GMP_RNDN);

mpfr_add(step.ytmp[i], step.ytmp[i], temp.t1 , GMP_RNDN);

mpfr_mul(step.ytmp[i], step.ytmp[i], h , GMP_RNDN);

mpfr_add(step.ytmp[i], step.ytmp[i], y[i] , GMP_RNDN);

}

// k10 step

status = func(step.ytmp, step.k[9]);

if ( status != 0 ) return status;

for (i = 0; i < 4; i++) {
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mpfr_mul(temp.t1 , rk.b11[9] , step.k[9][i], GMP_RNDN);

mpfr_mul(step.ytmp[i], rk.b11[8] , step.k[8][i], GMP_RNDN);

mpfr_add(step.ytmp[i], step.ytmp[i], temp.t1 , GMP_RNDN);

mpfr_mul(step.ytmp[i], rk.b11[7] , step.k[7][i], GMP_RNDN);

mpfr_add(step.ytmp[i], step.ytmp[i], temp.t1 , GMP_RNDN);

mpfr_mul(step.ytmp[i], rk.b11[6] , step.k[6][i], GMP_RNDN);

mpfr_add(step.ytmp[i], step.ytmp[i], temp.t1 , GMP_RNDN);

mpfr_mul(temp.t1 , rk.b11[5] , step.k[5][i], GMP_RNDN);

mpfr_add(step.ytmp[i], step.ytmp[i], temp.t1 , GMP_RNDN);

mpfr_mul(temp.t1 , rk.b11[4] , step.k[4][i], GMP_RNDN);

mpfr_add(step.ytmp[i], step.ytmp[i], temp.t1 , GMP_RNDN);

mpfr_mul(temp.t1 , rk.b11[3] , step.k[3][i], GMP_RNDN);

mpfr_add(step.ytmp[i], step.ytmp[i], temp.t1 , GMP_RNDN);

mpfr_mul(temp.t1 , rk.b11[0] , step.k[0][i], GMP_RNDN);

mpfr_add(step.ytmp[i], step.ytmp[i], temp.t1 , GMP_RNDN);

mpfr_mul(step.ytmp[i], step.ytmp[i], h , GMP_RNDN);

mpfr_add(step.ytmp[i], step.ytmp[i], y[i] , GMP_RNDN);

}

// k11 step

status = func(step.ytmp, step.k[10]);

if ( status != 0 ) return status;

for (i = 0; i < 4; i++) {

mpfr_mul(temp.t1 , rk.b12[10] , step.k[10][i], GMP_RNDN);

mpfr_mul(step.ytmp[i], rk.b12[9] , step.k[9][i] , GMP_RNDN);

mpfr_add(step.ytmp[i], step.ytmp[i], temp.t1 , GMP_RNDN);

mpfr_mul(step.ytmp[i], rk.b12[8] , step.k[8][i] , GMP_RNDN);

mpfr_add(step.ytmp[i], step.ytmp[i], temp.t1 , GMP_RNDN);

mpfr_mul(step.ytmp[i], rk.b12[7] , step.k[7][i] , GMP_RNDN);

mpfr_add(step.ytmp[i], step.ytmp[i], temp.t1 , GMP_RNDN);

mpfr_mul(step.ytmp[i], rk.b12[6] , step.k[6][i] , GMP_RNDN);

mpfr_add(step.ytmp[i], step.ytmp[i], temp.t1 , GMP_RNDN);

mpfr_mul(temp.t1 , rk.b12[5] , step.k[5][i] , GMP_RNDN);

mpfr_add(step.ytmp[i], step.ytmp[i], temp.t1 , GMP_RNDN);

mpfr_mul(temp.t1 , rk.b12[4] , step.k[4][i] , GMP_RNDN);

mpfr_add(step.ytmp[i], step.ytmp[i], temp.t1 , GMP_RNDN);

mpfr_mul(temp.t1 , rk.b12[3] , step.k[3][i] , GMP_RNDN);

mpfr_add(step.ytmp[i], step.ytmp[i], temp.t1 , GMP_RNDN);

mpfr_mul(temp.t1 , rk.b12[0] , step.k[0][i] , GMP_RNDN);

mpfr_add(step.ytmp[i], step.ytmp[i], temp.t1 , GMP_RNDN);

mpfr_mul(step.ytmp[i], step.ytmp[i], h , GMP_RNDN);

mpfr_add(step.ytmp[i], step.ytmp[i], y[i] , GMP_RNDN);
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}

// k12 step

status = func(step.ytmp, step.k[11]);

if ( status != 0 ) return status;

for (i = 0; i < 4; i++) {

mpfr_mul(temp.t1 , rk.b13[11] , step.k[11][i], GMP_RNDN);

mpfr_mul(step.ytmp[i], rk.b13[10] , step.k[10][i], GMP_RNDN);

mpfr_add(step.ytmp[i], step.ytmp[i], temp.t1 , GMP_RNDN);

mpfr_mul(step.ytmp[i], rk.b13[9] , step.k[9][i] , GMP_RNDN);

mpfr_add(step.ytmp[i], step.ytmp[i], temp.t1 , GMP_RNDN);

mpfr_mul(step.ytmp[i], rk.b13[8] , step.k[8][i] , GMP_RNDN);

mpfr_add(step.ytmp[i], step.ytmp[i], temp.t1 , GMP_RNDN);

mpfr_mul(step.ytmp[i], rk.b13[7] , step.k[7][i] , GMP_RNDN);

mpfr_add(step.ytmp[i], step.ytmp[i], temp.t1 , GMP_RNDN);

mpfr_mul(step.ytmp[i], rk.b13[6] , step.k[6][i] , GMP_RNDN);

mpfr_add(step.ytmp[i], step.ytmp[i], temp.t1 , GMP_RNDN);

mpfr_mul(temp.t1 , rk.b13[5] , step.k[5][i] , GMP_RNDN);

mpfr_add(step.ytmp[i], step.ytmp[i], temp.t1 , GMP_RNDN);

mpfr_mul(temp.t1 , rk.b13[4] , step.k[4][i] , GMP_RNDN);

mpfr_add(step.ytmp[i], step.ytmp[i], temp.t1 , GMP_RNDN);

mpfr_mul(temp.t1 , rk.b13[3] , step.k[3][i] , GMP_RNDN);

mpfr_add(step.ytmp[i], step.ytmp[i], temp.t1 , GMP_RNDN);

mpfr_mul(temp.t1 , rk.b13[0] , step.k[0][i] , GMP_RNDN);

mpfr_add(step.ytmp[i], step.ytmp[i], temp.t1 , GMP_RNDN);

mpfr_mul(step.ytmp[i], step.ytmp[i], h , GMP_RNDN);

mpfr_add(step.ytmp[i], step.ytmp[i], y[i] , GMP_RNDN);

}

// k13 step

status = func(step.ytmp, step.k[12]);

if ( status != 0 ) return status;

// final sum

for (i = 0; i < 4; i++) {

mpfr_mul(temp.t1, rk.Abar[12], step.k[12][i], GMP_RNDN);

mpfr_mul(temp.t2, rk.Abar[11], step.k[11][i], GMP_RNDN);

mpfr_add(temp.t2, temp.t2 , temp.t1 , GMP_RNDN);

mpfr_mul(temp.t1, rk.Abar[10], step.k[10][i], GMP_RNDN);

mpfr_add(temp.t2, temp.t2 , temp.t1 , GMP_RNDN);

mpfr_mul(temp.t1, rk.Abar[9] , step.k[9][i] , GMP_RNDN);

112



mpfr_add(temp.t2, temp.t2 , temp.t1 , GMP_RNDN);

mpfr_mul(temp.t1, rk.Abar[8] , step.k[8][i] , GMP_RNDN);

mpfr_add(temp.t2, temp.t2 , temp.t1 , GMP_RNDN);

mpfr_mul(temp.t1, rk.Abar[7] , step.k[7][i] , GMP_RNDN);

mpfr_add(temp.t2, temp.t2 , temp.t1 , GMP_RNDN);

mpfr_mul(temp.t1, rk.Abar[6] , step.k[6][i] , GMP_RNDN);

mpfr_add(temp.t2, temp.t2 , temp.t1 , GMP_RNDN);

mpfr_mul(temp.t1, rk.Abar[5] , step.k[5][i] , GMP_RNDN);

mpfr_add(temp.t2, temp.t2 , temp.t1 , GMP_RNDN);

mpfr_mul(temp.t1, rk.Abar[0] , step.k[0][i] , GMP_RNDN);

mpfr_add(temp.t2, temp.t2 , temp.t1 , GMP_RNDN);

mpfr_mul(temp.t2, temp.t2 , h , GMP_RNDN);

mpfr_add(y[i] , y[i] , temp.t2 , GMP_RNDN);

}

// error estimate

for (i = 0; i < 4; i++) {

mpfr_mul(temp.t1, rk.Abar[12], step.k[12][i], GMP_RNDN);

mpfr_mul(temp.t2, rk.Abar[11], step.k[11][i], GMP_RNDN);

mpfr_add(temp.t2, temp.t2 , temp.t1 , GMP_RNDN);

mpfr_mul(temp.t1, rk.Abar[10], step.k[10][i], GMP_RNDN);

mpfr_add(temp.t2, temp.t2 , temp.t1 , GMP_RNDN);

mpfr_mul(temp.t1, rk.Abar[9] , step.k[9][i] , GMP_RNDN);

mpfr_add(temp.t2, temp.t2 , temp.t1 , GMP_RNDN);

mpfr_mul(temp.t1, rk.Abar[8] , step.k[8][i] , GMP_RNDN);

mpfr_add(temp.t2, temp.t2 , temp.t1 , GMP_RNDN);

mpfr_mul(temp.t1, rk.Abar[7] , step.k[7][i] , GMP_RNDN);

mpfr_add(temp.t2, temp.t2 , temp.t1 , GMP_RNDN);

mpfr_mul(temp.t1, rk.Abar[6] , step.k[6][i] , GMP_RNDN);

mpfr_add(temp.t2, temp.t2 , temp.t1 , GMP_RNDN);

mpfr_mul(temp.t1, rk.Abar[5] , step.k[5][i] , GMP_RNDN);

mpfr_add(temp.t2, temp.t2 , temp.t1 , GMP_RNDN);

mpfr_mul(temp.t1, rk.Abar[0] , step.k[0][i] , GMP_RNDN);

mpfr_add(temp.t2, temp.t2 , temp.t1 , GMP_RNDN);

mpfr_mul(temp.t1 , rk.A[11] , step.k[11][i], GMP_RNDN);

mpfr_mul(evolve.yerr[i], rk.A[10] , step.k[10][i], GMP_RNDN);

mpfr_add(evolve.yerr[i], evolve.yerr[i], temp.t1 , GMP_RNDN);

mpfr_mul(temp.t1 , rk.A[9] , step.k[9][i] , GMP_RNDN);

mpfr_add(evolve.yerr[i], evolve.yerr[i], temp.t1 , GMP_RNDN);

mpfr_mul(temp.t1 , rk.A[8] , step.k[8][i] , GMP_RNDN);

mpfr_add(evolve.yerr[i], evolve.yerr[i], temp.t1 , GMP_RNDN);
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mpfr_mul(temp.t1 , rk.A[7] , step.k[7][i] , GMP_RNDN);

mpfr_add(evolve.yerr[i], evolve.yerr[i], temp.t1 , GMP_RNDN);

mpfr_mul(temp.t1 , rk.A[6] , step.k[6][i] , GMP_RNDN);

mpfr_add(evolve.yerr[i], evolve.yerr[i], temp.t1 , GMP_RNDN);

mpfr_mul(temp.t1 , rk.A[5] , step.k[5][i] , GMP_RNDN);

mpfr_add(evolve.yerr[i], evolve.yerr[i], temp.t1 , GMP_RNDN);

mpfr_mul(temp.t1 , rk.A[0] , step.k[0][i] , GMP_RNDN);

mpfr_add(evolve.yerr[i], evolve.yerr[i], temp.t1 , GMP_RNDN);

mpfr_sub(evolve.yerr[i], evolve.yerr[i], temp.t2, GMP_RNDN);

mpfr_mul(evolve.yerr[i], evolve.yerr[i], h , GMP_RNDN);

}

return 0;

}

int init_mathlink(void) {

mlenv = MLInitialize(0);

if(!mlenv) {

cout << "failed.\n";

cerr << "error: could not initialize Mathematica.\n";

return 1;

}

int ml_argc = 4;

char ml_argv0[] = { ’-’, ’l’, ’i’, ’n’, ’k’,

’n’, ’a’, ’m’, ’e’, ’\0’ };

char ml_argv1[] = { ’m’, ’a’, ’t’, ’h’,

’ ’, ’-’, ’m’, ’a’, ’t’, ’h’, ’l’, ’i’, ’n’, ’k’, ’\0’ };

char ml_argv2[] = {

’-’, ’l’, ’i’, ’n’, ’k’, ’m’, ’o’, ’d’, ’e’, ’\0’ };

char ml_argv3[] = { ’l’, ’a’, ’u’, ’n’, ’c’, ’h’, ’\0’ };

char* ml_argv[] = { ml_argv0 , ml_argv1 , ml_argv2 , ml_argv3 };

mlink = MLOpen(ml_argc,ml_argv);

if(!mlink) {

cout << "failed.\n";

cerr << "error: could not open MathLink.\n";

return 1;

}

return 0;

}
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int read_input(const int argc, const char* const argv[]) {

for(int i=1 ; i<argc ; i++) {

string str = argv[i];

if(str=="-h" || str=="--help") {

cout << argv[0] << " [options]\n\n"

<< " Options\n"

<< " --param <value> enter elliptic parameter.\n"

<< " --endt <time> enter end time.\n"

<< " --endts <time> enter end time steps.\n"

<< " --initxr <value> enter initial Re(x) value.\n"

<< " --initxi <value> enter initial Im(x) value.\n"

<< " --energy <value> enter system energy.\n"

<< " -i enter interactive mode.\n\n";

return 1;

}

if(str=="--param") {

if(i==argc-1) {

cerr << "‘" << str << "’ needs an input.\n";

return 2;

}

i++;

string input = argv[i];

cout << "using parameter value of ‘" << input << "’.\n";

inits.param = input;

}

else if(str=="--endt") {

if(i==argc-1) {

cerr << "‘" << str << "’ needs an input.\n";

return 2;

}

i++;

string input = argv[i];

cout << "using end-time value of ‘" << input << "’.\n";

inits.end_time = input;

}

else if (str=="--endts") {

if(i==argc-1) {

cerr << "‘" << str << "’ needs an input.\n";

return 2;

}

i++;

string input = argv[i];

cout << "using end-time step value of ‘" << input << "’.\n";
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inits.end_time_step = input;

}

else if(str=="--initxr") {

if(i==argc-1) {

cerr << "‘" << str << "’ needs an input.\n";

return 2;

}

i++;

string input = argv[i];

cout << "using init Re(x) value of ‘" << input << "’.\n";

inits.init_x_r = input;

}

else if(str=="--initxi") {

if(i==argc-1) {

cerr << "‘" << str << "’ needs an input.\n";

return 2;

}

i++;

string input = argv[i];

cout << "using init Im(x) value of ‘" << input << "’.\n";

inits.init_x_i = input;

}

else if(str=="--energy") {

if(i==argc-1) {

cerr << "‘" << str << "’ needs an input.\n";

return 2;

}

i++;

string input = argv[i];

cout << "using energy value of ‘" << input << "’.\n";

inits.energy = input;

}

else if(str=="-i") {

cout << "entering interative mode...\n";

{

string input;

cout << "enter end time (" << inits.end_time << "): ";

getline(cin,input);

if(input=="x" || input=="exit"

|| input=="quiet" || input=="q")

return 1;

if(!input.empty())

inits.end_time = input;
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}

{

string input;

cout << "enter end time steps (" << inits.end_time_step<< "): ";

getline(cin,input);

if(input=="x" || input=="exit" || input=="quiet" || input=="q")

return 1;

if(!input.empty())

inits.end_time_step = input;

}

{

string input;

cout << "enter initial Re(x) (" << inits.init_x_r << "): ";

getline(cin,input);

if(input=="x" || input=="exit" || input=="quiet" || input=="q")

return 1;

if(!input.empty())

inits.init_x_r = input;

}

{

string input;

cout << "enter initial Im(x) (" << inits.init_x_i << "): ";

getline(cin,input);

if(input=="x" || input=="exit" || input=="quiet" || input=="q")

return 1;

if(!input.empty())

inits.init_x_i = input;

}

{

string input;

cout << "enter energy (" << inits.energy << "): ";

getline(cin,input);

if(input=="x" || input=="exit" || input=="quiet" || input=="q")

return 1;

if(!input.empty())

inits.energy = input;

}

string input;

cout << "end time: " << inits.end_time

<< "\nend time step: " << inits.end_time_step

<< "\ninitial Re(x): " << inits.init_x_r

<< "\ninitial Im(x): " << inits.init_x_i

<< "\nenergy: " << inits.energy
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<< "\nok? (y/N): ";

getline(cin,input);

if ( input!="y" && input!="yes" ) {

cout << "ok, aborting...\n";

return 1;

}

break;

}

else {

cerr << "error: unrecognized input: ‘" << str << "’.\n";

return 2;

}

}

return 0;

}
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