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Abstract

We describe the symplectic geometry underlying the geometrical

formulation of classical mechanics and how this is used to formulate

the problem of quantization in a precise way. We describe prequan-

tization and the use of real polarizations, and explain why a further

construction is needed to give the correct Hilbert space.
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1 Introduction

In the early part of the twentieth century Quantum Mechanics was dis-
covered and it soon became clear that this new theory could provide ex-
planaitions for many phenomena unnacounted for by classical physics, and
also make extremlely accurate predictions of the outcomes of experiments
testing the behaviour of matter at small scales. However, due to the abstract
nature of the theory, quantum theories were often arrived at by starting with
a classical theory and then �quantizing� it. Since di�erent versions of quan-
tum mechanics existed - those of Heisenberg and Schrodinger among others,
it was not clear how well de�ned the idea of quantisation was.

Later, Dirac put quantum mechanics on a more rigourous, axiomatic
footing and showed that the di�erent quantum mechanics were just di�er-
ent representations of the same underlying theory. He also described the
similarities between classical and quantum mechanics, in particular the sim-
ilarity between poisson brackets and commutators. With these ideas, Dirac
gave a set of rules that the quantisation of a classical theory should satisfy,
which we give in section 2. This led to canonical quantisation, which has
been used successfuly in many di�erent situations from quantum �eld theory
to condensed matter physics.

However, thare are several issues with canonical quantisation, mostly
mathematical but also some philosophical - its not clear to what extent the
quantisation of a particular classical system is unique. Geometric Quantiza-
tion is an attempt at making quantization a rigorous mathematical process.
The aim of this work is to describe the framework in which geometric quan-
tisation works, and the basics of how it works as applied to non relativistic
Hamiltonian mechanics.

The main sources used were [1, 2, 3, 4, 8, 11] in roughly equal amounts.
However, since it is the classic reference on the subject I have mostly de�ned
things as in [11] . I have tried throughout to include details of derivations
that are not present in the texts, and also to give some original examples
and proofs in order to demonstrate my understanding of the material.
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2 From Classical to Quantum Mechanics

2.1 Dirac's rules

Any quantization approach has the same aim - to associate self adjoint (or

symmetric) operators f̂ (which represent quantum observables) acting on
some a Hilbert space H (which is the quantum phase space) to each classical
observable f , that is to each function of the positions and momenta of the
particles in the system. The rules given by Dirac are:[5]

1. The map f → f̂ is linear over R

2. The constant function f (p, q) = 1 is mapped to the multiplication
operator 1

3. The operators f̂ are symmetric

4. If {f, g} = h then
[
f̂ , ĝ

]
= f̂ ĝ − ĝf̂ = −i~ĥ

Where {f, g} is the Poisson bracket of f with g .

2.2 Canonical Quantization

If, in generalized coordinates there are n momenta pa and n positions qa ,
canonical quantization works by assigning:

q̂a = qa

p̂a = −i~∂/∂qa

Other observables can then be expressed as polynomials in pa and qa and
quantized using the rules above. This satis�es Dirac's rules but has several
problems.

Firstly, canonical quantization does not determine the Hilbert space - on
what space do the operators act? Experiments have shown that in the case
of a single particle in 3 dimensions the �correct� Hilbert space is L2 (R3) -
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the space of square integrable functions complex functions on R3, with the
inner product:

〈ψ, φ〉 = ψ∗φd3x

In general the answer to this question is not clear.
Secondly, the choice of operator ordering is left undetermined since at

the classical level the observables commute, e.g.

(̂paqb) = −i~
(
qb∂/∂qa + δa

b

)
(̂qbpa) = −i~qb∂/∂qa

This problem can be �xed by agreeing on a convention, e.g. put all momen-
tum operators on the right, but this seems very unnatural.

Thirdly, why choose the canonical choices for p̂a and q̂a ? They satisfy
the rules, but to what extent are they unique choice?

Finally, classical Hamiltonian mechanics is invariant under canonical
transformations, but its clear that canonical quantization �xes a particu-
lar set of p's and q's and so breaks this.

2.3 Geometrical Quantization

In geometric quantization all the elements of the quantization - the Hilbert
space, its inner product and the operators are constructed in a natural,
coordinate independent way from the classical theory. We'll see that it suc-
cessfully satis�es the Dirac's rules, but unfortunately without modi�cation
may give the wrong theory. It turns out that the quantization rules are not
restrictive enough - they don't determine the quantum theory exactly.

3 Geometry and Mechanics

3.1 Symplectic Vector Spaces

3.1.1 De�nition

A Symplectic vector space is a pair (V, ω) where V is a vector space over
some �eld F (which here will always be R or C) and ω is an antisymmetric,
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non degenerate bilinear form on V , i.e.

ω : V × V → F
ω (X, Y ) = −ω (Y,X)

ω (αX + βY, Z) = αω (X,Y ) + βω (X,Z)

∀X, Y, Z ∈ V and ∀α, β ∈ F . [11] If V is �nite dimensional then the
following two notions of non-degeneracy are equivalent:

ω : V → V ∗

X 7→ ω (X, • )

is an isomorphism, or that

det (ωij) 6= 0

where (ωij) is the matrix representation of ω with respect to some basis
of V .

An antisymmetric matrix is always similar to a matrix of one of the
forms:  0 −1n×n 0

1n×n 0 0
0 0 0

 or

(
0 −1n×n

1n×n 0

)
depending on whether it is 2n+1 or 2n dimensional respectively ( −1n×n

is the n × n identity matrix ). Therefore, the non-degeneracy condition
implies that any symplectic vector space is even dimensional - since the �rst
matrix has zero determinant.

3.1.2 Examples

1. For example, let V be an 2n-dimensional real vector space with some
basis {ei | i = 1, 2, ..., 2n} and ω some bilinear form on V . Then:

ω (X, Y ) = X iY jω (ei, ej)
= X iY jωij

and (V, ω) is a symplectic vector space if (ωij) is antisymmetric and
non-degenerate.
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2. The canonical example of a symplectic manifold will be a cotangent
bundle, T ∗Q , for some manifold Q . In this case, the tangent space
TmQ at some point m ∈ Q has the following structure: LetW be some
n-dimensional real vector space and let V = W ∗ ⊕W . We can make
V into a symplectic vector space:

ω (X, Y ) = ω ((p, q) , (p′, q′))
≡ 1

2
(p (q′)− p′ (q)) (1)

where X = (p, q) and Y = (p′, q′) for some p, p′ ∈ W ∗ and q, q′ ∈ W .
[11]

3.1.3 Frames

It is very use full to use a particular kind of basis, {ei, fj | i, j = 1, ..., n} , to
span some 2n dimensional (V, ω) , called a symplectic frame, if it satis�es:

ω (ei, ej) = 0
ω (fi, fj) = 0
ω (ei, fj) = 1

2
δi
j

This always exists, although it is not unique. [11] If W ≡ span {ei}
and S ≡ span {fj} then V ≡ S ⊕W and we can use ω to map S to W ∗

isomorphically:

ω : S → W ∗

X 7→ 2ω (X, • )

We see that all symplectic vector spaces (V, ω) can be described in the
canonical way as V = W ∗ ⊕W with ω as in equation (1) .

3.1.4 Canonical Transformations and orientation

A linear map from a symplectic vector space to itself is called a canonical

transformation if it preserves the symplectic structure, i.e. :

ρ : V → V
ω (ρX, ρY ) = ω (X, Y )

∀X,Y ∈ V . [11] The maps ρ have unit determinant so V has a natural
orientation.
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3.2 Symplectic Manifolds

3.2.1 De�nition

A symplectic manifold is a pair (M, ω) , whereM is a smooth manifold and
ω is a closed, non-degenerate 2-form globally de�ned on M , [11] i.e.

ω ∈ Ω2 (M)
dω = 0

As for symplectic vector spaces, if M is �nite dimensional there are two
equivalent notions of non-degeneracy:

ω : TmM → T ∗mM
X 7→ ωm (X, • )

= iXω

is an isomorphism ∀m ∈ M , where ωm is ω restricted to some point
m ∈M and iXω is the interior product of X with ω , or that

det (ωm ij) 6= 0

∀m ∈M , where (ωm ij) are the components of ωm .
The tangent spaces of M become symplectic vector spaces (TmM, ωm)

and so symplectic manifolds are always even dimensional.
For example, a real symplectic vector space (V, ω) can be made into a real

symplectic manifold. Let V be 2n dimensional and {ei, fj | i, j = 1, ..., n} be
a symplectic frame. Then if X ∈ V , X = X̃ ifi + Xie

i for some scalars

X = X̃ i, Xj ∈ R . Therefore,
(
X̃ i, Xj | −∞ < X̃ i, Xj < +∞

)
are global

coordinates on V , and V as a manifold is di�eomorphic to R2n as a manifold.
The symplectic form on V is then dX̃ i ∧ dXi.

3.2.2 Cotangent bundles

Any Cotangent Bundle can be made into a symplectic manifold by choosing
a certain 2 form constructed from the bundle structure. If Q is some real
n-dimensional manifold then T ∗Q , its cotangent bundle, is a 2n-dimensional
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manifold. It is a �bre bundle over Q where the �bre at q ∈ Q is T ∗q Q , the
cotangent space at Q , so T ∗Q is the set:

T ∗Q =
{
(p, q) | q ∈ Q , p ∈ T ∗q Q

}
If (qa) are some local coordinates on some open set in Q , then

(
pa, q

b
)
are

local coordinates on T ∗Q , where p = padq
a so that (pa) are the components

of p relative to the dual basis dqa of the coordinate basis ∂/∂qa . [3, 2]
A 1-form, called the canonical 1-form, can be constructed in a coordinate

independent way. Let π be the projection from the bundle T ∗Q down to its
base space Q :

π : T ∗Q → Q
(p, q) 7→ q

For each point m = (p, q) ∈ T ∗Q we can de�ne a 1-form θm ∈ T ∗m (T ∗Q)
in the following way:

θm (X) = p (π∗X) (2)

where X ∈ Tm (T ∗Q) and π∗ is the push forward of π :

π∗ : Tm (T ∗Q) → Tπ(m)Q
X 7→ (π∗X)

(3)

The coordinate expression of (3) is:

X̃a∂/∂pa +Xa∂/∂qa 7→ ∂qa(π(m))/∂pbX̃b∂/∂qa + ∂qa(π(m))/∂qbXb∂/∂qa

= 0 + δa
bX

b∂/∂qa

= Xa∂/∂qa

The coordinate expression of (2) is then:(
θ̃madpa + θmadq

a
) (

X̃b∂/∂pb +Xb∂/∂qb

)
= padq

a
(
Xb∂/∂qb

)
θ̃maX̃

b + θmaX
a = paX

a

If this is true ∀X ∈ Tm (T ∗Q) then we �nd θ̃ma = 0 and θma = pa , so
that:
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θm = padq
a (4)

We can then construct a 1-form θ ∈ Ω1 (T ∗Q) by setting θ (m) ≡ θm ,
and θ will be smooth as pa is a smooth function on T ∗Q .

The exterior derivative of the canonical one form is ω , the canonical

2-form:

ω ≡ dθ
= dpa ∧ dqa (5)

Since ω is exact it is closed - dω = d2θ = 0 . If we make coordinates:

(yα | α = 1, ..., 2n , yα = pa for α = a , yα = qa for α = a+ n)

then relative to the basis dyα , ω has components:

ωαβ =

(
0 1n×n

−1n×n 0

)
so ω is non-degenerate and (T ∗Q,ω) is a symplectic manifold. We will

see in section 4 that cotangent bundles are a natural way to describe the
phase space of a classical system.

3.2.3 Symplectic Potentials

Any symplectic manifold (M, ω) has a symplectic 2-form ω that is closed,
but it will not be exact in general. This will depend on the cohomology of
M . However, by Poincare's Lemma ω will be locally exact - there always
exits a neighborhood U of any point m ∈M and a 1-form θU de�ned on U
such that:

ω |U= dθ

and θ is then a symplectic potential.[11] But, θ is only de�ned up to the
addition of a closed 1-form:

ω = dθ
= d (θ + σ) if dσ = 0
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This will be important in pre-quantization, see section (5). An interesting
result restricts the cohomology of compact symplectic manifolds without
boundary. Let ωn ≡ ω ∧ ω ∧ ... ∧ ω , let (M, ω) be a compact symplectic
manifold without boundary and assume that there exists a globally de�ned
symplectic potential, so that ω = dθ , then:

Mω
n = Mdθ ∧ ωn−1

= Mdθ ∧ ωn−1 + Mθ ∧ dω ∧ ωn−2 + Mθ ∧ ω ∧ dω ∧ ωn−3 + ...
= Md (θ ∧ ωn−1)
= ∂Mθ ∧ ωn−1

= 0

since ∂M = 0 . But, ωn is a positive volume form so the left hand
side is non-vanishing and there is a contradiction. Therefore, compact sym-
plectic manifolds without boundary must have non-trivial second de Rham
cohomology groups. (The argument does not extend to non-compact M as
ω is nowhere vanishing so has non-compact support and therefore Stokes's
theorem doesn't apply). This result has consequences for the the pre quan-
tization of symplectic manifolds representing internal degrees of freedom.

3.2.4 Canonical coordinates

The natural notion of �sameness� for symplectic manifolds of that of a canon-
ical di�eomorphism. Let (M1, ω1) and (M2, ω2) be symplectic manifolds,
then a di�eomorphism ρ is canonical if:

ρ : M1 → M2

ρ∗ (ω2) = ω1

where ρ∗ is the pullback of ρ . [11]
A result known as Darboux's theorem shows that all symplectic manifolds

are locally the same as a cotangent bundle of the same dimension. More
precisely, if (M, ω) is a symplectic manifold of dimension 2n, and m ∈M ,
then there is a neighborhood U of m , and coordinates

(
pa, q

b
)
on U , where

a, b = 1, ..., n , such that ω can be written as in (5) :

ω = dpa ∧ dqa on U

14



and
(
pa, q

b
)
are then canonical coordinates. (So on a cotangent bundle

T ∗Q all coordinates
(
pa, q

b
)
constructed from coordinates (qa) on Q are

canonical). Given any two points m1 ∈ M1 and m2 ∈ M2 there always
exists a local canonical di�eomorphism mapping a neighborhood of m1 to
one of m2 . The signi�cance of this is twofold. Firstly, in the context of
Geometric Quantization this allows us to study the quantization of arbitrary
symplectic manifolds in terms of a local structure which is well understood
- that of a cotangent bundle. Secondly, from a purely mathematical point
of view we see that symplectic manifolds have no local geometric invariants,
other than their dimension. [3]

Note that this does not mean that locally de�ned symplectic potentials
necessarily have the form of a canonical 1-form padq

a, e.g. :

dpa ∧ dqa = 1/2 (dpa ∧ dqa − dqa ∧ dpa)
= dpa ∧ dqa − 1/2 (dpa ∧ dqa + dqa ∧ dpa)
= d (padq

a)− 1/2d (padq
a + qadpa)

3.2.5 Integration

Taking the 2n form ωn = ω ∧ ω ∧ ... ∧ ω gives us a volume form on (M, ω)
since M has a natural orientation. [2] This will allow us to construct an
inner product later.

3.3 Hamiltonian Vector Fields and Flows

The geometrical formulation of classical mechanics relies on using the natural
symplectic structure on the phase space of the system to relate functions with
vector �elds in a coordinate independent way.

3.3.1 Hamiltonian Vector Fields

Let f ∈ C∞M be a smooth function on a symplectic manifold (M, ω) . The
Hamiltonian Vector Field of f is de�ned by the equation:[4]

iXf
(ω) = −df (6)
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This equation de�nes Xf uniquely, as can be seen from its local coordi-
nate form. Let

(
pa, q

b
)
be local canonical coordinates, then (6) reads:

ω (Xf , •) = −df
dpa ∧ dqa

(
X̃b

f
∂/∂pb +Xb

f
∂/∂qb

)
= −∂f/∂padpa − ∂f/∂qadqa

X̃a
f dq

a −Xa
f dp

a = −∂f/∂qadqa − ∂f/∂padpa

and so Xf can be written locally as:

Xf = ∂f/∂pa∂/∂qa − ∂f/∂qa∂/∂pa (7)

A general vector �eld X is called Hamiltonian if there exists a smooth
function f such that X = Xf . We call the set of Hamiltonian vector �elds
VH (M) .

3.3.2 Hamiltonian Flows

The symplectic structure also allows us to associate a �ow on M to each
smooth function f - we de�ne the Hamiltonian Flow of f , denoted ρf , to
be the �ow of Xf . Let γ be an integral curve of Xf :

γ : (a, b) ⊂ R → M
γ (s) 7→ m (s)

dγ
ds
|m = Xf |m ∀m ∈M

In local canonical coordinates this means:

dqa(γ)
ds

∂/∂qa + dpa(γ)
ds

∂/∂pa = ∂f/∂pa∂/∂qa − ∂f/∂qa∂/∂pa

and so, along the integral curves of Xf we have:

dqa(γ)
ds

= ∂f/∂pa

dpa(γ)
ds

= −∂f/∂qa

(8)

which we recognize as Hamilton's equations, see section (4). The integral
curves of Xf are therefore solutions of Hamilton's equations for the function
f . The �ow of Xf is then:
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ρf : (s1, s2) ⊂ R×M → M
(s,m) 7→ γf,m (s)

where γf,m is the integral curve of Xf starting at m , i.e. the solution of
(8) with initial condition γf,m (0) = m . Unless M is compact, the map ρf

will in general only be de�ned for some subset (s1, s2) of R . It therefore
generates local di�eomorphisms of M .

Using the identity LXα = diXα + iXdα [8], which holds for all vector
�elds X and forms α, we see that:

LXf
ω = diXf

ω + iXf
dω

= d (−df) + 0
= 0

From the de�nition of the Lie derivative;[8]

LXf
ω (m) = lim

ε→0
1
ε

(
ρ∗Xf (ε)

(
ω |ρXf (ε)(m)

)
− ω |m

)
we see that the vanishing of the Lie derivative of ω along Xf is equivalent
to ω being invariant under the �ow ρXf

;

ρ∗Xf
: ω 7→ ω

and so the Hamiltonian �ow of f generates local canonical di�eomorphisms.

3.3.3 The Lie Algebra of Hamiltonian Vector Fields

Given two Hamiltonian vector �elds Xf and Xg , any linear combination is
also Hamiltonian:

iαXf+βXg (ω) = αiXf
(ω) + βiXg (ω)

= −αdf − βdg
= −d (αf + βg)

where α, β ∈ R . Therefore, VH (M) is a subspace of V (M) . We'll show
in section (3.4.2) that VH (M) is in fact a sub algebra.
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3.4 Poisson Brackets

Poisson brackets are a key feature of the standard Hamiltonian description
of classical dynamics. They allow us to express the change of an observable
under time evolution, (or more generally under the evolution generated by
any other observable) in a concise way. Poisson brackets also provide a
simple way of relating symmetries and conserved quantities. As discussed
in section 2 they are the key structure identi�ed by Dirac in his attempt to
axiomatise quantization.

The geometric formulation of mechanics gives a coordinate independent,
entirely geometric de�nition of the Poisson bracket. This allows quantization
to be formulated in a coordinate independent way.

3.4.1 De�nition

We de�ne the Poisson bracket as a map from pairs of smooth functions to
smooth functions:[4]

{ , } : C∞M × C∞M → C∞M
(f, g) 7→ {f, g} ≡ ω (Xf , Xg)

(9)

The bracket can also be de�ned equivalently as Xf (g) :

Xf (g) = dg (Xf )
= −iXgω (Xf )
= −ω (Xg,Xf )
= ω (Xf,Xg)

and so:
{f, g} ≡ ω (Xf , Xg) = Xf (g) (10)

Using (10) we can derive the coordinate form of the Poisson bracket:

Xf (g) = (∂f/∂pa∂/∂qa − ∂f/∂qa∂/∂pa) (g)
= ∂f/∂pa∂g/∂qa − ∂f/∂qa∂g/∂pa

which we recognize as the usual Poisson bracket of f with g in Hamiltonian
mechanics.
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3.4.2 The Lie Algebra of Smooth Functions

From the de�nition of the Poisson bracket (9) its obviously antisymmetric

- due to the antisymmetry of ω . Using the following properties of the Lie
derivative,[8]we can show that it also satis�es the Jacobi identity :

i[X,Y ]α = LX (iY α)− LY (iXα)

L[X,Y ]T = LXLY T − LYLXT

which hold for all X, Y ∈ V (M) , α ∈ Ωp (M) and tensor �elds T . Let
Xf , Xg ∈ VH (M) , then using the �rst identity identity:

i[Xf ,Xg]ω = LXf

(
iXgω

)
− LXg

(
iXf

ω
)

= LXf
(−dg)− LXg (−df)

=
(
iXf

d+ diXf

)
(−dg)−

(
iXgd+ diXg

)
(−df)

= −d
(
iXf

dg
)

+ d
(
iXgdf

)
= −d {f, g}

Comparing this with (6) we see that:

[Xf , Xg] = X{f,g} (11)

This shows that the set of Hamiltonian vector �elds VH (M) is closed under
the Lie bracket, and so is a sub Lie algebra of the algebra of vector �elds.
We'll refer to it as (VH (M) , [ , ]) .

Now, let f, g, h ∈ C∞ (M) then using the second identity:

L[Xf ,Xg]h = LXf
LXgh− LXgLXf

h

LX{f,g}h = LXf
Xg (h)− LXgXf (h)

X{f,g} (h) = LXf
{g, h} − LXg {f, h}

{{f, g} , h} = {f, {g, h}} − {g {f, h}}

and so we have:

{f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0

which is the Jacobi identity. The set of smooth functions onM is therefore a
Lie algebra under the Poisson bracket. We'll refer to this as (C∞ (M) , { , }).
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3.4.3 C∞ (M) and VH (M)

The relationship between the two Lie algebras discussed is important in
geometric quantization. The equation de�ning Hamiltonian vector �elds,
(6) gives us a map from one Lie algebra to the other:

(C∞ (M) , { , }) → (VH (M) , [ , ])
f 7→ Xf

As discussed above, the map is linear. The identity (11) then shows that its
a homomorphism:

{f, g} 7→ X{f,g} = [Xf , Xg]

From (7), the coordinate expression of the Hamiltonian vector �eld of f ,
we see that Xf is the zero vector �eld i� all the derivatives of f vanish
everywhere. The kernel of the homomorphism is therefore the set of con-
stant functions on M , which is isomorphic to R , and so by the standard
isomorphism theorem:[11]

(C∞ (M) , { , }) /R ∼= (VH (M) , [ , ])

It is this isomorphism, and the relation (11) that leads to it, that underlay
geometric quantization. Notice that we are already seeing a correspondence
between Poisson brackets and commutators, even at the classical level.

4 Geometric Formulation of Classical Mechan-

ics

4.1 Constructing Phase Space

As mentioned in section (3), cotangent bundles are a natural way to describe
the phase space of classical systems. Our starting point for quantization
will always be a classical Hamiltonian theory, but we �rst try explain why
cotangent bundles can be arrived at by considering Lagrangian mechanics
and the Legendre transform.
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4.1.1 Velocity Phase Space

In either the Lagrangian or Hamiltonian formulations of mechanics, we start
with a con�guration space, Q . This is the space of positions of the particles,
so for a standard system in 3 dimensions with no constraints this will be R3n

. Since classical mechanics can be formulated using generalized coordinates

(as opposed to some �xed Euclidean coordinate system), it makes sense to
think of Q as a manifold. R3n has the obvious atlas consisting of the global
chart (R3n, id) , where id is the identity map from R3n to itself. Generalized
coordinates systems then make up the complete atlas of all possible charts
compatible with (R3n, id) .

In a more general situation, the particles' positions will be con�ned in
some way, so Q will be some 3n dimensional manifold. For example, if the
theory describes a single particle attached to one end of a light rigid rod of
length r, the other end �xed at some point, then Q would be S1 .

The Lagrangian is a function of the particles positions and velocities, so
we need to construct the space of positions and velocities fromQ . Take some
point q0 ∈ Q and consider some curve γ (t) through q0 . Let q0 ∈ U ⊂ Q
for some chart (U, φ) , so that q0 has coordinates φ (q0) =

(
q1
0, ..., q

N
0

)
, and

parametrize γ such that γ (to) = q0 . The tangent vector to γ at q0 is then:

d
dt
|q0 ∈ Tq0Q

d
dt
|q0 = dqa(γ(t))

dt
|t0 ∂/∂qa

If we identify the parameter t with actual time, then γ (t) describes the path
of the particles, and the components of d

dt
|q0 are their generalized velocities.

The set of all possible generalized velocity vectors through q0 is then Tq0Q .
If we take TQ , the tangent bundle of Q , it has local coordinates

(
qa, vb

)
, where v = va∂/∂qa |q0 is a tangent vector at some point q0 ∈ Q , so that
the coordinates vb are the coordinates of tangent vectors. Therefore, TQ
is the space of all position, velocity pairs. We'll call TQ the velocity phase

space. In the case of some unconstrained 3 dimensional system, we recover
the velocity phase space we'd expect:

T (R3n) = R3n × R3n

= R6n
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as R3n can be covered by a single chart, so the transition function between
the �b res TqQ ∼= R3n are trivial and so T (R3n) is a trivial bundle.

Since the Lagrangian is a real function of the positions and velocities, we
see that a Lagrangian system consists of a con�guration space Q and some
real function L ∈ C∞ (T (Q)) . Its possible to then describe the Legendre
transform in a coordinate independent way by mapping TQ to T ∗Q . We can
imagine momenta as co vectors since p (v) = mv2 = 2KE and so momenta
map velocity vectors to real numbers.

4.2 Hamiltonian Systems

4.2.1 Constituents

In the geometric formulation, a Hamiltonian system consist of a pair (Q, h)
, where Q is some real n-dimensional manifold, and h is the Hamiltonian, a
real function on the cotangent bundle of Q :[2]

h : T ∗Q → R

As described in section 3.2.2 , the cotangent bundle T ∗Q can be made into
a symplectic manifold in a natural way, by constructing the canonical one
form θ and then taking its exterior derivative to give a symplectic structure
ω . In local canonical coordinates:

θ = padq
a

ω = dpa ∧ dqa

From now on, cotangent bundles will be always considered as symplectic
manifolds (T ∗Q,ω) .

4.2.2 Dynamics

Using the results derived in section 3 we can describe the dynamical evolution
of the classical system. If m ∈ T ∗Q then it speci�es some possible state of
the system; m = (p (m) , q (m)) so it speci�es the position and momenta
of all the particles. The dynamics are then described by identifying the
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parametrization of curves in T ∗Q with time. Using equations (7) and (8)
The Hamiltonian vector �eld Xh of the Hamiltonian h is:

Xh = ∂h/∂pa∂/∂qa − ∂h/∂qa∂/∂pa

and along its integral curves:

dqa

dt
= ∂h/∂pa

dpa

dt
= −∂h/∂qa

which are Hamilton's equations. The integral curves of h are therefore the
possible trajectories of the system under time evolution. Given some initial
point m , the equations can be solved uniquely (at least in some neighbor-
hood of m a solution always exists and is unique by the standard existence
and uniqueness theorems for pde's [1]) In general, time evolution is thus
described by the Hamiltonian �ow of h :

ρh : (t,m) 7→ γh,m (t) (12)

Given a state of the system m ∈ T ∗ Q , (12) then gives the state of the
system at all future times t .

Its interesting to note that since (T ∗Q,ω) is constructed canonically from
Q , and the �ow of h is then determined by Xf , Hamiltonian dynamics is
essentially contained in the equation de�ning Hamiltonian vector �elds:

iXf
ω = −df

4.2.3 Classical Observables

A classical observable is some real valued function of the particles posi-
tions and momenta, so in the geometric formulation they are functions
f ∈ C∞ (T ∗Q) . We saw in section 3.4 that given some symplectic man-
ifold M , the set C∞ (M) is a Lie algebra under the Poisson bracket { , }.
Given some classical system with phase space T ∗Q , the observables there-
fore form a Lie algebra, denoted (C∞ (M) , { , }) , which we shall call the
algebra of classical observables.
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4.3 Quantization

We can now give a precise de�nition of the quantization of a symplectic man-
ifold: It is a representation of the algebra of classical observ-

ables (C∞ (M) , { , }) consisting of symmetric operators acting

on a Hilbert space.

4.3.1 General Symplectic Manifolds

Quantization can be applied to any symplectic manifold, not just cotangent
bundles and Hamiltonian systems. We'll try to be as general as possible in
our description, but the focus will be on cotangent bundles.

5 Prequantization

Prequantization is an attempt at quantizing symplectic manifolds. We shall
see that it succeeds in satisfying the axioms outlined earlier. However, com-
parison with the canonical quantization of a simple example shows that it
gives the wrong quantum theory in the physical sense.

5.1 The Hilbert Space of Functions HC

5.1.1 Constructing HC

As discussed in section 3.2.5 , the symplectic form ω on a symplectic manifold
(M, ω) gives an orientation and volume element, the Louisville measure:[11]

ε =
(

1
2πn

)n
ωn

=
(

1
2πn

)n
dp1 ∧ ... ∧ dpn ∧ dq1 ∧ ... ∧ dqn

This allows us to de�ne an inner product on C∞C (M) , the set of smooth
complex valued functions on M :

〈 , 〉 : C∞C (M)× C∞C (M) → C
(ψ, φ) 7→ 〈ψ, φ〉

〈ψ, φ〉 ≡ Mψ
∗φε
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We then take L2 (M) , the vector space of complex functions square inte-
grable with respect to the Louisville measure:[11]

L2 (M) ≡ {ψ ∈ C∞C (M) | 〈ψ, ψ〉 <∞}

This is a Hilbert space, constructed entirely from the classical structure (as
opposed to some arbitrary choice of Hilbert space) and so is our starting
point for quantization. We will call L2 (M) the Hilbert space of functions,
denoted HC:

HC ≡ L2 (M)

5.1.2 The (VH (M) , [ , ]) representation

The homomorphism from (C∞ (M) , { , }) to (VH (M) , [ , ]) suggests that
we try to quantize M by associating to each f ∈ C∞ (M) a vector �eld in
VH (M) , which then acts on the Hilbert spaceHC as a derivative operator:[11]

P : C∞ (M) → VH (M) ⊂ O (HC)

f 7→ f̂

f̂ ≡ −i~Xf

(13)

We will call f̂ the Prequantization of the classical observable f .
Since the map f 7→ Xf is linear over R , then so is f 7→ f̂ :

P (αf + βg) = −i~X(αf+βg)

= −i~ (αXf + βXg)

= f̂ + ĝ

The operators f̂ are symmetric:〈
ψ, f̂φ

〉
= −i~Mψ∗Xf (φ) ε

= −i~Mψ∗LXf
(φ) ε

= −i~
[
MLXf

(ψ∗φε)−MLXf
(ψ∗)φε−Mψ

∗φLXf
(ε)

]
= −i~

[
MLXf

(ψ∗φε)−MLXf
(ψ∗)φε−

(
1

2πn

)n
Mψ

∗φLXf
(ωn)

]
= Mi~Xf (ψ∗)φε
= M (−i~Xfψ)∗ φε

=
〈
f̂ψ, φ

〉
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where the �rst term in line four vanishes as it leads to boundary terms and
∂M = 0 , and the third term vanishes because LXf

(ω) = 0 . The identity
(11) ensures that condition four is satis�ed:

−i~P ({f, g}) = (−i~)2X{f,g}
= (−i~)2 [Xf , Xg]
= [−i~Xf ,−i~Xg]

=
[
f̂ , ĝ

]
However, if f is the constant function f (m) = 1 on M then Xf is zero and
so f is mapped to the zero operator. The map P therefore fails to satisfy
all four quantization conditions, and we need to try something else.

5.1.3 The trick

Choose some symplectic potential θ ∈ Ω1 (U) , where U ⊂ M . Then we
can quantize observables restricted to U , by de�ning:

f̂ = −i~Xf − θ (Xf ) + f (14)

which we can also write as:

f̂ (ψ) = −i~
(
iXf

(dψ)− i
~ iXf

θψ
)

+ fψ
= −i~iXf

(
(dψ)− i

~θψ
)

+ fψ
= −i~iXf

(
d− i

~θ
)
ψ + fψ

This choice satis�es all the quantization conditions (we show this in section
5.3 in a more general way). But, this only quantizes observables on U ⊂M
, and we could have chosen some other symplectic potential. Only if ω is
exact, does this quantize all observables on M . However, even in this case,
θ is not determined exactly. If we are quanitizing some Hamiltonian system
(as opposed to some arbitary symplectic manifold) then M is a cotangent
bundle T ∗Q and we can choose θ as the canonical one form. However, the
above construction can be adapted to quantize a large class of symplectic
manifolds, by formulating (14) in a global, coordinate independent way. Its
worth doing this to see whether there are other quantization's of T ∗Q .
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If we consider the action of f̂ on some function ψ ∈ HC :

f̂ (ψ) = −i~
(
Xf (ψ)− i

~θ (Xf )ψ
)

+ fψ (15)

we see that f̂ (ψ) has U (1) gauge covariance (similar to e.g. the covariant
derivative in the abelian Higgs model) - it transforms covariantly under the
following transformations:[11]

θ 7→ θ′ ≡ θ + du

ψ 7→ ψ′ ≡ eiu/~ψ

where u ∈ C∞ (M) .

f̂ ′ (ψ′) = [−i~Xf − θ (Xf )− du (Xf ) + f ] eiu/~ψ
= Xf (u) eiu/~ψ − eiu/~i~Xf (ψ)− eiu/~θ (Xf )ψ − eiu/~du (Xf )ψ + eiu/~fψ
= eiu/~ (−i~Xf (ψ)− θ (Xf )ψ + fψ)

= eiu/~f̂ (ψ)

This means that choosing a di�erent symplectic potential θ′ and mapping
all the functions ψ to eiu/~ψ is consistent. In general, gauge theories can
be globally described by a principal G bundle, where G is the gauge group.
The U (1) covariance of f̂ (ψ) therefore suggests a U (1) ( S1 with group
multiplication) bundle over M . Instead, we can use the associated vector
bundle to formulate the gauge theory, which is a one dimensional vector
bundle with typical �bre C . [8]

5.2 Complex Line Bundles

We describe the necessary facts about complex line bundles. All de�nitions
in this section are taken from [11] but we have �lled in many missing details
in the derivations.

5.2.1 Sections and One Forms

A complex line bundle over M is a �bre bundle L →M where the typical
�bre is the vector space C so that the �bre at a point m ∈ M is a vector
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space Vm
∼= C . If L is trivial then:

L = M× C

otherwise it just has this structure locally. We denote the projection from
L to M as, π , local trivializations by (Ui, τi) , the set of smooth sections of
L as C∞L (M) and the set of L valued one-forms on M as Ω1

L (M) :

π : L → M

τi : Ui × C → π−1 (Ui) ⊂ L

C∞L (M) 3 s : M → L
π◦s = idM

Ω1
L (M) 3 α : V (M) → C∞L (M)

If L is trivial then C∞L (M) and Ω1
L (M) are C∞C (M) and Ω1

C (M) , the sets
of complex functions and one forms respectively.

5.2.2 Connections

A connection ∇ on L is a map:

∇ : C∞L (M) → Ω1
L (M)

∇ (s1 + s2) = ∇s1 +∇s2

∇ (ψs) = (dψ) s+ ψ∇s

where ψ ∈ CC (M) . Given some local trivialization (Ui, τi) , we can de�ne
its associated unit section, si ∈ C∞L (U) and its potential 1-form, Θi ∈ Ω1

C (U)
:

si (m) ≡ τi (m, 1)

∇si = −iΘisi
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The local trivialization restricts to a isomorphism when some point m ∈ U
is �xed:

τi (m, ) : C → Vm

and since C and Vm are one dimensional it must be of the form:

τi (m, ) (α) = Γ (m)α

for some non-vanishing constant Γ (if Γ was zero then τ (m, ) would not be
1-2-1), and so unit sections are non-vanishing. This allows us to describe
the action of the connection on arbitrary sections in the following way: let
s ∈ C∞L (U) be some section on U , then since si is non-vanishing, s = ψsi

for some function ψ ∈ C∞C (M) , which we call its local representative:

s (m) = τi (m,ψ (m))

We use the notation ∇X ≡ iX∇ for X ∈ V (M) then:

∇Xs = iX ((dψ) si − iψΘisi)
= X (ψ) si − iΘi (X)ψsi

= (X (ψ)− iΘi (X)ψ) si

We can also write this as:

∇Xs = iX (d− iΘi)ψsi

and so the action of the connection on a section can be described entirely in
terms of its local representative:

∇ψsi = [(d− iΘi)ψ] si

5.2.3 Changing sections

The gauge covariance seen in f̂ (ψ) in equation (15) is described by the way
that the potential one form changes under a change of local trivialization. If
we have two local sections (Ui, τi) and (Uj, τj) , where Ui∩Uj 6= ∅ , then since
their unit sections si and sj are non-vanishing, we can de�ne the transition
function cji:

si = cjisj
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where cji is some complex function de�ned on Ui ∩ Uj . We �nd that si =
cjisj = cjicijsi , and so, cjicij = 1 . We can use this and the properties of
the connection to �nd the di�erence between the two potentials:

∇si = ∇cjisj

−iΘisi = (dcji) sj + cji∇sj

−icjiΘisj = (dcji) sj − icjiΘjsj

−icji (Θi −Θj) sj = (dcji) sj

and so:
Θi = Θj + i

(dcji)

cji
(16)

5.2.4 U (1) Transition Functions

The functions cji ∈ C∞C (Ui ∩ Uj) are complex valued so can be written in
the form:

cji (m) = rji (m) eiφji(m)

where rji, φji ∈ C∞ (M) . By introducing extra structure on the bundle L ,
we can normalize these. A Hermitian Structure ( , ) on L is an assignment
of an inner product to each �bre in the bundle:

( , )m : Vm × Vm → C

such that the inner products together form a smooth map from L to C :

( , ) : L → C
v 7→ (v, v)m

wherem is chosen for each v ∈ L such that v ∈ Vm . The Hermitian structure
allows us to take inner products between sections:

( , ) : C∞L (M)× C∞L (M) → C∞C (M)

(s1, s2) (m) ≡ (s1 (m) , s2 (m)) m

Now, let si be the unit section of some local trivialization (Ui, τi) , then
de�ne:

fi ≡ (si, si)
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Since ( , ) is an inner product so is non-degenerate and si is non-vanishing,
fi must be non-vanishing, and since for each m , fi (m) is the norm of
some vector in Vm , fi must be real. We can then construct a new local
trivialization (Ui, τ

′
i) with a unit section s′i :

τ ′i : Ui × C → π−1 (Ui)

τ ′i (m,α) ≡ (fi)
−1/2 τi (m,α)

s′i (m) = τ ′i (m, 1)

= (fi)
−1/2 τi (m, 1)

= (fi)
−1/2 si

The unit section s′i is then normalized:

(s′i, s
′
i) =

(
(fi)

−1/2 si, (fi)
−1/2 si

)
= f−1

i (si, si)
= 1

If we choose local trivializations coveringM that have unit sections satisfy-
ing this, then the transition functions between them will be normalized:

1 = (si, si)
= (cjisj, cjisj)

= |cji|2 (sj, sj)

= |cji|2

The transition functions are then of the form:

cji (m) = eiφji(m) (17)

If the following identity holds:

iXd (s1, s2) = (∇Xs1, s2) + (s1,∇Xs2)

for all X ∈ V (M) and s1, s2 ∈C∞L (M) then ( , ) is compatible with ∇ .
Then the choice of trivializations will also make the connection potential
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real:
iXd (si, si) = (∇Xsi, si) + (si,∇si)

iXd (1) = (−iΘi (X) si, si) + (si,−iΘi (X) si)
0 = iΘ∗

i (X) (si, si)− iΘi (X) (si, si)
0 = i (Θ∗

i (X)−Θi (X))

which is true ∀X ∈ V (M) so that we must have Θi = Θ∗
i and so:

Θi ∈ Ω1 (M)

Using equations (16) and (17) we see that under a change of trivialization
the potential will now change as:

Θi = Θj + i
(dcji)

cji

= Θj + id
(
eiφji

) (
eiφji

)−1

= Θj − (dφji) e
iφji

(
eiφji

)−1

= Θj − dφji

We know that cijcji = 1 so:

cij = c−1
ji

eiφij = e−iφji

and therefore the functions φij are related as:

φij = −φji

If s is a section then its local representative ψ depends on local trivialization
chosen:

s = ψisi

= ψjsj

= ψjcijsi

and so local representatives change as:

ψi = cijψj
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Combining these results, we �nd that under a change of local trivialization
from (Uj, τj) to (Ui, τi) the potential one form and local representatives of
sections change as:

Θi = Θj + dφij

ψi = eiφijψj

which we recognize as U (1) gauge transformations.

5.2.5 The curvature of ∇ on L

The curvature of the connection ∇ is a 2-form Ω ∈Ω2 (M) de�ned locally
as:

Ω ≡ dΘi

on Ui , the domain of some local trivialization (Ui, τi) with potential Θi . It is
actually independent of the trivialization chosen, and satis�es the following
identity:

Ω (X, Y ) s = i
(
∇X∇Y s−∇Y∇Xs−∇[X,Y ]s

)
(18)

for all X, Y ∈ V (M) and s ∈ C∞L (M) . We will use this identity several
times.

5.3 The Pre Quantum Bundle B

5.3.1 Summary of previous section

Collecting together the results of section 5.2 , if L is a Hermitian line bun-
dle on a manifold M , with a compatible connection ∇ , then in a local
trivialization (Ui, τi) , ∇ acts on sections as:

∇ψsi = [(d− iΘi)ψ] si

and if we change to a di�erent trivialization (Uj, τj) , potential one form and
local representatives change as:

Θj = Θi + dφji

ψj = eiφjiψi
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Therefore, in order to describe:

f̂ (ψ) = −i~iXf

(
d− i

~θ
)
ψ + fψ

in a global way, we need a Hermitian line bundle on M with a compatible
connection such that:

Θi = 1
~θ

locally, which means the curvature must be:

Ω = 1
~ω

If such a bundle exists, we call it a pre quantum bundle, and label it B .

5.3.2 The pre quantum Hilbert space HB

Given a pre quantum bundle B over a symplectic manifold M we can con-
struct a Hilbert space called the pre quantum Hilbert space, HB . As dis-
cussed in section 5.2 , the Hermitian structure on B gives a map on the
space of smooth sections of B :

( , ) : C∞B (M)× C∞B (M) → C∞C (M)

(s1, s2) 7→ (s1 (m) , s2 (m))m

We can use this to put an inner product on C∞B (M) :

〈 , 〉 : C∞B (M)× C∞B (M) → C

〈s1, s2〉 = M (s1, s2) ε

The pre quantum Hilbert space is then the space of square integrable sections
of B :

HB ≡ L2 (B) ≡ {s ∈ C∞B (M) | 〈s, s〉 <∞}
If B is trivial and so can be covered by a single local trivialization (Ui, τi) ,
and ψ1, ψ2 are the local representatives of s1, s2 on Ui then the inner product
is:

〈s1, s2〉 = M (s1, s2) ε
= M (ψ1si, ψ2si) ε
= Mψ

∗
1ψ2 (si, si) ε

= Mψ
∗
1ψ2ε
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and C∞B (M) = C∞C (M) , so that in this case:

L2 (B) = L2 (M)

HB = HC

5.3.3 Prequantization of observables

We can now quantize M by mapping observables to operators on HB :

C∞ (M) → O (HB)

f 7→ f̂

where f̂ is now globally de�ned as:

f̂ = −i~∇Xf
+ f

Since the map f → Xf and the interior product is linear, f 7→ f̂ is linear:

∇Xαf+βg
= iXαf+βg

∇
= i(αXf+βXg)∇
=

(
αiXf

+ βiXg

)
∇

= α∇Xf
+ β∇Xg

Secondly, Xf = 0 for constant functions, so if f (m) = 1 we have:

1̂ = 1

Thirdly, f̂ is symmetric:〈
s1, f̂s2

〉
= M

(
s1,−i~∇Xf

s2 + fs2

)
ε

= M
[
−i~

(
s1,∇Xf

s2

)
+ (s1, fs2)

]
ε

= M
[
−i~

[
iXf

d (s1, s2)−
(
∇Xf

s1, s2

)]
+ (fs1, s2)

]
ε

= M
[(
−i~∇Xf

s1 + fs1, s2

)]
ε− i~MiXf

d (s1, s2) ε

= M

[(
f̂ s1, s2

)]
ε− i~MiXf

d (s1, s2) ε
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where we have used the fact that ∇ is compatible with ( , ) . The second
term then vanishes because LXf

ω = 0 :

MiXf
d (s1, s2) ε = MLXf

[d (s1, s2)] ε
= MLXf

[d (s1, s2) ε]
= 0

Finally, by using the fact that 1
~ω satis�es the curvature identity (18) we see

that this satis�es the last quantization condition:[
f̂ , ĝ

]
=

[
−i~∇Xf

+ f,−i~∇Xg + g
]

= (−i~)2 [
∇Xf

∇Xg −∇Xg∇Xf

]
− i~ [dg (Xf )− df (Xg)]

= (−i~)2
[
− i

~ω (Xf , Xg) +∇[Xf ,Xg]

]
− i~ [{g, f} − {f, g}]

= (−i~)2
[
− i

~ {f, g}+∇X{f,g}

]
− 2i~ {f, g}

= −i~
[
−i~∇X{f,g} + {f, g}

]
(Some terms cancel or are zero). Prequantization therefore satis�es all the
quantization conditions set out earlier. However, we shall see that this fails
to agree with canonical quantization for a theory where we know the �correct�
quantization from actual physics.

5.4 Existence and Uniqueness of B

IfM is a cotangent bundle T ∗Q then the obvious choice for B always exists:

B = M× C

(α, β) = α∗β

∇ = d− i
~θ

where θ is the canonical one form. It is true in general that if the base space
of a �bre bundle is contractible, then the bundle is trivial. This means that
this choice of B is unique if T ∗Q has trivial homotopy, i.e. :

π1 (T ∗Q) = {e}

36



If T ∗Q is also path connected then this condition is thatT ∗Q is simply
connected.[8] In general, there might not exist a pre quantum bundle on
a symplectic manifold (M, ω) , see [11]

5.5 Examples

If we take the classical theory of a single particle in 3 dimensions canonical
quantization gives a Hilbert space and operators representing momentum
and position:

H = L2 (R3)

ψ = ψ (q)

p̂a = −i~∂/∂qa

q̂a = qa

[
p̂a, q̂

b
]

= −i~δb
a

The symplectic phase space is the cotangent bundle of R3 :

TR3 = R6

It can be covered by a single canonical coordinate system,
(
pa, q

b
)
. Since

R6 is simply connected the trivial choice for B is unique:

B = R6 × C

As discussed earlier, since B is trivial HP = HC and so the pre quantum
Hilbert space is:

HP = L2 (R6)

ψ = ψ (p, q)

and the connection acts as:

∇Xψ = X (ψ)− i
~θ (X)ψ
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If we calculate the operators p̂a and q̂a we �nd:

p̂a = −i~Xpa − θ (Xpa) + pa

= −i~∂/∂qa − pbdq
b (∂/∂qa) + pa

= −i~∂/∂qa − pa + pa

= −i~∂/∂qa

q̂a = −i~Xqa − θ (Xqa) + qa

= i~∂/∂pa − pbdq
b (∂/∂pa) + qa

= i~∂/∂pa + qa

So Prequantization does not produce the correct quantum theory. The
Hilbert space contains functions of position and momentum, and the op-
erator corresponding to qa is wrong. However, on restriction to functions
ψ (q) the derivative term in q̂a gives zero so can be dropped and we recover
the correct form of the operator. What we have to do therefore, is construct
a new Hilbert space containing functions of q only. In the general case, we
therefore have to restrict to functions of half the coordinates of M , and in
order to do this in a coordinate independent and consistent way, we have to
introduce a polarization on M .

6 Polarizations

6.1 Identifying sections s (q)

If a section s ∈ C∞B (M) doesn't depend on the p coordinates then, in any
local trivialization (Ui, τi) its local representative ψi should satisfy:

∂/∂pa (ψi) = 0

Since θ (∂/∂pa) = 0 this is the same as:

0 = ∂/∂pa (ψi)
= ∂/∂pa (ψi) si − iθ (∂/∂pa)ψisi

= ∇∂/∂pas
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We can therefore identify sections s = s (q) in a global way by the condition:

∇Xs = 0

for all vector �elds which can be locally expressed as Xa∂/∂pa. These vector
�elds form a sub-bundle of the tangent bundle of M , which �polarizes� the
sections. We describe this more precisely in the next section.

6.2 Distributions

6.2.1 Distributions on M

A real polarization starts with the idea of a real distribution, which is a sub-
bundle of the tangent bundle TM . If P is a real distribution then its a
bundle:[11]

P → M

Pm ⊂ TmM
P picks out certain vector �elds and functions on M , those which are
tangent to and constant on P , de�ned respectively as:[11]

VP (M) ≡ {X ∈ V (M) | X (m) ∈ Pm}

C∞P (M) ≡ {f ∈ C∞ (M) | df |P = 0}

The condition df |P = 0 is the same as df (X) = 0 ∀X ∈ VP (M) . The
subspaces Pm have to be such that they vary smoothly as m varies so that
VP (M) does contain actual vector �elds.

We would like to be able to describe P in terms of coordinates on M ,
which can be done if P is integrable. This means that each Pm is the tangent
space of some sub manifold of M . Let M be N dimensional, then since
P ⊂ TM the �bres Pm must be N − k dimensional for some 0 ≤ k ≤ N .
If P is integrable then for every point m ∈M we can �nd local coordinates
xα:

xα =
(
x1, x2, ..., xk+1, xk+2, ..., xN

)
where �xing the values xk+1, xk+2, ..., xN gives a sub manifold of M with
tangent spaces Pm .
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For example, letM = R3 with global coordinates (x, y, z) , and let P →
R3 be a distribution on M where Pm is de�ned by:

Pm = {V ∈ TmR3 | V = X∂/∂x |m}

If we choose two constants c1, c2 ∈ R then we can de�ne a sub manifold
Λc1,c2 of R3 given by:

Λc1,c2 = {p ∈ R3 | p = (x, c1, c2)}

Λc1,c2 is the image of an embedding γ of R into R3 :

γ : R → Λc1,c2 ⊂ R3

x 7→ (x, c1, c2)

The tangent spaces of R are then pushed forward into subspaces of the
tangent spaces of R3 :

γ∗ : TxR → T(x,c1,c2)R3

X∂/∂x 7→ X∂x/∂x∂/∂x + ∂c1/∂x∂/∂y + ∂c2/∂x∂/∂z

= X∂/∂x

and so we see that:
P(x,c1,c2) = γ∗ (TxR)

P is therefore an integral distribution, and the embedded sub manifolds
Λc1,c2 are then called the leaves of P . (In general the leaves only need be
immersed sub manifolds - the map γ may be 2-1 but the push forwards of
the tangent spaces are 1-1).

It turns out that a distribution is integrable iff the Lie bracket closes
on the set of tangent vector �elds, so that VP (M) is a sub algebra of V (M)
:[1]

[X, Y ] ∈ VP (M) ∀X,Y ∈ VP (M)

Its possible to place restrictions on the subspaces Pm . If V is a symplectic
vector space with symplectic form ω then a subspace W ⊂ V is called
Lagrangian if:[11]

ω (X, Y ) = 0 ∀X, Y ∈ W

40



A distribution P on M is called Lagrangian if for every m ∈ M , Pm

is a Lagrangian subspace of TmM (with respect to the symplectic form ω
restricted to TmM ). Then we have:

ω (X,Y ) = 0 ∀X, Y ∈ VP (M)

6.2.2 Polarized Sections

We saw that in the Prequantization of R3 we can identify sections s = s (q)
by the condition:

∇Xs = 0

for all vector �elds X = ∂/∂pa . We can formulate this idea in a more general
way using distributions.

Let B be a pre quantum bundle on a symplectic manifoldM and consider
some distribution P on M and the set of sections P (B) ⊂ C∞B (M) de�ned
by:

P (B) ≡ {s ∈ C∞B (M) | ∇Xs = 0 ∀X ∈ VP (M)}

We call P (B) the set of P polarized sections. Let X, Y ∈ VP (M) then
using the curvature identity (18) satis�ed by ω :

(∇X∇Y −∇Y∇X) s =
(
− i

~ω (X,Y ) +∇[X,Y ]

)
s

If s ∈ P (B) the left hand side is zero so we must have:

∇[X,Y ]s− i
~ω (X, Y ) s = 0

This will always be satis�ed if the two terms are individually zero, so that
∀X,Y ∈ VP (M):

[X, Y ] ∈ VP (M)

ω (X,Y ) = 0
(19)

Therefore, if there exists any polarized sections, so that P (B) 6= ∅ , the
conditions (19) must be satis�ed which means that P is integrable and La-

grangian. Such a distribution is called a Real Polarization.
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6.3 Real Polarizations

6.3.1 The Vertical Polarization

As described above, a real polarization P on a symplectic manifold M is
an integrable Lagrangian distribution on M . The canonical example is the
vertical polarization of a cotangent bundle. Let T ∗Q be a cotangent bundle,
then we can construct a real polarization by taking the cotangent spaces
T ∗q Q as the leaves. Each T ∗q Q is a surface of constant q which di�eomorphic

to Rn , where n is the dimension of Q . Taking canonical coordinates
(
pa, q

b
)

on T ∗Q and coordinates (xa) on Rn , the cotangent spaces are embedded as:

γ : Rn → T ∗q Q ⊂ T ∗Q
xa 7→

(
xa, q

b
)

and so the pushed forward tangent spaces are:

γ∗ : TxRn → T(x,q) (T ∗Q)
Xa∂/∂xa 7→ Xa

(
∂pb/∂xa∂/∂pb + ∂qb/∂xa∂/∂qb

)
= Xa∂/∂pa

The vertical polarization therefore consists of �momentum vector �elds� and:

VP (M) = {X ∈ V (M) | Xm = Xa∂/∂pa |m}

It is integrable and Lagrangian since:[
Xa∂/∂pa, Y b∂/∂pb

]
=

(
Xa ∂Y b

∂pa
− Y a ∂Xb

∂pa

)
∂/∂pb ∈ VP (M)

ω (X, Y ) = dpa ∧ dqa
(
Xa∂/∂pa, Y b∂/∂pb

)
= XaY b [dpa ⊗ dqa (∂/∂pa, ∂/∂pb)− dqa ⊗ dpa (∂/∂pa, ∂/∂pb)]
= 0

The canonical one form gives zero on restriction to P :

θ (X) = padq
a (Xa∂/∂pa)

= 0

The set of polarized sections P (B) then contains sections which can be
locally expressed as functions of q alone, so the vertical polarization gives a
coordinate independent way of imposing what we need.
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6.3.2 Other Real Polarizations

It turns out that the conditions a real polarization must satisfy are very
restrictive, so that there are not many possibilities, and locally they all
have the structure of vertical polarizations. More precisely, given a real
polarization P there exists a neighborhood of each point m ∈ M with
canonical coordinates

(
pa, q

b
)
and a symplectic potential θ such that around

m , Pn consists of the �vertical vectors� spanned by {∂/∂pa} and θ |P = 0 .
These coordinates and the potential θ are then �adapted� to P . [11]

We can use this to show that for any polarization:

f ∈ C∞P (M) iff Xf ∈ VP (M)

Let f ∈ C∞P (M) then for any X ∈ VP (M) :

0 = X (f)
= Xa∂f/∂pa

and so f must be of the form:

∂f/∂pa = 0

f = f (q)

and the Hamiltonian vector �eld of f is:

Xf = −∂f/∂qa∂/∂pa ∈ VP (M)

Conversely, let Xf ∈ VP (M) then simply looking at the form of Xf :

Xf = ∂f/∂pa
∂/∂qa − ∂f/∂qa∂/∂pa

we see that ∂f/∂pa = 0 and so f ∈ C∞P (M) .

6.3.3 Polynomial Observables

We shall see later that only certain observables map polarized sections to
other polarized sections, but this actually has another geometric origin.
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Given an observable f ∈ C∞ (M) it generates a �ow through its Hamil-
tonian vector �eld Xf , which acts as local di�eremorphisms on M . This
maps TM to itself in the following way:

TM → TM

(m,TmM) 7→
(
ρXf

(m) , ρXf∗TmM
)

We can ask the question, which observables �preserve� a polarization P , i.e.
for all m ∈M :

ρXf∗ (Pm) ⊂ PρXf
(m)

which is the same as:

ρXf∗ (X) ∈ VP (M) ∀X ∈ VP (M)

Choose some point m ∈M and say that for some choice of parameter t :

ρXf
(t,m) = n

ρXf ,t∗ : TmM → TnM

and also, for convenience let t be small enough that m and n can be covered
by some canonical coordinates

(
pa, q

b
)
adapted to P . We can then write

the push forward of Y ∈ Pm as:

Y a∂/∂pa |m 7→ Y a
(

∂p(n)b/∂pa∂/∂pb |n +∂q(n)b
/∂pa∂/∂qb |n

)
If the result is a vector in VP (M) then the second term must be zero, so:

∂q(n)a
/∂pb = 0

The coordinates q (n)a of n are determined by Hamilton's equations which
describe the �ow of f :

dqa

dt
= ∂f

∂pa

Therefore, we must have:
∂2f

∂pa∂pb
= 0
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So if an observable f preserves a polarization P , then in any adapted
coordinates it must be linear in the momentum coordinates and so of the
form:

f = va (q) pa + u (q)

[11]We denote the set of observables preserving P by SP (M) :

SP (M) ≡ {f ∈ C∞ (M) | f = va (q) pa + u (q)}

Note that the functions constant along P are of the form f (q) so that:

C∞P (M) ⊂ SP (M)

7 Full Quantization

We have seen that if a symplectic manifold M is is pre quantized with pre
quantum bundle B its possible to single out sections of the pre quantum
bundle depending only on the position coordinates by introducing a polar-
ization, P , which determines a set of polarized sections P (B) ⊂ C∞B (M).
Its natural to then try and construct the quantum Hilbert space as:

H = HB ∩ P (B)

But, we shall see that this doesn't quite work and must be modi�ed.

7.1 Operators

If we are going to construct the quantum Hilbert space in some way from
polarized sections P (B) then its clear that any operators we let act on P (B)

must map it to itself. We will call the set of these operators O (P (B)) . If f̂
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is such an operator, then for all X ∈ VP (M) and s ∈ P (B) we must have:

0 = ∇X

(
f̂ s

)
= ∇X

(
−i~∇Xf

s+ fs
)

=
(
−i~∇X∇Xf

+X (f) + f∇X

)
s

=
[
−i~

(
− i

~ω (X,Xf ) +∇Xf
∇X +∇[X,Xf ]

)
+X (f) + f∇X

]
s

=
[
−i~

(
− i

~X (f) +∇Xf
∇X +∇[X,Xf ]

)
+X (f) + f∇X

]
s

=
[(
−i~∇Xf

∇X + f∇X

)
− i~∇[X,Xf ]

]
s

= f̂∇Xs− i~∇[X,Xf ]s

= −i~∇[X,Xf ]s

Therefore:
[X,Xf ] ∈ VP (M)

If we choose X = ∂/∂pa then:

[∂/∂pa, Xf ] = [∂/∂pa, ∂f/∂pb
∂/∂qb − ∂f/∂qb∂/∂pb]

= ∂2f/∂pa∂pb
∂/∂qb − ∂2f/∂pa∂qb∂/∂pb

and so f satis�es:
∂2f/∂pa∂pb = 0

which we recognize from section 6.3.3 as the condition for f to preserve P .
The set of operators that map P (B) to itself is therefore the set of operators
corresponding to observables that preserve the polarization:

O (P (B)) =
{
f̂ = −i~∇Xf

+ f | f ∈ SP (M)
}

This means we are reduced to only constructing observables of the form:

f = va (q) pa + u (q)

The Hamiltonian vector �eld of such a function is:

Xf = va∂/∂qa − (pa∂va/∂qb∂/∂qb + ∂u/∂qb) ∂/∂pb
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The operator f̂ then acts on s ∈ P (B) as:

−i~∇Xf
s+ fs = (−i~va∂/∂qa − pav

a) s+ (vapa + u) s
= [−i~va (q) ∂/∂qaψi + u (q)ψi] si

in some local trivialization.

7.2 The Hilbert Space H
7.2.1 Problems with Polarized Sections

The problem with the de�nition:

H = HB ∩ P (B)

is that H = ∅ ! There are no polarized square integrable sections because
the inner product will diverge as we're integrating freely over the momentum
coordinates (pa) which span all of R4. In the case ofM = T ∗Rn this is easily
seen as:

〈s, s〉 = R2n (s, s) ε

= R2n |ψ (q)|2 ε
=

(
Rn |ψ (q)|2 dnq

)
(Rndnp)

The solution to this problem is to construct an inner product de�ned by
integration over Q . In order to do this, we have to consider objects which
are �square roots� of n-forms on Q , so that when squared they give a volume
form which can be integrated. This is called half-density quantization.

8 Concluding Remarks

We have seen that Prequantization satis�es Dirac's rules given at the begin-
ning of this work, but the construction has to be altered on physical grounds
by introducing a polarization. The �nal stage is the use of half densities, or
one of the other methods that can be used e.g. metaplectic structures and
kahler polarizations, see [11]. If I had more time I would have liked to have
described some of these techniques.

I would like to thank Prof Hull for supervising this project.
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