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Abstract

The two descriptions of low energy dynamics of coincident branes are

considered. One description is the supergravity approximation of the su-

perstring theory where the extremal black p-brane solution emerges. The

other description consist of a gauge theory which describes the dynamics

of the world volume of the N coincident branes. The AdS/CFT conjecture

is introduced and the important equivalence of the two theories’ partition

functions. By the identification that the UV limit of the field theory corre-

sponds to the boundary of five dimensional anti-de Sitter space, the principle

of holography is introduced. To evaluate the partition function the saddle-

point approximation is used. However, since the action is divergent due to

the infinite volume of asymptotically anti-de Sitter spacetimes, a renormali-

sation scheme is needed. This is carried out by two different methods. First,

the method of holographic renormalisation is used to define a renormalised

action and to extract the stress-energy tensor of the field theory on the

boundary of the asymptotically anti-de Sitter spacetimes. Secondly, a finite

action is obtained by performing a background subtraction. In the latter

method, a detailed analysis is performed in order to determine the thermo-

dynamical favourable spacetime configuration as a function of temperature.

It is found that a phase transition occurs from thermal anti-de Sitter space

to a configuration with a black hole. For the strongly coupled dual field

theory in the large N limit, this is interpreted as a phase transition from a

confined phase to a deconfined phase.



Contents

1 Introduction 1

2 Supergravity and Gauge Theory 5

2.1 Extremal Black p-Branes . . . . . . . . . . . . . . . . . . . . . 6

2.2 Non-Abelian Gauge Theory on D-branes . . . . . . . . . . . . 12

2.3 D3-branes; Conformal N = 4 Super Yang-Mills . . . . . . . . 13

3 Anti-de Sitter / Conformal Field Theory 16

3.1 Decoupling in the gsN � 1 Limit . . . . . . . . . . . . . . . . 16

3.2 Decoupling in the gsN � 1 Limit . . . . . . . . . . . . . . . . 17

3.3 Conjecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.4 Holographic Duality . . . . . . . . . . . . . . . . . . . . . . . 21

4 Finite Temperature 24

4.1 The Saddle-Point Approximation . . . . . . . . . . . . . . . . 25

4.2 Near-extremal D3-brane . . . . . . . . . . . . . . . . . . . . . 26

4.3 Global Coordinates . . . . . . . . . . . . . . . . . . . . . . . . 28

4.4 The Conformal Boundary . . . . . . . . . . . . . . . . . . . . 29

4.5 Holographic Renormalisation . . . . . . . . . . . . . . . . . . 31

5 Thermal Phase Transition in Anti-de Sitter Space 38

5.1 Criterion for Confinement/Deconfinement . . . . . . . . . . . 39

5.2 Schwarzschild Black Hole in Anti-de Sitter Space . . . . . . . 39

5.3 The Periodicity of Imaginary Time . . . . . . . . . . . . . . . 42

5.4 Two Black Hole Sizes . . . . . . . . . . . . . . . . . . . . . . 44

5.5 Actions and Partition Functions . . . . . . . . . . . . . . . . 45

5.6 Energy, Specific Heat Capacity . . . . . . . . . . . . . . . . . 48

5.7 Phase Transition . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.8 Entropy and Field Theory . . . . . . . . . . . . . . . . . . . . 53

i



6 Conclusion 56

Appendices 60

A Maximally Symmetric Spacetimes 60

A.1 The Cosmological Constant . . . . . . . . . . . . . . . . . . . 61

A.2 Anti-de Sitter Spacetime . . . . . . . . . . . . . . . . . . . . . 62

A.3 Global Coordinates . . . . . . . . . . . . . . . . . . . . . . . . 64
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1 Introduction

String theory is one of the most promising candidates that theoretical physi-

cists have for a consistent unifying theory of the forces of nature. Surpris-

ingly, it was found that string theory is not only a theory of strings, but,

in fact, also of spatially extended objects called branes. There are two low

energy descriptions of branes. The supergravity approximation that yields

an effective action for which the geometry of branes can be solved for, and a

U(N) gauge theory that describes the dynamics of the world volume of the

branes. It is from these two descriptions that the gauge/gravity dualities

arise. A duality relates a strongly coupled theory to a dual weakly coupled

theory.

A particularly interesting gauge theory is QCD, which is based on the

gauge group SU(3). QCD is a quantum field theory where the basic con-

stituents of hadrons are quarks and gluons. It is the theory used to describe

the strong forces and is an asymptotically free theory which means that

the cutoff ΛQCD decreases as the energy increases. At low energy it is thus

strongly coupled. With a gauge/gravity duality, it becomes possible to ap-

proach the intractable strongly coupled regime of the theory by performing

perturbation theory at weak coupling in the dual gravity theory. Although

the dual string theory for QCD is not yet known, it is believed to exist. Cur-

rently, dualities that relate their conformal invariant cousins with a SU(N)

gauge group to string theory are considered. These gauge theories are often

supersymmetric with a large number of degrees of freedom, that is, large N .

Nonetheless, qualitative predictions for more realistic theories, like QCD,

can still be made.

In this text, a duality known as a AdS/CFT correspondence is ap-

proached in the form where the type IIB superstring theory on the max-

imally symmetric AdS5 × S5 background is related to the four dimensional

supersymmetric N = 4 Yang-Mills gauge theory with gauge group SU(N).
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Anti-de Sitter space is the maximally symmetric solution of Einstein’s equa-

tions with a negative cosmological constant, and the four dimensional gauge

theory is a conformal invariant theory; that is, it has a vanishing beta func-

tion. Since string theory, and in particular the type IIB theory, plays such a

dominant role, appendix B provides a general introduction and gives, among

other things, the massless spectrum and the brane spectrum of the type IIB

theory. The AdS/CFT correspondence is quite remarkable, as already men-

tioned, since it relates a theory of gravity, which string theory is, to a theory

with no gravity at all. It should, however, be kept in mind at this point that

it is only conjectured, not proven.

When matching spacetime coordinates of the two theories, it emerges

that the UV limit of the gauge theory corresponds to the conformal bound-

ary structure of anti-de Sitter space. This is the limit where field theories

are usually discussed, which is why the field theory is said to live on the

boundary of anti-de Sitter space. This picture is called a holographic dual-

ity because the higher dimensional physics in anti-de Sitter space is encoded

in the lower dimensional field theory. It turns out, however, that the choice

of coordinates introduces an ambiguity because it leads to different confor-

mal structures of the boundary. However, this choice is simply a choice of

regulator at a given energy scale when renormalising the divergent action of

anti-de Sitter space. The negative curved anti-de Sitter space has a number

of natural choices of coordinates, for which appendix A is provided.

The correspondence can be generalised to a duality between type IIB

on asymptotic anti-de Sitter backgrounds and a dual gauge theory based

on considerations of near-extremal solutions of supergravity. The interior of

such backgrounds can, among other things, contain black holes. Black holes

have a vast history of thermodynamical analogy for which a detailed review

is given in appendix D. The analogy means that it is possible to introduce

a temperature in the correspondence. This opens for an approach to make
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predictions in the strongly coupled field theory at finite temperatures. A

finite temperature has the implication of introducing an energy scale in the

field theory, which breaks its conformal invariance.

Along with the correspondence, the equivalence of the two theories’ par-

tition functions are likewise conjectured [29]. From the Euclidean path in-

tegral approach towards quantum gravity, which provides a semi-classical

prescription for evaluating the thermodynamical partition function of the

gravity theory, the stable and favourable spacetime configurations as a func-

tion of temperature can be determined. In doing so, one considers the

positive-definite sections of the contributing metrics, which are obtained by

performing a Wick rotation. In contrast to the anti-de Sitter metric, the

black hole metric admits a unique spin structure corresponding to a ther-

mal (anti-periodic) boundary condition, which is supersymmetry-breaking.

The relation between the Euclidean path integral and the partition func-

tion of the canonical ensemble is reviewed in appendix C. Having the most

favourable spacetime configuration as a function of temperature, possible

phase transitions are directly predictable and can be mapped to the strongly

coupled dual gauge theory at large N . In fact, one finds that the gauge the-

ory in question undergoes a transition from a confined phase consisting of

singlet hadrons to a deconfined phase of quark-gluon plasma. Interestingly,

this plasma, in the case of QCD, has been observed briefly at the experi-

ments at the Relativistic Heavy Ion Collider (RHIC) [32], [4].

The two low energy descriptions of N coincident branes are introduced in

section 2. In particular, the extremal black 3-brane solution of supergravity,

which turns out to have the special near-horizon geometry of AdS5×S5, and

the four dimensional gauge theory living on the the D3-branes, which turns

out to have the special property of conformal invariance. Looking at the

descriptions in their respective limits of validity at low energies in section 3,
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the AdS/CFT correspondence considered here is introduced. A discussion

of the holographic nature of the duality will also be given. In section 4 it

is shown how a finite temperature in the correspondence arises from the

black hole geometry of the near-extremal black 3-brane. Furthermore, the

divergent action due to the infinite volume of anti-de Sitter spacetime and

the need for a renormalisation are discussed. The method of holographic

renormalisation is used in section 4.5 to extract the boundary stress-energy

tensor of the anti-de Sitter and Schwarzschild-AdS spacetimes. This also

spawns an elaborate discussion of the impact the choice of coordinates has

on the theory. Hereafter, the N = 4 gauge theory on the spatial manifold

S3 shall be considered at finite temperature. To study this theory at finite

temperatures, the thermodynamical partition function is determined on S1×

S3 by Euclideanising the spacetime metrics and evaluating the saddle-point

approximation of the Euclidean path integral. Having the partition function

makes it possible to compute the thermodynamical properties of the black

hole in anti-de Sitter space and compare it to the empty anti-de Sitter space.

Finally, the results are compared to the expected behaviour of the dual field

theory.

The units are chosen such that c = ~ = k = 1 while Newton’s constant

GN is kept.
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2 Supergravity and Gauge Theory

As hinted in appendix B, there exist two descriptions of the low energy

dynamics of branes. One description treats the brane as a source for the

closed string fields in superstring theory and is a solution to the low energy

field equations derived from supergravity. The other description uses the

dynamics of the world volume field theory of N coincident Dp-branes. In

both cases, it is important to identify valid regimes. First, recall that there

exists a whole tower of stringy dynamics on top of the low energy physics,

whose influence is made insignificant when α′ → 0. In addition, working

with small gs ensures that one remains in the classical supergravity regime,

that is at the string tree level. Also, in the weak-coupling regime it is evident

from the tension of the D-brane that one can treat them as rigid objects and

therefore the truncation of the world volume effective actions can be trusted.

The two descriptions are essential for the understanding of the conjecture

of the duality between gauge theory and gravity.

In the following section, the extremal black p-brane solutions of the type

II supergravity actions shall be considered. The case of p = 3 turns out to

be particular interesting in that it, among other things, has a finite horizon

area. The solution arises from the self-dual four-form gauge potential in

the type IIB R-R sector and its near-horizon geometry turns out to be

AdS5×S5. Later, when more is understood, the non-extremal black 3-brane

solution will be considered. It will turn out to have a Schwarzschild-anti-

de Sitter black hole times a five-sphere geometry. In section 2.2 and 2.3,

the open string sectors and coincident D-branes shall be considered. This

gives a U(N) gauge theory, and of particular interest is the world volume

field theory of N coincident D3-branes which is the four dimensional N = 4

supersymmetric Yang-Mills theory with SU(N) gauge group.

5



2.1 Extremal Black p-Branes

This section will show how the anti-de Sitter space emerges in the AdS/CFT

correspondence. Considering the type II supergravity approximation, solu-

tions are obtained for the weak-coupling gs � 1 regime where strings are

propagating in a fixed background. The solutions will turn out to be similar

to the charged Reissner-Nordström solutions known from general relativity

(see section D.2). They are, however, extended in p spatial directions and

because they have an event horizon they are called black p-branes. In par-

ticular, the focus here will be on the case of imposing the extremal condition

on the general p-brane solution. Recall that extremal objects in general rel-

ativity are defined by M = Q and as a consequence have zero temperature1.

This is similar for the higher dimensional p-brane generalisations. The ex-

plicit form of a general p-brane solution is not relevant for the discussion,

but can be found in various references (see e.g. [17], [1]). Finally, it should

be mentioned that although the supergravity solution is the description used

to describe low energy string theory, it is believed that the solution may be

extended to the full type II string theory. Although, it will of course have

α′ corrections of the metric and other fields.

As for the black hole solutions in four dimensions, which are solutions

to the equations of motion of the Einstein-Hilbert action, one is similarly

considering the solutions to the equations of motion derived from the Type

II supergravity action. To construct an extremal black p-brane it is only

necessary to include one field from the R-R sector in the action, say Cp+1

(see section B.1). One finds a family of ten dimensional solutions which

sources gravity, the dilaton, and the R-R gauge potential. The two-form

term from the NS-NS sector vanishes. Let the field strength of the R-R

sector field be Fp+2 = dCp+1 and Φ be the dilaton then the string-frame

1The extremal condition is given from the definition of the action given by equation

(1) and does therefore not include a factor of
√

GN.
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action takes the form [4]

S(p) =
1

2κ2
0

∫
d10x
√
−g
[
e−2Φ(R+ 4(∂Φ)2)− 1

2
|Fp+2|2

]
, (1)

where κ0 is given by equation (74). The case of p = 3 is special because the

field strength arising from the R-R four-form of Type IIB is self-dual. To

ensure this is satisfied, it is necessary to impose the additional constraint

F5 = ?F5 ,

and introduce an additional factor of 1/2 in front of the |F5|2 term. The

solution for the extremal black p-brane metric is

ds2 = H
− 1

2
p (ηµνdxµdxν) +H

1
2
p

(
dr2 + r2dΩ2

8−p
)

. (2)

The part in the first parenthesis is the flat Lorentzian metric in p + 1 di-

mensions while the part in the second parenthesis is an Euclidean metric in

9− p dimensions. This is consistent with the fact that placing an extremal

p-brane in spacetime breaks Lorentz symmetry,

SO(9, 1)→ SO(p, 1)× SO(9− p) , (3)

where the first factor is the Lorentz symmetry along the brane while the

second factor is the rotation symmetry for the perpendicular directions.

Since there is rotational symmetry in the 9 − p transverse directions, it is

possible to use spherical coordinates with a radial coordinate r and angular

coordinates on a (8− p)-sphere.

The function Hp present in the metric is the harmonic function that

solves the (9 − p)-dimensional Laplace equation. Extremal black p-branes

are defined by these harmonic functions which are functions of the radial

coordinate r,

Hp(r) = 1 +
(rp
r

)7−p
. (4)

The solution is thus parametrized by the positive parameter rp to be deter-

mined later. From the dilaton’s equation of motion one finds the solution

eΦ = gsH
3−p
4

p ,
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from which it is seen that the dilaton field is spatially varying for all values

of p except p = 3. From the behaviour Hp → 1 as r → ∞ of the harmonic

function gs defines the string coupling at infinity. This behaviour also shows

that the metric is asymptotically flat. For p < 3, it is evident that the system

goes into the nonperturbative regime for r → 0. This means eΦ becomes

large for which the classical supergravity solution is unreliable. Interestingly,

for the special case of p = 3 the dilaton is seen to be constant and thus the

string coupling is given by gs for all r.

One can generalise to a multicentre solution by writing the harmonic

function as

Hp(r) = 1 +
k∑
i=1

(
rp

|~r − ~ri|

)7−p
, (5)

which represents k parallel extremal p-branes located at arbitrary positions

given by ~ri. For this particular form, each brane carries Ni unit of R-R

charge and the total charge is the integer N . In the following, a single brane

with N R-R charges is considered. From the equation of motion of the R-R

field one finds

Cp+1 = (H−1
p − 1)dx0 ∧ ... ∧ dxp

Fp+2 = dH−1
p ∧ dx0 ∧ ... ∧ dxp .

Since the brane will generate a flux of the corresponding p+2 field strength,

one must be able to express the above equation for the field strength by the

following

Fp+2 =

 Q(ω5 + ?ω5) for p = 3

Q ? ω8−p otherwise
,

where Q is the D-brane charge per unit volume and ωn is the volume form

of a n-sphere. Note that the special case of p = 3 is due to the self-dual field

strength. This particular form ensures that the integration over the dual

field strength ?F yields the charge [1]∫
S8−p

?Fp+2 = QΩ8−p = N , (6)
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where N is the R-R charge of the brane. The volume of a n-sphere is

Ωn = Vol(Sn) =
2π

n+1
2

Γ
(
n+1

2

) . (7)

One can express the parameter rp in terms of gs and N from equation (6).

Alternatively, it can be done by matching the metric (2) with the form of a

Schwarzschild black hole with mass M in ten dimensions. In the Einstein-

frame, the time-time component h reads [4]

h = 1− r2
0

rd−3
, r2

0 =
16πG(d)

N M

(d− 2)Ωd−2
. (8)

However, in order to match this result with the corresponding term in the

string-frame metric, an appropriate transformation of metric and dilaton

must be performed (see e.g. [17]). This reveals that if the Hp is given by

equation (4) with d = 10− p, then [23]

rd−3
p =

16πG(d)
N M

(d− 3)Ωd−2
. (9)

The mass of the extremal p-brane wrapped around a p-dimensional compact

space of volume Vp can be expressed in terms of the tension and charge of a

Dp-brane as

M = NTDpVp, TDp =
1

(2π)pgs`
p+1
s

.

At infinity in the reduced (d− p)-dimensional spacetime the brane appears

as a point source of mass M . Newton’s constant in ten dimensions is related

to the (d− p)-dimensional one by

G
(d−p)
N =

G
(d)
N

Vp
, G

(10)
N = 8π6g2

s`
8
s . (10)

From the two last relations, one has

G
(d−p)
N M = G

(d)
N NTDp ,

which, when substituted into equation (9) with d = 10− p, yields a relation

between the parameter rp in units of string length and gsN(
rp
`s

)7−p
= (2
√
π)5−pΓ

(
7− p

2

)
gsN . (11)
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For a general p the squared curvature invariant is proportional to either

side of this equation. For rp much larger than the string length `s, that is

gsN � 1, the supergravity description can therefore be trusted. Further

discussion of this equation in the case of p = 3 is addressed later. For all p

except for p = 3, the horizon at r = 0 is a singular place of zero area, since

the radius of S8−p vanishes there. The metric therefore only describes the

spacetime outside the horizon. The 3-brane is of interest for various reasons;

its world volume has four dimensional Poincaré invariance, it is self-dual, and

the horizon has finite area. In addition, the dilaton is constant throughout

spacetime, which simplifies the above relation, setting r3 = b and the string

length `s =
√
α′ (see section B.2), one has

b4 = 4πgsNα′2 . (12)

The near-horizon of the 3-brane is also particularly interesting because it

describes the low energy physics as shown in section 3.2. In the near-horizon

region r � b, the harmonic function can be approximated by

H3(r) ≈
(
b

r

)4

, (13)

and thus the geometry of the near-horizon can is found

ds2 ≈
(r
b

)2
(ηµνdxµdxν) +

(
b

r

)2 (
dr2 + dΩ2

5

)
. (14)

Making a variable substitution z = b2/r reveals the familiar form of anti-de

Sitter spacetime in local coordinates (see equation (68))

ds2 ≈ b2

z2

[
ηµνdx

µdxν + dz2
]

+ b2dΩ2
5 . (15)

More precisely this is five dimensional anti-de Sitter space times a five-sphere

AdS5 × S5 where the parameter b is identified as the radius of both. The

anti-de Sitter part is the primary focus and is reviewed in some details in

appendix A. The constant Ricci curvature of AdS is given by the radius of

curvature in equation (60)

R ∝ − 1
b2

. (16)
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With this equation and constant string coupling gs it is now possible to

compare scales with the coupling constant gsN . Above, the black p-brane

solutions have only been treated using classical supergravity. This requires

that the curvature is small compared to the string length. By equation (12)

and thus equation (16) this implies that b is much larger than the string

length. To suppress string loops one also needs to be in the weak-coupling

regime gs � 1, that is the regime of string perturbation theory. This is

possible provided that N is sufficiently large. However, if the string coupling

is large, one could also use S-duality gs → 1/gs (see section B.5). In the

p = 3 case where the horizon is not singular, the solution can, in fact, be

analytically extended beyond r = 0. The maximally extended metric does

not have a singularity and is geodesically complete [1]. The supergravity

approximation in the case of p = 3 is thus reliable when

N > gsN � 1 .

Stringy corrections are thus suppressed for gsN � 1 and quantum correc-

tions are small when N � 1 provided gsN is fixed. The ten dimensional

Planck length is related to the string length by `4p = gs`
4
s, thus equation (12)

can be expressed as (
b

`p

)4

= 4πN .

This means that b must be much larger than the Planck length `p.

Besides the low energy limit of supergravity α′ → 0, the other expan-

sion regime of string theory is that of weak coupling gs → 0. In this case,

equation (5) shows via equation (11) for gsN � 1 that the metric for co-

incident branes essentially becomes flat everywhere except on the (p + 1)-

dimensional hypersurface given by ~r = 0, where the metric appears to be

singular. Strings propagating on this background are thus moving in flat

spacetime, except when the string reaches the brane.

11



2.2 Non-Abelian Gauge Theory on D-branes

A Dp-brane is a (p + 1)-dimensional hypersurface in spacetime. They are

charged under a p+ 1 gauge field, which is part of the massless closed string

modes present in the supergravity multiplet derived for type IIB in section

B.1. Note that this spectrum was derived in flat space before any D-branes

were present. The branes are therefore sources of closed strings and can have

open strings ending on them. The brane spectrum for type IIB is discussed

in section B.4. A description of weak-coupling exists and is addressed now.

In the weak-coupling regime where the string coupling gs is taken to

be small, string perturbation theory becomes possible (see section B.2). In

this case, a D-brane becomes much heavier than the fundamental string (see

section B.4) and is taken to be rigid surfaces where open strings can end,

inducing a U(1) gauge theory on the world volume. Branes are thus viewed

as point-like in their transverse directions in otherwise flat space. Multiple

coincident D-branes allow open strings to start on one brane and end on

another by placing Chan-Paton matrices λaij on the ends [4]. For N branes

N2 − N string configurations are possible. In this case, the effective loop

expansion parameter for the open strings is gsN rather than gs. The D-

brane description is therefore valid for gsN � 1. If the ends of the open

string are labelled i and j, the massless open string state can be shown to

be a vector

|µ〉 ⊗ |i〉 ⊗ |j〉 ,

which is a gauge field Aaµ of the U(N) gauge group. The λaij are genera-

tors of the adjoint representation. In the coincident case, the U(1)N is thus

enhanced to U(N). In the limit α′ → 0, only the massless states of the

open strings remain and they describe oscillations and the gauge field on

the branes. In this limit, the gauge theory is free. When only the dynamics

on the branes are of interest, the overall factor U(1) = U(N)/SU(N), which

determines the position of the branes, can be ignored. This leaves a SU(N)
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gauge symmetry. Superstring theory has 32 supercharges, which form eight

four-dimensional spinors; that is, N = 8 in four dimensions. Placing co-

incident D-branes in spacetime breaks translation invariance and therefore

breaks half of the supersymmetry. The fields on the world volume of the

coincident D-branes are those of a maximally symmetric vector multiplet for

spins less or equal to one: gauge fields, scalars, and spinors, all in the adjoint

representation of SU(N). The non-trivial terms in a weak-field expansion

are thus exactly N = 4 super Yang-Mills.

2.3 D3-branes; Conformal N = 4 Super Yang-Mills

In this section some essential properties of the SU(N) gauge theory living on

the four dimensional world volume of N coincident D3-branes are discussed.

For more extensive reviews see [1], [19], or [7].

From the previous section, it is evident that the four dimensional gauge

theory living on the coincident D3-branes is the supersymmetric Yang-Mills

theory with N = 4 supercharges and gauge group SU(N). In general, it

is difficult to find quantum field theories which are conformally invariant.

However, this is exactly the case for this particular theory. This comes from

the fact that its beta function vanishes everywhere, which implies that there

is a cancellation of UV divergences to all orders in perturbation theory.

The need for introducing a renormalisation scale is therefore not necessary.

One is, however, free to define the theory at a particular energy scale E

by integrating out all degrees of freedom above that scale. For the case of

super Yang Mills theory in p + 1 dimensions the effective coupling can be

determined by dimensional analysis

g2
eff(E) ∼ g2

YMNE
p−3 .

For p = 3, the coupling is seen to be independent of the energy scale and is

known as the ’t Hooft coupling λ = g2
YMN . It should be mentioned that the
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open string coupling constant coincides with gYM. In the case of p = 3, the

N = 4 vector multiplet is constituted of the components

(
Aaµ, ψ

ai, φ[ij]

)
,

where i = 1, ..., 4 is an adjoint SU(4)R index and [ij] the six-dimensional

antisymmetric representation of SU(4)R. The a = 1, ..., N is a SU(N) gauge

group index. Thus, there is one gauge field, four fermions, and 9 − p = 6

scalars. The label R refers to the global R-symmetry. By definition, this

symmetry group does not commute with the supersymmetries. It is evident

that the six scalar fields and the four fermions rotate under this group.

It is worth introducing the conformal group. A d-dimensional Loren-

tizian manifold is conformally flat if the metric can be written [5]

ds2 = eu(x) (ηµνdxµdxν) ,

where u is the conformal factor which is allowed to have x dependence.

The conformal group is the subgroup of general diffeomorphisms which pre-

serves the conformal flatness of the metric (see section D.6 for a note on

diffeomorphisms). The conformal group consists naturally of translations

and rotations. In addition, the scale transformation xµ → λxµ for some

constant λ is also a conformal transformation. Lastly, a conformal transfor-

mation, known as the special conformal transformation, constitutes a part

of the group. It can be derived in a number of ways (see e.g. [4]). The in-

finitesimal transformations of the d-dimensional conformal group are then:

• δxµ = aµ, translations

• δxµ = ωµνxν , Lorentz transformation

• δxµ = λxµ, scale transformation

• δxµ = bµ(xρxρ)− 2xµ(bρxρ), special conformal transformation
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aµ, ωµν , λ, and bµ are taken to be infinitesimal generators of the confor-

mal group. The dimensionality of the group can be counted from these

parameters. Recall the Lorentz generators ωµν are antisymmetric thus

d+
d(d+ 1)

2
+ 1 + d =

(d+ 2)(d+ 1)
2

.

One can derive the Lie algebra by commuting the infinitesimal generators.

It turns out to be the non-compact form of the (d+ 2)-dimensional rotation

group SO(d,2) in the case of Lorentzian signature. In four dimensions, the

conformal group is therefore SO(4,2) with covering group SU(2,2). Finally, it

should be mentioned that the conformal group in two spacetime dimensions

is special in that it is actually infinitely dimensional.

The large N limit is particularly interesting for the discussion in section

3.1. It turns out that the theory in this ’t Hooft limit has a convenient

topological expansion of amplitudes. One finds that the contribution of

diagrams of genus g scales for large N and fixed coupling λ like Nχ, where

χ is the Euler characteristic χ = 2 − 2g. The limit of large N enables

expansions in 1/N . The expansion is seen to be dominated by the surfaces

of maximal χ. Thus the leading terms in the expansion consist of surfaces

of zero genus; that is, planar diagrams which give a contribution of N2. The

rest of the diagrams are suppressed by factors of 1/N2.
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3 Anti-de Sitter / Conformal Field Theory

Above, the two low energy descriptions of branes were considered separately.

It was seen that their validity was appropriate for different limits of the

effective coupling strength gsN . The next sections consider the behaviour

of a system consisting of N coincident branes in ten dimensional spacetime

when taking the low energy limit of the system in the two opposite limits

of gsN . For large coupling one therefore considers a multicentre solution

given by equation (5) where each brane effectively carries one unit of R-R

charge. The integer N is taken to be large. In both limits, the system is

seen to undergo a decoupling into two parts. One part turns out to be equal

in both limits and consists of a system of closed strings propagating on flat

spacetime. From the low energy limit, conjecturing a duality between string

theory and gauge theory comes naturally about.

Some parts of the following analysis are more elaborate in various reviews

on the AdS/CFT correspondence (see e.g. [1], [7], [19]). However, the focus

here is to understand under which assumptions the low energy limits of

near-horizon AdS and gauge theory are appropriate descriptions and why it

is possible to have arbitrary finite temperatures in a low energy limit.

3.1 Decoupling in the gsN � 1 Limit

Consider N coincident D3-branes in ten dimensional spacetime. Their world

volume is a (3+1)-dimensional plane. At zero coupling gs spacetime is flat

Minkowski space as seen from the p-brane metric given by equation (2). On

this background, string theory has two kinds of perturbative excitations:

open strings on the branes and closed type IIB strings in the spacetime

bulk with no interaction taking place. Now, considering a small but non-

zero coupling gsN � 1, spacetime will still be approximatively flat. At low

energies – that is, energies that are much smaller than the string scale E �

1/`s or equivalent keeping all energies bounded E ≤ E0 while taking the
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limit α′ → 0 – the massive states of the open strings on the D-branes become

too heavy to be observed and only the massless string states can be excited

(see section B.3). In this limit, one can write down an effective system

consisting of three components. Firstly, the massless closed string states

of the ten dimensional type IIB supergravity multiplet derived in section

B.1 living in the ten dimensional bulk. Secondly, the massless states of the

open strings on the (3+1)-dimensional world volume of the branes, which

is N = 4 SU(N) super Yang-Mills theory. And thirdly, the interactions

between the two; the open string modes and the closed string modes. For

example, two colliding open strings on the brane could form a closed string

and peel off into the spacetime as Hawking radiation [19]. Both of the two

first contributions have higher derivative corrections in powers of α′ to their

effective Lagrangians.

To understand how the effective description behaves in the low energy

limit, one can consider the strength of the interactions. The strength of

the interactions between the closed strings in the bulk, but also between

the spacetime fields and the fields on the branes, are determined by the

ten-dimensional Newton constant GN ∼ g2
sα
′4. Keeping the energy, gs, N ,

as well as all other dimensionless parameters fixed while taking α′ → 0,

the two types of interactions both vanish along with the higher derivative

corrections and leave the two systems completely decoupled.

3.2 Decoupling in the gsN � 1 Limit

The D3-brane geometry presented in section 2.1 is a valid description of

superstring theory provided gsN � 1. Recall for the p = 3 case, the dilaton

is constant and if necessary can be made small by a S-duality transformation.

The solution is not singular and have a finite horizon located at r = 0. The

metric is given by equation (2) with the harmonic function given by (4).

For this static D3-brane solution of supergravity, the energy of an object
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Er at a fixed position r measured by an outside observer at infinity will be

redshifted when the objects come closer and closer to the horizon. For a

note on redshift, see the discussion above equation (87). From the timelike

Killing vector field ξµ, which is well-defined everywhere for AdS, the redshift

factor V =
√
−ξµξµ is seen to be a function of r,

E∞ = V Er = H
− 1

4
3 Er .

It is thus apparent from the behaviour of the harmonic function H3 that in

the near-horizon limit r � b where the harmonic function can be approxi-

mated by equation (13), the redshifted energy

E∞ ≈
r

b
Er ≈

r√
α′
Er (17)

shows that the near-horizon describes low energy physics.

At low energies, two excitations are possible. One, due to the redshift

finite excitations that either emanate from the horizon or are brought close

to the horizon, and another far from the branes’ low energy excitations con-

sisting of massless particles propagating in spacetime will have large wave-

lengths. In the low energy limit, these two excitations decouple and do not

interact. The near horizon excitations can not overcome the gravitational

potential ∼ g00 and escape to infinity while the horizon, which is small com-

pared to the wavelength of the massless particles, has negligible interaction

cross-section. The result is two non-interacting systems: a system of low en-

ergy closed strings propagating on a flat background and a system of closed

type IIB superstrings on the near-horizon geometry.

It is in order to be a little more elaborate, for the purpose of later

discussion, on how it is possible to consider arbitrary excited states near the

horizon. Energies in the near-horizon region r � b in string units are kept

fixed
√
α′Er while α′ → 0 such that the energy as measured from infinity

is given by equation (17), thus to keep the energy fixed while taking r → 0

implies that u = r/α′ should be kept fixed.
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3.3 Conjecture

The above analysis considered a system of N D3-branes in ten dimensional

spacetime in two opposite limits of the effective coupling gsN . It was shown

that at low energies both limits of gsN had a part consisting of closed strings

propagating in a flat background. It was shown that these closed strings did

not interact with the other part of the system. The closed strings can be

identified to be the same in both limits. In fact, it must be the same for

all values of gs. It is then natural to identify the other part of the system

in the two limits to be the same also. Since the two remaining theories are

completely different theories and neither can be treated non-perturbatively

it is difficult to prove they are in fact the same. Therefore, one conjectures

that the N = 4 SU(N) super Yang-Mills theory in 3+1 dimensions is a dual

theory to the full quantum type IIB superstring theory on AdS5 ×S5. This

is the strongest form of the conjecture, however there exist three forms of

the conjecture with various strengths (see [7]).

In the above analysis, the weakest form was considered, which was what

gave rise to the conjecture originally. It is that the gravity description is

valid for large gsN , but the full string theory might not agree with the

field theory. A slightly stronger conjecture is to say the two theories are

the same for finite gsN , but only when N is large. This is α′ corrections

would agree, but not necessarily gs corrections. The strongest form of the

conjecture states that the two theories are exactly the same for all values of

gs and N . Later, when the role of the non-extremal 3-brane is considered a

more general statement of the AdS/CFT correspondence emergence where

the four dimensional gauge theory is related to spacetimes which are only

asymptotically AdS5 × S5. The interior of spacetime is thus allowed to

contain all kinds of processes like excited fundamental string states or black

holes, etc. [1]. The field theory is thus an effectively sum over all spacetimes

which are asymptotic to AdS5 × S5.
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A duality requires a precise map between quantities in the two related

theories. The different mappings between quantities are said to constitute

a dictionary for the correspondence. As a start, the relation between the

dimensionless parameters of the two theories is considered. First, the rank

of the SU(N) gauge group, which is N − 1, is present in supergravity by

equation (6) as the five-form flux through the five-sphere. This came about

by enclosing the D3-branes, which carry a total of N units of D3-brane

charge. Secondly, the coupling constant in the Yang-Mills gYM and in the

string coupling gs have an exact relation realised by the S-duality that both

theories have (see section B.5). Setting the two scalars τ equal in the two

theories reveals the relation

g2
YM = 4πgs .

For the case of large N the effective coupling constant for the gauge theory

is the ’t Hooft coupling constant λ = g2
YMN . Using above relation between

the couplings, one can write

λ = g2
YMN = 4πgsN . (18)

Furthermore, from the case of extremal black D3-branes one has the radius

of curvature of the AdS5 and five-sphere in units of the string length given by

equation (12). Using equation (18) this relation can be expressed in terms

of the ’t Hooft coupling constant(
w

`s

)4

= 4πgsN = λ . (19)

Now that a mapping between the parameters is made, one can express the

five dimensional Newton’s constant in the parameters of the field theory.

From equation (7) and (10), the ten dimensional Newton’s constant can be

related to the five dimensional

G
(5)
N =

G
(10)
N

Vol(S5)w5
=

8π6g2
s l

8
s

π3w5
,
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since the volume of a unit five-sphere is π3. Using the mapping from the

correspondence given by equation (19)

g2
s`

8
s =

w8

16π2N2
,

one obtains,

G
(5)
N =

8π6w8

16π5N2w5
=
πw3

2N2
.

The five dimensional constant is of interest, since the correspondence in-

cludes the five dimensional anti-de Sitter spacetime. Results calculated in

the following sections can therefore be converted into field theory quantities

using the derived expression for the five dimensional Newton’s constant.

It is worth mentioning that ensuring a match between the symmetries

of the two theories provides a suitable consistency check for the duality.

The near-horizon geometry given by equation (15) has an isometry from

the AdS5 part, which is SO(4,2) and a SO(6) rotation symmetry of the

five-sphere. Correspondingly, section 2.3 showed that the conformal group

in four dimensions was SO(4,2) and additionally had a SU(4) ∼ SO(6) R-

symmetry. Usually, the cover groups are used since the fermions belong to

the spinor representations.

3.4 Holographic Duality

Taking a point xµ in AdS to correspond to a position in the field theory the

subtle question arise of how the radial coordinate should be interpreted in

the gauge theory and what z = 0 corresponds to. Recall that equation (17)

showed that the radial coordinate controlled the energy as measured from

infinity. It turns out that z in fact represents an energy scale E of the gauge

theory. To see this, recall that for a conformal theory one can perform a

scale transformation in the gauge theory.

xµ → λxµ ⇒ E → E/a .
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Since a point in the gauge theory is taken to be a point in AdS, this transfor-

mation should also be possible on the metric. Applying the transformation

on the AdS metric implies the rescaling z → z/λ and reveals exactly the

redshift relation obtained before.

The limit z → 0 defines the boundary of AdS5. Any radial slice is

conformal to Minkowski space in four dimensions as is seen from equation

(15). The boundary corresponds then to the field theory where no degrees

of freedom have been integrated out (E → ∞). This is the limit of UV in

the gauge theory. Since this is the limit that is normally discussed, one often

says that the field theory lives on the boundary. However, the field theory

really lives everywhere. A slice of z corresponds to a particular effective

theory at that cutoff. This is the notion of holography: the physics on

the five dimensional AdS is encoded in the four dimensional gauge theory.

It should be mentioned that the boundary is in the IR limit of the AdS

theory while it is UV for the gauge theory. Quite generally, there exists a

holographic relation where physics on the (d+ 1)-dimensional anti-de Sitter

space can be encoded in the dual d-dimensions conformal field theory. Note

that the five-sphere was ignored in the above discussion as it will be for a

large part of the following.

The location of the field theory on the boundary clarifies the former

statement that the field theory effectively is a sum over all spacetimes which

are asymptotically AdS. Although until now only the vacuum AdS has been

introduced, another contributing spacetime shall be derived from the con-

sideration of the non-extremal black p-brane solution in section 4.2. Dual

gauge theories in such cases are, however, not conformally invariant.

Now that the UV of the gauge theory has been connected to the boundary

of asymptotically AdS space, an important statement of the correspondence

can be made. The duality claims that there should be a bulk field φ for every

gauge invariant operator Oφ [25]. One makes the identification that the
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bulk partition function equals the generating functional of the field theory

correlation functions [29]

ZAdS(φ0,i) = ZCFT(φ0,i) . (20)

Here the quantities φ0,i on the gravity side should be interpreted as the

boundary values of the fields φi|z=0 propagating in asymptotic AdS. Thus,

the fields φ0,i are functions of the four coordinates describing the boundary

of AdS5. On the field theory side, the φ0,i correspond to external sources or

currents that are coupled to operators. Much of the dictionary comes from

equating the two partition functions of the two theories which is why this

identification can be interpreted as the actual duality.
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4 Finite Temperature

The correspondence between gauge theory and superstring theory is now

postulated and it should be possible to make predictions in one theory by

calculations in the corresponding theory. The primary interest will be to

consider the theories at finite temperature. The approach taken here is to

investigate the finite temperature physics of asymptotically AdS spacetimes

and look at the corresponding behaviour in the related gauge theory. In

section 4.2, a contribution to the partition function shall be derived from the

consideration of the decoupling limit of the non-extremal p-brane solution.

It turns out to be a Schwarzschild black hole solution in AdS5 times a

five sphere. Like black holes in asymptotically flat space, black holes in

asymptotically AdS also have thermodynamical properties. A discussion of

black holes in flat space is given in appendix D. The Schwarzschild black

hole solution in AdS will turn out to be a competing contribution in the

thermodynamical partition function. Global coordinates are introduced in

section 4.3.

In section 5, the contributing spacetimes shall be Euclideanised and the

thermodynamical analogy of black holes shall be utilised. A brief note on the

relation between statistical partition function and the path integral approach

towards quantum gravity is given in appendix C. It will be shown that a

phase transition occurs between the thermal AdS space and the AdS black

hole solution as a function of temperature. With help from the AdS/CFT

duality, the result can be interpreted in the gauge field as a transition from a

confined phase to a deconfined phase. There is, however, another approach

to computing thermodynamical quantities. In section 4.5, the results of

applying holographic renormalisation on asymptotic AdS spaces shall be

discussed. In particular, the extraction of the boundary stress-energy tensor.
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4.1 The Saddle-Point Approximation

In order to do calculations, the AdS partition function can be evaluated

using the saddle-point approximation to the path integral

exp (−IAdS(φ0)) =
〈

exp
(∫

φ0O
)〉

CFT

, (21)

where IAdS is the classical Euclideanised supergravity action and O is the

dual field theory operators. Actually, both sides are not well-defined without

renormalisation. On the right hand side, the correlation functions have UV

divergences. Similarly, the left hand side is divergent due to the infinite

volume of the non-compact AdS spacetime. In the following, the left hand

side and its divergences will be focused on.

The action of some (n+1)-dimensional spacetime is given by the Einstein-

Hilbert action plus the Hawking-Gibbons surface term [9]

Ibulk + Isurf = − 1
16πGN

(∫
M
dn+1x

√
g(R− 2Λ) +

∫
∂M

dnx
√
γ 2K

)
.

(22)

Here K = Ki
i is the trace of the extrinsic curvature of the boundary ∂M

and γij the induced metric on the boundary. Recall that the extrinsic cur-

vature measures how curved a hypersurface embedded in spacetime is. In

the case of a spherical symmetric spacetime with radial coordinate r, the

computation of the extrinsic curvature of a spherical hypersurface is simpli-

fied significantly. Here, the embedding function reads f = r − R = 0 for

some constant R. This is of interest, since the boundary can be obtained

by taking R to infinity. The outpointing unit vector normal to the spherical

surface is given by

nµ =
1√
|grr|

(
∂

∂r

)µ
. (23)

The embedding coordinates of the surface in the spherical symmetric space-

time are coincident with the spacetime coordinates therefore the extrinsic

curvature can be expressed

Kij =
1
2
nµ
∂γij
∂xµ

. (24)
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The trace is readily given by

K = γijKij =
1
2
γij
(
nµ
∂γij
∂xµ

)
. (25)

Now, as mentioned previously, the classical AdS action suffers from being

divergent. In fact, both terms of the action are divergent. In section 5.5,

the action of an asymptotic AdS spacetime is shown to be proportional to

the volume of the spacetime, but since this volume is infinite the Einstein-

Hilbert action is divergent. Furthermore, in section A.6 it is shown that the

metric diverges on the boundary and that it is in fact not possible to induce

a metric there. Thus, to obtain finite quantities, like the total energy, some

approach to renormalisation must be taken. Two different approaches shall

be addressed: holographic renormalisation in section 4.5 and background

subtraction in section 5.5.

4.2 Near-extremal D3-brane

From the holographic principle it was evident that the UV limit of the field

theory lived on the boundary of AdS. Spaces that are asymptotic anti-de

Sitter is therefore of interest since they contribute to the partition function.

As shall be shown in this section, one such space arises from the horizon

of the non-extremal solutions of supergravity. Like non-extremal black hole

solutions, black p-brane solutions have nonzero temperature. This will play

an essential role for the discussion of section 5. Restricting attention to

p = 3, the metric of the non-extremal black 3-brane is given by (see e.g.

[17])

ds2 = H
− 1

2
3

[
−Zdt2 + δijdy

idyj
]

+H
1
2
3

[
Z−1dr2 + r2dΩ2

5

]
,

where i, j = 1, 2, 3. H3 is given by equation (4) and Z is a function of the

radial coordinate

H3(r) = 1 +
(
b

r

)4

, Z(r) = 1−
(rH
r

)4
.
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The black brane horizon is located at r = rH . In the extremal case, it was

found that the parameter rp = r3 = b was related by equation (11) to the

combination gsN . This, although not stated, is in fact true for the general

p-brane solution [17]. Thus, using this relation the essential operation is to

take the decoupling limit where the near-horizon decouples from the bulk

gsN � 1. This limit of the non-extremal case corresponds to a near-extremal

solution and the harmonic function can be approximated by (13) again(
b

`s

)4

∝ gsN � 1 ⇒ H3 ≈
(
b

r

)4

.

One could expect that the limit would have restricted attention to the region

near the horizon and both removed the singularity and the asymptotically

flat region. However, this is not the case as is evident from the form of the

metric

ds2 =
r2

b2
[
−Zdt2 + δijdy

idyj
]

+
b2

r2
Z−1dr2 + b2dΩ2

5 .

The first part is the Schwarzschild-AdS5 black hole metric in local coordi-

nates (Poincaré coordinates) where the horizon is R3 instead of S3 while the

second part is the five-sphere as in the extremal case. The metric is asymp-

totic to the anti-de Sitter space and has an inverse temperature β = πb2/rH .

As mentioned in appendix section A.1, the Schwarzschild-AdS metric is, like

the AdS metric, a solution to Einstein’s equations with a negative cosmolog-

ical constant. In order to compare the form here to equation (15), a change

of variables z = b2/r is performed

ds2 =
b2

z2

[
−Zdt2 + δijdy

idyj + Z−1dz2
]

+ b2dΩ2
5 . (26)

In these coordinates the horizon is located at z0 = b2/rH and the tempera-

ture is β = πz0. The thermodynamical quantities temperature, energy, and

entropy will be given a proper treatment in section 5.

Now, two contributing spacetimes to the partition function have been

identified. The string theory partition function evaluated by the saddle-
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point approximation given by equation (21) is thus

Zstring ' e−IAdS + e−IBH .

Here, the IBH denotes the action of the Schwarzschild-AdS5 black hole. Sec-

tion 5 will work with this approximation in detail. However, some questions

in relation to classical black holes in flat space are worth mentioning. Most

of the classical work done on black holes assumes asymptotic flatness, sta-

tionarity, and other various things reviewed in section D.5. The theorems

developed therefore rely upon such assumptions. Addressing black holes

in asymptotic anti-de Sitter space naturally rises questions about theorems

of uniqueness, positive mass, initial values, etc. (some of these questions

are addressed in [20] and [31]) In addition, section D contains a complete

macroscopic description of the thermodynamic analogy of four dimensional

black holes in asymptotic flat space. The results of black hole thermodynam-

ics are here directly extended to the discussion of their higher dimensional

generalisations.

4.3 Global Coordinates

In sections 2.1 and 4.2, the two geometries of the black Dp-branes have been

derived in Poincaré coordinates given by equation (15) and (26), respectively.

These coordinates only cover a part of the manifold, but one could also

consider global covering coordinates. Appendix A contains among other

things a discussion of different coordinate choices for anti-de Sitter space.

In particular, mappings between them are presented. In this section, the

two metrics given in global coordinates by equation (59) are generalised to

d = n+ 1 spacetime dimensions, that is

ds2 = −V dt2 + V −1dr2 + r2dΩ2
n−1 , (27)
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where dΩ2
n−1 is the metric of a (n − 1)-dimensional unit sphere Sn−1. The

covering space of anti-de Sitter space is given with the static form

V (r) = 1 +
r2

b2
, (28)

where the radius of curvature is denoted by b. The period of the associated

imaginary time coordinate is arbitrary for the metric stated. However, a

constraint is later required in order to relate it to the Schwarzschild black

hole solution which can be introduced in anti-de Sitter space by

V (r) = 1 +
r2

b2
− r2

0

rn−2
= 1 +

r2

b2
− wnM

rn−2

wn =
16πGN

(n− 1)Vol(Sn−1)
, (29)

where r0 was the term encountered for the Schwarzschild black hole in flat

space in equation (8) and is here used to define wn such that M is the

mass of the black hole as shown later. GN denote the (n + 1)-dimensional

Newton’s constant and Vol(Sn−1) the (n − 1)-spherical surface area of the

corresponding unit sphere. Note that the function V given by (29) tends

asymptotically towards that of anti-de Sitter space given by (28) as r tends

to infinity.

4.4 The Conformal Boundary

Section A.6 shows that AdS evaluated on the boundary has a second order

singularity. For this reason it is necessary to pick a positive function f ,

called the defining function, such that

g(0) = f2g|∂M

constitutes an induced metric on the boundary. For equation (71), which is

the metric for a hypersurface of constant radial coordinate of the metric by

equation (29), a natural choice could be f = b/r, for example. This proce-

dure, which can be done for any asymptotic AdS space, defines a conformal
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structure. The metric g(0) depends, however, on the choice of f and different

choices are related by a conformal transformation f ′ = feu.

A natural metric for dual field theory in the UV is obtained by removing

the conformal factor r2/b2 making the above choice of f . This gives a

conformal structure in global coordinates of R × Sn−1. Correspondingly,

the choice f = z/w for the defining function in local coordinates given by

equation (14) leads to the conformal boundary R × Rn−1. Thus, in some

sense the physics looks like it depends on the choice of coordinates, but

by the choice of coordinates the definition of the Hamiltonian will also be

affected and the physics is, as expected, in fact the same. Since the radial

coordinate plays the role of an energy scale in the gauge theory, the choice of

coordinates can also be seen as a choice of regulator at that energy scale [17].

This shall be evident from the treatment of holographic renormalisation in

section 4.5.

One can show that the two boundaries of local and global coordinates are

conformally related in their Euclideanised versions. Removing the conformal

factor in equation (15) using the above choice of the defining function, the

boundary takes the following form

ds2 = ηµνdx
µdxν .

Now considering the Euclideanised version of the metric ηµν → δµν and

writing the Euclideanised space in polar form

δµνdx
µdxν = dx2 + r2dΩ2

n−1 .

Introducing the coordinate x = ln τ one has dx2 = r2dτ2, thus

dx2 + r2dΩ2
3 = x2(dτ2 + dΩ2

3) .

This is exactly the form of the boundary in the global coordinates given by

equation (69) times the conformal factor x2. This can be seen by setting

the coordinate τ equal to it.
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4.5 Holographic Renormalisation

In this text, the primary method applied in detail when determining thermo-

dynamical quantities related to asymptotic AdS spaces will be background

subtraction, following Witten [30]. However, it is worth considering a dif-

ferent approach known as holographic renormalisation. This is a quite far-

reaching approach and has a natural interpretation in the dual field theory.

The essential key points needed to obtain the stress-energy tensor will be

addressed in this section. For more information, see [25], [6], [2].

From the discussion of section 3.3 and 3.4 and the findings of section 4.2,

asymptotic AdS spacetime solutions to Einstein’s equations with a negative

cosmological constant are of natural interest. Given some representative of

the conformal structure as defined in section 4.4, it can be shown that one

can obtain a solution of Einstein’s equations which is asymptotic AdS [25].

The metric in the neighbourhood of the boundary z → 0 takes the form

ds2 =
b2

z2

(
dz2 + gij(x, z)dxidxj

)
gij(x, z) = g(0)ij + zg(1)ij + z2g(2)ij + ... .

Einstein’s equations can be solved order by order in z to determine the

coefficients g(k)ij for k > 0. All the coefficients can be determined uniquely

in terms of g(0). It turns out that all coefficients in odd powers of z vanish

up to order zn. Notice that choosing g(0)ij = δij with all other coefficients

zero reduces the solution to the AdS metric given in Poincaré coordinates by

equation (15). To simplify computation, one can introduce the coordinate

ρ = z2

ds2 = gµνdx
µdxν = b2

(
dρ2

4ρ2
+

1
ρ
gij(x, ρ)dxidxj

)
gij(x, ρ) = g(0) + ...+ ρ

d
2 g(d) + h(d)ρ

d
2 log ρ+O(ρ

d+1
2 ) . (30)

Any asymptotic AdS metric can be brought into this form near the boundary,

which is located at ρ = 0. The logarithmic coefficient h(d) is only non-zero
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when n is even. If the bulk metric is conformally flat, an exact solution to

Einstein’s equations exists and is given by [24]

gij(x, ρ) = g(0) + g(2)ρ+ g(4)ρ
2

g(2)ij =
1

n− 2

(
Rij −

R
2(n− 1)

g(0)ij

)
g(4)ij =

1
4

(g(2))
2
ij =

1
4
g(2)ip g

pq
(0) g(2)qj , (31)

where the curvatures R and Rij are given by the metric g(0).

Now that an expansion for the solution of an asymptotic AdS spacetime

is given, the corresponding action given by equation (22) can be addressed.

It is evident that both integrals are divergent; the bulk action is proportional

to the infinite volume of spacetime while the surface term diverges since the

induced boundary diverges at the boundary. To render the action finite,

one must perform a renormalisation scheme. First step is to introduce a

regularisation procedure. This is done by introducing a regulator (or cutoff)

ε on the radial coordinate such that the bulk action is evaluated for ρ ≥ ε

(recall that the boundary is at ρ = 0) and the surface term at ρ = ε.

Using the asymptotic solution given by (30), one can evaluate the regularised

action as a power series of ε [24]. Restricting to n = 4, the regularised action

is

Ireg =
1

16πGN

∫
dnx

√
g(0)

(
ε−2a(0) + ε−1a(2) − log εa(4)

)
+O(ε0) . (32)

The regularisation scale ε can be thought of as specifying a spatial hyper-

surface a finite amount within the interior of spacetime. Interestingly, in

addition to the terms addressed below, one finds a logarithmic divergence.

For n = 4 it takes the value [15]

a(4) log ε = b3
(

1
8
RijRij −

R2

24

)
log ε .

Note that this vanishes for a flat background. To make the action finite,

one can perform a minimal subtraction; that is, to subtract the pieces that

32



divergence as one goes to the boundary by the corresponding counter terms.

These terms are a finite set of boundary integrals, which only depend, like

the coefficients given in equation (30), on the induced conformal structure

at the boundary g(0). Including the counter terms, the renormalised action

is written

Iren[g(0)] = lim
ε→0

(
Ireg[g(0), ε] + Ict[g(0), ε]

)
.

Only two counter terms and the additional logarithmic one are needed to

cancel all divergences for the case of n = 4. They take the form [17]

Ict[g(0), ε] =
1

16πGN

∫
ρ=ε

dnx
√
−γ
[

6
b

+
b

2
R− a(4) log ε

]
. (33)

The metric γij is the metric on the boundary induced by restricting ρ to be

the constant ε. Note that the same metric was also used in the surface term

to compute the form given by equation (32). The R and Rij are the Ricci

scalar and Ricci tensor for the metric γij , respectively.

From this point of view, it is now possible to understand the discussion

given in section 4.4 of why the choice of coordinates (or, more precisely,

the choice of conformal boundary structure) seems to affect the physics.

The counter terms are given by the coefficients g(2), ..., g(n−2), which are

uniquely determined on the choice of g(0). g(0) is, however, only determined

up to a conformal transformation, and since the logarithmic divergence is

regularisation independent the action depends on the choice of conformal

boundary structure g(0) [15]

I[eug(0)] = I[g(0)] +A[g(0), u] .

This anomalous transformation is known as the holographic Weyl anomaly

and is only present for odd spacetime dimensions. Although the anomaly

may vanish in one background, its metric variation may not. The stress-

energy tensor can therefore have a contribution from the anomalous varia-

tion, which is the case for AdS in global coordinates. In the following, the

logarithmic term will be neglected.
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The stress-energy tensor at the boundary can be extracted from the

renormalised action in the following way

Tij =
2√
−g(0)

δIren

δgij(0)

.

One can evaluate this expression by first computing the stress-energy tensor

at a finite distance within the interior (that is in the regulated theory) and

thereafter go to the boundary (removing the regulator)

Tij = lim
ε→0

2√
−g(x, ε)

δIren

δgij(x, ε)
= lim

ε→0

1
ε

n
2
−1

1√
−γ

δIren

δγij
.

This way, one can express the stress-energy tensor in terms of the induced

metric γij

Tij [γ] = T reg[γ] + T ct[γ], T reg[γ] =
1

8πGN
(Kij −Kγij) ,

where the regulated contribution comes from the regulated action and Kij

and K is the extrinsic curvature and its trace as defined in equation (24)

and (25). The counter term contribution is calculated from the boundary

integrals given by equation (33). The second counter term is proportional

to an Einstein-Hilbert action and thus the finite stress-energy tensor in the

case of n = 4 is [2]

Tij [γ] =
1

8πGN

(
Kij −Kγij +

3
b
γij +

b

2

[
Rij −

1
2
Rγij

])
. (34)

Using this formula the stress-energy tensor can be determined for the

AdS5 metric given in local coordinates by equation (14). The outpoint

normal vector is given by equation (23)

nµ =
r

b

(
∂

∂r

)µ
.

The extrinsic curvature of the boundary and its trace is

K00 = −r
2

b3
, K11 = K22 = K33 =

r2

b3
, K = γijKij =

2
b

.
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Evaluating the stress-energy tensor by equation (34) it is thus found to

vanish. In fact the first counter term is enough to cancel all divergences.

A zero stress tensor is to be expected for an empty space, but as shall be

shown this depends on the choice of conformal boundary structure.

It has been shown in [24] that one can express the stress-energy tensor

in terms of the expansion coefficients of gij given by equation (30) as

Tij =
nb

16πGN

(
g(d)ij +X

(d)
ij

)
, (35)

where X(d) depends on the number of dimensions. For odd d, this contri-

bution vanishes. For the case of n = 4, which is related to asymptotic AdS5

spacetimes, one has [6]

X
(4)
ij = −1

8
g(0)ij

[
(Tr g(2))

2 − Tr g2
(2)

]
− 1

2
(g2

(2))ij +
1
4
g(2)ijTr g(2)

(g(2))
2
ij = g(2)ip g

pq
(0) g(2)qj

Tr g(2) = gij(0)g(2)ij

Tr g2
(2) = gij(0) g(2)ip g

pq
(0) g(2)qj . (36)

Using this prescription the stress-energy tensor of the boundary of the

conformally flat AdS5 can be determined. The metric is given in global co-

ordinates by equation (27). It can be brought to the form given by equation

(31) by the following coordinate transformation (also used in section A.3)

r2

b2
=

1
ρ

(
1− ρ

4

)2
and t2 = b2(x0)2 .

Choosing the metric gS3 = diag(1, sin2 ψ, sin2 ψ sin2 φ) for the unit three-

sphere, the metric coefficients g(0), g(2) and g(4) can be read off to be

g(0)ij = diag(−1, 1, sin2 ψ, sin2 ψ sin2 φ)

g(2)ij = −1
2

diag(1, 1, sin2 ψ, sin2 ψ sin2 φ)

g(4)ij =
1
16
g(0)ij . (37)
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Using equation (36), one finds X(4)
ij = 1

4δi,0δj,0. Scaling the coefficients by

1/b2 to get the stress-energy tensor in ordinary units, this result together

with (35) yields

Tij =
1

64πGNb
(
4δi,0δj,0 + g(0)ij

)
.

For the case of global coordinates where the boundary structure is R× S3,

the field theory is living on S3. To obtain the total energy, one integrates

over the three-sphere, with volume 2π2b3, thus obtaining

E =
3πb2

32G(5)
N

.

Although a non-zero energy for a vacuum solution might seem odd in relation

to what was found for the choice of local coordinates, it is expected from the

previous discussion and matches the Casimir energy of the free field theory

limit [17], [2]. As was shown in section 4.3, it is possible by performing a

conformal transformation to bring the choice of g(0) on a conformally flat

form. This is the case treated above in Poincaré coordinates where g(0)

is flat. The stress-energy tensor vanishes and the total energy of the field

theory on R3 is zero. The energy thus depends on the choice of g(0) and can

be understood as a constant shift in energy.

For the black hole solution given by equation (29) the same method

can be applied. Since the metric is asymptotic AdS, it is possible to put

it on the form given by equation (30) performing the following coordinate

transformation

r2

b2
=

1
ρ

(
1− ρ

4

)2
+

r2
0

4b2ρ
and t2 = b2(x0)2 .

Expanding in terms of ρ to second order reveals that g(0) and g(2) is given

by equation (37) while g(4) takes the form

g(4)ij =
1
16

diag
(

12r2
0 − b2

b2
, (b2 + 4r2

0)gS3

)
.
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Again, one finds X(4)
ij = 1

4δi,0δj,0, but the form of g(4)ij yields an additional

term to the total energy of the black hole metric

E =
3πb2

32G(5)
N

+
3πr2

0

8G(5)
N

.

The first term is exactly what was obtained above for AdS5 and the energy

correctly reduces in the case of r0 = 0. Letting r2
0 = w4M and using the

expression (39), the second term is seen to be in agreement with the result

obtained using the method of background subtraction given by equation

(49). In [2] and [17] the stress-energy tensor has been determined using

equation (34).
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5 Thermal Phase Transition in Anti-de Sitter Space

As mentioned in section 4.1, the saddle-point approximation will be used

to evaluate the path integral. In appendix C.1, the connection between the

Euclidean path integral formulation and the canonical statistical ensemble

is established. It is shown that a partition function can be formed by an

integral over metrics; that is, the assumption that the dominant contribution

to the path integral comes from the background fields that extremize the

action. The action introduced in equation (22) is therefore of interest.

In this section, the connection is utilised to study the thermodynamical

properties of the asymptotic anti-de Sitter backgrounds. Referring to equa-

tion (79), the two contributing metrics are the anti-de Sitter space metric

and the Schwarzschild-anti-de Sitter metric, respectively. The Euclideanised

versions of these metrics are non-singular positive-definite solutions satisfy-

ing the required periodic thermal boundary conditions [14], [30]. It will be

possible to answer questions of whether one can have a quantum field theory

at a finite temperature by considering the thermodynamical stability of the

black hole solution. This is readily given by the specific heat. However, the

black hole configuration must also be favourable over pure thermal radia-

tion in anti-de Sitter space; that is, have dominant negative free energy. The

implication on the dual field theory living on the boundary of the anti-de

Sitter space will be discussed.

In section 4.3, global coordinates of the two contributing metrics were

introduced and these shall be used exclusively in the following. Throughout

the section, the general (n + 1)-dimensional case will be considered, where

n is the number of spatial dimensions. Specific examples are, however,

dedicated to the cases of n = 3 and n = 4, which are of particular interest.

The former was considered by Hawking and Page [14] and the latter is the

case considered in the near-horizon and decoupling limit of the D3-brane

geometry.
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5.1 Criterion for Confinement/Deconfinement

As mentioned above and from the discussion of the holographic principle, the

string theory on the asymptotic AdS5 backgrounds is related to a strongly

coupled conformal field theory living on the boundary R × S3. In the case

of the Schwarzschild-AdS solution, this corresponds to having a dual field

theory at a finite temperature. However, a temperature introduces a energy

scale in the theory which therefore breaks conformal symmetry. When using

the Euclidean approach to quantum gravity the metrics are Euclideanised

and the boundary structure changes accordingly to S1×S3. This is thus the

appropriate structure to consider a field theory on S3 with finite temperature

where supersymmetry-breaking boundary conditions has been imposed in

the S1 direction. In the following, attention is restricted to the N = 4

theory on this finite volume manifold.

A criterion for whether the field theory in question is in a confining

phase or a de-confining phase is of interest. This will quantify whether a

phase transition occurs in the strongly coupled theory or not at large N .

A criterion in finite volume for confinement is whether the free energy is

of order O(1) or of order N2. When the theory is confining, the order of

O(1) shows that the contribution is the color singlet hadrons, and when it

is deconfining, the order of N2 shows that the contribution is the gauge

fields, i.e. the gluons. The N = 4 theory on S1 × S3 in the large N limit is

expected to have a low temperature phase with a free energy of order O(1)

and a high temperature phase with a free energy of order N2 (see [29]).

5.2 Schwarzschild Black Hole in Anti-de Sitter Space

To determine the temperature of the black hole, one requires that the metric

does not exhibit a conical singularity at the horizon. In section 5.3, this is

done in detail, but requires an expanding around the horizon. It must there-

fore be ensured that a positive root actually exists before the temperature
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can be determined. The horizons are given by the roots of the gravitational

potential V (r) given in equation (29)

1 +
r2

b2
− wnM

rn−2
= 0 . (38)

The largest positive root r+ of this equation is the black hole event horizon.

It is evident from Decartes’ sign rule that there is at most one positive

root. This, if it exists, must therefore be r+. This quantity determines

the euclidean section, since the positive-definiteness of the metric is only

maintained by restricting the radial coordinate to the region r ≥ r+. In

addition, the largest root also defines the mass M of the black hole

M =
rn−2

+

wn

(
1 +

r2
+

b2

)
, (39)

where the constant wn, given by equation (29), is chosen such that M is in

fact the mass. This will also be evident from the computation of the energy

given in section 5.6. In the following, the roots for the case of n = 3 and

n = 4 are considered.

The Schwarzschild-anti-de Sitter metric in four dimensions has a classical

interest and is presented in some details in appendix A by equation (59). It

is, of course, the same as in equation (27) with n = 3. For this particular

case, w3 = 2GN and Vol(S2) = 4π, therefore the function V takes the form

V (r) = 1 +
r2

b2
− 2MGN

r
. (40)

The event horizon is found for a suitable r = r+ satisfying the equation

V (r+) = 0. Hence, a cubic equation is given

r3
+ + b2r+ − 2MGNb

2 = 0 ,

where the real coefficients are given by a1 = 0, a2 = b2 and a3 = −2MGNb
2.
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The discriminant D of a cubic equation is given as

D = Q3 +R2

Q =
3a2 − a2

1

9
=
a2

3
> 0

R =
9a1a2 − 27a3 − 2a3

1

54
= −27a3

54
> 0 .

Hence D > 0 which means the cubic equation has two imaginary roots and

one real root, say r+. The real root is given by

r+ = S + T − 1
3
a1 = S + T

S =
(
R+
√
D
) 1

3
> 0

T =
(
R−
√
D
) 1

3
.

This can be seen since S − T is always real leaving the two other roots

imaginary. However, the real root should be positive in order to make sense

physically. The requirement S + T > 0 is equal to R being positive. Hence,

there always exists one event horizon in the n = 3 Schwarzschild-anti-de

Sitter space given by a real positive root.

In the case of five dimensional anti-de Sitter space one has Vol(S3) = 2π2

and w4 = 8GN/3π. The function V takes the form

V (r) = 1 +
r2

b2
− 8GN

3π
M

r2
.

Using r0 = w4M and solving for the roots of the quartic equation V (r+) = 0

r4
+ + b2r2

+ − r0b
2 = 0 .

For this particular form, one can solve for r2
+

r2
+ =

b2

2

(
±
√

1 +
4r2

0

b2
− 1

)
.

The argument of the square root is greater than one. The term in the

parenthesis is therefore positive for the positive sign and negative for the

41



negative sign. Solving for r+, one therefore finds that the equation has a

conjugate imaginary pair of roots and two real roots of equal magnitude,

but opposite sign. The positive real root is given by

r+ =

√√√√b2

2

(√
1 +

4r2
0

b2
− 1

)
.

Hence, there exists only one event horizon in the case of n = 4 for the

Schwarzschild-anti-de Sitter space.

5.3 The Periodicity of Imaginary Time

With the existence of an event horizon it is now possible to turn to determin-

ing the temperature. Unlike some spaces, AdS has no natural temperature

associated with it. One must impose a periodicity in the imaginary time

to construct thermal states, say β. The inverse temperature is thereby de-

termined by the periodicity of imaginary time β = T−1. Rotating the time

coordinate into the imaginary plane by τ = it, one can identify the sec-

tion for which the metric is positive-definite. This section is given by the

constraint r ≥ r+ on the radial coordinate, where r+ is the largest root of

equation (38). For the case of n = 3 and n = 4 it was shown that one

positive real root always exists.

The geometry of an Euclideanised Schwarzschild-AdS black hole solution

has a conical part. To see this, consider the geometry of a cone which is

readily described in terms of a flat space metric in polar coordinates (ρ, θ)

ds2 = dρ2 + ρ2dθ2 (41)

with the angular coordinate having a domain of θ ∈ [0, 2π −∆] such that a

piece of the plane is missing for ∆ 6= 0. For a non-zero choice of ∆, the origin

of the plane ρ = 0 is singular. Such a conical singularity is not desired if the

metric is to describe a black hole where the horizon is non-singular. One

must require that the horizon is non-singular even though there can not be
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a continuation inside the horizon. Hence, the periodicity of the imaginary

time is constrained by ∆ = 0.

To identify the correct periodicity of the Schwarzschild-AdS solution,

consider the expansion of the coefficient V (r) around the horizon r = r+ to

first order

V (r̃) ≈

[
2r+ + wnM(n− 2)b2r1−n

+

b2

]
r̃

=
[
nr2

+ + b2(n− 2)
b2r+

]
r̃ ,

where the horizon is shifted to zero by defining the coordinate r̃ = r − r+.

Note that the zeroth order vanishes due to the defining property V (r+) = 0.

The second equality is obtained by using the mass of the black hole in terms

of the horizon given by equation (39). Now, defining ρ =
√
r̃, the metric

shows a conical form

ds2 ≈ 4V −1

(
dρ2 +

ρ2

4

[
nr2

+ + b2(n− 2)
b2r+

]2

dτ2

)
+ r2

+dΩ2
n−1 .

Denoting the period of τ by β, the condition for a smooth non-singular space

gives
1
2

[
nr2

+ + b2(n− 2)
b2r+

]
β = 2π .

Hence, the periodicity of the imaginary time is obtained as a function of the

black hole radius r+

β =
4πb2r+

nr2
+ + b2(n− 2)

, (42)

for which the temperature of the the black hole is given T = β−1. It is

interesting to see how the temperature behaves in different limits of r+. For

a small black hole r+ � b

β ' 4πr+

n− 2
,

the temperature is large and for a black hole with large radius r+ � b

β ' 4πb2

nr+
, (43)

the limit shows that the temperature scales with the black hole’s size.
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Figure 1: The inverse temperature as a function of the black hole radius

depictured for n = 3 and n = 4. More precisely β/b as function of r+/b

is shown. One can see that at a certain temperature β0 the two branches

of black hole radii evolves. The branching point β0 are shown for n = 4

together with the temperature β1 considered in section 5.7.

5.4 Two Black Hole Sizes

At a given temperature the allowed sizes of a black hole are given by the

periodicity of the imaginary time coordinate τ . The size (horizon radius) r+

in terms of the inverse temperature β is given by the solving equation (42).

Writing

nβr2
+ − 4πb2r+ + β(n− 2)b2 = 0 ,

the solutions are

r+ =
2πb2 ± b

√
4π2b2 − n(n− 2)β2

nβ
. (44)

The real roots are present when the constraint

β ≤ 2πb√
n(n− 2)

, n > 2

is satisfied. For n > 2, equality in the above condition gives the maximum

value of β = β0, which corresponds to a radius r0 = b
√

n−2
n of the black
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hole. This shows that there exists a minimum value of the temperature

T0 = β−1
0 , which initiate two possible black hole radii. At finite temperature

above T0 there are always two valid solutions and the positive branch always

has greater radius than the negative branch. The radius of the black hole

is therefore a multivalued function of the inverse temperature. The two

branches are illustrated for n = 3 and n = 4 in figure (1). For n = 2,

there is always two real roots: zero and 2πb2/β while for n < 2 there are no

positive real roots when the temperature is real and positive.

5.5 Actions and Partition Functions

Other interesting thermodynamical quantities can be obtained by consider-

ing the Euclideanised action. The two metrics given by equation (28) and

(29) both extremize the Euclidean action. Keeping the normalisation of the

cosmological constant introduced in equation (60), the action given by equa-

tion (22) of the maximally symmetric spaces are seen to be proportional to

the volume of spacetime

I = − 1
16πGN

∫
dn+1x

√
g [R− 2Λ]

= − 1
16πGN

∫
dn+1x

√
g

[
−n(n+ 1)

b2
+
n(n− 1)

b2

]
=

n

8πGNb2

∫
dn+1x

√
g .

The action has additional surface terms, but for the Schwarzschild-AdS they

vanish because the black hole correction in equation (29) vanishes too quickly

when approaching the boundary. Since both the anti-de Sitter space and the

black hole spacetime have infinite volume, one considers the finite difference

between the two actions. The black hole is thus compared to the empty

AdS space. This operation can be performed by introducing a regularisation
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cutoff R for the radial coordinate r

VAdS =
∫ β′

0
dτ

∫ R

0

∫
Sn−1

rn−1dΩ =
β′Vol(Sn−1)

n
Rn

VBH =
∫ β

0
dτ

∫ R

r+

∫
Sn−1

rn−1dΩ =
βVol(Sn−1)

n

[
Rn − rn+

]
.

However, in order to compare the two volume integrals, one must make sure

they describe the same AdS space asymptotically r → ∞. The black hole

solution has a fixed period β given by equation (42) while the anti-de Sitter

solution can have an arbitrary period β′. To make a comparison between

the two volumes, one must therefore require that the period β′ is adjusted

such that the geometry of the two spaces equals at the cutoff hypersurface

r = R. Considering the two metrics at fixed r = R given by equation (27)

with V defined by (28) and (29), respectively, one sees that only the time

component introduces a difference in the volume since the sphere part is

identical. This implies that the two periods β and β′ are related by

lim
r=R

∫
dn+1x

√
gBH = lim

r=R

∫
dn+1x

√
gAdS∫ β

0
dτ

√
1 +

R2

b2
− wnM

Rn−2
=

∫ β′

0
dτ

√
1 +

R2

b2

β

√
1 +

R2

b2
− wnM

Rn−2
= β′

√
1 +

R2

b2
,

where M is a function of r+ given by equation (39). The period β′ can

be expressed in terms of β and approximated in the limit of the cutoff R

tending to infinity

β′ = β

√
1− wnMb2

Rn + b2Rn−2

≈ β

[
1− 1

2
wnMb2

Rn

]
= β

[
1− 1

2

(
1 +

r2
+

b2

)
rn−2

+ b2

Rn

]
.
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Note that for large R, the expansion of the square root is valid. Using the

large R limit of β′ the action difference becomes

I =
n

8πGNb2
lim
R→∞

(VBH(R)− VAdS(R))

=
βVol(Sn−1)

8πGNb2

([
Rn − rn+

]
−
[
Rn − 1

2
(
rn−2

+ b2 + rn+
)])

=
βVol(Sn−1)
16πGNb2

(
rn−2

+ b2 − rn+
)

.

Inserting the inverse temperature β given by (42), the action difference is

I =
Vol(Sn−1)

4GN

[
b2rn−1

+ − rn+1
+

nr2
+ + (n− 2)b2

]
. (45)

The partition function of the black hole solution is

−I = logZBH − logZAdS = log
ZBH

ZAdS
,

and the free energy

FBH − FAdS = − 1
β

[logZBH − logZAdS]

=
Vol(Sn−1)
16πb2GN

[
b2rn−2

+ − rn+
]

. (46)

A phase transition becomes possible if the free energy goes from positive

to negative; that is, a transition from empty space to a black hole. This is

exactly what happens. For sufficiently small r+ the free energy is positive

and for sufficiently large r+ it is negative for all values of n. However, for

this black hole configuration to be stable the heat capacity will have to be

positive. The heat capacity is considered in the next section.

In relation to section 5.4 where it was found that at a given temperature

two possible radii of the black hole could occur, it is evident from the free

energy that the large radius always will be more favourable than the small

radius. In fact, the small radius always has positive free energy, which

means that it is less probable than empty space, as will be shown in the

next section.
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5.6 Energy, Specific Heat Capacity

From the temperature it was possible to match the period of AdS space

to that of the Schwarzschild-AdS black hole at infinity and thus determine

the action difference. Given the action difference and thereby the parti-

tion function, the free energy was given. It is possible to determine other

thermodynamical quantities as well: the average energy, the specific heat,

and the entropy. The energy allows a consistency check of the mass M de-

fined by equation (39) and the specific heat capacity to be calculated. The

heat capacity will answer the question about stability of the two black hole

configurations. The entropy shall be considered in section 5.8.

From appendix C.1, the average energy is given by

〈E〉 =
∂I

∂β
=
∂I

∂r

∂r

∂β
=
∂I

∂r

(
∂β

∂r

)−1

.

The action is given by equation (45) in terms of the location of the horizon

r+, which is a multivalued function of the inverse temperature. There are

two points to note about the above expression of the energy. First, since

β is a function of r+, the energy should also be a function of r+. One

should not be confused that there are two consistent radii of black holes at a

given temperature. Second, expressing the energy as above, mathematically

speaking, the energy is not well-defined at the branching point r0 of the two

radii solutions, since the derivative of the inverse temperature will be zero.

However, physically, the energy is expected to be defined and finite at r0.

To perform the calculation, it is helpful to start by using the form of the

denominator to substitute the function β in

I =
Vol(Sn−1)

4GN

β

4πb2
[
b2rn−2

+ − rn+
]

.

Defining γ = Vol(Sn−1)/(16πGNb
2), the derivative is

∂I

∂β
= γ

(
b2rn−2

+ − rn+
)

+ γ
(
(n− 2)b2rn−3

+ − nrn−1
+

)
β
∂r+

∂β
. (47)
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Making the arbitrary choice of focusing on the branch of r+ > r0, which is

given by choosing the positive sign in equation (44), the partial derivative

with respect to β is

∂r+

∂β
= −(n− 2)b√

D
− 2πb2 + b

√
D

β2n
,

where D = 4π2b2 − β2(n− 2)n is the determinant. Noting that the second

part of the above expression contains r+/β the following combination can

be written as

β
∂r+

∂β
= r+

[
nr2

+ + (n− 2)b2

(n− 2)b2 − nr2
+

]
. (48)

Substituting this

∂I

∂β
= γ

(
b2rn−2

+ − rn+
)

+ γrn−2
+

(
nr2

+ + (n− 2)b2
)

= γ(n− 1)
[
rn+ + b2rn−2

+

]
.

An expression for the energy in terms of the horizon is thus obtained

〈E〉 =
(n− 1)Vol(Sn−1)

16πGN

[
b−2rn+ + rn−2

+

]
= M . (49)

As indicated, this corresponds exactly to the definition of the black hole

mass given in equation (39) with the choice of wn. The energy is seen as

expected to be positive for r ≥ 0 for all n, which also means that it is finite

at r0.

It is now possible to compute the specific heat and address the question

about the stability of the black hole configuration

CV = −β2∂〈E〉
∂β

= −γ(n− 1)
[
nrn−1

+ + b2(n− 2)rn−3
+

]
β2∂r+

∂β
.

Using the result from equation (48)

β2∂r+

∂β
=

4πb2r2
+

(n− 2)b2 − nr2
+

.

The specific heat capacity is obtained in terms of the horizon radius

CV =
(n− 1)Vol(Sn−1)

4GN

[
nrn+1

+ + b2(n− 2)rn−1
+

nr2
+ − (n− 2)b2

]
. (50)
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When the dominator is zero, the function goes from negative to positive.

At this point, which was already encountered in section 5.4, namely r0 =

b
√

n−2
n , a bifurcation happens. The result shows that the branch for which

the black hole radius r+ is greater than r0 always has positive specific heat.

While, the branch for which the radius r+ is lesser than r0 always has nega-

tive specific heat. The larger radius is therefore always a thermodynamical

stable configuration, but need not always be the most favourable.

Since the branch of black hole radii larger than r0 is always a stable

configuration it is of interest to see if there is a temperature for such radii

at which the free energy becomes negative. At such a temperature, the

black hole configuration will be more probable than pure thermal radiation

in an AdS background. By restricting attention to the solution given by

equation (44) with positive sign, the radius can be considered a function of

β. Substituting r+(β) into the free energy given by equation (46) one finds

that the free energy is zero at

β1 = ± 2πb
n− 1

. (51)

In section 5.4, it was shown that an event horizon existed for n ≥ 2. As-

suming this and discarding the negative solution of β1, the derivative of the

free energy evaluated at β1 is

∂F

∂β

∣∣∣∣
β=β1

=
Vol(Sn−1)(n− 1)2bn−3

16π2GN
, n ≥ 2 , (52)

which is seen to be positive. The free energy therefore changes sign from

positive to negative for decreasing values of β. Thus, the black hole will

be energetically favourable when the temperature is greater than T1 = β−1
1 .

The corresponding radius of the black hole is independent of n and is r1 = b.

When n > 2, one can check for consistency that β1 ≤ β0 or equivalent

T0 ≤ T1; that is, the black hole solution becomes stable and favourable at

a higher temperature than the branching temperature T0. One obtains the
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relation
n2 − 2n

n2 − 2n+ 1
≤ 1, n > 2 ,

which is always true, although the difference |β1 − β0| becomes smaller and

smaller as the spatial dimensions n increases.

5.7 Phase Transition

This section summaries the findings of the previous sections about the phase

transition as a function of temperature. It should be mentioned that the

cases of n = 3 and n = 4 are completely similar to the general case. Table

(1) shows specific values of the aforementioned specific points of events.

n β0 r0 β1 r1

3 2πb√
3

b√
3

πb b

4 πb√
2

b√
2

2πb
3 b

...

n 2πb√
n(n−2)

b
√

n−2
n

2πb
n−1 b

Table 1: Particular values of the bifurcation temperature β0 and phase

transition temperature β1 for the cases of n = 3, n = 4, and the general

case. The temperature is given by T = β−1. Note that r1 > r0 and β1 < β0.

For temperatures lower than T0, the only equilibrium which is possible is

thermal radiation in anti-de Sitter space. When the temperature reaches T0,

there are, in addition to the pure thermal radiation, two possible black holes.

Only the larger of them has positive specific heat as was shown from equation

(50). Using equation (44), the free energy given by (46) can be expressed in

terms of β for the small radius and the large radius, respectively. For the

larger black hole, the free energy has a positive root at β1 given by equation

(51). Looking at the derivative of the free energy at the point β1 given by

equation (52), one finds that the free energy goes from positive to negative

with decreasing β.
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Figure 2: The free energy based on the partition function of the black hole

solution as a function of inverse temperature. The radius of curvature is

fixed to b = 1 and Newton’s constant to G(4)
N = G

(5)
N = 1. The bifurcation

point β0 is indicated on one of the curves and shows the initiation of two

branches of possible black hole radii. For the larger black hole radius where

r+ > r0 a negative free energy is obtained at temperatures β < β1. The

other branch of small mass black holes shows a positive free energy for all

values of β.

The free energy of the two black hole radii as a function of temperature

is illustrated in figure (2) for the specific cases of n = 3 and n = 4. It

is evident that for the lower value of r+, the free energy is positive in the

entire range as expected, while for the greater value of r+ the free energy

gets negative at the point β1. At the temperature T & T1, the black hole

will have lower free energy than pure thermal radiation. The configuration

will therefore be more probable and is at least locally stable as seen from

the specific heat, equation (50). When the temperature exceeds some point

T2 > T1, the thermal radiation will inevitably collapse to the higher mass

black hole.
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5.8 Entropy and Field Theory

Using the expression for the average energy (49), the entropy is readily given

in terms of the location of the event horizon r+

SBH = β〈E〉 − I =
Vol(Sn−1)

4GN
rn−1

+ . (53)

An important thing to note is that since the surface at r+ is the area of

the horizon A = Vol(Sn−1)rn−1
+ , the Hawking-Bekenstein formula for the

entropy is satisfied

SBH =
A

4GN
.

The entropy of the black hole can be compared to the predictions for the

field theory taken to be on the boundary in the sense explained in section

3.4. As mentioned in section 5.1, the boundary manifold of the asymptotic

AdSn spaces is Sn−1×S1. The system on Sn−1 will be at high temperatures

as β → 0. As is evident from equation (42), the limit of β → 0 can be

taken two ways; either r+ → 0 or r+ → ∞. From the previous discussion,

it is apparent that large r+ is the most favourable configuration. This also

means that the mass of the black hole is taken to be large. The limit given

by equation (43) is therefore valid.

With this knowledge, one can express the entropy for the large black

hole in quantities related to the field theory. It should be noted that this

result is only valid for large effective coupling gsN � 1. Restricting to the

case of n = 4 and using the five dimensional Newton’s constant given on the

form (3.3), it becomes possible to write the result (53) for the entropy as

SBH =
A

4G(5)
N

=
2π2

4
2N2

b3
(π3b6T 3) = π4b3N2T 3, gsN � 1 . (54)

It is seen to have a N2 dependence, which is true for all n. When com-

paring with the field theory, it is not possible to determine the constant of

proportionality since this limit is valid for gsN � 1. But since the the-

ory only has one dimensionful parameter, namely the temperature, one can
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on dimensional grounds expect the energy scaling as the n’th power of the

temperature. The entropy density on Sn−1 therefore scales for small β as

[30]

SYM ∝
1

βn−1
.

Then, due to the relation β ∼ 1/r+ given by equation (43) in the large r+

limit, the entropy density of the boundary field theory is of the order rn−1
+ .

This is how the area of the black hole horizon scales. The prediction is

therefore asymptotic; that is, as r+ → ∞, the entropy density scales as a

multiple of the horizon area exactly as was found by equation (53).

One can compute the entropy of the four dimensional SU(N) field theory

in the limit gsN � 1 [32]

SYM =
4
3
π4b3N2T 3, gsN � 1 .

Thus, even though the entropy is valid for two different limits they still

agree up to a factor of 4/3. It is conjectured that there exists a continuous

function of gsN taking the value one at gsN → ∞ and 4/3 at zero. The

first order correction to the function has been computed in both limits (see

[1] or [32]).

The details of section 5.7 can now be met with the criterion for con-

finement / de-confinement from section 5.1. For temperatures lower than

T0, the field theory can not have a black hole dual theory. The dual is

therefore the thermal AdS; that is, a space filled with a gas of particles at

some temperature. The entropy or energy at these temperatures is of or-

der O(1). The field theory at these temperatures must therefore be in the

confined phase. When the temperature is greater than T0, two black hole

configurations become possible. Only the larger is locally stable, and in the

range T0 < T < T1 the favourable configuration is still thermal AdS. The

field theory is therefore still confined. The small black hole configuration

is always an unfavourable configuration. Finally, when the temperatures
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exceed T1, the larger black hole configuration will be most favourable. The

entropy of this configuration is of order O(N2) as seen from equation (54).

It is therefore evident that the field theory goes from the confined phase to

the deconfined phase. The deconfined field theory at this temperature is

dual to the large black hole solution.
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6 Conclusion

From the considerations of the extremal black p-brane solution of super-

gravity, the 3-brane was found to be particular interesting because it had a

constant dilaton throughout spacetime and a finite size horizon. Its geome-

try showed a weakly curved behaviour for large values of gsN . In section 3.2

the solution showed a decoupling into two systems in the low energy limit:

(a) the horizon, whose geometry turned out to be the maximally symmet-

ric AdS5 × S5, describing the low energy physics as measured from infinity

due to a redshift and (b) massless closed strings propagating in spacetime

with negligible cross-section with the horizon. Secondly, a set of coincident

D-branes placed in ten dimensional spacetime was considered. For weak-

coupling where the branes behaved like rigid hyperplanes, their world vol-

ume dynamics could be described by a U(N) gauge theory for small values of

the effective coupling gsN . In particular, the four dimensional gauge theory

living in the world volume of a set of coincident D3-branes was stated to be

a conformal theory with a convenient topological expansion for a large num-

ber of degrees of freedom. In section 3.1 the low energy limit for the system

was taken and a decoupling into two systems was found: (a) the low energy

description on the branes, namely the conformal N = 4 super Yang-Mills

theory with gauge group SU(N) and (b) massless closed strings propagating

in the ten dimensional bulk. Based on the two low energy descriptions of the

D-brane physics in their respective limits of gsN the AdS/CFT conjecture

was established.

A discussion about the matching of coordinates of the field theory and

the AdS5 spacetime followed. It was found that the boundary of anti-de

Sitter space corresponded to the UV limit of the field theory. From this dis-

cussion the notion of holography originated, namely that the physics in five

dimensional anti-de Sitter backgrounds can be encoded in a four dimensional

conformally invariant gauge theory. Interestingly, the choice of coordinates
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seemed to have an impact on the physics. However, this choice could be

explained to be the same as choosing a specific regularisation scheme. In

particular, two choices of coordinates were used. The Poincaré coordinates

with the induced structure R × R3 at the boundary and the global coordi-

nates with the R× S3 structure. It was shown that the two boundaries are

conformally related.

Using the conjectured equivalence between the partition functions of the

two theories, quantities could be explored in a tractable limit and com-

pared to the dual theory in the opposite limit. The focus was set on per-

forming computations on the gravitational side of the correspondence such

that predictions of the strongly coupled gauge theory could be obtained.

From the consideration of the non-extremal black 3-brane, the contribut-

ing Schwarzschild-AdS5 black hole spacetime was found and the AdS/CFT

correspondence was generalised to a duality between string theory on asymp-

totic AdS5 spacetimes and a four dimensional guage theory. The path inte-

gral, which expresses the partition function, was evaluated using the saddle-

point approximation in which only classical actions are included. For this,

the generalised Einstein-Hilbert action with the Hawking-Gibbons surface

term was considered. However, since both the bulk and surface action are

divergent for the asymptotic AdS5 spacetimes, some renormalisation scheme

was required.

First, using the technique of holographic renormalisation, the action was

renormalised by performing a minimal subtraction consisting of a finite num-

ber of counter terms that removed the divergent pieces near the boundary.

The stress-energy tensor of the boundary could then be extracted from the

renormalised action. Interestingly, the stress-energy tensor was shown to

depend on the choice of regularisation, that is, the choice of coordinates.

For the anti-de Sitter space, the choice of local coordinates lead to a van-

ishing stress-energy tensor, but for the choice of global coordinates it leads
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to a nonzero stress-energy tensor. This could be interpreted as a shift in

energy. For the black hole metric, the energy was found to consist of both

the contribution of the AdS metric and an additional contribution from the

black hole correction. The new contribution is identified as the mass of the

black hole.

Next, the partition function was approximated by the two competing

spacetime configurations: (a) the anti-de Sitter space allowing thermal radi-

ation and (b) the Schwarzschild-AdS black hole solution. Using the thermo-

dynamical analogy of black holes, the temperature of the Schwarzschild-AdS

black hole could be determined. This was a matter of determining the cor-

rect period of imaginary time such that the conical singularity was removed.

At a given temperature T0, it was shown that two branches of black hole

radii became possible. Obtaining a finite action of the black hole solution by

subtracting the AdS background, the various thermodynamical quantities of

the black hole configuration could be determined. The free energy showed

that the black hole branch of large radii at some temperature T1 greater than

T0 is the more thermodynamical favourable configuration of spacetime. In

addition, its specific heat turns out to be positive and it is therefore at least

locally stable. One must expect that thermal radiation in AdS at some

temperature T2 undergoes a gravitational collapse such that the only possi-

bility is the large black hole solution. Remarkably, the energy of the black

hole computed from the action difference and the holographic renormalised

action, respectively, was found to agree. However, the holographic method

provides, in some sense, more information since it also includes the back-

ground energy. The findings were interpreted in the strongly coupled dual

gauge theory as a transition from a confined to a de-confined phase.

The black hole entropy was determined in the limit of large mass for

which the configuration was found to be stable and favourable. A com-

parison of scaling dependence of entropy between the two theories became

58



possible since the only dimensionful scale of the strongly coupled field theory

on the boundary Sn−1 was the temperature. An agreement up to a fixed

multiple of the black hole horizon area was found. At small gsN , the entropy

of the field theory was stated and seen to have the correct scaling, but a

disagreement in the factor of proportionality of 4/3 compared to the large

gsN result. This was completely expected since the results were obtained in

two different limits.
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Appendices

Induced metric (from [18]): Let M be an m-dimensional submanifold

of an n-dimensional Riemannian manifold N with the metric gN . If f :

M → N is the embedding which induces the submanifold structure of M ,

the pullback map f∗ induces the natural metric gM = f∗gN on M . The

components of gM are given by

gMµν = gNαβ(f(x))
∂fα

∂xµ
∂fβ

∂xν
(55)

where fα denotes the coordinates of f(x).

A Maximally Symmetric Spacetimes

Consider a spacetime (M, gµν) in the spirit of symmetries as introduced in

section D.6. An n-dimensional manifold with 1
2n(n + 1) Killing vectors is

referred to as a maximally symmetric space (see appendix C in [27] for a

proof). A manifold with maximal symmetry has the special property of

constant curvature R over its entire manifold. In general, such spaces can

be classified by the dimensionality n, the curvature scalar R, the metric sig-

nature, and some additional discrete information about the global topology.

One can show that for maximally symmetric spaces there exists a unique

relationship between the Riemann tensor and the metric [5] given by

Rρσµν =
R

n(n− 1)
(gρµgσν − gρνgσµ) . (56)

This relation also works as a way to check whether a metric is maximally

symmetric or not. Say the Ricci curvature is constant, then if the Riemann

satisfies the above relation at each point of the entire manifold then the

metric will be maximally symmetric. The Ricci tensor can be obtained by

taking the trace of the Riemann tensor

Rµν =
R
n
gµν . (57)
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This equation is exactly of the form of Einstein’s vacuum equations with

a cosmological constant. In the next section, spacetime solutions to this

equation will be considered.

A.1 The Cosmological Constant

In absence of sources, the solutions of Einstein’s vacuum equation Rµν = 0

allow the flat Minkowski spacetime. However, in the presence of a cosmo-

logical constant,

Rµν =
2Λ
n− 2

gµν , (58)

the field equations imply curved spacetimes. Spacetimes, which are solutions

to this equation, are referred to as Einstein spaces. For Λ = 0, one recovers

the vacuum equations, while the case of Λ 6= 0 leads to spacetimes of max-

imal symmetry. Comparing equation (57) with (58), the field equations in

four dimensions give R = 4Λ.

Much like one uses the assumption of spherical symmetry to derive the

Schwarzschild metric and Birkhoff’s theorem to determine its uniqueness

(see section (D.1)), one can derive the Schwarzschild-(anti)-de Sitter space

metric as a consequence of spherical symmetry. There exist generalised

theorems, which state that this is the unique solution to Einstein’s vacuum

equations with a non-zero cosmological constant [21]. In four dimensions,

a manifold has spherical symmetry if the dimension of the Killing algebra

equals three; that is, there exist three rotational Killing vectors, which close

under commutation. The Schwarzschild-(anti)-de Sitter solution turns out

to have a similar form as the Schwarzschild solution. In four dimensions, the

Schwarzschild(anti)-de Sitter space for positive and negative cosmological

constant, respectively, can be written in the static form [22]

ds2 = −V dt2 + V −1dr2 + r2(dθ2 + sin2 θdφ2)

V (r) = 1 +
r2

b2
− 2MGN

r
, b2 = − 3

Λ
, (59)
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with (t, r, θ, φ) ∈ R× [0,∞[×S2. These coordinates are global meaning that

they cover the manifold entirely. The roots of the function V (r) determines

the location of an event horizon, say r = r+ satisfying V (r+) = 0. This

means that the space has a black hole. See the explicit calculation in the

case of four dimensions in section 5.2. The constant b is denoted the radius

of curvature while M is the mass of the black hole. When M = 0, the

metric reduces to anti-de Sitter space without a black hole. This space

has a timelike Killing vector defined everywhere contrary to the case of the

Schwarzschild-AdS space. For the general case of non-zero mass, the metric

is seen as r →∞ to be asymptotic to anti-de Sitter.

For a general dimension, the solution (59) is normalised such that rela-

tion between the radius of curvature and the Ricci curvature is

R = −n(n− 1)
b2

∝ − 1
b2

, (60)

which fixes the cosmological constant

Λ = −(n− 1)(n− 2)
2b2

∝ − 1
b2

.

Locally, a maximally symmetric space of a given dimension and signature

is fully specified by R. For Euclidean signature, the classification of maxi-

mally symmetric spaces is simply whether R is positive, zero, or negative,

corresponding to a plane, a sphere, and a hyperboloid, respectively. The

maximally symmetric manifolds for the Lorentzian signature are classified

locally by the sign of Λ, which is constant over the entire manifold. For

vanishing curvature Λ = 0, one has the Minkowski spacetime, while the case

of positive Λ is called the de Sitter space, and finally for negative Λ, one has

the anti-de Sitter space.

A.2 Anti-de Sitter Spacetime

One relates the anti-de Sitter space with the negative curved spacetime,

R < 0. As seen from equation (59), the space has no coordinate singularity,
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no horizon and using the definitions from section (D.6) it is possible to show

that it is static.

First note that the form of the anti-de Sitter metric given by equation

(59) with m = 0 is independent of time, hence ξµ = [1, 0, 0, 0] is a timelike

Killing vector field. Those integral curves are assumed to be complete. (This

is shown later via the existence of conjugate points.) Lowering the index

with the metric does not affect the space indices. The fact that only the

time component is non-zero together with the totally antisymmetry of the

equation ξ[α∇βξγ] results in that each plus term equals each minus term and

therefore all equations are zero.

Other interesting coordinate choices exist for the anti-de Sitter metric

which have significance for higher dimensions. An n-dimensional anti-de

Sitter space can be represented by embedding an n-dimensional hyperboloid

−x2
0 − x2

n +
n−1∑
i=1

x2
i = −b2 (61)

in an (n+1)-dimensional flat pseudo-Riemannian manifold R2,n−1 with met-

ric

ds2 = −dx2
0 − dx2

n +
n−1∑
i=1

dx2
i . (62)

Anti-de Sitter space has the topology S1×Rn−1 and is said to hold one time

dimension, while the rest is regarded as spatial dimensions. It is homoge-

neous, isotropic, and has the isometry group SO(2, n − 1) by construction,

that is

SO(2, n− 1) = {M ∈ SL(n+ 1,R) |M tη2,n−1M = η2,n−1} . (63)

One can obtain the induced metric by choosing a suitable set of coordinates

that solves the embedding condition. These coordinates must be smooth

maps satisfying the properties given by equation (55). In the following, two

such choices are explored. From now on, an n-dimensional anti-de Sitter

space is denoted AdSn and when discussed on general terms simply as AdS.
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A.3 Global Coordinates

Equation (59) stated the metric of AdS in global coordinates without further

explanation. However, it can actually be derived from a specific choice of

an embedding that solves the condition (61). In this section, three forms of

global coordinates shall be reviewed, starting by the embedding

x0 = b cosh ρ cos τ

xn = b cosh ρ sin τ

xi = b sinh ρ Ωi, i = 1, ..., n− 1 , (64)

where the Ωi functions must satisfy the (n− 2)-sphere condition

n−1∑
i=1

Ω2
i = 1 .

Notice that the set of functions {Ωi} only depends on the sphere-coordinates.

Substituting the choice into equation (61)

b2 = b2

(
cosh2 ρ

(
cos2 t+ sin2 t

)
− sinh2 ρ

(
n−1∑
i

Ω2
i

))
= b2

(
cosh2 ρ− sinh2 ρ

)
.

The embedding can be used to compute the induced metric on the hyper-

boloid

ds2 = b2
(
− cosh2 ρ dτ2 + dρ2 + sinh2 ρ dΩ2

n−2

)
. (65)

This can be seen by using equation (55) and the (n + 1)-dimensional flat

pseudo-Riemannian metric

gττ = b2
(
− cosh2 ρ sin2 τ − cosh2 ρ cos2 τ

)
dτ2 = −b2 cosh2 ρ dτ2

gρρ = b2

(
− sinh2 ρ cos2 τ − sinh2 ρ sin2 τ + cosh2 ρ

n−1∑
i

Ωi

)
dρ2 = dρ2

gφiφi
=

n−1∑
j

∂xj
∂φi

 dφ2
i = b2

sinh2 ρ

n−1∑
j

∂Ωj

∂φi

 dφ2
i , i = 1...n− 2 ,
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where the φi’s denote the angular coordinates on the unit (n − 2)-sphere.

The sum over the last terms reveals the last part of equation (65)

n−2∑
i

gφiφi
= b2 sinh2 ρ dΩ2

n−2 .

By choosing ρ ≥ 0 and 0 ≤ τ < 2π, the embedding given by equation

(64) covers the entire hyperbolid once and the coordinates (ρ, τ,Ωi) are

therefore called global. Noting that the coordinate τ and τ + 2π for fixed

{ρ,Ωi} represent the same place on the hyperboloid, it is evident that the

embedding have closed timelike curves with period 2πb. This is what the S1

in the topology structure represents.

In the case of having two timelike coordinates, it is, however, possible

to eliminate the timelike closed curves by passing to the universal covering

space. This is often described as unrolling the embedding and is the space-

time with the metric given by (65) where the range of τ is allowed to be from

−∞ to∞. One must remember that the timelike curves are not an intrinsic

property of the spacetime and must be regarded as being an artifact of the

specific choice of embedding (see [5]). It is this universal covering space one

refers to being AdS. With this identification, the topology is R1,n−1 and

the isometry group is a cover of SO(2, n − 1). Furthermore, the maximal

compact subgroup of SO(2, n− 1) is SO(2)× SO(n− 1).

Now, one can perform the following coordinate transformation

r′ = sinh ρ ⇒ dρ =
1

cosh ρ
dr′ =

1√
1 + r′2

dr′

cosh2 ρ = 1 + r′2 ,

where the range of ρ is carried over to r′ ≥ 0. Therefore, equation (65) takes

the form

ds2 = b2
[
−
(
1 + r′2

)
dτ2 +

(
1 + r′2

)−1
dr′2 + r′2 dΩ2

n−2

]
. (66)

Finally, to get it on the form of equation (59) with M = 0, one can perform
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the coordinate transformation

r = br′ ∧ t = bτ ,

such that(
b2

1 + r′2

)
dr′2 =

(
b4

r2 + b2

)
dr′2 =

(
b2

r2 + b2

)
dr2

−b2
(
1 + r′2

)
dτ2 = −b2

(
1 +

r2

b2

)
dτ2 = −

(
1 +

r2

b2

)
dt2 ,

and b2r′2 = r2 gives

ds2 =
(

1 +
r2

b2

)
dt2 +

(
1 +

r2

b2

)−1

dr2 + r2 dΩ2
n−2 . (67)

This is the desired form given by (59) with zero mass.

A.4 Poincaré Coordinates

A different embedding, which turns out only to cover half of the hyperboloid,

but has some other desired properties, is the Poincaré coordinates (u, t, ~y)

given by

x0 =
1

2u
[
1 + u2(b2 + ~y2 − t2)

]
xd = but

xi = buyi, i = 1, ..., d− 2

xd−1 =
1

2u
[
1− u2(b2 − ~y2 + t2)

]
,

where the range of the coordinates becomes u > 0, t ∈ R, and ~x ∈ Rd−2.

Since the coordinates solve the embedding condition (61), the induced metric

can be obtained similarly to the calculation done for the global coordinates

ds2 = b2
[
du2

u2
+ u2(−dt2 + d~y2)

]
= b2

[
du2

u2
+ u2ηµνdx

µdxν
]

.
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One can simplify this a little further by introducing the coordinate u = 1
z ,

thus obtaining the conformal compactification

ds2 =
b2

z2

[
dz2 + ηµνdx

µdxν
]

. (68)

This form shows one of the desired properties of this embedding, namely

that the conformal boundary at z = 0 has the same metric as flat Minkowski

space

ηµνdx
µdxν .

As will be discussed in section 2.1, this boundary spacetime will play a

special role when considering conformal field theories.

A.5 Additional Mapping

In section A.3, a map from the flat space metric given by (62) with the

embedding condition (61) to the AdS metric, given in the global coordinates

by equation (59) with which M = 0, was established. For completeness,

the inverse map is given in this section. Writing the flat metric in polar

coordinates by introducing the radial coordinate r2 =
∑n−1

i=1 x
2
i , one has

−x2
0 − x2

n + r2 = −b2

ds2 = −dx2
0 − dx2

n + dr2 + r2dΩn−2 .

The required mapping between anti-de Sitter space and the hypersurface is

the following [22]

x0 =
√
b2 + r2 cos

t

b

xn =
√
b2 + r2 sin

t

b
,

which is seen to satisfy the embedding condition. The radial coordinate and

sphere are carried over unchanged while the −dx2
0− dx2

n part gives the t− t

component and a contribution to the r−r component in equation (59). The

coordinates are one-to-one except for t, which with a period of 2πb maps to

the same point.
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A.6 The Causal Structure

When studying the casual structure of a spacetime, it is often practice to

perform a conformal compactification. A particularly simple form of the

conformal diagram multiplied by a conformal factor can be obtained by

performing the coordinate transformation of the global coordinates given by

equation (65)

sinh ρ = tanχ or cosh ρ =
1

cosχ
, 0 ≤ χ ≤ π

2
,

where the range of χ holds for n > 2 dimensions and for n = 2 the range is

−π
2 ≤ χ ≤

π
2 . The coordinate transformation takes the metric to the form

ds2 =
b2

cos2 χ

(
−dt2 + dχ2 + sin2 χ dΩ2

n−2

)
. (69)

The coefficient in front is a conformal factor, so multiplying by the inverse

does not change the conformal structure of the spacetime (see [5] appendix

G). The remaining expression for the metric is the metric of half the Einstein

static universe due to the range of χ. Thus, the conformal diagram can be

viewed as the infinite strip on a cylinder in the range of χ.

The boundary of AdSn is located at χ = π
2 and has a second order pole

there. One therefore can not induce a metric. To obtain a metric, one must

pick a positive function e.g. f = cosχ and evaluate

g(0) = f2g|R×Sn−2 , (70)

where the boundary structure has been indicated. The metric g(0) depends

on the choice of the defining function. Different functions are related by

f ′ = feu, which implies that g(0) is defined up to a conformal transformation.

The AdS metric therefore induces a conformal structure at the boundary.

The boundary structure of the form given by equation (67) is of interest.

Taking a radial slice at infinity (r � b), one again obtains the structure

R× Sn−2 multiplied by a conformal factor

ds2 =
r2

b2
[
−dt2 + b2 dΩ2

n−2

]
. (71)
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A.7 Geodesics in Global Coordinates

Particles and fields move along geodesics curves. In the case of anti-de Sitter

space, massive particles can never reach infinity, but refocuse with a specific

period as shall be shown. For massless particles it is possible to impose a

boundary condition at infinity such that the incoming and outgoing flux are

equal. They can then reach infinity and come back in finite time.

One feature the AdS space exhibits is that every complete timelike

geodesic has at least one pair of conjugate points (p, q). That is, the geodesic

intersects some point p and eventually intersects some other point q. (The

strict definition can be found in section 9.3 of [27].)

According to [27] Proposition 9.3.2, it should be sufficient to show that

AdSn satisfies the timelike generic condition and Rµνξµξν ≥ 0 for all timelike

ξµ. The timelike generic condition is said to be satisfied if each timelike

geodesic has at least one point for which Rρσµνξρξµ 6= 0. The Riemann

curvature of AdSn is given in equation (56). The condition can therefore be

written

0 6= Rρσµνξρξµ = κ (gρµgσν − gρνgσµ) ξρξµ

= κ (gσνξρξρ − ξνξσ) = κ
(
gσνξ

ρξρ − gνλξλξσ
)

,

where κ ∝ R. By definition, AdSn space has κ < 0, hence

gσνξ
ρξρ 6= gνλξ

λξσ

nξρξρ 6= gσνgνλξ
λξσ

nξρξρ 6= ξσξσ .

Since the timelike condition states ξµξµ < 0, the condition is satisfied for

all timelike geodesics if n 6= 1. For the second condition, the Ricci tensor is

given by equation (57)

Rµνξ
µξν = 3κgµνξµξν > 0 , (72)
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which is strictly positive, since κ < 0 and ξµξµ < 0. Both conditions are

thus satisfied showing that every complete timelike geodesic has a pair of

conjugate points. In addition, one can similarly see from equation (72) that

the null generic condition is not satisfied and therefore, based on Proposition

9.3.7 in [27], there is not sufficient information to say whether every complete

null geodesic possesses a pair of conjugate points or not.

The geodesics in anti-de Sitter space have been investigated in detail

in [11]. Here, a simple analysis will be performed to obtain a differential

equation for the radial coordinate. The geodesic equation reads

dx2

ds2
+ Γρµν

dxµ

ds

dxν

ds
= 0 ,

where Γρµν is the metric connection with respect to the metric given in the

coordinates by equation (27) and s is an affine parameter. One has the

condition

gµν ẋ
µẋν = ε , (73)

where ε is one for massive particles and zero for massless particles. Since

the AdS has spherical symmetry, one can restrict attention to the equatorial

plane θ = π
2 without loss of generality. The timelike and rotational Killing

vectors are given by

ξµ = (∂t)µ = [1, 0, 0, 0], ψµ = (∂φ)µ = [0, 0, 0, 1] .

Lowering the index gives

ξν = gµνξ
µ = −V

ψν = gµνψ
µ = r2 sin θ = r2 .

As mentioned in section D.6, Killing vector fields satisfy ξµẋµ = const., thus

E = −ξmuẋµ = −V dt
ds

L = −ψµẋµ = r2dφ

ds
,
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where the minus in the definition of E is conventional since it is associated

with energy. Inserting these constants into the normalisation condition given

by equation (73), one finds(
dr

ds

)2

= E2 +
(
ε− L2

r2

)
V (r) ,

which is exactly the form obtained in the case of a flat space Schwarzschild

metric where V (r) = 1− 2M/r. However, in the case of AdS, the presence

of the negative cosmological constant in the function V alters the behaviour

of the geodesics significantly.

A.8 Physics and Initial Configurations

Anti-de Sitter space differs from the flat and positive curved de Sitter space

in that it does not possess a Cauchy surface, that is, a spacelike surface for

which its domain of dependence equals the entire manifold. This fact means

that the theorems of well-posed initial value formulations are not enough

to put physics onto the spacetime. It is necessary to impose both an initial

configuration and specify boundary conditions which describes the radiation

from infinity.
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B String Theory

As was emphasized in the introduction, string theory is the foundation on

which the AdS/CFT correspondence emerges. This section will give provide

a brief introduction and will summarise the essential results of type IIB

superstring theory.

Based on previous success of investigating conflicting theories new coher-

ent theories have been discovered. This process of unification has revealed

an enormous amount of insight and have resulted in the present recipe of

obtaining a unified description of all fundamental interactions. Namely, it

is formulated as the task of combining the classical theory of relativity with

the theory of quantum fields. This is two theories with two very different

applications. General relativity is the tool for understanding cosmic scale

physics. It postulate the existence of a spacetime for which the curvature is

related to the matter distribution. Hence, gravity is the dynamics of space-

time. Quantum field theory is the (special) relativistic version of quantum

mechanics and is the tool for understanding microscopic physics. It asso-

ciates a particle to every field in the theory; both matter and force. The

gravitational force is represented by the particles known as gravitons prop-

agating on a fixed background. The seemingly difference between these two

view points gives severe complications when trying to combine them. String

theory succeeds in overcoming these difficulties and provides a consistent

framework for the theory of quantum gravity.

The main concept is to introduce a fundamental string. A string spans

one spatial dimension and propagates in time. For each vibrational mode of

the microscopic string one identifies a particle. It is a general feature that

one of these vibrational states is the graviton. This is significant because

it indicate that general relativity arises naturally within the framework of

a quantum theory. Another property of string theory that is needed for

consistency is local supersymmetry. Supersymmetry is a purely theoretical
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idea about the symmetry between bosons and fermions, but plays dominant

role which gives rise to superstring theory. It is roughly put into play by

introducing fermionic coordinates on the world-sheet of the string.

Being a candidate to the theory of everything uniqueness is of great im-

portance. Two key results provides indication of uniqueness. First, unlike

other theories the dimension of spacetime is calculated rather than pos-

tulated. A calculation shows that in order for a superstring theory to be

consistent the dimension of spacetime must be equal to ten. At least the

flat ten dimensional space exists in perturbation theory. Second, the theory

contains no adjustable dimensionless parameters. It is therefore not possible

to obtain a continuum of different theories by varying parameters. However,

other theories could be reached by means like dualities.

Relativistic strings can be explored perturbatively by letting them prop-

agate on a flat background. When the string is quantized one finds that

the spectrum consist of a massless sector accessible at low energy and a

infinite tower of massive excitations relevant for high energies. These exci-

tations are separated by a gap determined by the string tension. However,

being a theory of gravity one would like string theory non-perturbatively

to determine the background upon which it is propagating. In fact, this is

not possible considering only strings and it turns out that string theory is

not a theory based solely on strings, the theory actually contains other spa-

tially extended objects as well. These are known as D-branes and arise from

non-perturbative excitations. Considering the tension of the D-branes one

finds that they can become arbitrary lighter than the fundamental string

with increasing string coupling. Therefore they can dominate the low en-

ergy physics. Furthermore, T-duality and S-duality reveals that there ex-

ist precise mappings between weakly coupled theories and strongly coupled

theories. Some superstring theories even grow an additional dimension for

which eleven dimensional supergravity is revealed. There exist five known
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superstring theories and one eleven dimensional supergravity. Together they

span a web of dualities and form the corners of the one theory known as M-

theory. In string theory one works with three perspectives: the world-sheet,

the spacetime, and the brane perspective.

The Type IIB superstring theory plays for various reasons the dominant

role in the AdS/CFT correspondence considered in this text. Primarily, as

mentioned in section B.4, because it contains a D3-brane which supergrav-

ity solution have special properties like finite area of the horizon, constant

dilaton, and a highly symmetric near-horizon geometry. In this section some

aspects of the supersymmetric string theories will briefly be introduced for

the purpose of reference with a primary focus on the Type IIB superstring

theory. Type II superstring theories are theories of oriented closed strings.

B.1 The Massless Content

To construct a supersymmetric theory of open strings one introduces a set

of dynamical anti-commuting variables on the world-sheet of the string.

These fermionic coordinates describe a world-sheet fermionic field which

state space quantization leads to two different set of boundary conditions of

the fermionic coordinates. These two possible choices are what breaks the

state space into the Ramond(R) sector and the Neveu-Schwarz(NS) sector

(see e.g. [32]). Both sectors contain an infinite tower of states. The R sector

also shows supersymmetry on the world-sheet. Spacetime supersymmetry

arises when combining states from the R and NS sectors which is exactly

what one does when constructing a theory of open strings. The closed

string spectrum is obtained by combining two copies of the open string

spectrum one for the right-moving modes and one for the left-moving modes.

There exist two inequivalent ways of doing this leading to the two type II

superstring theories.

In particular, one is interested in the massless spectrum which is domi-
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nating the low energy limit where supergravity is an appropriate description

of sting theory. The multiplet is therefore known as the supergravity mul-

tiplet. The massless content of the type IIB superstring theories are given

by the N = 2 supersymmetry algebra. For type IIB the massless spectrum

is readily described in terms of the stability group SO(8) arising from the

Lorentz symmetry SO(9,1). Taking the same projection for the left and

right side modes leads to the massless spectrum [17]

(8v ⊗ 8s)⊗ (8v ⊗ 8s) .

Thus the same type of spinor is chosen for the right and left moving sectors

making type IIB a chiral theory. Expanding the product of the vector repre-

sentations and the spinor representations one obtains the NS-NS sector and

the R-R sector, respectively,

8v ⊗ 8v = 1⊕ 28⊕ 35 = Φ⊕Bµν ⊕Gµν

8s ⊗ 8s = 1⊕ 28⊕ 35+ = [0]⊕ [2]⊕ [4]+ ,

where µ, ν = 0, ..., 9. The NS-NS sector consists of the dilaton Φ, the an-

tisymmetric two-form Bµν , and the symmetric traceless graviton Gµν . For

the R-R sector [n] denotes the n-times antisymmetrised representation of

SO(8). More precisely [0] = C0, [2] = C2, and [4]+ = C+
4 . The [4] is cho-

sen to be the self-dual. The NS-NS and R-R sector constitute the bosonic

components of type IIB supergravity. The fermionic components are given

by the NS-R and R-NS sector

8v ⊗ 8s = 8c ⊕ 56s = ψIµα ⊕ λIα, I = 1, 2 ,

where α = 1...16, since spinors has 16 components in ten dimensions. The

representation 56s describes the gravitino and the representation 8c de-

scribes the dilatinos. As noted, the type IIB is chiral there are therefore two

copies of both.
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B.2 Double Expansion

Type IIB string theory has two parameters: the string length `s and the

string coupling gs. However, the string coupling is actually dynamically

determined by the expectation value of the background dilaton field

gs = e〈Φ〉 .

Considering actions for strings reveals that the open string coupling and

closed string coupling has the relation gs = g2
open. The open string coupling

is also identified with the Yang-Mills coupling gYM since the gauge theory

bosons on Dp-branes is a theory of massless open strings. Quantities in

string theory is often given in terms of the Regge slope parameter α′. This

descends from the Regge trajectories of a rotating string and has the relation

to the string length

`s =
√
α′ .

From which it is evident that α′ has dimensions of length squared. The

two parameters makes it possible to view string theory as a simultaneous

expansion in two parameters.

• An expansion in α′ controls the stringy excitations about the point-

particle limit discussed under the supergravity section B.3. It is the

expansion which corresponds to the quantum-mechanically treatment

of the string world sheet.

• The second expansion is controlled by the string coupling gs. This

is the expansion in the number of string loops or equivalent genus of

the string world sheet. gs → 0 corresponds to the weak-coupling limit

while gs → ∞ corresponds to the strong-coupling limit. For type IIB

superstring theory these two regimes are related by S-duality. Also,

weak-coupling corresponds to classical string theory.
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B.3 Supergravity Actions

The fundamental string tension is inverse proportional to α′. In the limit of

large string tension α′ → 0, it is possible to approximate string theory with

a supergravity theory. Such a theory only takes the interactions between

the modes of the massless spectum into account. The reason why this ap-

proximation works is that the massive modes of the spectrum becomes too

heavy to be observed. One way to make sense of the limit is to consider a

Minkowski background where the only dimensionless parameter is given by
√
α′E. This means that the limit corresponds to a theory at low energy. The

effective supergravity theories are non-renormalisable, but at low energy the

higher order quantum corrections can be ignored in most cases. Another im-

portant thing to note is that the local supersymmetry makes sure that the

actions are uniquely determined at least up to a normalisation constant.

Unlike the supergravity action for type IIA which can be obtained by

performing a dimensional reduction from the eleven dimensional supergrav-

ity, an action for the type IIB theory must be constructed from the super-

symmetric equation of motions. The action is then wrote down in such a

way that it reproduces these equations. The bosonic part of the type IIB

supergravity action is constituted of three parts [4]

S = SNS + SRR + SCS .

The first term accounts for the massless NS sector fields: the graviton, the

dilaton, and the antisymmetric two-form with field strength H3 = dB2

SNS =
1

2κ2
0

∫
d10x
√
−ge−2Φ

[
R+ 4∂µΦ∂µΦ− 1

2
|H3|2

]
.

The second term accounts for the massless R-R sector fields

SRR = − 1
4κ2

0

∫
d10x
√
−g
[
|F1|2 + |F̃3|2 +

1
2
|F̃5|2

]
,

where the field strengths are given by Fn+1 = dCn and the true gauge

77



invariant combinations are given by

F̃3 = F3 − C0 ∧H3

F̃5 = F5 −
1
2
C2 ∧H3 +

1
2
B2 ∧ F3 .

The last part is a Chern-Simons term similarly to topological field theories

SCS = − 1
4κ2

0

∫
C4 ∧H3 ∧ F3 .

Note that the wedge products adds up to a ten-form. There is, however,

one important complication arising from the self-dual nature of the field

strength F̃5. As the term, included in the action, stands it does not impose

the self-duality constraint and therefore the action describes twice as many

degrees of freedoms as desired. There are various ways to overcome this

problem, but one way is to impose the self-duality condition as an extra

constraint

F̃5 = ?F̃5 .

A final thing to mention is that one typically works with two frames of ac-

tions. The form of the action discussed in the above is called the string frame

action. However, it is possible to rewrite it to a form known as the Einstein

frame action which essential feature is that Ricci scalar is not multiplied by

a factor involving the dilaton. This also leads to the identification [17]

2κ2 = 2κ2
0g

2
s = 16πGN = (2π)7α′4g2

s . (74)

The ten dimensional Newton constant GN is thus determined dynamically

by the dilaton. When one works in the weak-coupling limit where gs � 1

the low energy field equations of the supergravity action can be trusted. The

solutions are known as extended objects called p-branes. In the text special

cases of these solutions shall be considered.
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B.4 The Brane Spectrum

String theory is a theory of one-dimensional strings and other higher spatial

extended objects, called branes. The stable branes in a given theory can be

found by considering the massless particle spectrum. In particular the gauge

fields in the R-R sector can couple to higher dimensional objects, called D-

branes. The definition of D-branes, at least in the perturbative regime, is

that open strings ends on them. Consequently, a string which do not end

on a D-brane must be a closed string. The motivation for introducing D-

branes is usually given in terms of T-duality. Though, this is not of interest

here, the key is to consider the imposed boundary condition on the ends of

the open strings. The only boundary condition which is compatible with

Poincaré invariance is of the Neumann type. However, through T-duality

the Neumann boundary condition inevitable introduces Dirichlet boundary

conditions, which means the open string can end on a hypersurface that

breaks Poincaré invariance. This hypersurface turns out to be a D-brane. A

D-brane is a physical object which is extended in p spatial directions. When

time is included, the dimension of the world volume of a Dp-brane is p + 1

with the symmetry group

Rp+1 × SO(p, 1)× SO(d− p− 1) , (75)

where d is the spactime dimension. The factor Rp+1×SO(p, 1) is the Poincaré

group (translations and Lorentz group). The symmetry of the D3-brane is

thus R4 × SO(3, 1) × SO(6). Considering point-like sources at the origin

in the generalised Maxwell equations arising from a general q-dimensional

gauge potential one can deduce what D-branes the massless gauge fields

gives rise to, one finds

Electrically: q − 1

Magnetically: d− q − 3 .
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The type IIB brane spectrum is thus D(-1), D1, and D3 with magnetic dual

D7, D5, and D3, respectively. Note that the D3-brane is self-dual. The NS

two-form gives rise to the fundamental string F1 which have the magnetic

dual known as NS5.

D-branes are objects with well-defined mass and charge per unit vol-

ume. It is possible to determine the tension of the D-branes by considering

the propagation of a closed string between two branes. This involves con-

sidering the closed string as open strings such that one can employ string

perturbation theory. The result is

TDp =
1

(2π)plp+1
s gs

, TF =
1

2πl2s
, and TNS5 =

1
(2π)5l6sg

2
s

.

The tension of the fundamental string and its magnetic dual, the NS5-brane,

is listed for comparison.

D-branes allow a way to introduce non-abelian gauge symmetries in

string theory and this way gauge fields appear on their world volumes. Plac-

ing a brane in spacetime gives rise to a bosonic content consisting of one

gauge field living in p+1 dimensions with p−1 degrees of freedom and d−p−1

scalars. The scalars are Goldstone modes resulting from spontaneous break-

ing the Poincaré invariance. The expectation values of the scalars roughly

determines the position of the brane in the d− p− 1 transverse dimensions.

In fact, for the case of a U(1) symmetry the scalar does exactly determine

the position of the brane, but for higher dimensional gauge symmetries it is

only possible to diagonalise one of the generators at a time. One can think

of this as the uncertainty principle in quantum mechanics.

The D-brane is a dynamical object which is affected by gravity. As the

open strings that end on them, they respond to the different background

fields in the theory. There is many contributing effective actions for the

dynamics on D-branes, but the dominant world volume action is given by

the DBI action [17]. ForN D-branes the dynamics become more complicated

and one will have to look at non-abelian extensions of this action. Although,
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non-abelian gauge theories will be of interest in this text, the understanding

of these extensions are not of priority here. Each brane can also be realized

as a solution in supergravity, see section B.3, and the geometry of these

solutions is addressed in section 2.1.

B.5 S-duality

The duality known as S-duality relates a string theory with coupling constant

gs to a different string theory with coupling constant 1/gs.

Here the result that both the gauge theory and the string theory have

SL(2, Z) self-duality symmetry are discussed. There are two important

things to note from the present discussion of S-duality. First, the connection

between the symmetry of the two theories and second that S-duality of type

IIB superstring relates it to itself.

For the field theory of interest, the N = 4 super Yang-Mills theory,

the electric-magnetic duality known from Maxwell’s equations generalises

to non-abelian gauge fields. The theory has a SL(2,Z) duality under which

the complex coupling constant

τ =
4πi
g2

YM

+
θ

2π
(76)

transform as a modular parameter. The duality τ → −1/τ simplifies in the

special case of θ = 0 to the electric-magnetic duality given by

gYM →
4π
gYM

. (77)

The S-duality transformation of type IIB superstring theory is realised

through the complex field

τ =
i

gs
+

χ

2π
, (78)

where χ is the expectation value of the R-R scalar C0. Here the string

coupling is written explicitly, but as mentioned it has a relation to the
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dilaton gs = e〈Φ〉. It is therefore evident that the duality transformation

changes the sign of the dilatons under τ → −1/τ with χ = 0. This is

gs → 1/gs and is known as S-duality which in this case relates type IIB

superstring theory to itself. This particular self-duality is worth noting in

the discussion of validity of the AdS/CFT correspondence, section 3.

82



C Statistical Mechanics

Thermodynamics is the suitably framework for describing physics at non-

zero temperature. Quantities within this framework is understood in terms

of statistical ensembles. Among the most common statistical ensembles are

the microcanonical, the canonical, and the grand canonical ensemble. In

this section the two first is briefly introduced in order to discuss the relation

between the canonical ensemble and the path integral approach towards

quantum gravity. The appendix is written in units such that GN = c = ~ =

k = 1.

The microcanonical ensemble consists of a collection of copies of the same

system one for each state accessible at a particular energy E. Each system

is thought of being an isolated box with fixed energy E. Let the number of

possible microstates of a given system with energy E be denoted Ω(E) then

the entropy is defined to be

S = k ln Ω(E) .

Note Boltzmann’s constant is included explicit here. The entropy in the

microcanonical ensemble plays the role of defining all the thermodynamics

of the system. For example given the entropy as a function of the energy it

is possible to adopt the thermodynamic definition of temperature

1
T

=
∂S

∂E

∣∣∣∣
V

.

In the canonical ensemble the system is allowed to exchange energy with

a heat bath characterized by a temperature T . Let the system be constituted

of a collection of microstates with energy En. Then based on the assump-

tions about the system it is possible to assign a consistent probability to

each state of energy En. That is the sum over all probabilities is properly

normalised

Pn =
1
Z
e−βEn .
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This is known as the Boltzmann distribution. Based on the normalisation

condition and the probability distribution the partition function is

Z =
∑
n

exp(−βEn) where β =
1
T

.

This function is essential for computing the thermodynamical quantities in

the ensemble. From the probability or equivalently the partition function,

the average energy can be determined by summing over all state energies

weighting with the corresponding probability

〈E〉 =
∑
n

PnEn =
1
Z

∑
n

Ene
−βEn = − 1

Z

∂Z

∂β
.

The Holmholtz free energy is

F ≡ 〈E〉 − TS = −T lnZ .

Like the average energy, the entropy can be computed in much the same

way

S = −
∑
n

Pn lnPn = − 1
Z

∑
n

e−βEn (−βEn − lnZ) = β〈E〉+ lnZ .

Finally, the heat capacity at a constant volume is given by

CV =
∂〈E〉
∂T

=
dβ

dT

∂〈E〉
∂β

= −β2∂〈E〉
∂β

= β2

[
1
Z

∂2Z

∂β2
− 1
Z2

∂Z

∂β

]
.

C.1 The Path Integral

In the following, the relation between the Euclidean path integral and the

ordinary thermodynamic partition function of the canonical ensemble is es-

tablished. As in the quantum field theory one considers in the case of quan-

tum gravity path integrals over configuration space of the fields

Z =
∫
D[g, φ]eiI[g,φ] . (79)
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Though, here the measure D[g, φ] is on the space of metrics g and on the

space of matter fields φ, while the action is denoted by I[g, φ]. An important

thing to note is that the integral is taken over both metrics that can be

continuously deformed into flat space metrics, but also metrics containing

singularities such as black hole metrics [9].

Evaluation of the action has several problems. First, for Lorentzian met-

rics and real matter fields the action is real, the path integral is therefore

oscillatory and will suffer under convergence problems. Second, the action of

a black hole spacetime metric must necessarily contain a singularity which

makes the evaluation troublesome. Both of these complications can to some

degree be redeemed by performing a clockwise rotation of the time coordi-

nate in the complex plane such that t = −iτ . This leads to the Euclidean

action IE = −iI which is then evaluated on a section through the complex-

ified spacetime, known as the the Euclidean section. On this section the

metric has positive-definite signature. The consequence of this operation is

that the path integral is made exponentially damped and the singularities

present on the Lorentzian section may not be present on the positive-definite

section.

Similar to the path integrals of quantum field theory the amplitude from

an initial configuration (g1, φ1) at time t1 to a final configuration (g2, φ2) at

time t2 in quantum gravity is given by

〈(g2, φ2), t2 | (g1, φ1), t1〉 =
∫
D[g, φ]eiI[g,φ] .

This amplitude is also given in the Schrdinger picture using the time evolu-

tion operator e−itH such that

〈(g2, ψ2) | e−iH(t2−t1) | (g1, ψ1)〉 ,

where H is the Hamiltonian of the system. To make contact to the canonical

ensemble one is particular interested in the case of fixed initial and final

configuration, say (g, φ). Choosing the period t2 − t1 = −iβ and summing
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over the complete set of eigenstates of the Hamiltonian one identifies the

partition function for the canonical ensemble consisting of the configuration

(g, φ) at temperature T = β−1

Z =
∑
n

exp(−βEn) ,

where En is the energy of the n’th eigenstate. The trace corresponds to

imposing a periodicity β in imaginary time τ . The path integral defining

the partition function is thus to be taken over fields that are periodic in τ

with periodicity β.

With this identification it is now possible to extract thermodynamical

quantities. This is done in a semi-classical limit, using the saddle-point

approximation, where it is assumed that the most dominant configurations

of the path integral are controlled by metrics and matter fields which are

near an extremum of the action and have the correct periodicity. If the

path integral is simply evaluated at these extremum points one obtains the

contribution of the background fields to the partition function

Z = e−IE = e−βF

lnZ = −IE = −FT−1 ,

where F is the thermodynamic potential given in equation C. Quantities

such as the average energy and the entropy can be calculated as previously

〈E〉 = −∂ lnZ
∂β

=
∂IE
∂β

S = β〈E〉+ lnZ = β〈E〉 − IE .

It is in order to mentioned that the path integral approach also allows to

compute one-loop corrections to the partition function. These corrections

account for fluctuations around the background metric. Though, these terms

will not be considered.

From the above it is deduced that the temperature of a given metric

solution is determined by identifying the period β of the imaginary time co-
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ordinate τ . The first step is to analytic continuation the metric to Euclidean

time by τ = it. The periodicity of the τ must then be chosen exactly to

make the Euclidean section of the metric regular at the horizon, thus re-

moving the conical singularity at the horizon (see [10], [17]). The additional

work of obtaining the corresponding action enables access to the macroscopic

thermodynamical quantities of the canonical ensemble.

In the canonical ensemble the system is coupled to an infinite reservoir

at constant temperature. It should be pointed out that even though a black

hole in asymptotic flat space can be in equilibrium with thermal radiation

at a constant temperature this configuration is unstable. This is manifest in

the negativeness of the specific heat. One can understand this by letting the

black hole increase its mass infinitesimally thereby getting cooler increasing

its rate at which it is absorbing. The canonical ensemble is therefore un-

stable and one must turn to the microcanonical description to get sensible

results [10]. However, as pointed out in [14] the microcanonical ensemble is

somehow unphysical because the need of an insulating box that also prevent

gravitons from escaping. As explored in section 5, the situation is different

for a black hole in anti-de Sitter space and one can actually use the canonical

ensemble.
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D The Theory of Black Holes

The classical theory of black holes in four dimensions is well-established

under some significant physical assumptions, such as spacetime being sta-

tionary and asymptotically flat. It is the purpose of this section to highlight

some of the fundamental theorems of black hole solutions and to identify

the relationship between black hole quantities and the four laws of ther-

modynamics. In particular, the assumptions which they are based on.

Equipped with this knowledge one can generalise the result to black holes

in an anti-de Sitter background. For convenience the section is written in

units GN = c = ~ = k = 1.

D.1 Uniqueness Theorems

The non-linearity of Einstein’s equations makes it difficult to find exact

solutions. Typically exact solutions are obtained by restricting attention

to the vacuum equations Rµν = 0 simplifying the complexity considerably.

Another ingredient is to assume that the solution possesses symmetry (see

section D.6). One such symmetry is the spherical symmetry which leads to

the theorem of Birkhoff [5].

Theorem 1 (Birkhoff’s theorem) A spherical symmetric spacetime which

solves the vacuum Einstein equation Rµν = 0 is static.

This implies that the only unique solution is that of Schwarzschild. Since

a spacetime being static does not imply that it is spherically symmetric

Birkhoff’s theorem can not be used if only the exterior metric is know to be

static. However, Israel’s theorem can be of use if the spacetime is actually

a black hole solution with an event horizon [26].

Theorem 2 (Israel’s theorem) An asymptotically flat, static, vacuum space-

time which is non-singular on and outside the event horizon is the Schwarzschild

solution.
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A spacetime that is stationary is either non-rotating or it possesses axisym-

metry as well, but note that the associated Killing vector fields does not

necessarily commute. A third theorem is due to a number of people who

established the foundation for what is known as the no-hair theorem [16].

Theorem 3 If a spacetime is a stationary asymptotically flat vacuum black

hole solution which is non-singular on and outside the event horizon then

it is a two-parameter Kerr spacetime characterized by only its mass and

charge.

Finally, the uniqueness can be generalised to the Einstein-Maxwell equa-

tions. Hence a stationary asymptotically flat electrovac black hole spacetime

solution must be of the Kerr-Newman black hole family and is characterised

by three-parameters: the mass, the charge, and the angular momentum.

This family will be introduced in the next section.

D.2 Classical Black Hole Solutions

It is expected that the final state of a gravitational collapse will be a sta-

tionary, electrovac black hole. It is therefore fortunate that the uniqueness

theorems can be generalized to the vacuum Einstein-Maxwell equations for

which the result is that all stationary asymptotically flat black hole space-

times can be characterized by three parameters - the mass M , the charge

e, and the angular momentum a = J/M . These solutions are known as

the 3-parameter Kerr-Newman family also referred to as the charged Kerr

family. The family spans all the classical black hole metrics for a suitable

choice of parameters.

• If e = 0, the solution reduces to the Kerr vacuum solution.

• If a = 0, the solution reduces to the Reissner-Nordstrom electrovac

solution.
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• If a = e = 0, the solution reduces to the Schwarzschild solution.

The topology of a black hole is always S2 in four dimensions. There are

several different ways of choosing coordinates for the Kerr-Newman metric

(see e.g. [27], [8]). In the following the Boyer-Lindquist coordinates of the

Kerr-Newman black hole will be used. The location of the event horizons of

the charged Kerr metric is given by a quadratic equation with solutions [27]

r± = M ± (M2 − a2 − e2)
1
2 . (80)

This leads to a classification by the determinant. When e2 + a2 > M2 the

metric will have a naked singularity and the charged Kerr solution fails to be

strongly asymptotically predictable, therefore it does not describe a black

hole. In the case of positive determinant e2 + a2 < M2, there exist two

real event horizons. At the bifurcation point e2 + a2 = M2 the solution is

referred to as extremal. In this limit the two event horizons are coincident.

Naturally, for Reissner-Nordstrom black holes where a = 0 solutions are

called extremal if they satisfy the condition M2 = e2.

Observers in the ergosphere of the charged Kerr black hole will inevitable

rotate with an angular velocity. In the limit of the event horizon H given

by radial coordinate r+ this takes the form [27]

ΩH =
a

r2
+ + a2

. (81)

D.3 Black Hole Properties

In order to progress the investigation for locating the underlying assumptions

for establishing the black hole thermodynamics a number of properties and

notions for black hole solutions should be introduced.

The notion of a Killing horizon plays a fundamental role for the zeroth

and first law of black hole thermodynamics. The reason for this will be

elaborated in section (D.4). If there exist a Killing vector field ξµ which
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becomes normal to some null hypersurface K then K is a Killing horizon.

It is of interest to know when an event horizon of a black hole is in fact

a Killing horizon. There are two important results relying on the static,

stationary, and axisymmetric symmetries. The first shows that in the case

of a static black hole solution an event horizon must be a Killing horizon

[28]. Furthermore, in a stationary and axisymmetric black hole solution,

where the associated Killing vector fields ξµ and ψµ commute in the sense

of section (D.6), the linear combination

χµ = ξµ + ΩHψµ (82)

is a Killing vector field and is normal to the event horizon. Both conclusions

are based on purely geometrical reasons. The second result proves that the

event horizon of any stationary black hole must be a Killing horizon if it

satisfies the vacuum or electrovac field equations [13]. Thus, the spacetime

is either static or axisymmetric, but does not necessarily satisfy the ξ − φ

orthogonality. The results are referred to as rigidity theorems.

D.4 Black Hole Thermodynamics

The quantities related to the analogy between black holes and thermody-

namics is explored. It will be assumed that the appropriate parameters

already have been identified as the correct thermodynamic quantities asso-

ciated with a thermal object. In particular that mass and energy is equiva-

lent and that the surface gravity and the area of the event horizon are the

actual thermodynamic temperature and entropy, respectively. In the follow-

ing, the event horizon is assumed to be a Killing horizon and will therefore

be referred to simply as the horizon.

It is perhaps suitable to start by introducing the quantity κ, denoted the

surface gravity. The name originates from its purpose in static spacetimes

where it is the acceleration of an static observer near the black hole horizon
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measured at spatial infinity, but it is referred to as the surface gravity in

much more general cases. The consequence of a Killing vector field χµ being

normal to the horizon H means that the inner product χµχµ is constant on

the horizon. It therefore satisfies the geodesic equation on the horizon. The

surface gravity κ is often introduced as an arbitrary function on the geodesic

curve needed to account for the non-affine parametrized integral curves

∇ν(χµχµ) = −2κχν

χµ∇µχν = −κχν . (83)

To every Killing horizon the surface gravity therefore exists. The orthogo-

nality of the Killing vector field to the horizon validates Frobenius’s theorem

χ[α∇βχγ] = 0 (which also is used in order to define a static metric). Utilising

this together with Killing’s equation ∇βχγ = −∇γχβ gives

χ[α∇βχγ] = 2 [χα∇βχγ − χβ∇αχγ + χγ∇αχβ] = 0 ,

thus,

χγ∇αχβ = −2χ[α∇β]χγ . (84)

Contracting this equation with ∇αχβ and using the symmetry of Killing’s

equation

χγ(∇αχβ)(∇αχβ) = −2(∇αχβ)(χ[α∇β]χγ)

= −2(χα∇αχβ)∇βχγ

= −2κχβ∇βχγ

= −2κ2χγ .

Finally, using that this holds for every χγ on the horizon an explicit formula

for evaluation of the surface gravity has appeared

κ2 = −1
2

(∇αχβ)(∇αχβ)
∣∣∣∣
H

. (85)
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Where the evaluation on the horizon is stated explicitly. Defining the co-

variant derivative with respect to the Kerr-Newman metric and using the

Killing vector field given by equation (82) the surface gravity of the horizon

of an asymptotically flat stationary black hole solution can be computed

κ =
(M2 − a2 − e2)

1
2

2M [M + (M2 − a2 − e2)
1
2 ]− e2

. (86)

where M,a, e are the parameters defined in section (D.2). Setting a = e = 0

this reduces to the result of the static Schwarzschild metric

κ =
1

4M
.

This is the acceleration of a static observer located near the horizon as

measured by a static observer at infinity. It is important to note that the

surface gravity is not a property of the Killing horizon alone, but it depends

also on the normalisation of χµ. For asymptotically flat spacetimes one

chooses the normalisation at spatial infinity

χµχµ → −1 as r →∞ .

The redshift factor is the magnitude of the Killing vector V = (−χµχµ)
1
2 .

Thus with the choice of normalisation, the redshift factor at infinity is one

and zero at the horizon. The redshift factor relates emitted and observed

energies of a photon as measured by a static observer. Denote the energy of

a photon E measured at a point and the energy measured by an observer

at infinity by E∞ then

E =
E∞
V

. (87)

To establish the zeroth thermodynamic law of black holes the surface

gravity is required to be constant over the horizon. Having a surface gravity

defined as equation (85) required the crucial property of the event horizon

being a Killing horizon. From this alone the geodesic equation (83) implies
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that κ is constant along the orbits of the Killing vector field by taking the

Lie derivative

Lχκ = 0 . (88)

The two rigid theorems given in section D.3 leads to two different ways of

extending this to the entire horizon. First, on purely geometrical assump-

tions if the spacetime is static or stationary, axisymmetric with the ξ − φ

orthogonality property satisfied. Alternatively, it can be shown by assum-

ing Einstein’s equations with the dominant energy condition satisfied, which

means the ξ−φ orthogonality condition is relaxed. In either case the surface

gravity will be constant over the entire event horizon

χ[µ∇ν]κ = 0 .

The identification between the temperature and surface gravity T ↔ ακ with

α being a constant of proportionality is that a body in thermal equilibrium

have constant temperature throughout the body is equivalent to the surface

gravity being constant over the entire horizon. More generally solutions

which satisfy the zeroth law can be divided into two cases. The non-extremal

black holes with κ 6= 0 for which one can show that a Killing horizon with

a bifurcation two-surface imply that κ is constant and the case of extremal

black holes with κ = 0 where one will have to use the dominant energy

condition in order to ensure constant κ.

The notion of energy in general relativity is made more subtle because

in addition to the energy content of matter one also have to include the

gravitational field energy. Although, a local energy density of the matter

content makes sense due to the conservation of the stress-energy tensor, it

is near impossible to express the energy density of the gravitational field.

One must therefore discard this notion of a local energy density. Instead,

one considers the notion of a total energy of an isolated system. An isolated

system in general relativity can be an asymptotically flat spacetime. First,
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the energy, charge, and angular momentum shall be considered in the case

of stationary asymptotically flat spacetimes where the Komar integral can

be utilised. Thereafter, the total energy for non-stationary asymptotically

flat spacetimes at null and spatial infinity known as the Bondi mass and

ADM energy, respectively, will be considered. Finally, the positive energy

theorem for the Bondi and ADM energy is discussed.

First, the Komar integral shall be introduced. Let Σ be some spacelike

hypersurface and ∂Σ its boundary such that Σ ∪ ∂Σ is a closed compact

manifold with boundary then for every Killing vector field ξµ there exist a

conserved charge Q given by the Komar integral

Q =
k

16π

∮
∂Σ
d2x

√
γ(2)nµσν∇µξν , (89)

which by Stokes’s theorem can be written

Q =
k

16π

∫
Σ
d3x

√
γ(3)nµ∇ν∇µξν . (90)

Here k is some constant,
√
γ(3)d3x and

√
γ(2)d2x constitute the volume

element on Σ and ∂Σ, respectively. The unit normal vector to Σ is denoted

nµ and the outpointing normal to the boundary ∂Σ is denoted σν . It is

common to choose Σ to be the interior of a spacelike 2-surface (a topological

2-sphere) lying on the hypersurface orthogonal to ξν . The boundary ∂Σ

can then be thought of to enclose all sources. The value of the integral is

independent of the choice of 2-surface Σ due to ξν being a Killing vector

field.

Now, as mentioned in section (D.6) any Killing vector field ξµ satisfies

equation (101). Thus, one can write the integrand as

Jµ = ∇ν∇µξν

= ξµR
µν

= 8πξµ

[
Tµν − 1

2
Tgµν

]
, (91)
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where the last equality is obtained using Einstein’s equations. T denote

the trace of Tµν . Taking the divergence and using the contracted Bianchi

identity ∇µRµν = 1
2∇

νR, the symmetry of Killing’s equation, and equation

(100) this expression turns out to be divergenceless. Hence, the charge given

by the Komar integral (89) is independent of time and the integrand Jµ is

a conserved current.

Specifically, for the Kerr-Newman solutions which are cases of stationary

and axisymmetric asymptotically flat spacetimes, the Komar integral can

be used to define the conserved quantities: total energy/mass, the angular

momentum, and in a much similar fashion the electromagnetic charge.

In the Komar integral the Ricci tensor is utilised to construct the current.

In stationary spacetimes an exact time translation symmetry exist generated

by the timelike Killing vector field ξµ. Using formula (89) directly the total

energy at spatial infinity can be written

E = − 1
8π

∮
∂Σ
d2x

√
γ(2)nµσν∇µξν , (92)

where a constant of k = −2 has been chosen for convenience. The Komar

integral approach also works for axisymmetric spacetimes. Here the exis-

tence of a rotational Killing vector field ψµ is guaranteed. Thus, a conserved

current of the form of equation (91) exists and equation (89) gives the total

angular momentum

J =
1

16π

∮
∂Σ
d2x

√
γ(2)nµσν∇µψν . (93)

Note that the coefficient is chosen differently k = 1. Finally, for the electric

charge the conserved current is given directly from Maxwell’s equations Jµ =

∇νFµν , where Fµν is the field strength tensor. The charge passing through

a spacelike hypersurface Σ can likewise be written as an integral over the

boundary using Stokes’s theorem

Q = −
∮
∂Σ
d2x

√
γ(2)nµσνF

µν . (94)
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Note the convention of sign. Interestingly, the integral shows that the only

thing needed to obtain the total charge of a spacetime is the behaviour of

the electromagnetic field at spatial infinity. using the dual field strength

tensor the magnetic charge could have been obtained in a similar fashion.

Non-stationary asymptotically flat spacetimes does not possess exact

time translation symmetry like the stationary case, but instead they have

an asymptotically timelike Killing vector field ξµ. Roughly, this implies that

as one tend to null infinity, the vector (∂t)µ, will become a better and better

approximation to Killing’s equation and one can exploit the Komar integral

formulation. This defines the Bondi energy which accounts for the loss of

energy due to gravitational radiation under a gravitational collapse. In the

null infinite limit it will take the same form as the Komar integral given by

equation (92) over the 2-sphere.

The total energy for spatial infinity can be defined using that the metric

tends to Minkowski flat ηµν at infinity. One define the differences from the

flat metric as

hµν = gµν − ηµν , (95)

so hµν will tend to zero at spatial infinity. The ADM energy can then be

derived to be

EADM = − 1
16π

∮
∂Σ
d2x

√
γ(2)σj

(
∂hij
∂xi
− ∂hii
∂xj

)
, (96)

where i, j are the spatial indices. One can show that the ADM energy agrees

with the Komar energy in the stationary case.

Definitions of total energy must be positive for physical configuration.

The proof of the positiveness of the energy was given by Shoen and Yau and

later in an alternative form by Witten. It essentially states that an asymp-

totically flat spacetime satisfying Einstein’s equations with the dominant

energy condition and the existence of a non-singular Cauchy surface will

have non-negative ADM energy. It also follows that the only spacetime that
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have zero energy is the Minkowski spacetime. Singular spacetimes such as

Schwarzschild with positive mass do not have negative energy, but in order

to include singular spacetimes they must have evolved from a non-singular

initial data set.

All the ingredients to write down the first law of black hole thermody-

namics is now given [3]. Including the work from the electric potential Φ on

the horizon the differential form for the mass is

δM =
κ

8π
δA+ ΩHδJ + ΦHδQ . (97)

For strongly asymptotically predictable spacetimes with matter satis-

fying the weak or strong energy conditions, the area theorem states that

the area of the event horizon never decreases δA ≥ 0. This is a purely

classical result along with the fact that black holes have absolute zero tem-

perature. This, in particular, would imply an inconsistency in the physical

relationship between S and A. However, the consequences from quantum

mechanical effects alter the picture.

Although, no complete quantum gravity theory exist, the significant re-

sult that black holes emit particles due to quantum mechanical effects has

been shown [12]. To deduce this, the matter fields is assumed to obey the

same wave equations with the Minkowski metric replaced by the classical

curved spacetime metric (minimal coupling). This metric satisfies the Ein-

stein’s equations where an expectation value of the energy-momentum tensor

is used. Through a series of assumptions, it was shown that a black hole ra-

diates a total number of particles proportional to Fermi-Dirac/Bose-Einstein

statistics depending on whether the particles are fermions or bosons. For

particles with non-zero rest mass the argument differs slightly, but the result

is the same. A black hole therefore radiates with a temperature T exactly

as a black body. One identifies

T =
κ

2π
.
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The quantum mechanical treatment have the important consequence that

the expectation value of the energy-momentum tensor violates the energy

conditions assumed in the area theorem. Knowing the exact relation between

temperature and surface gravity the corresponding relation between entropy

and area can be deduced from the first law (97)

S =
A

4
. (98)

The quantum effects imply that the total entropy of the system should be

viewed as the total entropy S of the matter outside the black hole plus the

entropy of the black hole. One is in this way lead to writing the second law

of thermodynamics as

δS′ ≥ S +
A

4
, (99)

which is known as the generalised second law (GSL).

Finally, from equation (86) it is seen that κ only vanishes for the extremal

case M2 = a2 + e2. One can show that the more extreme the black hole

is, the harder it is to get even closer to the extremal condition. This is

consistent with the third law of thermodynamics.

D.5 The Chain of Assumptions

The classical black hole solutions in four dimensions are established on sta-

tionary, asymptotically flat spacetimes. In defining surface gravity it was

crucial that a Killing vector field which was normal to the event horizon

existed. Note, that static spacetimes is guaranteed to have such a Killing

vector field which makes a surface gravity for black holes in anti-de Sitter

space possible. The zeroth law was based on the rigid theorems. These are

based on the assumption that the spacetime either has a specific symmetry

or that the matter satisfied dominant energy conditions. The area theorem

assumes the spacetime is strongly asymptotically predictable as well as the

matter satisfying the weak or strong energy conditions. Finally, a discus-
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sion of conserved quantities, especially the energy for which the positive

mass theorems are relevant, was done. It was shown that a suitable defini-

tion for the total energy of a non-stationary spacetime is given by the ADM

formula.

Including the cosmological constant in Einstein’s equations implies that

the otherwise vacuum solutions necessarily will have curvature as explored

in detail in appendix A. This naturally raises a number of questions in

the light of the assumptions made to establish the thermodynamic relation-

ship. Especially, it should be mentioned that the considered spacetimes in

this section have been global hyperbolic, that is have a Cauchy surface and

therefore have a well-defined initial value problem. This is not the case for

the negative curved anti-de Sitter space, since infinity is timelike, however,

introducing boundary conditions it is still possible to put physics in anti-de

Sitter. This will be elaborated in more detail in section 4.2.

D.6 Notion of Symmetry in General Relativity

The intrinsic curvature of a spacetime (M, gµν) makes the notion of sym-

metry a more difficult concept in general relativity than in other fields of

physics. However, without properties like them, it would be very difficult to

obtain and progress upon solutions to Einstein’s non-linear equations. This

section will contain a brief introduction to the notion of symmetry.

Let M be a manifold. A diffeomorphism is a differentiable map φ : M →

M for which the inverse φ−1 exist and is differentiable. For a diffeomor-

phism, both the pullback and the pushforward of a tensor can be defined.

This gives rise to a way of comparing tensors at a point, namely the Lie

derivative. However, to define the Lie derivative a one-parameter group of

diffeomorphisms is necessary. This is a differentiable map φt : R×M →M

such that for each fixed t ∈ R, φt is a diffeomorphism φt : M →M and for all

t, s ∈ R the diffeomorphisms satisfy φt ◦ φs = φt+s. For a fixed p ∈M there
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exist a curve φt(p) : R → M called the orbit of φt parametrized by t ∈ R.

Introducing a vector field vµ on M those integral curves xµ parametrized by

t ∈ R satisfies,
dxµ(t)
dt

= vµ(x) ,

it is possible to identify each point p ∈ M with φt(p), such that, it is the

point on the integral curve corresponding to parameter t. Hence, vµ defines

a one-parameter group of diffeomorphisms φt. The vector vµ(p) will be the

tangent to the orbit φt(p) evaluated at t = 0 and is said to be the generator

of the diffeomorphism.

It is now possible to pull back the value of a tensor at point φt(p) and

compare it to its value at p. Thus, the Lie derivative measures how a tensor is

changing along the integral curves. It is defined as a map LV : (k, l)→ (k, l)

which is linear and obeys the Liebniz rule. As a special case of the Lie

derivative it is worth mentioning the Lie bracket which is defined as

Lvuµ = [v, u]µ = vλ∂λu
µ − uλ∂λvµ ,

which implies Lvuµ = −Luvµ.

Now, it is possible to introduce the notion of a symmetry. A diffeomor-

phism φ is called a symmetry of a tensor T if it leaves the pullback invariant,

φ∗T = T . Similar if one has a one-parameter group of diffeomorphisms φt

generated by a vector field vµ it is said to be a symmetry of T if it satisfies

LvT = 0 .

For a spacetime (M, gµν) one can have a symmetry of the metric φ∗gµν =

gµν . Such a diffeomorphism is referred to as an isometry. If one has a one-

parameter family of isometries generated by a vector field ξµ then ξµ is called

a Killing vector field

Lξgµν = 0 .
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This can be rewritten by evaluating the Lie derivative of the metric with

respect to an arbitrary vector field vµ,

Lvgµν = 2∇(µvν) ,

where∇µ is the covariant derivative with respect to gµν . The above equation

is then Killing’s equation

∇(µξν) = 0 .

Analogous to the above, the Killing vector field is said to generate the isom-

etry and a symmetry is a property of the metric which leaves it unchanged

along the direction of the Killing vector field. In that sense, a symmetry

characterize the underlying geometry of the manifold. Another way of stat-

ing that the geometry is unchanged is to consider the directional derivative

of the Ricci scalar which vanishes along a Killing vector field

ξλ∇λR = 0 . (100)

Any Killing vector field ξµ has a relation to the Riemann tensor given by,

(see appendix C in [27] for proof),

∇µ∇σξρ = Rρσµνξν .

Contracting over ρ and µ yields

∇µ∇σξµ = Rσνξν . (101)

Taking the divergence of this equation ∇σ, using the Bianchi identity in the

form ∇µRρµ = 1
2∇ρR, and the symmetry of Killing’s equation one obtains

equation (100).

Finding all Killing vectors of a metric can be tricky, since they are not

related in a simple way to symmetries of the spacetime, however one fact

is that if the metric in question is independent of a specific coordinate xσ,

where σ is fixed, the vector (∂σ)µ will satisfy Killing’s equation.
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The importance of Killing vector fields are heavily based on the fact that

they imply the existence of conserved quantities in the sense of geodesic

motion. Given a geodesic with tangent vector uµ, the quantity ξµu
µ is

conserved along the geodesic due to Killing’s equation

ξλ∇λ(ξµuµ) = 0 . (102)

Furthermore, one can obtain conserved currents, which is done in section

(D.4) in relation to quantities associated with black holes. It is in place to

introduce some notation for spacetimes possessing special symmetries.

If there exist a one-parameter group of isometries φt (which leaves the

metric invariant) whose orbits are timelike curves, the associated spacetime

is said to be stationary. Therefore, if the metric possesses a timelike Killing

vector field ξµ whose integral curves are complete then the spacetime is

stationary. Consequently, the metric is stationary if it possesses a Killing

vector that is asymptotically timelike near infinity. The Killing vector field

ξµ is said to generate time-translations t → t + const.. Furthermore, if the

metric is stationary and the timelike Killing vector field ξµ is orthogonal to

a family of spacelike hypersurfaces it is said to be static. Mathematically,

this can be written as a requirement on ξµ

ξ[α∇βξγ] = 0 . (103)

The condition is also the necessary and sufficient condition for the existence

of time reflection symmetry t→ −t, that is every static spacetime has time

reflection symmetry. A third symmetry, a spacetime can be said to possess,

is the axisymmetry. A metric is said to be axisymmetric if there exist a

one-parameter group of isometries χs whose orbits are closed spacelike curves

i.e. they can be regarded as a map χs : S1 → M . As above this implies

the existence of a spacelike Killing vector field ψµ whose integral curves

are closed. A spacetime is said to be stationary and axisymmetric if it has
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both symmetries and the associated one-parameter groups of isometries or

equivalent their Killing vector fields commute, that is

[ξµ, ψν ] = 0 . (104)

This last requirement is sometimes referred to as the ξ − φ orthogonal-

ity property. The ξ − φ orthogonality property holds for all stationary-

axisymmetric vacuum or electrovac black hole solutions.
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