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Abstract

The reformulation of Quantum Mechanics in terms of PT -symmetric Hamiltonians had its advent
about a decade ago when it was realized that a Hamiltonian posessing unbroken PT symmetry
exibits a real and positive spectrum which is bounded below and that the time evolution of such a
theory is unitary (probability preserving). Thus the axiom in the Dirac-von Neumann formulation
of Quantum Mechanics which states that a Hamiltonian should be Hermitian for the theory to be
physical, although sufficient, is not necessary. This paper is started by giving a brief summary of
the properties that a quantum mechanical theory described by such Hamiltonians must possess.
If the Hamiltonian has an unbroken PT symmetry then there exists a hidden symmetry of the
Hamiltonian which allows us to construct an inner product which is time-independet and has a
positive norm. This symmetry is represented by a linear operator C which is believed to be non-
unique. The construction of this operator requires the realization that C is a time-independent
PT -symmetric reflection operator with an operator representation given by C = eQ(x̂,p̂)P, where
P is the space reflection, or parity, operator. To perform the calculation for C we have to take an
ansatz for Q based on the symmetry conditions that this operator has to satisfy. We will give a
brief review of how the C operator has been determined for a Quantum mechanical theory described
by a Hamiltonain of the form H = 1

2 p̂
2 + 1

2 x̂
2 + ix̂3 and similarly for a field theory with cubic

interaction. We then conjecture an alternative ansatz for the cubic field theory by adding two
terms to the original one and proceed to try and determine the coefficient functions of the ansatz
by imposing the condition that the C operator should transform as a Lorentz scalar. Although the
conditions we impose on C are not enough to fully determine the coefficient functions, we find that
requiring that C should transform as a Lorentz scalar leaves complete freedom on the coefficient
functions of the terms dependent on the spatial derivatives, and thus the non-uniqueness of the C
operator persists even after enforcing the Lorentz scalar conditon.
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Chapter 1

Introduction

1.1 Foundations of a Quantum Theory and conditions for

the reality of the eigenvalues of a Hamiltonian

For a Quantum theory to be physically acceptable it must satisfy three main axioms. The energy
spectrum must be real because all measurements of the energy of a system yield real results. The
energy spectrum must be bounded below so that the system has a stable lowest-energy state, and
the time evolution of a quantum system must be unitary (probability-conserving) because the ex-
pected result of a probability measurement of a state cannot grow or decay in time. A relativistic
quantum theory has to satisfy in addition to these axioms the physical axioms of Lorentz covari-
ance and causality.
In the Dirac-von Neumann formulation of quantum mechanics these axioms are satisfied be impos-
ing that all physical observables be represented by self-adjoint or Hermitian operators on a Hilbert
space, that is for any observable A we must have

A = A†. (1.1)

This condition on the observables, which of course includes also the Hamiltonian of the theory,
ensures that the theory satisfies the above axioms. Although the condition of Hermiticity ensures
that the theory be physically acceptable it was noticed by Bender and colleagues that this restric-
tion on the Hamiltonian is sufficient but not necessary. It was shown theoretically that a more
general condition to be imposed on the Hamiltonian, which maintains the requirements for the
theory to be physical, is to replace the condition of Hermiticity with the more physical condition
that the Hamiltonian should posses space-time reflection symmetry, that is:

H = HPT . (1.2)

Where the space-reflection operator, or parity operator, is represented by the symbol P. This
operator acts on the basic dynamical variables of a quantum theory, that is on the position operator
x̂ and the momentum operator p̂, as:

Px̂P = −x̂ and P p̂P = −p̂. (1.3)

We remark that P is a linear operator and that it leaves invariant the fundamental commutation
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relation (the Heisenberg algebra) of quantum mechanics,

x̂p̂− p̂x̂ = i~1, (1.4)

where 1 is the identity matrix. Similarly the time-reversal operator is represented by the symbol
T . This operator leaves x̂ invariant but changes the sign of p̂:

T x̂T = x̂ and T p̂T = −p̂. (1.5)

Like the parity operator P, the time-reversal operator T leaves the commutation relation 1.4
invariant. This condition thus requires that T reverse the sign of the complex number i:

T iT = −i (1.6)

This last property, equation 1.6, shows us that T is not a linear operator but rather T is said
antilinear. The P and T are also reflection operators, which means that their squares are the unit
operator:

P2 = T 2 = 1. (1.7)

Yet another property that these two operators satisfy is that they commute with each other:

[P, T ] = 0. (1.8)

We thus define the PT -reflected Hamiltonian in 1.2 as HPT ≡ (PT )H(PT ).
It is then clear that if a Hamiltonian is PT -symmetric, then it commutes with PT :

[H,PT ] = 0. (1.9)

The fact that a Hamiltonian need not necessarily be Hermitian but may be non-Hermitian and
PT symmetric to describe a fully consistent quantum theory means that we are now in a position
to reconsider many Hamiltonians which have been discarded in the past. One example of such a
Hamiltonian is that used to describe the Lee model (see [3],[2]). This theory has been rejected in
the past as the Hamiltonian is not Hermitian and was thus believed not to have real and positive
eigenvalues. We now know that this theory describes a perfectly good quantum theory as the
Hamiltonian has space-time reflection symmetry. Many strange looking Hamiltonians which are
special cases deriving from the general parametric family of PT -symmetric Hamiltonians

H = p̂2 + x̂2(ix̂)ε, (1.10)

where the parameter ε is real can now also be considered because these Hamiltonians are all PT -
symmetric as they satisfy the condition in 1.2. It has been shown1 that when ε ≥ 0 all of the
eigenvalues of these Hamiltonians are entirely real and positive, but when ε < 0 there are complex
eigenvalues.The region with ε ≥ 0 is the region of unbroken PT -symmetry while that of ε < 0 is
the parametric region of broken PT -symmetry, see Figure 1.1.

Looking at Figure 1.1 we notice that as ε decreases past zero the real eigenvalues diminish
giving way to complex conjugate pairs of eigenvalues. Note that the Hamiltonian for the Harmonic

1see [3],[2],[5] and [11]
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Figure 1.1: Taken from [3], these are the energy levels of the Hamiltonian H = p̂2 + x̂2(ix̂)ε as a
function of the real parameter ε. When ε ≥ 0, the spectrum is real and positive and the energy
levels rise with increasing ε. ε = 0 corresponds to the Harmonic oscillator, whose energy levels
are En = 2n + 1. When −1 < ε < 0, there are a finite number of real positive eigenvalues and
an infinite number of complex conjugate pairs of eigenvalues. When ε ≥ 0 the PT symmetry is
unbroken, but when ε < 0 the PT symmetry is broken

oscillator is at the boundary of the broken and unbroken PT symmetry region, i.e. ε = 0.
The neatness of PT -symmetric Quantum mechanics comes from the fact that the condition on

the Hamiltonian that it should satisfy Dirac Hermiticity is replaced by the simple condition of PT -
symmetry, 1.2. This feature is referred to as more physical because the P and T are both elements
of the homogeneous Lorentz group of spatial rotations and Lorentz boosts, [3]. Interestingly the
first observation of PT -symmetry breaking has been made recently via experiments using complex
optical potentials, [12].

1.2 The Hamiltonian defines and determines the physical

properties of a Quantum Theory

We here give a brief review of how the Hamiltonian defines and determines the physical properties
of a quantum theory, how to calculate the eigenvalues of a PT -symmetric Hamiltonian and what
conditions must the eigenvalue equation satisfy for these eigenvalues to exist, how to determine
whether non-Hermitian Hamiltonians such as that in 1.10 define physical theories of quantum
mechanics and in what way the the Hilbert space for for such a Hamiltonian is constructed.

Quantum mechanics is a mathematical representation of experimentally measurable quantities
on a Hilbert space where the norm of a vector in the Hilbert space represents a probability. Since
a probability must be real and positive we require the norm on the Hilbert space to be real and
positive. In addition the inner product between any two different vectors in the Hilbert space
must be constant in time because probability is conserved. This last requirement is a fundamental
property of any quantum theory, called unitarity, and it must not be violated. Of cental importance
to any quantum theory is the Hamiltonian operator, which specifies three main properties of the
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physical system being described2 (see [3]):
(i) The Hamiltonian determines the energy eigenstates |En〉. These states are the eigenstates

of the Hamiltonian operator and they solve the time-independent Schrodinger equation

H |En〉 = En |En〉 . (1.11)

The energy eigenstates span the Hilbert space of physical state vectors. The eigenvalues En are
the energy levels of the quantum theory. Because in principle one can measure these energy levels,
the outcome of such a physical measurement is a real number, so it is essential that these energy
eigenvalues be real.

(ii) The HamiltonianH determines the time evolution of the theory. States |t〉 in the Schrödinger
picture evolve in time according to the time-dependent Schrödinger equation H |t〉 = i ddt |t〉,
whose formal solution is |t〉 = eiHt |0〉. Operators A(t) in the Heisenberg picture evolve accord-
ing to the time-dependent Schrödinger equation d

dtA(t) = −i [A(t), H], whose formal solution is
A(t) = eiHtA(0)e−iHt.

(iii) The Hamiltonian incorporates the symmetries of the theory. A quantum theory may
have two kinds of symmetries: continuous symmetries, such as Lorentz invariance, and discrete
symmetries, such as parity invariance and time reversal invariance. A quantum theory is symmetric
under a transformation represented by an operator A if A commutes with the Hamiltonian that
describes the quantum theory: [A,H] = 0. We also remark that if a symmetry transformation is
represented by a linear operator A and if A commutes with the Hamiltonian, then the eigenstates
of H are simoultaneous eigenstates of A. Two important Discrete symmetry operators are parity
(space reflection) and time reversal T , which were described in the previous section.

1.2.1 Properties of non-Hermitian Hamiltonians

As mentioned above the reality of the eigenvalues for a non-Hermitian Hamiltonian depend on
the PT -symmetry of the system. For the eigenvalues to be real we require the Hamiltonian to
have unbroken PT -symmetry. We say that the Hamiltonian has unbroken PT -symmetry if all the
eigenfunctions of H are simoultaneously eigenfunctions of PT . Note that since the PT operator
is not linear, i.e. antilinear, the condition that H commutes with PT does not imply that the
eigenfunctions of H are necessarily eigenfunctions of PT . In the case of the eigenvectors being
simoultaneous eigenvectors of both H and PT it is then trivial to show that the PT -symmetric
Hamiltonian will have all of its eigenvalues which are real.
Assume that φ is an eigenstate of H with eigenvalue E and simoultaneously an eigenstate of PT
with eigenvalue λ:

Hφ = Eφ (1.12)

and

PT φ = λφ. (1.13)

If we now multiply 1.13 on the left by PT and use properties 1.8 and 1.7 we conclude that
φ = λ∗λφ and therefore that λ = eiα for some real α. We thus see that the eigenvalue λ is a

2we here take ~ = 1
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pure phase. To simplify the future calculations we now introduce a convention, without loss of
generality we replace the eigenfunction φ by e−iα/2φ so that its eigenvalues under the PT operator
is unity:

PT φ = φ. (1.14)

Multiplying the eigenvalue equation 1.12 on the left by PT and use 1.9 we obtain Eφ = E∗φ.
Therefore E = E∗ and the eigenvalue E is real.
The eigenvalues satisfying the Schrödinger equation depend crucially on the bounadry conditions
and the techniques used for calculating these, i.e. the energy levels, are those used for calculat-
ing the energy levels of conventional Hermitan Hamiltonians. The procedure is to first convert
the formal eigenvalue problem Hφ = Eφ to a Schrödinger differential equation whose solutions
satisfy appropriate boundary conditions. The so obtained deifferential equation is then solved
either numerically or by using approximate methods such as WKB3. As an example consider the
Hamiltonian, [2];

H = p̂2 + (ix̂)N . (1.15)

The Schrödinger eigenvalue problem for this Hamiltonian is

−φ′′n(x)− (ix)Nφn(x) = Enφn(x) (1.16)

where En is the nth eigenvalue. In the Dirac-von Neumann formulation of quantum mechanics,
that is for a Hermitian Hamiltonian, the boundary conditions that give quantized energy levels, En,
are that φn(x)→ 0 as |x| → ∞ on the real axis. This suffices for 1.16 when 1 < N < 4, but when
N ≥ 4 we have to continue the eigenvalue problem into the complex-x plane. We therefore replace
the real x-axis by a contour, C, in the complex plane along which our differential equation holds.
The boundary conditions leading to quantization are then to be imposed at the end points of this
contour. These end points lie in regions in the complex-x plane where φn(x)→ 0 exponentially as
|x| → ∞. These regions are known as Stokes wedges, see Figure 1.2.

Figure 1.2: Taken from [2] this diagram shows the wedges in the complex-x plane containing the
contour in which the eigenvalue problem for the differential equation 1.16 for N = 4.2. In this
region φ(x) vanishes exponentially as |x| → ∞

The location of the Stokes wedges are determined by the exponential contribution to the leading
3see [1]
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behaviour of the solutions4. For example, say that the leading behaviours of solutions to a second-
order differential equation are eS1(z) and eS2(z) as z → z0 (where z0 is the point at which the
solutions become asymptotic), then the Stokes lines are defined to be the asymptotes as z → z0 of
the curves

Re[S1(z)− S2(z)] = 0. (1.17)

Similarly the anti -Stokes lines5 are the asymptotes as z → z0 of the curves

Im[S1(z)− S2(z)] = 0. (1.18)

Now the Stokes and anti-Stokes lines have been defined as asymptotes because these asymptotes
determine the opening angles of the wedges of validity of the asymptotic relations, [1]. It should
be noted that these concepts are a local property of functions, and they are only meaningfull in
the immediate vicinity of z0.

The answer to the question of whether a non-Hermitian Hamiltonian defines a physically ac-
ceptable quantum theory was found in [[13],[7]]. The properties that a physical quantum theory
must satisfy are:

(i) it must possess a Hilbert space of state vectors and the Hilbert space must have an inner
product with a positive norm; (ii) the time evolution of the theory must be unitary, this means
that the norm must be preserved in time.

In constructing a theory described by a non-Hermitian Hamiltonian we find that we are not
able to define a priori the inner product on the Hilbert space on which the Hamiltonian acts as
is the case for ordinary Hermitian quantum mechanics6. In fact the inner product will have to be
discovered throughout the course of the analysis. The core of the problem is that the Hamiltonian
itself determines the the Hilbert space on which it acts and and a consequence it itself determines
its own inner product. It was initially thought that a resonable inner product might be one with
respect to PT conjugation, i.e.

(ψ, φ) ≡
∫
C

dx[ψ(x)]PT φ(x) =
∫
C

dx[ψ(−x)]∗φ(x), (1.19)

where C is the contour in the Stokes wedges of Figure 1.2. This definition of the inner product
satisfies the requirement that pairs of eigenfunctions of H associated with different eigenvalues are
orthogonal, but it fails to satisfy the requirement that the norm of a state should always be positive.
The solution to this problem was solved by discovering a hidden symmetry of the Hamiltonian itself.
In order to construct an inner product which gives a positive norm on a Hilbert space defined by
a complex non-Hermitian Hamiltonian having an unbroken PT -symmetry, a new linear operator,
C, is constructed. This operator is required to satisfy [C,PT ] = 0 and, being a symmetry of the
Hamiltonian, it must also satisfy [H, C] = 0. Having this new operator at our disposal we define a
new inner product, an inner product with respect to CPT conjugation, i.e.

〈ψ|χ〉CPT =
∫
dxψCPT (x)χ(x), (1.20)

4See [1] and [2].
5These are the lines along which the leading behaviours are most unequal.
6In the Dirac-von Neumann formulation the inner product is an inner product with respect to hermitian conju-

gation.
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where ψCPT (x) =
∫
dyC(x, y)ψ∗(−y). This definition of inner product satifies the requirements

for the quantum theory defined by H to have a positive norm and a unitary time evolution, [3].

1.2.2 Observables in PT -symmetric quantum mechanics

In ordinary quantum mechanics the condition for a linear operator A to be an observable is that
it should be Hermitian or self-adjoint, i.e. it must satify A = A†. This condition ensures that the
expectation value of the operator in a state is real. Furthermore, we know that this Hermiticity
condition is maintained in time since in the Heisenberg picture operators evolve in time according
to A(t) = eiHtA(0)e−iHT . The equivalent condition to be satisfied by linear operators in PT -
symmetric quantum mechanics is that at time t = 0 the condition

AT = CPT ACPT , (1.21)

where AT is the transpose of A has to hold. If this is the case then we know that this condition will
continue to hold because we have assumed that H is PT symmetric. In addition this condition
guarantees that the expectation value of A for all states is real. Because of 1.8 we see that the
operator C itself satisfies 1.21 and is thus an observable. The Hamiltonian is also an observable.
Contrary to ordinary quantum mechanics though the position and momentum operators are not
observables, in fact the expectation value of x̂ in the ground state is a negative imaginary number7.

7for more details see [2] and [3]
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Chapter 2

The C operator

2.1 Construction and properties of the C operator

The problem with 1.19 is that although it satisfies the requirement that pairs of eigenfunctions
of H associated with different eigenvalues are orthogonal it fails to satisfy the requirement that
the norm of a state should always be positive. This problem arises from the property that PT -
symmetric Hamiltonians which describe quantum theories have a space of quantum states which
is spanned by energy eigenstates of which half have norm +1 and half have norm −1. This is
expressed by the relation;

(φm, φn) = (−1)nδmn, (2.1)

where φm and φn are eigenfunctions.
Since, see previous chapter, a quantum theory attributes a probabilistic interpretation to the norms
of states, this indefiniteness of the metric, i.e. 2.1, is inconsistent. The resolution of this problem
was achieved through the discovery that any theory having an unbroken PT -symmetry has a
hidden symmetry satisfied by the Hamiltonian. This symmetry is linked to the fact that there
are equal numbers of positive and negative norm states, see 2.1. The way to describe this hidden
symmetry is to construct a linear operator, the C operator, in position space as a sum over the
eigenstates of the Hamiltonian1:

C(x, y) =
∞∑
n=0

φn(x)φn(y). (2.2)

A Hermitian Hamiltonian has a set of eigenstates which are complete, and there is good evidence
that the eigenfunctions φn(x) for a PT -symmetric Hamiltonian are also complete. The coordinate-
space statement of completeness is

∞∑
n=0

(−1)nφn(x)φn(y) = δ(x− y), (2.3)

where x and y are real. Using 2.3, 2.1 and 1.19 we are able to verify that the square of C is unity
([2], [3]), thus the eigenvalues of C are ±1. Hence, as C is linear and as it is itself a symmetry of
the Hamiltonian, the eigenstates of H have definite values of C. In fact, if the eigenstates of H

1See [7].
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satisfy 2.1, we have that

Cφn(x) =
∫
dyC(x, y)φn(y) =

∞∑
m=0

φn(x)
∫
dyφm(y)φn(y) = (−1)nφn(x). (2.4)

We thus understand that C represents the measurement of the sign of the PT norm of an eigenstate,
2.1.

2.2 Calculation of the C operator in Quantum mechanics

In PT Quantum mechanics the evaluation of the formal sum 2.2 is non-trivial, and thus makes it
problematic to determine the C operator. The evaluation of the sum is non-trivial as it requires us
to calculate all the eigenfunctions φn(x) of H. Furthermore such a procedure cannot be performed
in quantum field theory as there exist no simple analogue of the schrödinger eigenvalue differential
equation and its associated coordinate-space eigenfunctions, [2]. To avoid these difficulties we make
use of a technique which relies on three properties of the C operator itself. This technique is readily
generalized to quantum field theory. The three properties used for the calculation of C are:
i) C commutes with the space-time reflection operator PT ,

[C,PT ] = 0, (2.5)

it should be noticed that C does not commute with P or T separately.
ii) The square of C is the identity,

C2 = 1, (2.6)

which means that we can interpret C as a reflection operator just as P and T .
iii) C commutes with H,

[C, H] = 0 (2.7)

and is hence time independent. Therefore C is a time-independent PT -symmetric reflection oper-
ator. To proceed with the calculation we introduce a general operator representation for C of the
form, see [10];

C = eQ(x̂,p̂)P, (2.8)

where Q(x̂, p̂) is a real function of the dynamical variables x̂ and p̂ and P is the parity operator.
Using this representation we can now calculate C directly by using the three equations 2.5, 2.6 and
2.7. Substituting 2.8 in 2.5 we find that;

eQ(x̂,p̂) = PT eQ(x̂,p̂)PT = eQ(−x̂,p̂), (2.9)

from this we can conclude that Q(x̂, p̂) is an even function of x̂. We then find a second condition
on Q by substituting 2.8 in 2.6. This gives us;

eQ(x̂,p̂)PeQ(x̂,p̂)P = eQ(x̂,p̂)eQ(−x̂,−p̂) = 1 (2.10)

which implies that Q(x̂, p̂) = −Q(−x̂,−p̂). Having determined in 2.9 that Q(x̂, p̂) is an even
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function of x̂, we may conclude that it is also an odd function of p̂. The condition we are thus left
with is 2.7. Substituting 2.8 into 2.7 we get eQ(x̂,p̂)[P, H] + [eQ(x̂,p̂), H]P = 0. We will be showing
how to perform the calculation explicitely for the PT -symmetric Hamiltonian2;

H =
1
2
p̂2 +

1
2
x̂2 + iεx̂3. (2.11)

Rewriting the Hamiltonian as H = H0 + εH1, where H0 is the Harmonic oscillator Hamiltonian
H0 = 1

2 p̂
2 + 1

2 x̂
2, which commutes with the parity operator P, and H1 = ix̂3, which anticommutes

with P, the above condition becomes

2εeQ(x̂,p̂)H1 = [eQ(x̂,p̂), H]. (2.12)

It is still not understood why, but only the odd powers of ε contribute to Q, therefore we may
expand Q(x̂, p̂) as a series in odd powers of ε:

Q(x̂, p̂) = εQ1(x̂, p̂) + ε3Q3(x̂, p̂) + ε5Q5(x̂, p̂) + ... (2.13)

substituting this expansion into the exponential in 2.8 we obtain after some algebra a sequence
of equations which have to be solved for the operator-valued functions Qn(x̂, p̂) (n = 1, 3, 5, ..)
subject to the symmetry constraints we have listed above. The first two of these equations are

[H0, Q1] = −2H1

[H0, Q3] = −1
6

[Q1, [Q1, H1]]. (2.14)

We will only be solving these equations to first order in ε. Higher order terms are solved analogously.
The procedure is to substitute most general polynomial form for Qn using arbitrary coefficient and
then solve for these coefficients, [2]. So to solve the first equation in 2.14 we take as an asatz for
Q1 the most general Hermitian polynomial which is even in x̂ and odd in p̂:

Q1(x̂, p̂) = Mp̂3 +Nx̂p̂x̂, (2.15)

where M and N are undetermined coefficients. The operator equation for Q1 is then satisfied if

M = −4
3

and N = −2. (2.16)

2See [15]
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2.3 The C operator for an iϕ3 Quantum field theory

In this section we extend the operator techniques introduced in Chapter 2 to quantum field theory.
We perform the calculation only up to the first order in ε. Consider the quantum field theory in
(D+1)-dimensional Minkowski space-time described by the Hamiltonian;

H =
∫
dDx

{
1
2
π2(x, t) +

1
2

[∇xϕ(x, t)]2 +
1
2
µ2ϕ2(x, t) + iεϕ3(x, t)

}
. (2.17)

This theory is non-Hermitian but PT -symmetric, it is thus a physically acceptable theory since
the eigenvalues are real. We see that this Hamiltonian has the form H = H0 + εH1, where:

H0 =
∫
dDx

{
1
2
π2(x, t) +

1
2

[∇xϕ(x, t)]2 +
1
2
µ2ϕ2(x, t)

}
,

HI = i

∫
dDxϕ3(x, t). (2.18)

Note that the above integrals are performed in the spatial variable x, which lies in RD. From this
point onwards we will use the notation

∫
dx =

∫
dDx to represent integration on RD. The field

variables satisfy the usual equal-time canonical commutation relations3:

[ϕ(x, t), π(y, t)] = iδ(x− y). (2.19)

The formal expression for the parity operator is given by4 P = exp( 1
2 iπ

∫
dx[ϕ2(x, t)+π2(x, t)−

1]). In analogy with quantum mechanics, where the operators x̂ and p̂ change sign under parity
reflection, we take the fields to be pseudoscalars which means that they change sign under the
action of P:

Pϕ(x, t)P = −ϕ(−x, t), Pπ(x, t) = −π(−x, t). (2.20)

To proceed we use the product representation for C, only that now the Q2n+1 (n = 0, 1, 2) terms
will be real functionals of the field variables ϕ(x, t) and π(x, t), and continue in analogy with the
quantum mechanical case. Thus to find Q1 we are to solve the first of the operator equations in
2.14

[
∫
dx(

1
2
π2(x, t) +

1
2
µ2ϕ2(x, t)− 1

2
ϕ(x, t)∇2

xϕ(x, t)), Q1] = −2i
∫
dxϕ3(x, t), (2.21)

where we have changed the form of the third term in H0 using integration by parts.
We know from the conditions on C that Q1 is an even functional of ϕ(x, t) and an odd functional
of π(x, t). Following these constraints Bender and collegues duduced an ansatz for Q1 of the form:

Q1 =
∫∫∫

dxdydzMxyzπxπyπz +
∫∫∫

dxdydzNx(yz)ϕyπxϕz (2.22)

where, in the fields, the time variable has been suppressed and the spatial dependences have been
indicated with subscripts and the brakets denote the symmetry conditions on those variables in the
braket. Therefore M is totally symmetric in all three indices while N is symmetric in the second
and third indices.
Although the solution obtained for C with this ansatz for Q1 is succesfull in producing a C operator

3From this point onwards we will take ~ = 1
4[8]
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which not only solves the operator equation in 2.14 but also satisfies the conditions for C to be
a Lorentz scalar this ansatz is not the most general. In fact this paper was motivated by a
consideration made by Shalaby in [14] where he proposed a different ansatz to the one proposed
in [8]. His claim was that his ansatz leads to a less cumbersome procedure for the determination
of the C operator and that it leads to a solution which is local. The innovation in his paper was to
assume that the metric operator is not only a functional of the field operator ϕ and its conjugate
field π but also a functional of the field gradient, ∇ϕ. That is;

Q1 = C1

∫
dxπ3(x) + C2

∫
dxϕ(x)π(x)ϕ(x) + C3

∫
dx∇ϕ(x)π(x)∇ϕ(x) (2.23)

This is a reasonable assumption for two reasons:
i) It has been shown in [9] that the solution to the algebraic equations 2.14 is non unique and thus
there exist alternative posibilities for the ansatz. ii) In field theory the Hamiltonian has an explicit
dependence on ∇ϕ.
Although the extra term is a reasonable addition to the ansatz, Shaloby used an ansatz which in
addition to this extra term had the integral coefficients which were constant. Unfortunately the
claim made by Shaloby that his ansatz would greatly simplify the calculation of the C operator
performed by Bender, Jones and Brody in [8] is false as it was shown in [4] that his calculation is
incorrect, and the corrected calculations lead to inconsistent equations for the coefficients.
Motivated by the previous work by Bender and collegues and the ansatz used by Shaloby we thus
duduce an alternative ansatz of the form:

Q1 =
∫∫∫

dxdydz
{
M(xyz)πxπyπz +Nx(yz)ϕyπxϕz

+Py(xz)(∇xϕx)πy(∇zϕz) +Qy(xz)ϕx(∇2
yπy)ϕz

}
(2.24)

In this ansatz there is now an extra two terms which differ from the one used in [8]. The
third term has been inserted following Shalaby’s paper, while the fourth term is a logical extension
to this third term. The novelty introduced Shalaby was to introduce the extra term based on
the fact that in field theory there is an extra term in the Hamiltonian which does not exist in
quantum mechanics. It then only seems logical to introduce the fouth term as this is dimensionally
equivalent to the third but completely independent to it5. To determine the coefficient functionals
we now substitute this ansatz in the first operator equations in 2.14. After some algebra we are
left with two operator identities which must be satisfied:∫∫∫

dxdydz
{
Nx(yz)[πxπyϕz + ϕzπxπy] +Qy(xz)[πx(∇2

yπy)ϕz + ϕx(∇2
yπy)πz]

−[(∇xPy(xz))πxπy(∇zϕz) + (∇zPy(xz))(∇xϕx)πyπz]
}

= 3
∫∫∫

dxdydzM(xyz)

{
µ2πyϕxπz − πy(∇2

xϕx)πz

}
(2.25)

5The third and fourth term are not related to each other by an integration by parts
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µ2

∫∫∫
dxdydz

{
Nx(yz)ϕxϕyϕz + Py(xz)(∇xϕx)ϕy(∇zϕz) + (∇2

yQy(xz))ϕxϕyϕz

}
−
∫∫∫

dxdydz
{
Nx(yz)ϕy(∇2

xϕx)ϕz + Py(xz)(∇xϕx)(∇2
yϕy)(∇zϕz) + (∇2

yQy(xz))ϕx(∇2
yϕy)ϕz

}
= −2

∫
dwϕ3

w. (2.26)

By commuting 2.25 once with π and twice with ϕ, and 2.26 three times with π, we transform
these two operator identities into two coupled partial differential equations for M , N , P and Q:

(µ2 −∇2
x)[Nx(yz) +∇y∇zPx(yz) +∇2

xQx(yz)] + (µ2 −∇2
y)[Ny(xz) +∇x∇zPy(xz) +∇2

yQy(xz)]

+ (µ2 −∇2
z)[Nz(xy) +∇x∇yPz(xy) +∇2

zQz(xy)] = −6δ(x− y)δ(x− z), (2.27)

Ny(xz) +Nz(xy) +∇x∇yPz(xy) +∇x∇zPy(xz) +∇2
yQy(xz) +∇2

zQz(xy) = 3(µ2 −∇2
x)M(xyz).

(2.28)

To solve these equtions we Fourier transform to momentum space, such as to change these
differential equations into algebraic equations. Denoting the D-dimensional Fourier transform of a
function fx by f̃p ≡

∫
dxfxeip·x we obtain6:

1
G̃p

[Ñp(qr) − qrP̃p(qr)−p2Q̃p(qr)] +
1
G̃q

[Ñq(pr) − prP̃q(pr) − q2Q̃q(pr)]

+
1
G̃r

[Ñr(pq) − pqP̃r(pq) − r2Q̃r(pq)] = −6(2π)Dδ(p + q + r), (2.29)

Ñq(pr) + Ñr(pq) − pqP̃r(pq) − prP̃q(pr) − q2Q̃q(pr) − r2Q̃r(pq) =
3
G̃p

M̃(pqr), (2.30)

with G̃p = (p2 + µ2)−1.
Note that just as in the calculation performed in [8] using 2.22 we have that the right hand side

of 2.29 contains the factor δ(p + q + r), which implies that the four three-point functions M , N , P
and Q conserve momentum. Continuing in analogy with [8] we introduce reduced representations
of these vertex functions in which we factor off the delta function:

M̃(pqr) = (2π)Dm̃(pqr)δ(p + q + r), (2.31)

and similarly for Ñ , P̃ and Q̃.
6From this point onwards, to avoid excessive symbols, we will be denoting the inner product between two vectors

x · y by xy
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Thus the four three-point functions satisfy:

1
G̃p

[ñp(qr) − qrp̃p(qr)−p2q̃p(qr)] +
1
G̃q

[ñq(pr) − prp̃q(pr) − q2q̃q(pr)]

+
1
G̃r

[ñr(pq) − pqp̃r(pq) − r2q̃r(pq)] = −6, (2.32)

ñq(pr) + ñr(pq) − pqp̃r(pq) − prp̃q(pr) − q2q̃q(pr) − r2q̃r(pq) =
3
G̃p

m̃(pqr). (2.33)

To solve these equations we first notice that the right hand side of 2.33 is totally symmetric in
its indices, and can thus be used to obtain two new equations by permuting the indices:

ñr(qp) + ñp(qr) − qrp̃p(qr) − pqp̃r(pq) − r2q̃r(pq) − p2q̃p(qr) =
3
G̃q

m̃(pqr), (2.34)

ñp(qr) + ñq(rp) − prp̃q(rp) − qrp̃p(qr) − p2q̃p(qr) − q2q̃q(pr) =
3
G̃r

m̃(pqr). (2.35)

To simplify the manipulations of these equations we define the four functions;

R1(p̃, q̃) =
1
G̃p

[qrp̃p(qr) + p2q̃p(qr)] +
1
G̃q

[prp̃q(pr) + q2q̃q(pr)] +
1
G̃r

[pqp̃r(pq) + r2q̃r(pq)] (2.36)

R2(p̃, q̃) = pqp̃r(pq) + prp̃q(pr) + q2q̃q(pr) + r2q̃r(pq) (2.37)

R3(p̃, q̃) = qrp̃p(qr) + pqp̃r(pq) + r2q̃r(pq) + p2q̃p(qr) (2.38)

R4(p̃, q̃) = prp̃q(rp) + qrp̃p(qr) + p2q̃p(qr) + q2q̃q(pr). (2.39)

Therefore 2.32, 2.33, 2.34 and 2.35 now read:

1
G̃p

ñp(qr) +
1
G̃q

ñq(pr) +
1
G̃r

ñr(pq) = −6 +R1(p̃, q̃) (2.40)

ñq(pr) + ñr(pq) =
3
G̃p

m̃(pqr) +R2(p̃, q̃) (2.41)

ñr(pq) + ñp(qr) =
3
G̃q

m̃(pqr) +R3(p̃, q̃) (2.42)

ñp(qr) + ñq(rp) =
3
G̃r

m̃(pqr) +R4(p̃, q̃) (2.43)

respectively. Although we now have four equations in terms of four unknown functions we are
not in a position to determine the solutions for all four these functions as we do not know the
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symmetry conditions between all indices. What we are able to obtain though is an exact solution
to m̃ and a solution to ñ parametrised by p̃ and q̃. Solving for m̃ and ñ:

m̃(pqr) =
4G̃2

pG̃
2
qG̃

2
r

G̃2
pG̃

2
q + G̃2

pG̃
2
r + G̃2

qG̃
2
r − 2G̃pG̃qG̃r(G̃p + G̃q + G̃r)

(2.44)

ñp(qr) =
6G̃pG̃qG̃r(G̃pG̃r + G̃pG̃q − G̃qG̃r)

G̃2
pG̃

2
q + G̃2

pG̃
2
r + G̃2

qG̃
2
r − 2G̃pG̃qG̃r(G̃p + G̃q + G̃r)

+ qrp̃p(qr) + p2q̃p(qr) (2.45)

We were thus able, by substituting our ansatz for Q1 in 2.21, to determine m̃ completely in
terms of the momentum variables and to find an expression for ñ in terms of the momenta and the
reduced representations of the fourier transformed P and Q coefficients. Two observations worth
making are the following: (1) We note that our expression for m̃ is the same as that obtained in
[8] and can thus be inverted to obtain a closed form expression for M in terms of Bessel functions.
(2) These expressions for the coefficient functions allow us to recover the results obtained for the
case D = 0 (quantum mechanics). When D = 0 the operators ∇xϕx and ∇2

xπx are not defined,
and thus the P and Q functions are zero. In addition G̃p reduces to G̃p = µ−2. Substituting this
expression for G̃ into 2.44 and 2.45 and using P = 0 and Q = 0, we find that these equations once
solved give precisely 2.16.

Although we have found expressions for the coefficient functions which are consistent with
previous calculations, we are still not able to solve for ñ, p̃ and q̃ completely. The four equations
we have solved have left us with a completely determined solution for M and an expression relating
N , P and Q which we know from (2) is consistent with the quantum mechanical case.
In order to determine the explicit expressions for N , P and Q we have to look for further constraint
on C. One such constraint is that the C operator should transform as a Lorentz scalar and we will
be exploiting this constraint in the next section.
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Chapter 3

The C Operator Transforms as a

Lorentz Scalar

In [6] it has been established that using ansatz 2.22 the C operator does indeed transform as a
scalar by showing that the latter commutes with the generators of the Lorentz boost. We follow the
same procedure here. Before doing this though we will briefly discuss an alternative operator repre-
sentation for C which is preferred to 2.8 because, as is shown in [6], it transforms as a lorentz scalar.

3.1 The intrinsic parity operator

The operator representation 2.8 has been used untill now in both the quantum mechanical and
field theoretic case. However, it was shown recently1, that the correct field-theoretic form for the
C operator is not C = eQP, but rather;

C = eQPI , (3.1)

where PI id the intrinsic parity operator. PI has the same effect as P on the field variables except
that it does not change the sign of the spatial arguments of the fields. Thus it acts as;

PIϕ(x, t)PI = ϕ(x, t) (3.2)

for a scalar field, and as;
PIϕ(x, t)PI = −ϕ(x, t) (3.3)

for a pseudoscalar field. The fundamental difference betweent the two parity operators is seen in
their Lorentz transformation properties, [6]. It is now believed that the correct representation for
C is 3.1 rather than 2.8. Note that in the quantum mechanical case there is no difference between
these two representations because for D = 0 we have that P = PI . However in quantum field
theory, where D 6= 0, we have that P 6= PI and the two representations are indeed different. It is
via this new representation that it was understood that the C operator is the complex analytical
continuation of the intrinsic parity operator2.

1see [6]
2Again see [6].
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3.2 The Lorentz scalar condition

For the C operator to transforms as a Lorentz scalar, we must show that C commutes with the
Lorentz boost operator

J0i = J0i
0 + εJ0i

1 , (3.4)

where;

J0i
0 (t) = t

∫
dxπ(x, t)∇ixϕ(x, t)−

∫
dxxiH0(x, t), (3.5)

J0i
1 (t) = −

∫
dxxiH1(x, t). (3.6)

So we expand the commutator [C, J0i] in powers of ε. To order ε2, we have

[C, J0i] = [(1 + εQ1 +
1
2
ε2Q2

1)PI , J0i
0 + εJ0i

1 ] +O(ε3)

=[PI , J0i
0 ] + ε([Q1, J

0i
0 ]PI +Q1[PI , J0i

0 ] + [PI , J0i
1 ])

+ ε2(
1
2

[Q2
1, J

0i
0 ]PI +

1
2
Q2

1[PI , J0i
0 ] + [Q1, J

0i
1 ]PI +Q1[PI , J0i

I ]) +O(ε3). (3.7)

The leading order term vanishes because [PI , J0i
0 ] = 0. Using the identity [PI , J0i

1 ] = −2J0i
1 PI , we

simplify 3.7 to

[C, J0i] =ε([Q1, J
0i
0 ]PI − 2J0i

1 PI)

+ ε2(
1
2
Q1[Q1, J

0i
0 ]PI +

1
2

[Q1, J
0i
0 ]Q1PI −Q1J

0i
1 PI − J0i

1 Q1PI) +O(ε3). (3.8)

We see that if the term of order ε vanishes, then the ε2 term vanishes automatically.
The commutator 3.8 tells us that to show that C is a scalar we simply have to show that [Q1, J

0i
0 ] =

2J0i
1 . 3.5 consists of two terms, and in [6] it was shown that the first part commutes with Q1 by

showing that for any functional of π and ϕ, say f [π, ϕ], we have that [f [π, ϕ], t
∫
dxπ(x, t)∇ixϕ(x, t)] =

0. We now prove that this is the case also for any functional of π, ϕ,∇ϕ and∇2π, say g[π, ϕ,∇ϕ,∇2π].
To show this we note that this commutator is explicitely an integral of a total derivative3. Start
with

[g[π, ϕ,∇ϕ,∇2ϕ], t
∫
dyπ(y, t)∇iyϕ(y, t)]

= t

∫
dy
{

[g[π, ϕ,∇ϕ,∇2ϕ], π(y, t)]∇iyϕ(y, t) + π(y, t)∇iy[g[π, ϕ,∇ϕ,∇2ϕ], ϕ(y, t)]
}
,

(3.9)

then using the variational formulas

[g[π, ϕ,∇ϕ,∇2ϕ], ϕ(x, t)] = −i δ

δπ(x, t)
g[π, ϕ,∇ϕ,∇2ϕ]− i∇2

x

δ

δ(∇2
xπ(x, t))

g[π, ϕ,∇ϕ,∇2ϕ]

(3.10)

[g[π, ϕ,∇ϕ,∇2ϕ], π(x, t)] = i
δ

δϕ(x, t)
g[π, ϕ,∇ϕ,∇2ϕ]− i∇y

(
δ

δ (∇xϕ(x, t))
g[π, ϕ,∇ϕ,∇2ϕ]

)
(3.11)

3we assume here that the functional is expressible as a sum such as g = Anπn +Bmϕm +Cp(∇xϕ)p +Dq(∇2
xπ)q .
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.
we change 3.9 to:

[g[π, ϕ,∇ϕ,∇2ϕ], t
∫
dyπ(y, t)∇iyϕ(y, t)]

= it

∫
dy
{
δg

δϕ
∇iyϕ(y, t)− π(y, t)∇iy

(
δg

δπ

)
−∇y

(
δg

δ (∇yϕ)

)
∇iyϕ(y, t)

−π(y, t)∇iy

(
∇2

y

(
δg

δ
(
∇2

yπ
)))} (3.12)

Integrating the second, third and fourth terms by parts, we get

[g[π, ϕ,∇ϕ,∇2ϕ], t
∫
dyπ(y, t)∇iyϕ(y, t)]

= it

∫
dy[

δg

δϕ
∇iyϕ(y, t) +∇iyπ(y, t)

δg

δπ
+

δg

δ (∇yϕ)
∇y∇iyϕ(y, t) +∇2

y∇iyπ(y, t)
δg

δ
(
∇2

yπ
) ] = 0

(3.13)

Thus only the second term of J0i
0 in 3.5 contributes to the commutator of Q1 with J0i

0 ,
i.e. [Q1, J

0i
0 ] = −[Q1,

∫
dxxiH0(x, t)].

We have thus, in analogy with [6], reduced the problem of requiring that C is a scalar to solving
the commutator identity

[Q1,

∫
dxxi

{
1
2
π2(x, t) +

1
2
µ2ϕ2(x, t) +

1
2

[∇xϕ(x, t)]2
}

] = 2i
∫
dxxiϕ3(x, t). (3.14)

Note how this equation, apart from an integration by parts is structurally similar to 2.21. The
difference is that in 3.14 there are extra factors of xi in the integrand.
Following the analysis of Chapter 2, we introduce the same ansatz for Q1 to solve 3.14. Performing
the commutator in 3.14 we obtain two functional equations:∫∫∫

dxdydzϕxϕyϕz

{
[xi(µ2 −∇2

x)−∇ix]Nx(yz) + [yi(µ2 −∇2
y)−∇iy]∇x∇zPy(xz)

+[yi∇2
y(µ2 −∇2

y)−∇i3y ]Qy(xz)

}
= −2

∫
dwwiϕ3

w, (3.15)

∫∫∫
dxdydz

{
(yiπyπxϕz + ziϕyπxπz)Nx(yz) +

(
xiπxπyϕz + ziϕxπyπz

)
∇x∇zPy(xz)

+
(
xiπxπyϕz + ziϕxπyπz

)
∇2

yQy(xz)

}
=
∫∫∫

dxdydz
{
ϕxπyπz(xi(µ2 −∇2

x)−∇ix)M(xyz)

+πxϕyπz(yi(µ2 −∇2
y)−∇iy)M(xyz) + πxπyϕz(zi(µ2 −∇2

z)−∇iz)M(xyz)

}
. (3.16)

Next, commute 3.15 three times with π and commute 3.16 once with π and twice with ϕ to
transform these two operator identities into coupled differential equations for M , N , P and Q:

[xi(µ2 −∇2
x)−∇ix][Nx(yz) +∇y∇zPx(yz) +∇2

xQx(yz)] + [yi(µ2 −∇2
y)−∇iy][Ny(xz) +∇x∇zPy(xz) +∇2

yQy(xz)]

+ [zi(µ2 −∇2
z)−∇iz][Nz(xy) +∇x∇yPz(xy) +∇2

zQz(xy)] = −6xiδ(x− y)δ(x− z), (3.17)
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yi[Nz(xy) +∇x∇yPz(xy) +∇2
zQz(xy)] + zi[Ny(xz)+∇x∇zPy(xz) +∇2

yQy(xz)]

= 3[xi(µ2 −∇2
x)−∇ix]M(xyz). (3.18)

Introducing the condition that C should be a Lorentz scalar has thus given us two coupled
differential equations, independent from the ones obtained from the conditions 2.5, 2.6 and 2.7 ,
which we may use to try and determine the undetermined functions N , P and Q. We also note that
the right hand side of 3.18 is totally symmetric in the three indices just as 2.33, we are thus able
to obtain another two equations by eploiting this symmetry condition. Although permuting the
indices in 3.18 will give us two extra equation we can use to solve for the undetermined functions,
we will see that these are not necessary. The expression we have obtained for the undetermined
functions is in terms of their Fourier transform, see 2.45, thus to make use of 3.17, 3.18 we will
either require inverse Fourier transforming 2.45 back to position space, or to Fourier transform
3.17 and 3.18 to momentum space. We here perform the latter.
Fourier transforming to momentum space we have:

[∇ipG̃−1
p − pi][Ñp(qr) − qrP̃p(qr) − p2Q̃p(qr)] + [∇iqG̃−1

q − qi][Ñq(pr) − prP̃q(pr) − q2Q̃q(pr)]

+[∇irG̃−1
r − ri][Ñr(pq) − pqP̃r(pq) − r2Q̃r(pq)] = −6∇ip(2π)Dδ(p + q + r), (3.19)

∇iq[Ñr(pq) − pqP̃r(pq) − r2Q̃r(pq)] +∇ir[Ñq(pr) − prP̃q(pr) − q2Q̃q(pr)] = 3[∇ipG̃−1
p − pi]M̃(pqr).

(3.20)

To make use of these algebraic equations we first change the reduced expression for Ñ , i.e. ñ, to
the full expression which is simply;

Ñp(qr) =
6G̃pG̃qG̃r(G̃pG̃r + G̃pG̃q − G̃qG̃r)

G̃2
pG̃

2
q + G̃2

pG̃
2
r + G̃2

qG̃
2
r − 2G̃pG̃qG̃r(G̃p + G̃q + G̃r)

·(2π)Dδ(p + q + r)

+ qrP̃p(qr) + p2Q̃p(qr). (3.21)

We now permute the indice in 3.20 such as to get the algebraic equation satisfied by Ñp(qr) and
then substitute 3.21 into this. We find that no matter which of the equations we use to determine
the conditions on P̃ and Q̃, these terms cancel. Therefore enforcing the condition that the C
operator should be a Lorentz scalar does not allow us to determine the coefficient functionals Ñ ,
P̃ and Q̃ completely. We discuss the implications of this result in the conclusion section.
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Chapter 4

Conclusion

In [9] it was concluded that the three conditions 2.5, 2.6 and 2.7 allow for a whole family of
solutions. The question was then posed of whether there existed a fourth constraint that could be
used to supplement the above three conditions such as to give rise to the ”best form” for the C
operator. In this paper we have found that with the generalized ansatz the three constraints are
not sufficient to fully determine the coefficient functionals. We thus looked for a fourth constraint
on C. Using this extra constraint did not allow us to determine all the coefficients completely, but it
allowed us to conclude that even in the context of quantum field theory there exists a whole family
of solutions. These solutions are given in terms of a fully determined coefficient, M , which involve
Bessel functions1 and a coefficient N parametrized by P and Q, that is the terms dependent on the
spatial derivatives of the fields. Hence we can conclude that the non-uniqueness of C is inherent
in quantum theories described by non-Hermitian PT -symmetric Hamiltonians. Using 2.22 as an
ansatz Bender, Jones and Brody showed that the two coefficient functionals, i.e. N and M , both
contained Bessel functions. This meant that Q1 would represent a nonlocal interaction of the
three fields2. However, since associated Bessel functions decrease exponentially rapidly for large
arguments, the degree of nonlocality is small3. The huge parametric freedom in C that we have
found using a more general ansatz could possibly be used to impose the condition of locality. In
fact it could be that the dependences of Q on the spatial derivatives allow us to replace the Bessel
function by a spatial delta function so that C becomes local, [6]. An additional constraint could
be to impose that C should transform as a rotational scalar.

1See [8]
2Recall that we are workin with an iϕ3 field theory
3[8]
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