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Abstract

The start of this dissertation reviews the Big Bang model and

its associated problems. Inflation is then introduced as a model

which contains solutions to these problems. It is developed as an

additional aspect of the Big Bang model itself. The final section

shows how one can link inflation to the Large Scale Structure in

the universe, one of the most important pieces of evidence for

inflation.
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1 Introduction

1.1 The Big Bang Model

The central observation in developing the most basic models is the expansion

of the universe. This was first observed by Edward Hubble in 1929 [1] as a

result of observational data obtained from the red shift of recession speeds

of distant galaxies. He noticed that as galaxies that where further away

from us had signals such as visible light shifted towards the red end of the

spectrum. The expansion of the universe has to be thought of as happening

at all points, not originating from a centre and spreading out. So instead

of an expanding sphere, it’s better to think of raisins in a fruit cake, all

moving away from each other as the cake rises in the oven.

This expansion implies that as time goes on, the universe is getting less

dense and cooler. Conversely as we go further back in time, the universe

gets hotter and denser. This led to the idea of a Big Bang, however the

name gives a rather false pretence of what it actually is. The idea of a

large explosion happening at a centre of the universe is not correct. Essen-

tially it is a start to what is measured as time and space. At this point

the universe was infinitely small, as it was at the start of expansion. If the

conservation of energy is taken into account, then right after the big bang,

all the energy in the universe was condensed to a small volume, resulting

in very high temperatures at that time. The earlier on in the universe one

goes, the more fundamental the matter of the universe becomes. Hence

very large energy scales. As the universe expanded, it cooled [2]. As cooling

occurs more complicated structure is formed. From the smallest of scales,

a quantum (Planckian) scale, to the very theoretical particle physics, such

as strings and grand unification, to the unification of the weak and electro-

magnetic forces, through the transitions of quarks to hadrons and to Big

Bang Nucleosynthesis [3]. (Where the light elements H, He, Li were formed

to abundances predicted quite accurately by Big Bang Theory.) Below is a
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table showing the time and energy scales of different events in the universe.

Recombination will be discussed below. Note when inflation occurs.

Time Energy

Planck < 10−43s 1018Gev

Grand Unification ≥ 10−43s > 1018Gev

Inflation ≥ 10−34s ≥ 1015Gev

Electroweak Unification 10−10s 1 Tev

Quark / Hadron Transition 10−4s 100 Mev

Big Bang Nucleosynthesis 3 min 0.1 Mev

Recombination 105 years 0.1 ev

Galaxy Formation ∼ 6× 108 years

Solar System 8× 109 years

Now 14× 109 years 1 meV

Table 1: A Brief History of the Universe. (Adapted from [4]).

This introduces a limit to what we can test and build models for though.

Experimental physics that can be tested here and now has an upper limit.

Once we’re past that limit, testing our very early universe models becomes

difficult. This limit happens between inflation and the electroweak unifi-

cation in the above table. Instead of directly testing a model, tests have

to be done on consequences the model has to later times in the universe.

One such consequence is the Cosmic Microwave Background (CMB),

which was discovered in the 1960’s [5] and measured in the 1990’s by COBE

[6] and 2000’s by WMAP [7]. The CMB is a result of recombination. At

this time the universe which was made up of a plasma of electrons, some

light nuclei and photons. Photons had a short mean free path at this time,

because of Thompson Scattering happening with the electrons at these en-

ergies. During this time temperatures dropped to a point where photons

would no longer Thompson scatter and instead travel unhindered through-

out the universe. These photons are the cause of the radiation which is now

found in the microwave range. This spectrum has a consistent temperature

of T=2.75 K. The discovery of the CMB and its measurements are further

proof for the Big Bang. The CMB itself also gives a set of results for testing

of theories. It is a touch stone for models which affect the universe before

and after recombination. It is homogeneous which leads to postulations
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about the homogeneity of the universe on large scales. However there are

variations of one part to every 105 [8].

1.2 Inflation

One model for the behaviour of the early universe is inflation. As seen in

Table 1 it is a theory which is placed in the ”untestable” region of the

history of the universe. Yet its effects are measurable in the CMB and

beyond. This theory was introduced as way of explaining some problems

with the Big Bang Model. As with most models, the ones for our universe

require initial conditions. However a general model will work for any num-

ber of initial conditions, however the Big Bang requires the conditions of

homogeneity and flatness for the model to work. The full details for these

conditions are given found in Section 2.6.

Inflation is introduced as an additional component to the Big Bang model.

It was first considered in the last 70’s, early 80’s by both American and

Russian scientists in parallel [9, 10]. Essentially the model adds a period

of rapid expansion is added to the universe. As shown in Table 1, this

would happen very early on. This rapid expansion generalises the Big Bang

models, such that homogeneity and flatness results from the Big Bang model

and are no longer required external inputs.

Testing for inflation is difficult though. The conditions the universe was

under throughout inflation aren’t exactly testable in a lab. However infla-

tion also has other effects on the universe, such as the varying behaviour

of inhomogeneities of the universe on different scales. For inhomogeneities

on the scale of the universe, inflation will smooth these out to result in the

large-scale homogeneity seen later in the CMB and observed now. Details

of how this happens are found in section 3.1. However if we look at inho-

mogeneities at a quantum scales, these variations in energy density, lead

to a surprising result. These variations expand and get imprinted as the

variations in the CMB. Hence we can use the CMB as a way of limiting

the models of inflation, answering questions such as how long would infla-

tion last for and how would it return to the Big Bang universe? [11, 12]

showcases some early work done in this area, known as the graceful exit.
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(The Big Bang universe is referred as the Friedmann universe as Friedmann

introduced the metric which measures the expanding universe.)

The perturbations do continue past the age of recombination. One prob-

lem with the homogeneous universe is the small scale inhomogeneities, i.e.

the clusters, galaxies. At some point in the history of the universe, per-

turbations of matter density would have caused gravitational instabilities

which would have caused the formation of structure. This would have hap-

pened on the scales of clusters, then galaxies and finally solar systems. The

surprising result though was the link between the gravitational instabilities

and those initial quantum inhomogeneities at the early times. Due to infla-

tion, these inhomogeneities should grow, then freeze at the point where they

got larger than the universe. Once inflation is over, the universe would then

expand (at a much slower rate) to the scale of these inhomogeneities. When

this happened, the inhomogeneities caused a spectrum of curvature inho-

mogeneities, (that is curvature of the galaxy, this will be explained in detail

later) which in turned caused the gravitational instabilities and structure

to form. This was originally thought of in the late 80’s [13].

On looking at all this evidence, one can argue that inflation is a useful

addition to the Big Bang model. The following sections go into further

detail on the inflation model. The conclusion will feature further discussion

on the results of inflation and it’s validity as a cosmological model.
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2 Building a Model of the

Universe

2.1 Starting Principles

How do we define the Universe? This is the first problem one has to tackle

when creating a model. Is it infinite or finite? How do we know where it

ends? Is there an edge? Some of the questions are indeed more philosophical

in nature. For modelling purposes we introduce the concept of a horizon.

One of the results of the Big Bang is that the universe has been around for

a finite amount of time. Light rays have been decoupled from matter since

recombination. In this said time, light rays have only been able to travel a

certain finite distance. This distance is called the Optical Horizon. What

lies beyond this horizon? It is impossible for us to be in contact with point

beyond this horizon as the universe has not existed long enough for a signal

to get there. All point within this optical horizon are said to be in causal

contact.

The first assumptions that will go into a model are ones of Homogene-

ity and Isotropy. These together are known as the Cosmological Prin-

ciple. Homogeneity implies translational invariance while isotropy implies

rotational invariance. Isotropy implies homogeneity but the converse is not

necessarily true. Why do we assume these? At scales of about 10 to 100

times the size of clusters the observed universe does indeed look the same.

Yes, structures such as the clusters themselves and galaxies do exist, but

they are not needed for the most basic models of the universe. Another

implication of the Cosmological Principle is an extension of the Corpeni-

can Principle, that is the Earth does not have a privileged position in the

universe.

The next concept to add to a model it that of expansion. The universe

5



is expanding. This can be summarised by the Hubble law: Two observers

will observe each other receding away from each other at a velocity propor-

tional to the distance between them. H(t) is called the Hubble rate, it has

dimensions of inverse time and is what links the distance to this receding

velocity. This rate depends on time.

v(t) = H(t)r (2.1)

Following from the concept of expansion there are different possible means

of measuring distance between two stationary observers. Measuring the

physical distance between them would give us the r in the Hubble Law, but

this is still a time dependent function due to the expansion of the universe.

To make this measurement truly stationary, we introduce the concept of a

comoving distance χ. The physical distance is then this comoving distance

multiplied by a scale factor that will scale the distances. This comoving

scale is dimensionless and depends on time. Figures (2.1) and (2.2) give an

idea how these scales work.

r(t) = a(t)χ (2.2)

By differentiating (2.2) and then rearranging for χ, the Hubble rate is

then linked to the scale factor by

v(t) = ȧχ =
ȧ(t)

a(t)
r = H(t)r ⇒ H(t) =

ȧ

a
(2.3)

Having found a way of linking two length scales, one of which is constant

and follows the Hubble expansion. It is now possible to use temperature,

red shift, the scale factor and the Hubble constant to speak about specific

times in the universe.

2.2 Geometry of the Universe

With the basic assumptions for the dynamics of the universe in place, a

metric is needed. This metric essentially measures how the different space

dimensions scale. Later on time will be included with the introduction of a

relativistic picture. For now the geometry of the universe can be thought of

as hypersurfaces of constant time. Imposing the conditions of homogeneity
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Figure 2.1: Comparing a physical scale, that does not take into account
expansion (top) with a comoving scale (bottom).

and isotropy results in 3 possible types of hypersurfaces;

• a 3-dimensional flat space,

• a 3-dimensional sphere with positive curvature,

• a 3-dimensional space with negative curvature.

In the case of the flat surface, drawing a triangle made by 3 geodesics

would result in the angles adding up to π, for the positive hypersurfaces the

angles would be greater than π and finally for the negative hypersurface it

would be less than π. These hypersurfaces are embedded in four dimensional

Euclidean space with co-ordinates (w,x,y,z). These spheres have a radius

of α. α is real except for the negative curvature hypersurface where it is

complex. As the hypersurfaces are spheres they satisfy:

w2 + x2 + y2 + z2 = α2 (2.4)

Differentiate, taking into account that alpha is constant, as the sphere is

at a specific time and constant:
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Figure 2.2: Another method of looking at different scales. It gives the ba-
sic idea, but encourages the expansion from a point which is
incorrect.

2(wdw + xdx+ ydy + zdz) = 2αdα = 0 (2.5)

dw can be expressed in terms of the constant α and the other coordinates.

Rearranging (2.4) for w, and using (2.5) gives:

dw2 =
(xdx+ ydy + zdz)2

(α2 − x2 − y2 − z2
(2.6)

This gives us a change in the co-ordinate for w in 4-dimensional space on

the sphere. This 4D Euclidean space has the following metric:

ds2 = dw2+dx2+dy2+dz2 =
(xdx+ ydy + zdz)2

(α2 − x2 − y2 − z2
+dx2+dy2+dz2 (2.7)

This is the distance between two points on the 3-sphere embedded in the

4D Euclidean space. This equations are bounded by α. An easier way to

express the above metric uses spherical polar co-ordinates (r,θ, φ). Here
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x = rsin(θ)cos(ϕ)

y = rsin(θ)sin(ϕ)

z = rcos(θ)

(2.8)

Giving the following:

r2 = x2 + y2 + z2 ⇒ rdr = xdx+ ydy + zdz

dx2 + dy2 + dz2 = dr2 + r2dθ + r2sin(θ)dϕ = dr2 + r2dΩ
(2.9)

It should be noted r is a co-ordinate and is bounded by 0 and α. The

metric now becomes:

ds2 =
(rdr)2

α2 − r2
+ dr2 + r2dΩ2 =

dr2

1− ( rα)
2
+ r2dΩ2 (2.10)

Using another change of co-ordinates the co-ordinate r can be related to

the radius of the sphere α.

R =
r

√
|α|2

dR =
dr

√
|α|2

(2.11)

It would also be useful to measure what type of hypersurface it is using

another variable. So K is introduced such that:

K =
|α|2

α2
(2.12)

K can either be positive (a closed sphere hypersurface), zero (flat hyper-

surface) or negative (so K is complex and it’s an open hypersurface). K is

defined as the curvature of spacetime. The metric now becomes

ds2 = |α|2(
dR2

1−KR2
+R2dΩ2) (2.13)

R is now linked to the comoving distance χ.

R = SK(χ) =






sinh(χ) K = −1 (open) χ : 0→∞

χ K = 0 (flat)

sin(χ) K = +1 (closed) χ : 0 6 χ 6 π





(2.14)
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In all these 3 cases (using trigonometric and hyperbolic trigonometric

relationships):

dχ2 =
dR2

1−KR2
(2.15)

And the metric can be written as

ds2 = |α|2(dχ2 + S2K(χ)dΩ
2) (2.16)

This metric describes a line element on the hypersurface in a constant

time. To introduce time as a variable, α is now the expansion constant a(t).

Also time has an opposite sign to the space components. This results in the

Friedmann-Robertson-Walker (FRW) metric which is used to describe the

spacetime of the universe.

ds2 = −dt2 + a2(t)

(
dr2

1−Kr2
+ r2dΩ

)

(2.17)

Using comoving scales the metric becomes;

ds2 = −dt2 + a2(t)(dχ2 + S2K(χ)dΩ
2) (2.18)

The metric is of the form ds2 = gμνdx
μdxν where μ and ν run from 0 to

3. 0 is time and 1 to 3 represent the spatial co-ordinates. For indices in

general a greek index will run from 0 to 3, a latin index will run from 1 to 3.

This form of a metric comes from differential geometry, a branch of mathe-

matics which is used to model manifolds. Spacetime can be represented as

a manifold with a metric, in this case the FRW metric. This manifold can

contain different mathematical objects such as vectors, co variant vectors

and tensors on it. Vectors are represented as vα. A covariant vector is like

an complementary vector, defined such that ων = gνμv
μ. This is called low-

ering a index using the metric. Where an index appears twice, it is summed

over 0 to 3. Tensor are products of vectors and covariant vectors such as

Tμν . This tensor can be raised or lowered using gμν as follows Tμν = gμαT
ν
α

and Tμν = gμαTαν . g
μν is defined such that gμαgαν = δ

μ
ν , δ

μ
ν is 1 when

μ = ν and zero elsewhere. Using this set-up specific types of tensors can be

derived from the metric. These are used with Einstein’s equations to link

spacetime to matter and gravitation.
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2.3 Introducing matter into the universe

2.3.1 The Newtonian Picture

The next step to building a model of the universe is to model what matter

is found in the universe. This is based on a perfect isotropic fluid with

pressure p and energy density ρ. The ratio between them is defined as

ω = p
ρ Different fluids are used to describe different types of matter, each

with different values of ω. ω = 0 represents non-relativistic, pressureless

matter knows asDust, allowing the use of Newtonian arguments to describe

the equations of motion. Starting with a total mass of dust M in a sphere

of radius R(t) = a(t)χ. The density is expressed as:

ρ(t) =
M

4π
3 R

3(t)
=

M
4π
3 a
3(t)χ3

(2.19)

Specifying the subscript 0 as representing the value of different time-

dependent variables at the present time, the following ratio is derived:

R(t) =
R0a(t)

a0
(2.20)

ρ(t) = ρ0

(
a0

a(t)

)3
(2.21)

ρ0 =
M

4π
3
a0χ3

does not depends on time (remembering that the comoving

distance χ is a constant). Differentiating (2.21) with respect to time gives:

ρ̇(t) = ρ0

(
a0

a(t)

)3
(−3)ȧ(t)

1

a(t)
(2.22)

Using (2.19) and (2.3) the equation takes the form of the Continuity

Equation.

ρ̇(t) = −3H(t)ρ(t) (2.23)

To further investigate the dynamics of the system gravitational forces

have to be considered using Newtonian arguments. A test particle of mass

m � M is taken at radius R(t). The gravitational forces will act against

the expansion forces and slow down the outward motion of the particle with

respect to physical scales.
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mR̈(t) =
−GmM
R(t)2

=
−4π
3
Gm

M
4π
3 R(t)

3
R(t) (2.24)

Changing to comoving distance χ using R(t) = a(t)χ

mä(t)χ =
−4π
3
Gm

M
4π
3 a(t)

3χ3
a(t)χ (2.25)

Canceling m and χ and inserting ρ using (2.19) the equation is bought to

the form known as the acceleration equation:

ä(t) =
−4π
3
Gρ(t)a(t) (2.26)

This equation is then used to determine how the system develops as time

unfolds. From this equation it is possible to model open and closed uni-

verses, similar to those that arose from the geometry of the universe. Using

the fact that ρ(t) ∝ 1
a(t)3

to get the following form of the acceleration equa-

tion:

ä(t) =
−4π
3
Gρ0

a30
a2(t)

(2.27)

Multiplying both sides by ȧ and integrating with respect to t together

with the following relationships:

d
dt ȧ
2(t) = 2äȧ d

dt
1
a = −

ȧ
a2

Gives:

1

2
ȧ2(t)−

4π

3
Gρ0

a30
a(t)

= E (2.28)

where E is a constant of integration. The equation is of the form of a

projectile thrown from earth. Essentially a(t) becomes the distance and ȧ(t)

the velocity. Dependent on E, the ”velocity” becomes an escape velocity,

(E > 0), an orbit (E = 0) or a negative velocity and falls back (E < 0).

Another way of expressing (2.28) is using ρ(t) ∝ 1
a(t)3
.

H2 = 2
E

a2
+
8πGρ

3
(2.29)

Depending on the nature of E, a(t) will evolve differently. In the case

where E > 0 a(t) grows at quite a fast rate, so the universe will expand
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rapidly. This is known as an open universe. The case E = 0 will also

result in expansion, but at a much slower rate. This is known as the flat

universe. With E < 0 a peaks and then gets smaller again until the scale

factor becomes zero. This is known as a closed universe. Figure 2.3 shows

the fate of a for different values of E.

Figure 2.3: The behaviour of ȧ with respect to different values of E.

Current data suggests that the universe is indeed flat. In this case we set

E=0 and derive a critical energy density:

ρcrit(t) =
3H(t)2

8πG
(2.30)

Note these are the same as names as we give the different universes pos-

sible due to the possible geometries of the universe. This is due to matter

leading to a certain geometry. The matter density is measured as a ratio

against the critical matter as follows:

Ω(t) =
ρ(t)

ρ(t)crit
(2.31)

Ω is now used to describe the different possible energy densities, curva-

tures of the universe. A denser universe (Ω > 1 E < 0) gives a closed

universe. A less denser universe (Ω < 1 E > 0) gives a closed universe. A

universe with critical density gives a flat universe. It’s important to note,

Ω can change with respect to time. As the universe expands, the value for

the critical density does get smaller.
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2.3.2 Introducing Relativity

When relativistic matter is being considered, Einstein’s equations are then

used to link spacetime to matter. To get to Einstein’s, equations a few

different mathematical objects have to be derived. A starting point is to

clarify the metric used. For the calculations presented here a flat isotropic

universe has been assumed. The FRW metric (2.17) can be expressed as a

matrix:

gμν =









−1 0 0 0

0 a2(t) 0 0

0 0 a2(t) 0

0 0 0 a2(t)









(2.32)

It’s inverse is defined as gμαgαν = δ
μ
ν , giving:

gμν =









−1 0 0 0

0 1
a2(t)

0 0

0 0 1
a2(t)

0

0 0 0 1
a2(t)









(2.33)

A note on nation, a comma depicts a partial derivative with respect the

index, i.e. T (xμ),i =
∂T
∂xi
. A semi-colon here represents a covariant deriva-

tive. Due to the non-simple space-time connection in general relativity,

extra terms are required when looking at the derivatives which conserve

energy and momentum:

Aμν;γ = A
μ
ν,γ + Γ

μ
αγA

α
ν − Γ

α
νγA

μ
α = 0 (2.34)

In general relativity, general motion of a particle with no external forces is

described using the geodesic equation. This requires the use of an affine

parameter, λ, being a parameter that divides a spacetime path into equal

segments.

d2xμ

dλ2
= −Γμαβ

dxα

dλ

dxβ

dλ
(2.35)

Γ described the connection between time and space co-ordinates and is

based on derivatives of the metric. They are known as Christoffel symbols

or affine connections:
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Γμαβ =
gμν

2
[gαν,β + gβν,α − gαβ,ν ] (2.36)

For the FRWmetric, most are equal to zero. Here are some results and the

calculation of non-zero connection. In general connections are symmetric in

their lower indices.

Γ000 = Γ
0
0i = Γ

0
i0 = Γ

i
00 = Γ

i
jk = 0

Γ0ij =
g0ν

2 [giν,j + gjν,i − gij,ν ] = −
1
2 [δija

2
,t] = −

1
2 [δij2ȧa] = δijHa

2

Γi0j =
giν

2 [g0ν,j + gjν,0 − g0j,ν ] =
1
2 [δjka

2
,t] =

1
2δ
ik 1
a2
δjk2ȧa] = δ

i
jH

(2.37)

The connections are combined to make a tensor which describes the cur-

vature of the spacetime. This is the Ricci tensor:

Rμν = Γ
α
μν,α − Γ

α
μα,ν + Γ

α
βαΓ

β
μν − Γ

α
βνΓ

β
μα (2.38)

For the flat FRW case, only the following two components of Rμν are

non-zero. Given is the derivation of the time-time component:

R00 = −Γi0i,0 − Γ
i
j0Γ
j
0i

R00 = −δiiH,t − δ
i
jHδ

j
iH

R00 = −3( äa −
ȧ2

a2
)− 3H2

R00 = −3 äa
Rij = δij [äa+ 2ȧ

2]

The tensor can be contracted to the Ricci Scalar. R = R
μ
μ = gμνRμν .

In this case:

g00R00 + g
ijRij R = 3 äa +

1
a2(t)
3[äa+ 2ȧ2]

R = 6[ äa + (
ȧ
a)
2]

(2.39)

These combine to form the Einstein Tensor:

Gμν = Rμν −
1

2
gμνR− gμνΛ (2.40)

Λ is the cosmological constant. In this context, Λ appears as an integra-

tion constant which appears in the derivation. The Einstein tensor is linked

to the matter of the universe through the Einstein Equations:

15



Gμν = 8πGTμν (2.41)

Tμν is the stress-energy tensor. This describes the energy and pressure

for matter. In this case it takes the form for a perfect fluid:

Tμν = (ρ+ p)UμUν − pgμν (2.42)

Uμ is the four velocity of the perfect fluid. In its comoving frame of

reference the fluid is at rest with the expansion. The velocity is then Uμ =

(1, 0, 0, 0). Using this in (2.42) gives the following stress-energy for the

perfect fluid:

Tμν =









−ρ 0 0 0

0 p 0 0

0 0 p 0

0 0 0 p









(2.43)

Placing all these components together under the time-time components

of the Einstein equation gives:

8πGT00 = R00 − 12g00R− g00Λ 8πGρ = −3
ä
a + 3[

ä
a +H

2] + Λ

H2 =
8πGρ

3
−
Λ

3
−
K

a2
(2.44)

This is known as the first Friedmann Equation. It describes how the ex-

pansion of the universe, through H = ȧ
a , is linked to the energy density of

the universe. The last term appears when these derivations are done using

a non-flat metric, therefore K 6= 0. Using the space-space components and

inserting (2.44) gives a further equation of motion:

8πGTij = Rij − 12gijR− gijΛ

δij8πG(a
2p) = δij [äa+ 2ȧ

2 − 3a2( äa + (
ȧ
a)
2)− a2(t)Λ]

8πGp+ 8πGρ3 = −2 äa − Λ

Which leads to the second Friedmann Equation or the relativistic

acceleration equation:

ä

a
=
−4πG
3
(3p+ ρ)−

Λ

3
(2.45)
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This reduces to the Newtonian version (2.26) when p=0, which is when

one is considering Dust. To further investigate the equation of motion for

the FRW universe, one can look at the Bianchi Identities Guν;μ. The

Bianchi Identity in terms of the Stress-Energy tensor is as follows:

Tμν;ν = T
μ
ν,ν + Γ

μ
ανT

α
ν − Γ

α
ννT

μ
α = 0 (2.46)

Taking the time-time component gives:

T 00,0 + Γ
i
j0T

j
i − Γ

0
iiT
0
0 = 0 −

∂ρ
∂t + δ

i
jHδ

j
i p+ δiiρHa

2 = 0

Which results in:
∂ρ

∂t
+ 3

ȧ

a
(p+ ρ) = 0 (2.47)

This can be written in terms of ω = p
ρ . Using the chain rule, the variable

for the partial derivative can be changed to a, ∂ρ∂a ȧ.

∂ρ

∂a
= −3

ρ

a
(1 + ω) (2.48)

This is the relativistic form of the continuity equation. Taking ω = 0 or

p=0 gives the non relativistic version (2.23). (2.48) is satisfied by power law

solutions of type

ρ(a) = ρ0(a/ao)
n (2.49)

Where n = −3(1 + ω) and depends on the type of fluid.

This gives an equation of motion for the different possible fluids. To

model relativistic fluids, ω = 1/3 is used. Think of thermodynamics and

how a particle can move in 3 spatial dimensions.

A final type of matter is used one where ω = −1. This represents what is

called Cosmological Constant type matter. It’s defined by the fact is has

a constant energy density, ρΛ. This type of matter is quite counter-intuitive,

essentially the matter has a negative pressure. This type of matter was

originally introduced by Einstein in his calculations as a method of keeping

the universe static, so it would counter the expansion. It originally appeared

as an integration constant. However it has since been used to describe this

specific type of matter. This matter plays an important role in inflation.

The energy density is defined as ρΛ =
Λ
8πG . This allows the Friedmann

equation to be written as
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H2 =
8πG

3
(ρ+ ρΛ)−

K

a2
(2.50)

This also defines a ratio with the critical density:

ΩΛ =
ρΩ
ρcrit

=
Λ

3H2
(2.51)

Different fluids evolve with different powers of the scale factor. This can

be seen by using the solution to (2.48).

• relativistic matter (ω= 1/3, n=-4) : ργ ∝ a−4

• non-relativistic matter (ω= 0, n=-3) : ργ ∝ a−3

• cosmological constant type matter (ω= -1, n=0) : ργ ∝ constant

Using the fact that Ωi(t) =
ρi(t)
ρcrit
for different types of matter i, ρcrit =

3H20
8πG ,

(2.49), the first Friedmann equation (2.44) can be rewritten:

H2(a) = H20 [ΩΛ(a0) + Ωm(a0)a
−3 +ΩΓ(a0)a

−4]−
K

a2
(2.52)

Where a depends on a general time and a0, Ω and ρcrit depend on a

specific time, i.e. now. To make the curvature term of the same form we

introduce the term ΩK =
−K
a20H

2
0
. This leads to the following form for the

first Friedmann equation:

H2(a) = H20 [ΩΛ(a0) + Ωm(a0)a
−3 +ΩΓ(a0)a

−4 − ΩK(a0)a
−2] (2.53)

The evolution of different types of matter can now be seen. Remember

a(t) increases as time evolves. Initially the universe was radiation dominated

but as expansion occurs, the density of relativistic matter fell. At this time

the density of matter was also falling, but not as fast (a−3 compared with

a−4). So this lead to a matter dominated era. Eventually this also lead to a

time where the curvature factor would play a larger factor in the calculation

of H. However this is not strictly matter. Its inclusion in the above equation

was to show how it compares in the evolution of H with matter. Finally

the density of cosmological constant type matter remains constant as the

universe expands. This is now leading to cosmological constant type matter

domination.
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Figure 2.4: Different matter dominated eras of the universe

2.4 Horizons and Patches

To use the FRW metric (2.17) and its solutions for relativistic matter it is

convenient to factorise the scale factor out. This requires the introduction

of conformal time. This is defined using the following integral:

η =

∫ t

0

dt′

a(t′)
(2.54)

As the scale factor increases, η gets slower. Using dt = a(η)dη we derive

the following relationship between conformal and physical time.:

ȧ =
da(t)

dt
=
da(η)

dη

η

dt
=
da

dη

1

a(η)
(2.55)

Where the prime indicates a differential with conformal time, while the

dot indicates a differential with actual time. The Hubble constant can also

be redefined using conformal time:

H =
a′

a
(2.56)

The metric then becomes
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ds2 = a2(η)(−dη2 + dχ2 + S2K(χ)dΩ
2) (2.57)

It is now possible to derive trajectories for light particles using (2.57).

Light and other forms of radiation are massless and follow null geodesics,

that is ds2 = 0. As the universe is considered isotropic, we can ignore the

angular components of the metric. This gives us the following metric;

dη2 = dχ2 ⇒ χ(η) = ±η + Constant (2.58)

Here the advantage of using conformal time can be seem, if proper time

would have been used, there would not have been a linear relationship. In

this case light travels at π2 in the η - χ plane. This trajectory defines a light

cone. Two points are said to be causally connected if one point is inside or

on the light cone of the other.

Figure 2.5: A light cone

These definitions can now be used to properly define the concept of the
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particle horizon, introduced at the start of this section. (2.58) is used to

define the maximum finite distance light can travel as

χp(η) = η − ηi =
∫ t

ti

dt

a(t)
(2.59)

In terms of physical coordinates

dp(t) = χp(η) = a(t)

∫ t

ti

dt

a(t)
(2.60)

ti is defined as the point where a(t) = 0 and is when the Big Bang

occurred, that is when the universe started expanding. For now we will also

assume that ηi also corresponds to ti. However ηi does not have to be 0, for

example in an inflationary the model. Physically this horizon represents the

boundary in which it is possible to receive signals from. Taking the initial

time as the time of recombination, we define the optical horizon.

Another quantity that needs defining for use later is the Hubble Scale.

The Hubble scale is 1 / H(η) and describes a size of a local inertial frame.

This is a scale which is characterised by the expansion. The particle hori-

zon is defined using kinematic arguments. They are different concepts. The

horizon has evolved from a start time to an end time, the scale is depen-

dent on the specific time. Now in most situations these are actually in the

same order of magnitude. (Specifically when the strong energy condition

is preserved, more on this in the next section). Throughout inflation, the

difference between these two quantities is a central idea.

2.5 Example: The de Sitter Universe

Different models of the universe can now be developed using the equations

of motion derived in the previous sections. In particular there are different

models where the universe is only full of a specific type of matter with a

specific geometry. For example, a flat universe filled with dust is called

the Einstein-de Sitter Universe. This can be extended to include just

relativistic matter. There is also the Milne universe, one which models

an empty open universe. Inflation models require a universe full of Λ type

material, the de Sitter solution is a starting point.

The de Sitter universe is not empty, there is an energy / type of matter
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in it. This type of energy represents the vacuum. (This is the energy

created by spontaneous creation of particle / anti-particle creation.) From

a geometrical perspective this is just an integration constant that arises

from the derivation of the Einstein equations.

Thinking of this as a type of matter, it’s best to think of it as a fluid, just

like dust or radiation matter. Specifically the energy density of the fluid

is defined as ρΛ =
Λ
8πG . As ω = −1, then pΛ = −ρΛ. This is a type of

matter that has negative pressure, this is the matter that is slowing down

the expansion. (Note: a(t) is increasing, ȧ(t) is decreasing.) This pressure

is also constant. As derived previously, the energy density also remains

constant with expansion.

Applying the continuity equation to a constant ρ will result in ω =-1:

dρΛ
da
= 0 = −3

ρΛ
a
(1 + ω) (2.61)

Taking the acceleration equation (2.45) gives the evolution of the scale

factor in this universe.

ä
a = −

4πG
3 ρΛ(1 + 3ω)

ä

a
=
8πG

3
ρΛ (2.62)

The scale factor has positive acceleration. The universe is then expanding

and this scale factor gets larger as time evolves. This also looks like the

equations of a harmonic oscillator. ä − a8πG3 ρΛ = 0 Defining a constant

Hubble rate (from 2.44):

HΛ =

(
8πG

3
ρΛ

) 1
2

(2.63)

The acceleration equation now becomes ä = H2Λa which has solutions:

a(t) = C1e
(HΛt) + C2e

(−HΛt)

ä(t) = H2Λ(C1e
(HΛt) + C

(−HΛt)
2 ) = H2Λa(t)

(2.64)

The universe still has curvature though. And as seen from (2.44) this

changes the dynamics of H(t).

( ȧa)
2 = H2Λ −

K
a2
⇒ ȧ2 = H2Λa

2 −K
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Substituting the solution for a gives:

K = H2Λa
2 − ȧ2

K = 4H2ΛC1C2
(2.65)

The curvature of space then depends on the constants of integration.

Making either C1 or C2 0 gives a flat universe. Assume C2 = 0, the other has

to take the value H−1Λ With an open universe, K=1, then so that C1 = C2,

we take C1 = (2HΛ)
−1 at t=0. In the case K=-1 then C2 = −C1.

This results in:

a(t) =
1

HΛ






sinh2(HΛt) K = −1

e2HΛt K = 0

cosh2(HΛt) K = +1





(2.66)

The behaviour of a(t) become the same once t > 1
HΛ
, that is a(t) ∼ eHΛt

Looking further into the spacetime structure of DeSitter space, one finds

that it has translational invariance with respect to time. This results in all

3 cases above describing the same spacetime. Further details of this can be

found in Mukhanov.

In this de Sitter space, one finds that the Hubble scale is:

1

H(t)
=
a

ȧ
=

eHΛt

HΛeHΛt
=
1

HΛ
(2.67)

The Hubble scale remains constant in deSitter space.

a in terms of conformal time becomes a(η) ∝ η−1. This is shown in

further detail below in Section 3.3.

2.6 The Big Bang Problems

As described in the introduction, the big bang model has many successes.

However there are some fundamental issues with the model. These are

problems associated with initial conditions. The Big Bang requires some

specific initial conditions which should result from the model, not be entered

as an assumption. This should not be the case, most physical models model

a process and therefore a range of initial conditions. For example Newtonian

Mechanics describes the movement of a classical particle. The theory works
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for any initial position and velocity. This following section describes how

these specific conditions arise. The next section will deal with how these

problems are solved with the introduction of inflation.

2.6.1 The Horizon Problem

The first problem is the horizon problem. As discussed earlier the universe

is homogeneous on large scales. This homogeneity implies that some form of

causal contact was required across most of the universe in its early formative

stages. However the particle horizon can only be a length which is quite

small at these formative stages. So this homogeneity should not be there,

or more inhomogeneities should exist.

As defined earlier, the maximum distance a light ray can travel is the

conformal time, η. This can be expressed as an integral of the comoving

Hubble radius. H−1 was used as the Hubbles radius, so adding an a gives

the comoving Hubble radius, aH−1. This is the radius that describes the

causal universe at a given instant.

In this case in co-moving co-ordinates (using d(ln(a)) = da
a ):

dp = η =

∫ a

0

da

Ha2
=

∫ a

0
d ln(a)

1

Ha
(2.68)

Noting that H2 = H20Ω(
a
a0
)−3(1−ω) gives the following relationship be-

tween (aH)−1 and a:

(aH)−1 ∝ a
1
2
(1+3ω) (2.69)

Here ω depends on what fluid is being modelled. Bringing the equations

together gives a relationship between the particle Horizon and a:

ω = 1
3 η ∝ a Radiation Dominated

ω = 0 η ∝ a
1
2 Matter Dominated

(2.70)

The comoving horizon then grows without change throughout time. Scales

that are now entering the particle horizon were therefore not in the hori-

zon at an early time. This includes at the time of the CMB forming, our

evidence for the large scale homogeneity of the universe.
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2.6.2 The Flatness Problem

The second problem is known as the flatness problem, as a result of the

curvature of the universe resulting being flat for the current universe to

work. The flatness of the universe is actually linked to the initial Hubble

velocities of constituents of the universe. The results of this problems are

best viewed in terms of energies and velocities.

First consider a spherical universe filled with just matter. The total ki-

netic energy of the system due to Hubble expansion is Ek. The system

also has a potential due to the gravitational self-interaction of the particle,

Ep. This potential energy is negative and slows the expansion. Both these

give the total energy in the system. This total energy remains constant

throughout expansion. This can be shown in the following equation, here

the subscript i represents the initial quantities and 0 represents the current

quantities.

Etot = Eki + E
p
i = E

k
0 + E

p
0 (2.71)

The hubble velocity of the particle is proportional to the time derivative

of the scale factor a(t), which results in the following relationship between

a and Ek.

Eki = E
k
0

(
ȧi

ȧ0

)2
(2.72)

The ratio between total energy and the kinetic energy of the system then

becomes:

Etoti
Eki
=
Eki + E

p
i

Eki
=
Ek0 + E

p
0

Ek0

(
ȧ0

ȧi

)2
(2.73)

Using the fact that the kinetic and potential energies today are in the

same order of magnitude, and that ȧ0ȧi ≤ 10
−28 results in the following ratio

of energies:

Etoti
Eki
= 10−56 (2.74)

What does this mean for the early universe? There was a specific Hubble

velocity distribution with very precise values such that the above relation
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can work. The Hubble velocities are very sensitive to the potential energy

caused by the distribution of matter. If these velocities were a little too

fast, then there would be too much kinetic energy and the universe empties

out. Assuming the converse, too slow an initial velocity, and the universe

recollapses.

Another way of looking at this particular problem is through the use of

energy densities. Taking the first Friedman equation and re-writing it in the

following form gives a better clue for a solution to this initial value problem.

H(t)2 = 8πGρ(t)
3 − K

a(t)2

(a(t)H(t))2 = 8πGρ(t)a2(t)
3 −K

ρ(t) = 3H2(t)Ω(t)
8πG

a(t)2H(t)2(1− Ω2(t)) = −K

Ω(t)− 1 =
K

(H(t)a(t))2
(2.75)

This was also possible as Ω = Ep/Ek where Ω is time dependent. It is

also dependent on the comoving Hubble radius. This radius gets bigger with

time. The solution for this equation means we require K=0 and therefore

Ω(a) = 1. It is not a consequence of the equations, but a requirement to

solve for a growing (aH)−1.
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3 Inflation - The Homogenous

Model

3.1 A Simple Concept

The Big Bang problems all depended on the behaviour of the comoving

Hubble radius. A solution to these problems would involve changing the

behaviour of the radius. It is important to distinguish between the Hubble

radius and the Particle Horizon at this point. The particle horizon is defined

by the amount of distance a relativistic particle can travel in a given time.

It is therefore a kinematical quantity. The Hubbles radius is a quantity

defined as the inverse of the Hubble rate. This describes a causal horizon

now, at this precise moment. It does not depends on the history of any

particle. In most cases these two quantities are practically the same. For

example, taking the particle horizon from the end of recombination, i.e. the

optical horizon, this is close to the Hubble radius. However is we take these

quantities from the big bang, the quantities could be very different. What

would this imply? Essentially this could lead to different scenarios:

• Two particles are now separated by a distance larger than the particle

horizon from the Big Bang, they were never in causal contact.

• Two particles are within the Hubble radius, then they are in causal

contact now.

• The distance between the particles is greater than the Hubble radius,

but less than the particle Horizon. This physically means at some

point they were in causal contact in the past but not anymore.

How is this possible? This can be mathematically modelled, this is the

central idea behind inflation. It is quite a counter-intuitive idea. Consider

the 3rd case in more detail, two particles are to be in causal contact, so they
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are within each others Hubble radius’. This is followed by a short period of

time when the horizon grows exponentially. As the physical particle horizon

grows with the universe, the hubble radius remains practically the same, due

to the short amount of time that has passed.

Thinking about it in comoving distances, the comoving particle horizon

remains the same but the Hubble radius would get smaller. At the start,

they would be identical. Then as inflation starts, what you’re currently in

causal contact with (the comoving radius) reduces to a small patch. Once

normal Hubble expansion resumes, the Hubble radius starts to grow again.

Concurrently the hubble radius also starts to grow again and then slowly

casual contact is regained with some regions where it was lost earlier.

Figure 3.1: The behaviour of the comoving horizon. [4]

The following section will illustrate how this idea solves the Big Bang

Problems and essentially generalise the Big Bang model to a range of initial

conditions.

3.2 Solving the Big Bang Problems

Conceptually, the horizon problem is solved immediately. As the Hubble

radius being initially large, i.e. larger than the Hubble radius now, it can

set to be large enough such that the homogeneity required for the CMB is

now possible. An interesting question to ask is if it’s possible for a homoge-

nous universe to emerge from inflation, starting with any amount of large

inhomogeneity. The following argument is taken from Mukhanov’s textbook

[14]. First we introduce the concept of a perturbation on the energy density
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ρ, δρ. This varies depending on position and also evolves with time. Taking

the perturbation at a specific time removes it’s dependence on time.

(
δρ

ρ
)ti ∼

1

ρ

|∇ρ|
ai

H−1i =
|∇ρ|
ρ

1

ȧi
(3.1)

The ∇ is introduced as a spatial derivative in terms of comoving co-

oridnates. ( ∂ρ
∂xi
= ∇ρ(a)−1), where the subscript i indicates the initial time

of inflation. Here we assume the perturbation is of order of the Hubble

radius, (H)−1, making the order of the above equation to be about 1.

At later times t the perturbation grows. While they are still within the

Hubble scale they are taken to be:

(
δρ

ρ

)

t

∼
1

ρ

|∇ρ|
a(t)

H(t)−1 ∼ O(1)
ȧi

ȧ(t)
(3.2)

due to ( δρρ )t ∝
1
a(t) .

The actual comoving derivative of ρ, |∇ρ|ai is assumed not to change, due

to it being a comoving scale. The perturbation are assumed not to evolve

themselves within the comoving scales. (3.2) shows that as ȧ grows, the

scale of inhomogeneity get’s smaller. So within the Hubble patch, the inho-

mogeneities are being ironed out. One can think of the inhomogeneity as a

wave and the Hubble horizon is becoming concentrated on a tiny segment

of it, and therefore at a later time, what is left of the perturbation with

the Hubble radius is considered homogeneous. Figure 3.2 below shows a

representation of this behaviour.

These large inhomogeneities are therefore removed during inflation. This

argument considered inhomogeneities at the scale of the horizon. However

inhomogeneities on quantum scales play an important role in structure for-

mation and require further study. Chapter 4 summarises a simple treatment

for studying these perturbations.

3.3 Defining Inflation

How exactly can Inflation be defined Mathematically? The first definition

is essentially a shrinking comoving Hubble radius:

d

dt

1

aH
=

d

dt

a

aȧ
=

ä

ȧ2
< 0 (3.3)
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Figure 3.2: Diagram show evolution of a inhomogeneity as a wave.

ȧ2 is positive and non-zero. This implies that ä > 0, which is an accel-

erating universe,a property of inflation. Looking at the second Friedmann

equation (2.45) gives (ρ+3p) as negative for an accelerating universe. This

breaks the strong energy condition (a positive (ρ+ 3p)).

A third expression for the definition of inflation uses this breaking of the

strong energy condition: p ≤ −1
3 . This implies a negative pressure, like Λ

type material. Could the de Sitter universe be used as a starting point for

modelling inflation? One problem though, inflation can not last for ever.

There has to be a point where inflation stops and the universe returns to an

accelerated Friedmann state. This is known as the graceful exit. Too much

inflation results in too much negative gravitational forces and the universe

would fail to form. Figure (figadot) below shows the ideal behaviour of ȧ.

A method for visualising the effect inflation has on the Friedmann universe

is to compare conformal diagrams. Taking the path of light rays and

plotting them against an axis of time and space. Generally the upright

vertical axis represents time moving forward. The horizontal axis represents

the 3 space dimensions. A light ray is then represent by a line as 45o,
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Figure 3.3: The ideal behaviour of ȧ. [14]

dη =
√
d~x. Taking a time η0 as now we draw 45

o lines from there represents

a light cone going back in time. For two point to have been in causal contact,

their light cones would have to have intersected at some point in the past.

Using the results for the development of η with respect to a 2.70 for the

matter and radiation dominated universes, the relation of a with respect to

η follows:

ω = 1
3 a(η) ∝ η Radiation Dominated

ω = 0 a(η) ∝ η2 Matter Dominated
(3.4)

These relations imply that for a = 0, i.e. the Big Bang, η = 0, i.e. in a

universe which has always been radiation and matter dominated, there is no

possible negative conformal time. This adds a lower limit to the conformal

diagram. Recombination happened relatively shortly after the Big Bang.

Picking two points at recombination it’s can be seen that they were never

is causal contact. This is another way of viewing the horizon problem. The
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conformal diagram for this Friedmann universe is below Figure (3.4).

Figure 3.4: Conformal Diagram for the Friedmann universe. [4]

Including a very simple model of inflation into the diagram will solve this

problem. At this point it will be assumed that the universe had a period of

time where it was dominated by Λ type material. Essentially the universe

was de Sitter space. For de Sitter space, as H is a constant, a in terms of

conformal time was derived as using (2.70):

a(η) = −
1

Hη
∝ η−1 (3.5)

Taking the limit as a tends to 0 results in η → −∞. This period of

inflation therefore takes place in negative conformal time. The Big Bang

now takes places at η → −∞. While η = 0 represents a time when inflation

ends. At this point a is tending towards infinity. This is why de Sitter

space is not an exact model for inflation and a graceful exit is needed. But
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looking at the conformal diagram, the light cone for two points at the point

of recombination (after inflation ends) will always intersect at some point

throughout inflation and solve the horizon problem.

For the model to work a time evolving Hubble rate is required, but re-

maining similar to the de Sitter Hubble rate. Essentially Ḣ has to remain

small until the end of inflation. From H = ( ȧa) and differentiating both

sides with time we get an alternate form for Friedmann’s second equation

(2.45).

ä

a
= H2 + Ḣ (3.6)

Looking at Figure(3.3) it can be seen that at the point of graceful exit ä

is negative. Taking a derivative of the right side shows the terms changing

at a rate of 2HḢ and Ḧ respectively. Assuming that 2HḢ > |Ḧ| and that

at the end of inflation, at tf , ä → 0 then an estimate for tf is
Hi
|Ḣi|
. For

the inhomogeneities to have been washed out by the CMB the condition

ȧi/ȧ0 < 10
−5 is needed. Using the chain rule and the definition of H in

terms of a this is rewritten as:

ȧi

ȧf

ȧf

ȧ0
=
ai

af

Hi

Hf

ȧf

ȧ0
< 10−5 (3.7)

To get a further idea of scales, a numerical estimate for the ratio
ȧf
ȧ0
is

needed. This is possible by looking at how the temperate of radiation has

changed. The Planckian temperature was the primordial temperature, this

was about 1032K. The temperature today is of order 1. Temperature follows

an inverse relation to the scale factor. Therefore:

ȧf

ȧ0
∼
af

a0

t0

tf
∼

T0

TPl

t0

tf
(3.8)

tf is estimated at about 10
−43 seconds and t0 is 10

17 seconds. All this

gives:

ȧf

ȧ0
∼ 1028 (3.9)

(3.7) now becomes

af

ai
> 1033

Hi

Hf
(3.10)
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Figure 3.5: Conformal Diagram for an Inflationary universe. [4]
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Simplifying (3.6) to just the H2 term gives the following solution for a:

af = e
HΔtai (3.11)

Δt ∼ tf as ti ∼ 0 and using tf ∼
Hi
|Ḣi|
gives:

af

ai
∼ eHΔtf ∼ exp

(
H2i
|Ḣi|

)

(3.12)

Assuming the order of H does not change significantly, then (3.10) be-

comes:

exp

(
H2i
|Ḣi|

)

> 1033 (3.13)

Taking natural log on both sides gives
H2i
|Ḣi
| > 75 or tf > 75(Hi)−1. A

time unit of (Hi)
−1 is known as an e-folding or a Hubble time. Inflation

then has to last 75 e-folds for both the inhomogeneities to iron out and a

graceful exit to occur. This is normally seen in the following form:

|Ḣi|
H2i

<
1

75
(3.14)

We can use this form of the equation and both Friedmann equations to

estimate how accurate the de Sitter universe is for inflation. Taking K=0

and G=1 gives:

4π(ρ+ p)

8πρ
<
1

75
(3.15)

(ρ+ p

ρ
= (1 + ω) <

2

225
∼ 10−2 (3.16)

ω = −1 makes (3.16) zero, which is or the order of 10−2. Hence de Sitter

is a good approximation. However the actual density of a more accurate

model can’t deviate from purely de Sitter by more than about 1

Inflation also solves the flatness problem. Looking at the first Friedmann

equation in the following form shows the importance of a shrinking comoving

Hubble radius.

Ω(t)− 1 =
K

(H(t)a(t))2
(3.17)
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With (aH)−1 getting smaller, then 1
(Ha)2

is growing. The case where K =

0 and Ω(t) = 1 is then an attractor solution for the equation. Previously at

aH just grew, K could take any value. K=1 was a requirement for Ω(t) = 1.

Now this is a solution.

3.4 Introducing the scalar field

As a result of needing a graceful exit, it is not possible to model a period

of time of inflation as a universe with just some cosmological constant type

material. Λ type material would just cause this rapid expansion to continue

and cause eternal inflation. Instead a more dynamical model is needed,

which has similar properties to Λ but also decays after 75 e-folds. So far

it has been useful to model matter using fluid mechanics, so developing

something similar would allow easy comparison with other models. One

such possibility is introducing a scalar field, called the inflaton, ϕ(~x, t).

This is a classical scalar field, i.e. a value is assigned to each point in

spacetime. (The next chapter will outline the quantum case.) This scalar

field has a potential V = (ϕ(~x, t)). The energy-momentum tensor of a scalar

field is defined as:

Tαβ = ϕ
,αϕ,β − (

1

2
ϕ,γϕ,γ − V (ϕ))δ

α
β (3.18)

Defining the following as the energy density, pressure and normalised 4-

velocity the energy-momentum becomes that of a perfect fluid (2.42).

ρ = 1
2ϕ
,γϕ,γ + V (ϕ)

p = 1
2ϕ
,γϕ,γ − V (ϕ)

uα = ϕ,α√
ϕ,γϕ,γ

(3.19)

Assuming homogeneity, ∂ϕ/∂xi = 0 the equations reduce to:

ρ =
1

2
ϕ̇2 + V (ϕ) (3.20)

p =
1

2
ϕ̇2 − V (ϕ) (3.21)

This is still not exactly what is needed. The condition required is p <

−13ρ. Currently this is p = −ρ + ϕ̇2. Essentially the behaviour of the
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inflaton will determine whether the strong energy condition is broken or not.

Therefore another condition needed is to make ϕ̇� V (ϕ), that is the kinetic

energy of the inflation, defined as 1/2ϕ̇2, is less than it’s potential energy.

When the potential energy is a lot larger, the strong energy condition breaks

and inflation occurs. V (ϕ) need to become smaller and then the kinetic

energy can dominate again. This has to last the 75 e-folds, so that the Big

Bang problems are solved. This is when inflation ends and the graceful exit

occurs. Now this potential V (ϕ) can change is a variety of ways. Some of

the more prominent versions of V (ϕ) are outlined in the next section. But

when it comes to the kinematics during inflation they are all reduce to the

same equations due to the large V (ϕ).

Solving the equation for the inflaton in the Klein-Gordon equation (ϕ;α;α+
∂V
∂ϕ ) will give an equation of motion. This can also be achieved using the

continuity equation (2.48). Using

ρ+ p = ϕ̇2 ρ̇ = ϕ̇ϕ̈+ ϕ̇V,ϕ

Gives ϕ̇(ϕ̈ + 3Hϕ̇ + V,ϕ ) = 0. Assuming ϕ̇ is non-zero we then get the

continuity equation for the inflaton as follows:

ϕ̈+ 3Hϕ̇+ V,ϕ= 0 (3.22)

The other equation of motion used to describe the inflation is simply

Friedmann’s equation for a flat universe (2.44):

H2 =
8πG

3
ρ =
8πG

3
(
1

2
ϕ̇2 + V (ϕ)) (3.23)

Using these two equations, we can now model the behaviour of the inflaton

throughout inflation. G is set to 1.

3.4.1 The Slow Roll Approximation

One of the most widely understood model in physics is that of the harmonic

oscillator and its many variations. (3.22) takes the form of an oscillator with

a friction term. This friction term is ∝ H. These oscillators have a certain

type of behaviour when the friction term dominates over the acceleration

term, this is known as the Slow-Roll Regime. In the case of the inflaton:

|ϕ̈| � 3Hϕ̇ (3.24)
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Figure 3.6: A typical potential. [4]

Making (3.22):

3Hϕ̇ ' −V,ϕ (3.25)

The other condition that need to be included was discussed in the previous

section, i.e. the potential energy of the inflation is far greater than its kinetic

energy. This gives an approximated form of the Hubble rate from (3.23).

H =

√
8π

3

√
ρ '

√
8π

3

√
V (ϕ) (3.26)

Overall we have a potential term which in turn is much larger than the

velocity of the inflation, which in turn is much larger than it’s acceleration.

V (ϕ) � |ϕ̇| � |ϕ̈|. H can also take a logarithmic form in terms of a, dlnadt .

A solution for the ϕ can now be found:

dlna
dt =

dϕ
dt
dlna
dϕ = −

V,ϕ
3H
dlna
dϕ√

8π
3 V = −

V,ϕ
3H
dlna
dϕ

(3.27)

This is rearranged as an integral with limits taken from an initial time,

marked with a subscript i to a general time after. This is left as the variable

without a subscript.
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−8π
∫ ϕ

ϕi

V

V,ϕ
dϕ =

∫ a

ai

lna (3.28)

Giving a general solution for a under slow roll conditions:

a(ϕ) = aiexp(8π

∫ ϕi

ϕ

V

V,ϕ
dϕ) (3.29)

The slow roll conditions themselves (|ϕ̇2| � V , |ϕ̈� 3Hϕ̇ ∼ |V,ϕ|)can be

expressed in terms of the potential, which is what changes for the different

inflation models. By using (3.25, 3.26):

|V,ϕ| ' 3Hϕ̇| ⇒ V,ϕ
2 ' 9H2ϕ̇2V,ϕ

2 ' 24πV ϕϕ̇2 ∼ V ϕϕ̇2 (3.30)

|ϕ̇2| � V ⇒ (
V,ϕ

V
)2 (3.31)

For the second slow roll condition:

Ḣ ' V,ϕϕ̇
√

8π
3V (ϕ) =

V,ϕ
V ϕ̇H = −13

V,ϕ
2

V

ϕ̈ = ϕ̇
H (
Vϕϕ
3 − Ḣ)

ϕ̈ = ϕ̇
3H (Vϕϕ +

V,ϕ
2

V )

ϕ̈ = − ϕ̇8π (
Vϕϕ
V +

V,ϕ
2

V 2
)

|ϕ̈| � |V,ϕ| ⇒ |
ϕ̇
8π (

Vϕϕ
V +

V,ϕ
2

V 2
)| � |V,ϕ|

|VϕϕV |+ (
V,ϕ
V )
2| � 1

From the previous condition, we know the second term is quite small, this

then gives:

|
Vϕϕ

V
| � 1 (3.32)

Both these condition represent a regime in any inflation model, where the

expansion will occur. Once these conditions are broken, inflation will end

and a graceful exit to the expanding Friedmann universe can occur.

3.5 Reheating and Preheating

At the end of inflation, the universe is left with ϕ at a low potential. Re-

heating is the method by which the universe repopulates itself. The universe
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now is made up of fermions (ψ and it’s spinor complement ψ̄) and bosons

(ξ). Having ϕ decay into such matter allows for a repopulation of the uni-

verse. Looking at most models of inflation, they have a potential well. The

inflaton’s potential is found in these wells at inflation’s end. However the

potential can oscillate, with these oscillations comes the decay into fermions

and bosons. The coupling is done through the Lagrangian:

ΔL = −gϕχ2 − hϕψ̄ψ (3.33)

Figure 3.7: The decay of ϕ to bosons and fermions

The subject of rehating is vast. A good review of the subject can be found

here [15]. When the coupling is non linear it is known as preheating. This

causes the repopulation to occur faster.

3.6 Different models

Different inflation models have been developed over the years with different

potentials. Shown below are some single scalar field models.

Other methods of getting repulsive gravity, higher derivative gravity and

inflation with more than one scalar field. For further details on these al-

ternative theories Mukhanov’s [14] Chapter 5.6 has a quick review of these

models. While Baumann’s lectures, Lecture 1 Chapter 6.5, give a little more

detail on other theories that aren’t scalar field based [4].
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Figure 3.8: Old Inflation [14]

Figure 3.9: New Inflation [14]

Figure 3.10: Chaotic Inflation [14]
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4 Perturbations

4.1 What is a Perturbation?

The previous sections have dealt with the homogeneous Big Bang and In-

flation models. In this section we will treat the quantities that are being

measured as follows:

δX( ~X, η) = X( ~X, η)−(0) X(η) (4.1)

There is a background value, (0)X(η) that depends only on conformal

time, and therefore are homogeneous. These represent the results from

the previous chapter. δX( ~X, η) are the perturbations on the homogeneous

background, and in general δX( ~X, η)�(0) X(η). X could be any measured

value, ϕ, T,G etc. The problem though comes when deciding how to split

up X. There are many different possible way of achieving this, dependent

on coordinate choice.

There is also a dependency on which gauge is chosen. To gain a deeper

understanding of gauge choice, it’s worth looking at the details of the geom-

etry again. Thinking of X and (0)X as living on two different manifolds. To

correspond between these two manifolds there is need of a function. A gauge

choice is this function. δX is dependent on this gauge choice. To say δX

is gauge-invariant implies that the correspondence between the manifolds is

not dependent on which map is chosen between the manifold representing

homogeneous spacetime and the one representing perturbed spacetime.

The dependency of δX on both the coordinate and gauge choices can

create what are known as fictitious perturbations. Assume X is a ho-

mogenous quantity: X(~x, η) = X(η). Then the following coordinate trans-

formation is possible in GR: η̃ = η+δη(~x, η). The quantity now is dependent

on η̃ and ~x: X̃(~x, η̃) = (η(~x, η̃)).
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X(t) = X((η̃)− δη(~x, t)) ' X(η̃)−
∂X

∂η
δη ≡ Xη̃ + δX(~x, η̃) (4.2)

On the left hand side, there is what can be interpreted as a background

quantity. The term on the right hand side is that of a linear perturbation

of the same quantity. This perturbation does not exist as the assumption

was that X was indeed homogenous! Hence the production of a fictitious

perturbation. The converse is also true, a real homogeneity can be removed

through a coordinate choice. To avoid any ambiguity it is essential to con-

sider both perturbations to the quantities that are being studied and those

to the metric itself. Using a specific gauge transformation it is possible to

go between these. It is important to use gauge-invariant quantities in or-

der to avoid the generation of any further perturbations. (By definition a

gauge-invariant quantities will be physical and can not be removed via a

coordinate transformation.)

The calculations in this chapter follow the ones Mukhanov outlines in his

textbook [14] and were used in his original papers [13]. Further details on

perturbations and gauge choices can be found there or in a recent review

on cosmic perturbations [16].

The aim is to show how the quantum perturbations of the inflaton, go on

to cause a power spectrum of inhomogeneities of the curvature of spacetime.

This power spectrum is then linked to the gravitational instabilities and

caused the large scale structure formation of the universe.

4.2 Some Basic Quantities

4.2.1 Metric Perturbations

In this section the metric perturbations are calculated, the following will

deal with the development of the perturbations of the inflaton. Assuming a

flat (K=0) universe the metric can be expressed as:

ds2 = [(0)gαβ + δgαβ(x
γ)]dxαdxβ (4.3)

As mentioned in the introduction the perturbed quantity is much smaller

than the background quantity. Below is the metric using conformal time.
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(0)gαβdx
αdxβ = a2(η)(dη2 − δijdx

idxj) (4.4)

δgαβ can be a scalar, vector or tensor quantity. The metric was defined

to have a homogenous, isotropic background. At a given moment in time

it is also invariant under spatial rotations and translations. Taking these

limitations we have three possible sets of perturbations. One based on the

time-time components, one on the time-space components and finally on the

space-space components. Each of these in turn has scalar, vector or tensor

terms in the perturbations.

δg00 = 2a
2φ (4.5)

Here φ is a 3-scalar.

δg0i = a
2(B,i + Si) (4.6)

Limitations on B are B,i =
∂B
∂xi
where B is a scalar. Si is a 3 vector with

2 independent co-ordinates as Si(, i) = 0.

δgij = a
2(2ψδij + 2E,ij + Fi,j + Fj,i + hij) (4.7)

Where ψ and E are scalars. Fi is a vector such that F
i
,i = 0. hij is a

3-tensor (i,j = 1,2,3) such that hii = 0 (traceless) and h
i
j,i = 0 (transverse).

In total there are ten functions for the metric perturbations:

• Four functions for scalar perturbations (φ, ψ, B, E) These are the per-

turbations that arise from ρ and will lead to gravitational instabilities

and structure formation.

• Four functions for vector perturbations (S, F ) Each 3 vector has one

conditions, so 2 functions each. These decay quickly, so do not play

an important cosmological role.

• Two functions on tensor perturbations (One symmetric 3-tensor, so

6 individual components with a traceless and transverse constraints.

This removes 4 components, leaving 2.) They go on to describe gravi-

tational waves which are yet to be detected. For further analysis look

at [14].
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4.2.2 Gauge transformations

Having looked at the perturbations of the metric, it is now important to

derive gauge-invariant quantities which can be used to express the metric

perturbations. Consider a simple coordinate transformation:

xα → x̃α + ξα (4.8)

Again ξα is very small and is inhomogenous: ξα(~x, t) Using this trans-

formation we can use the following to link the metric measured in the two

different sets of coordinates:

g̃αβ(x̃
ρ) =

∂xγ

∂x̃α
∂xδ

∂x̃β
gγδ (4.9)

Differentiating gives:

∂xγ

∂x̃α = δ
γ
α − ξ

γ
,α

(4.9) now becomes, to first order:

g̃αβ(x̃
ρ) = δγαδ

δ
βgγδ(x

ρ)− δδβξ
γ
,αgγδ − δ

γ
αξ
δ
,βgγδ (4.10)

Splitting the metric values to the homogeneous and inhomogeneous gives:

gαβ(x
ρ) =(0) gαβ(x

ρ) + δgαβ

g̃αβ(x̃
ρ) =(0) gαβ(x̃

ρ) + δg̃αβ

Using the cooridnate transformation gives:

gαβ(x
ρ) =(0) gαβ(x̃

ρ − ξρ)

As ξρ is small, the perturbation can be thought of in terms of the differ-

ential:

gαβ(x
ρ) ≈(0) gαβ(x̃ρ)−(0) gαβ,γξγ

Substituting all the above in (4.10) gives the following relation between

the metric perturbations in different coordinate systems, a gauge trans-

formation law.

δg̃αβ = δgαβ −
(0) gαβ,γξ

γ −(O) gγβη
γ
α −

(0) gαδη
δ
β (4.11)
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To calculate the specific perturbations of the metric it is useful to intro-

duce the following changes to the coordinate transformation: ξα = (ξ0, ξi)

where ξi = ξi⊥ + ζ ,i where ξi⊥ = ξ⊥i and has zero divergence (ξ
i
⊥,i = 0)

and ζ is a scalar. The homogenous metric for a Friedmann universe has

components (0)g00 = α
2(η) and (0)gij = −α2(η)δij .

δg00 → δg̃00 = δg00 −(0) g00,0ξ0 − 2(0)g00ξ0,0
δg̃00 = δg00 −

∂a2(η)
∂η ξ0 − 2a2(η) ∂ξ∂η

δg̃00 = δg00 − 2a(a′(η)ξ0 + a(η)ξ0 ′)

δg̃00 = δg00 − 2a(aξ0)′

(4.12)

δg0i → δg̃0i = δg01 −(0) g0i,γξγ − (0)gγiξ
γ
,0 − (0)g0γξ

γ
,i

δg̃0i = δg01 + a
2(η)[δjiξ

j
,0 − ξ

0
,i]

δg̃0i = δg01 + a
2(η)[[ξi⊥ + ζ

,i],0 − ξ0,i]

δg̃0i = δg01 + a
2(η)[[ξi ′⊥ + (ζ

′ − ξ0),i]

(4.13)

δgij → δg̃ij = δgij − (0)gij,0ξ
0 − (0)gγjξ

γ
,i − (0)giγξ

γ
,j

δg̃ij = δgij + a
2(η),0δijζ

0 + a2(η)[δkjζ
k
,i + δikζ

k
,j ]

δg̃ij = δgij + a
2(η)[2a

′

a δijζ
0 + 2ζ,ij + (ζ

j
,i + ζ

i
,j)]

(4.14)

These are the different metric perturbations. Only taking the metric

scalar perturbations gives the following metric:

ds2 = a2[(1 + 2φ)dη2 + 2B,idx
idη − ((1− 2ψ)δij − 2E,ij)dx

idxj ] (4.15)

Using (4.12,4.13, 4.14) and taking the values from (4.15) gives the follow-

ing coordinate transformations for the scalar perturbations of the metric.

Here ξ⊥ has been ignored due to its vector nature.

2a2φ→ 2a2φ− 2a(aξ0)′

φ→ φ− 1a(aξ
0)′

(4.16)

a2B,i → a2(B + ζ ′ − ξ0),i
B → B + ζ ′ − ξ0

(4.17)
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a2(2ψδij − 2E,ij)→ a2(2ψδij + 2
a′

a δijξ
0 − 2E,ij + 2ζ, ij)

ψ → ψ + a
′

a ξ
0

E → E + ζ

(4.18)

Therefore the only elements of the coordinate transformations (x̃α →

xα+ξ
α
) that affect the scalar perturbations of the metric are ξ0 and ζ. The

four scalar functions (φ,ψ, B, E) can be used to create two new scalar

functions. The simplest one of these, which is in fact gauge-invariant, is the

Longitudinal (Newtonian) Gauge.

Φ = φ− 1a [a(B − E
′)]′

Ψ = ψ + a
′

a (B − E
′)

(4.19)

The following shows the above Scalar Perturbations of the metric are not

affected by coordinate transformations:

Φ→ Φ̃ = φ̃− 1a [a(B̃ − Ẽ
′)]′

Φ̃ = φ− 1a(aξ
0)′ − 1a [a(B + ζ

′ − ξ0 − E′ − ζ ′)]′

Φ̃ = φ− a
′

a ξ
0 − ξ0 ′ − a

′

a [B − ξ
0 − E′]−B′ + ξ0 + E′′

Φ̃ = φ− 1a [a(B − E
′)]′

Φ̃ = Φ

(4.20)

Ψ→ Ψ̃ = ψ̃ + a
′

a (B̃ − Ẽ
′)

Ψ̃ = ψ + a
′

a (ξ
0 + b+ ζ ′ − ξ0 − E′ − ζ ′)

Ψ̃ = ψ + a
′

a (B̃ − Ẽ
′)

Ψ̃ = Ψ

(4.21)

Therefore if they are zero in one co-ordinate, they are zero in all. So

setting Bl = El = 0 removes all fictitious perturbations and the metric

becomes:

ds2 = a2[(1 + 2φl)dη
2 − (1− 2ψl)δijdx

idxj ] (4.22)
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4.2.3 Expressing Perturbations of the Einstein Equation in

terms of Metric Perturbations

A coordinate transformation for the perturbations for energy density can

be expressed using the above metric perturbations. ρ(~x, t) = (0)ρ(t) +

δρ(~x, t)transform as follows under a co-ordinate transformation:

ρ̃(x̃α) = ρ(xα)
(0)ρ(x̃α) + δρ̃ = (0)ρ(xα) + δρ

(0)ρ(xα) = (0)ρ(x̃α − ξα) = (0)ρ(x̃α)− ρ,γξγ

δρ̃ = δρ− (0)ρ,αξ
α

(4.23)

As (0)ρ(t) is only dependent on time, the only component of ξ that re-

mains is the time component. In the Newtonian Gauge, using the coordinate

transformations of the scalar perturbations, gives ξ0 = (B −E′). Resulting

in the following:

δρ̃ = δρ− (0)ρ′(B − E′) (4.24)

The perturbations of the Einstein equation can also be expressed using

the Newtonian gauge. As the Einstein equation is linear, it is easily split

between the homogenous background and the perturbation.

(0)Gαβ + δG
α
βG = 8πG(

(0)Tαβ + δT
α
β ) (4.25)

δGαβG = 8πGδT
α
β (4.26)

Perturbations of G and T are not gauge-invariant. However combining

them with a the metric perturbation gauge-invariant quantities are derived.

For a general (1,1) tensors (such as Gαβ and T
α
β ) a coordinate transforms as

follows:

δT̃αβ = δT
α
β + ξ

α
,γ
(0)T

γ
β − ξ

γ
,β
(0)Tαγ −

(0)Tαβ,γξ
γ (4.27)

The different components can then be derived, remembering that only

scalar perturbations are of current interest.
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δT̃ 00 = δT
0
0 −

(0)T 00,0ξ
0 − (0)T 00,iξ

i − (0)T 00,iξ
i
⊥

δT̃ 00 = δT
0
0 −

(0)T 00
′(B − E′)

(4.28)

δT̃ 0i = δT
0
i + ξ

0
,γ
(0)T

γ
i − ξ

0
,i
(0)T 00 − ξ

k
,i
(0)T 0k −

(0)T 0i,γξ
γ (4.29)

δT̃ ij = δT
i
j + α(ξ

i
,kδ
k
j − ξ

k
,jδ
i
k)−

(0)T ij,0ξ
0 − (0)T ij,kξ

k

δT̃ ij = δT
i
j +

(0)T ij
′(B − E′)

(4.30)

As (0)T ij ∝ δij , then each diagonal elements of
(0)T ij is the trace divided

by 3, i.e.
(0)Tkk
3 . Gij has similar perturbations. This gives the following

perturbations of the Einstein equation:

δG̃αβ = 8πGδT̃
α
β (4.31)

Using the following components of the Einstein tensor in terms of confor-

mal time:
(0)G00 =

3H2
a2

(0)G0i = 0
(0)Gij =

1
a2
(2H′ +H2)δij

(4.32)

Gives the following perturbations of the Einstein equation:

∇ψ − 3H(Ψ′ +HΦ) = 4πGa2δT̃ 00 (4.33)

(Ψ′ +HΦ),i = 4πGa
2δT̃ 0i (4.34)

[Ψ′′+H(2Ψ+Φ)′+(2H′+H2)Φ+
1

2
∇(Φ−Ψ)]δij−

1

2
(Φ−Ψ),ij = −4πGa

2δT̃ ij

(4.35)

These perturbations of the Einstein equation have been expressed using

the chosen Newtonian gauge. This can be reversed using the definitions of

the gauge and then set to another gauge.
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4.3 Perturbing the Inflaton

As done in the previous section the variable is separated into a homogenous

component and its perturbation:

ϕ(~x, η) = ϕ0(η) + δϕ(~x, η) (4.36)

Just as in the homogeneous case this inflation has the following action in

curved spacetime:

S =

∫
(
1

2
gγδ)ϕ,γϕ,δ − v)

√
−gd4x (4.37)

Where g = detgαβ . Following a similar method to the homogenous case,

the perturbed inflaton scalar field is placed into the Klein-Gordon equation:

1
√
−g

∂

∂xα
√
−ggαβ

∂ϕ

∂xβ
+
∂V

∂ϕ
= 0 (4.38)

However in this case the metric we use must also include the pertur-

bations. (4.15) is then used in the above equation. The solution to the

homogeneous components in this case is similar to just the homogenous

case (3.22):

ϕ′′0 + 2Hϕ
′
0 + a

2V,ϕ = 0 (4.39)

The inhomogenous component of the inflation approximately solves to:

δϕ′′+2Hδϕ′−∇(δϕ−ϕ′0(B−E
′))+ a2V,ϕϕδϕ−ϕ

′
0(3ψ+φ)

′+2a2V.ϕφ = 0

(4.40)

∇ represents the spatial derivative in terms of comoving coordinates. The

metric perturbations have only been taken to a linear order. This is valid

for any coordinate system. To reduce the components the equation can be

expressed in terms of the gauge-invariant variable derived in the previous

section, Ψ and Φ. In this coordinate system the following gauge invariant

scalar field perturbation can be used δϕ̃ = δϕ−ϕ′0(B−E
′). This is derived

using the same method as ρ in the previous section.
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δϕ̃′′ + 2Hδϕ̃′ −∇(δϕ̃) + a2V,ϕϕδϕ̃− ϕ
′
0(3Ψ + Φ)

′ + 2a2V.ϕφ = 0 (4.41)

The Einstein equations can also be used to get further equations for

the behaviour of the inflaton perturbation. For scalar fields the energy-

momentum tensor is (3.18). Together with (4.29) gives the 0,i tensor gauge-

invariant perturbation as:

δT̃ 0i =
1

a2
ϕ′0δϕ,i −

1

a2
ϕ′20 (B − E

′),i =
1

a2
(ϕ′0δϕ̃),i (4.42)

Which ois then used in (4.34) to give the Einstein equation in terms of

gauge-invariant metric and inflaton perturbations. G has been set to 1.

Ψ′ +HΦ = 4πϕ′0δϕ̃ (4.43)

(4.43) and (4.41) can now be used to solve the behaviour of the inflaton

in two separate case. Ψ = Φ due to the fact that non-diagonal components

of the perturbations to the tensor are 0.

4.3.1 The Subhorizon Limit

The first of the two cases involves looking at scales where λph � (H)−1. Or

in terms of the wavevector ~k, ak � (H)
−1 ⇒ k = |~k| � aH ∼ |η|−1. It is

convenient at this point to look at the functions of the scalar perturbations

in terms of the fourier transform. This is defined as:

f(~x) =

∫
f~ke
i~kx d3k

(2π)3/2
(4.44)

In fourier space spatial derivatives essentially becomes k2 terms. For large

k|η| as δϕ = exp(ikη) then the spatial derivative in (4.41) will dominate

(δϕ′′ = −k2exp(ikη)).Taking into account of the slow roll conditions during

inflation V,ϕϕ � V ∼ H2 reduces (4.41) to just the first 3 terms:

δϕ̃′′k + 2Hδϕ̃
′
k + k

2δϕ̃k ≈ 0 (4.45)

The Mukhanov Variable is now introduced toreduce the equation further:
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uk ≡ aδϕ̃k
δϕ̃k =

1
auk

δϕ̃′k =
a′

a2
uk +

1
au
′
k

δϕ̃′′k =
1
au+ k

′′ − 2a
′

a2
u′k + (

a′′

a2
+ 2a

′2

a3
)uk

(4.46)

Using this variable reduces (4.45) to:

1
au
′′
k −

a′′

a2
uk + k

2 1
auk = 0

u′′k + (k
2 − a

′′

a )uk = 0
(4.47)

As k � 1
|η| → k2 � 1

η2
and a ∼ − 1η →

a′′

a ∼
1
η2
gives a simpler equation:

u′′k + k
2uk = 0 (4.48)

Which solves as a simple harmonic oscillator:

δϕ̃k ≈
Ck
a
exp(±ikη) (4.49)

Ck is a constant of integration and has to be fixed. As the inflation

perturbations are quantum fluctuations, vacuum quantum fluctuations on a

scale of L can be considered to set the amplitude of the solution. Consider

the quantum fluctuation in a volume which is L3. The action becomes

of the form S ' 1
2

∫
(Ẋ2 + ...)dt where X = δϕL, the perturbation of the

inflaton at the scale of the length of the box. The dot is a derivative of time.

P = Ẋ ∼ X/L can be thought of as a conjugate to X. As they are each others

conjugate they satisfy the uncertainty relation: ΔXΔP ∼ 1. P = δϕlL
1/2.

For the minimum X, Xmin ∼ L1/2 gives δϕL ∼ L−1 ∼ k
a ∼ |δϕk|k

3/2.

Which results in the following: |δϕk| ∼ k
k3/2a

= k−1/2

a . In this limiting case

η → 0⇒ δϕk →
Ck
a | and hence Ck ∼ K

−1/2.

To calculate the power spectrum we need to define a few statistical quan-

tities first. For Gaussian statistics, which is what is being considered, the

dimensionless variance is:

δ2f (k) =
σ2kk

3

2π2
(4.50)

σk is the variance and characterises the gaussian process. In fourier

modes, as only quantum perturbations are being considered, each mode

evolves independently. Each k-mode evolves individually and follows a gaus-
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sian process so the variance σ2k is simply the function |fk|
2. δ2f (k) is known

as the power spectrum.

In this case, at the moment where the inhomogeneity crosses the horizon

of the Hubble scale, k ∼ Hak:

δ2ϕ(k) =
|δϕ|2k3

2π2
∼

(
k

ak

)2
∼ H2k∼aH (4.51)

Throughout the rest inflation, the inflation perturbations remain frozen

out and expanding. The study how the perturbations behave after crossing

one needs to study the large wavelength limit.

4.3.2 The Large Wavelength Limit

The first assumption that will be used in this limit is the slow-roll approx-

imations (3.31,3.32). As ϕ̈ is small this gives the following relation for the

homogeneous background:

3H '
−V,ϕ
ϕ̇0

(4.52)

These conditions are given in proper time, so first (4.43) and (4.41) have

to be written in terms of proper time, and rewriting δϕ̃ = δϕ :

δϕ̈+ 3Hδϕ̇−∇δϕ+ V,ϕϕδϕ− 4ϕ̇0Φ̇ + 2V,ϕΦ = 0 (4.53)

Φ̇ +HΦ = 4πϕ̇0δϕ (4.54)

As λph � (H)−1 the spatial derivative ∇δϕ ∼ k ∼ (λ)−1 is therefore

considered quite small. δϕ̈ and Φ̇ terms are also ignored as in this large

wavelength limit the perturbations are at a later time, so it is assumed they

have not decayed. This simplifies the equations further to:

3Hδϕ̇+ V,ϕϕδϕ+ 2V,ϕΦ ' 0 (4.55)

Hϕ ' 4πϕ̇0δϕ (4.56)

Similarly to the subhorizon limit, a new variable is introduced to simplify

the equations to a more familiar form:
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y =
∂ϕ

V,ϕ
(4.57)

ẏ =
∂ϕ̇

V,ϕ
−

∂ϕ

∂V
∂ϕ

2 ϕ̇Vϕϕ (4.58)

Substituting (4.57, 4.58) into (4.55, 4.56) and using (4.52) gives the fol-

lowing:

3Hẏ + 2Φ = 0 (4.59)

Hφ = 4πV̇ y (4.60)

Using 3H2 = 8πV (from Friedmann’s second equation (2.45) during in-

flation 1/2ϕ̇2 → 0)

3Hẏ + 2Φ = 0× 8π/H

ẏV + HΦ4π = 0

ẏV + yV̇ = 0
d(yV )
dt = 0

(4.61)

This integrates to a simple equation:

y = A/V (4.62)

A is an integration constant that requires fixing. From the definition

of y (4.57) the following final equation is reached for the long wavelength

approximation of the inflaton perturbations:

δϕk = Ak
V,ϕ

V
(4.63)

V represents the potential of inflation which is dependent on ρ and p. An-

other important assumption was that these perturbations were non-decaying

and also developed throughout the slow roll regime after the perturbation

crossed the horizon. AK is a constant we will fix in the next section.

One can also determine the perturbations to the curvature of spacetime,

i.e. perturbations to the metric, Φ using (4.60).
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Φk = 4πAk
ϕ̇V,ϕ

HV
(4.64)

Using the fact that H2 = −8π3 V and the slow roll condition for ϕ̇0 gives:

Φk = −
1

2
Ak

(
V,ϕ

V

)2
(4.65)

4.3.3 Bringing them together

Figure 4.1: A perturbation mode in comoving scales

This figure shows the evolution of a perturbation in the inflaton from be-

fore horizon to now. Its start in a sub-horizon, this was explored in Section

4.3.1. It then crossed the comoving horizon and froze out. As the comov-

ing horizon continued to get smaller throughout inflation the perturbation

remained steady. Once the comoving horizon started to grow again, it reen-

tered the horizon on super-horizon scales, Secion 4.3.2. This perturbation

is then linked to the perturbation in curvature (4.65) which causes gravita-

tional instability. This in turn causes the variations in the CMB and later

causes the large scale structure of the universe to form.

So the following step is to determine the power spectrum of these curva-

ture perturbations. Equating the perturbation from the sub-horizon to the

super-horizon is done by equating (4.49) and (4.63) at the time of horizon

crossing, k ∼ aH. The constant Ak can then be set.
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|δϕk| ∼ k−1/2

ak
= Ak

(
V,ϕ
V

)

k∼aH

Ak ∼ k−1/2

a

(
V
V,ϕ

)

k∼aH

(4.66)

Taking (4.64), the curvature perturbation to a time where slow-roll con-

ditions are violated and inflation end,
(
V,ϕ
V

)
∼ 1, gives the following:

Φk = −
1

2

k−1/2

a

(
V,ϕ

V

)2
(4.67)

The power spectrum is then calculated as:

δ2Φ(k) =
|δΦ|2k3

2π2
∼ k−1k3

a2k

(
V
V,ϕ

)2

k∼aH
∼ k2

a2k

(
V
V,ϕ

)2

k∼aH
∼
a2kH

2

a2k

(
V
V,ϕ

)2

k∼aH

Then as H2 ∝ V :

δ2Φ(k) ∼

(
V 3

V 2,ϕ

)

k∼aH

(4.68)

This can then be linked to power spectrum of the CMB fluctuations and

large scale structure. This treatment is a basic one meant to give a physical

intuition into the larger picture. A more complex and thorough treatment

is given in Chapter 8 of Mukhanov’s textbook [14]. A simpler treatment of

the link between experiment and the theory is found in Baumann’s lectures

[4].
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5 Conclusions

This dissertation has given a very strong case for the theory of inflation.

• The solution of the Big Bang problems. This was one of the reason

why inflation was postulated.

• Explains the variations found in the CMB.

• Generates a power spectrum which is related to the spectrum of Large

Scale Structure in the universe.

• Uses the same physics, quantum perturbations, to solve the two prob-

lems listed above.

But somehow there is still a bit of doubt. The theory itself also seems to

have grown in a bit of a segmented manner. From the initial idea to the

introduction of reheating and then different scalar potentials. There is not

one method that works for all. Using the conditions required for the model

to work, some general conditions are derived for all scalar field models of

inflation.

In the introduction, Table 1, it was shown the inflation occurred at such a

time in the universe’s history which is impossible for us to replicate. What

exactly happened in these early moments? The physics itself would be

completely foreign to us. However the model does reduce this unknown

phsyics to a working mathematical model which fits in with observed data

from later in the universe.

But what exactly is a scalar field? Mathematically we know it’s an object,

living on a manifold that assigns a value to every point on the manifold. But

what does it physically mean in terms of a field that encompasses the entire

universe? What is the inflaton? Using the model it must have a potential of

some work, which slopes to a minimum. And there are still many possible

different potential fields being modelled.
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As to inflation models themselves, further development can be done on

the starting conditions of inflation. There are extensive models and ideas for

the period of expansion ending, but the beginning is still a little nebulous.

What other theories could there be? Ones that would solve the Big Bang

models are ones that take off from ρ = −p. These could involve having two

scalar fields or modifying gravity. This later theory changes the Einstein

action at high energies. This is then transformed into a scalar field with

potential. A recent review on approaches to understanding inflation as a

period of acceleration includes a section on modified gravities [17]. However,

how do these solve the CMB variations and large scale structure?

Our solutions to the Big Bang problems involved changing the behaviour

of the comoving hubble radius, what if instead of altering this, the speed

of light is changed? This could solve the horizon problem if light travelled

faster in the early universe. The reference shows how having a variable

speed of light solves the horizon problem [18].

What other alternative could there be? A larger variety of possibilities

open up if the Big Bang Models are questioned. The dissertation discussed

the view of the Big Bang Model as problem of initial conditions. Without

them the flatness and homogeneity are required as a condition. There is a

possibility that indeed our universe does require these conditions. Unlike

other physical models there is only one ”test run” and one set of data, it’s

what is possible to measure. So questions such as would the universe form

with another set of conditions?

If the Big Bang problems did not require solving, then models developed

that would explain the CMB variations and large scale structure would

suffice. Other questions, what is beyond our current Hubble patch? One

probably expect more homogeneity. But is there anything beyond that? If

inflation is correct, would the initial Hubble patch contain all the possible

surrounding homogenous regions close to our visible universe, or was it in

causal contact with areas of large inhomogeneities are large scales. Would

our Hubble patch ever reach these? These questions are very fundamental,

but quite difficult to answer due to the limiting factor, our current Hubble

patch.
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Looking more closely within our own region though there is great scope

for fine tuning our models of the universe, with or without inflation. The

Planck satellite has just started to send a more detailed view of the CMB.

This will refine the data available to set the models to and get a greater

degree of accuracy. Planck will also provide more detailed data for looking

at Non-Gaussianity in the primordial modes of the CMB. Will the quantum

fluctuations of the inflaton hold up to more detailed data?

What would cast aside doubts about inflation would be concrete evidence

for inflation that could not be explained by any other model. The leading

candidate are gravitational waves. In inflation there are caused by the tensor

perturbations of the metric and scalar field. Detecting this would be further

proof of inflation as a successful model.

Inflation overall is a good start. It’s achievements are many and the idea

is deceptively simple. I do think there is scope for growth and change.

A final definitive model is not quite set in stone yet. The theory has to

stand many challenges from competing theories. Inflation has to finalise it’s

smaller components, the potential, it’s own initial conditions and reheat-

ing. It’s very much a live theory which is added onto as more time goes by.

However much the theory has to go, one can not forget it’s achievements.

The threading of the CMB fluctuations and the Large Scale Structure to-

gether as the quantum fluctuations of a hypothetical scalar field is quite

impressive. Especially when the limitations are based on what we need for

the universe to work, i.e. these explanations are a result of conditions set

by the solution of the Big Bang Problems. It’s a powerful predictive theory

that still needs further work and refinement.
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