
Stabilizer Codes Implemented
using Maple

Dissertation by
Dimitris Kakofengitis

Supervised by
Dr Terry G Rudolph

In partial Fulfillment of the Requirements
for the Degree of

Master of Science in
Quantum Field Theory and Fundamental Forces

Theoretical Physics Group

Imperial College London
South Kensington, London

Submitted : October 2, 2009

This page intentionally left blank.

To my friend Cecilia N Gyansah
who has supported me throughout this year.

This page intentionally left blank.

Contents

Preface 10

1 Introduction 11

1.1 Introduction to Quantum Information 11

1.2 Stabilizer Formalism . 13

1.3 Stabilizer Operator . 16

1.4 Mixed Stabilizer States . 16

1.5 Stabilizer Arrays . 17

1.6 Elementary Operations [1] . 17

2 The Normal Forms [1] 20

2.1 Row-Reduced Echelon Form 20

2.1.1 Checking independence of a set of generators 21

2.1.2 Partial Trace of a Stabilizer State 21

2.2 Single-Party Normal Form . 22

2.2.1 Algorithm CNF . 23

2.2.2 Proof of correctness of algorithm CNF 24

2.2.3 Alternative proof of projection formulas 1.6 and 1.7 . . 24

3 Implementation using Maple 26

3.1 Row-Reduced Echelon Form 26

3.2 Clifford Normal Form . 31

Conclusion 37

Acknowledgments 38

A Group Theory 40

A.1 Basic definitions . 40

A.2 Generators . 41

A.3 Cyclic groups . 41

5

6 CONTENTS

B RREF: Maple Outcome 42

C CNF Example [1] 50

List of Tables

1.1 Commutation relations for the Pauli operators. 13
1.2 Examples of state |ψ〉 which obey Equation 1.4 and their cor-

responding stabilizing operators. 14
1.3 The Bell states and their corresponding operators, which sta-

bilize them. 14
1.4 Stabilizer generators for the Steane seven qubit code. Note

that the symbol ⊗ can be omitted for simplicity. 16
1.5 A Stabilizer array corresponding to a generator setG = {g1 · · · gK}

on N qubits. 17
1.6 Multiplication table for Pauli operators. 18
1.7 Truth table for the single-qubit operations employed by the

CNF algorithm. 18
1.8 Truth table for CNOT gate employed by the CNF algorithm.

C and T refer to control and target qubit, respectively. The
primed columns give the values after the operation. 19

2.1 Required operations to eliminate any Pauli operator from row
3 of the stabilizer array. The operators σ1, σ2 and σ3 are a
permutation of X, Y and Z. 21

7

List of Figures

1.1 Bloch sphere, a geometrical representation of two-level quan-
tum system. 11

8

List of Algorithms

1 A simple routine which performs the commutation relation in
between the stabilizer sets to check whether they commute. . . 27

2 A procedure which enables Maple kernel to identify whether
two matrices equal each other. 27

3 RREF: Identify the Number of Different Paulis in column n
in the active region . 28

4 RREF: Identify which row contains the Pauli operator for the
case where NDP = 1 and thereafter swap it with the top row
in the active region. Its important to note that elementary
operations take place throughout the whole stabilizer array. . . 28

5 RREF: Multiply the row which contains the same Pauli oper-
ator as the one in the top row. 29

6 RREF: As in Algorithm 3, this algorithm identifies how many
different Pauli operators are in column n and assigns the row
number for each different Pauli. 29

7 RREF: Swap the top two rows of the stabilizer array with the
first two rows which contain different Pauli operators. 30

8 RREF: Perform Pauli elimination operations according to Ta-
ble 2.1. 30

9 CNF: Single-qubit operation. 33
10 CNF: CNOT operation. 34
11 CNF: Single-qubit operation revised. 35

9

Preface

Stabilizer codes provide a better description of pure and mixed quantum
states of N -qubit systems. Their applications have been mainly focused
on quantum error correcting codes, where stabilizer states take the role of
projectors on subspaces.

In this dissertation we employ elementary operations to present a number
of normal forms as discussed in [1], for pure stabilizer states, together with
descriptions of algorithms that allow the reduction of these normal forms.
Some examples are presented in the programming language of Maple(at the
time of this project, the latest version was Maple 13 which was released in
April 2009).

Dimitris Kakofengitis
October 2, 2009

10

Chapter 1

Introduction

1.1 Introduction to Quantum Information

In quantum information, a qubit or quantum bit is the quantum analogue
of the classical bit. A qubit is described by a state vector also known as
single-qubit state which is a linear superposition of the basis states, |0〉 and
|1〉,

|ψ〉 = α |0〉+ β |1〉 (1.1)

that is a normalized state, where α and β are complex numbers, with |α|2 +
|β|2 = 1. A representation of a single-qubit state can be shown in a Bloch
sphere, see Figure 1.1. The canonical parametrization of the single-qubit

Figure 1.1: Bloch sphere, a geometrical representation of two-level quantum
system.

11

12 CHAPTER 1. INTRODUCTION

state can also be written as,

|ψ〉 = cos
θ

2
|0〉+ eiϕ sin

θ

2
|1〉 (1.2)

where θ and φ can take values between, 0 ≤ θ ≤ π and 0 ≤ ϕ ≤ 2π.
The Bell state, |Φ+〉 = 1√

2
(|00〉+ |11〉), is an example of an entangled

state. Entangled states cannot be written as the product of two single-qubit
states and are graphically positioned inside the Bloch sphere, whereas single-
qubit states are positioned at the shell of the Bloch sphere.

Making a measurement on state 1.1 by applying a projection operator, the
state collapses with probability |α|2 to the outcome |0〉 and with probability
|β|2 to the outcome |1〉. Since state 1.1 is normalized then the sum of the
two probabilities will be exactly 1.

The Pauli operators,

σ1 = σx = X =

(
0 1
1 0

)
,

σ2 = σy = Y =

(
0 −i
i 0

)
,

σ3 = σz = Z =

(
1 0
0 −1

)
,

(1.3)

where i is the imaginary number equal to the square root of −1, are an
example of projection operators on single-qubit states and are considered as
spin matrices as they represent an observable describing the spin of a spin 1

2

particle in the three spatial directions. Note that σy = iσxσz. Such operators
are said to be Hermitian since the adjoint, which is the complex conjugate
transpose of the operator is equal to the operator itself such that,

σ†i = σi

where i ∈ {x, y, z}. This also implies that,

σ†iσi = σiσ
†
i = 1,

where 1 =

(
1 0
0 1

)

and is called the identity matrix. Another important algebraic property of
the Pauli operators is the commutation and anti-commutation relations which
will be used later as a proof of legitimacy of the stabilizer arrays. The Pauli
operators anti-commute, that is for i 6= j, for i, j ∈ {x, y, z},

{σi, σj} = σiσj + σjσi = 0.

1.2. STABILIZER FORMALISM 13

In this dissertation we will make use of the commutation relation,

[A,B] = AB −BA

of the Pauli operators shown in Table 1.1.

σx σy σz
σx 0 2iσz −2iσy
σy −2iσz 0 2iσx
σz 2iσy −2iσx 0

Table 1.1: Commutation relations for the Pauli operators.

1.2 Stabilizer Formalism

Stabilizer codes also known as quantum error correcting codes, have been in-
troduced first by D. Gottesman in his Thesis, Stabilizer Codes and Quantum
Error Correction (see [3] for more details) and are a more compact way of
presenting states such as the Calderbank-Shor-Steane codes, known as CSS
codes after the initials of their inventors. These stabilizer states or stabilizer
sets are formed by tensor product operations of Hermitian operators, such
as the Pauli operators. The fact that an n-particle stabilizer state is deter-
mined as the joint unique eigenvector with eigenvalue +1 of a set of only N
tensor products of Pauli operators, allows for a more detailed study of their
entanglement properties. In this context stabilizer formalism is used as a
powerful tool for the efficient description of pure and mixed quantum states
of N -qubit systems.

In order to understand the meaning of the word stabilizer, suppose an
operator A stabilizes a subspace S, when for all states |ψ〉 ∈ S,

A |ψ〉 = |ψ〉 . (1.4)

In other words, |ψ〉 is an eigenstate of A with eigenvalue +1. Table 1.2
shows the states which are stabilized by the Pauli operators. Another way
of illustrating stabilizer formalism is by using the Bell states,

|Φ+〉 = |00〉+|11〉√
2

, |Φ−〉 = |00〉−|11〉√
2

,

|Ψ+〉 = |01〉+|10〉√
2

and |Ψ−〉 = |01〉−|10〉√
2

.

State |Φ+〉 satisfies the identities X1X2 |Φ+〉 = |Φ+〉 and Z1Z2 |Φ+〉 = |Φ+〉,
state |Φ−〉 satisfies −X1X2 |Φ−〉 = |Φ−〉 and Z1Z2 |Φ−〉 = |Φ−〉, state |Ψ+〉

14 CHAPTER 1. INTRODUCTION

|ψ〉 A
|0〉+ |1〉 X
|0〉 − |1〉 −X
|0〉+ i |1〉 Y
|0〉 − i |1〉 −Y
|0〉 Z
|1〉 −Z

Table 1.2: Examples of state |ψ〉 which obey Equation 1.4 and their corre-
sponding stabilizing operators.

satisfies X1X2 |Ψ+〉 = |Ψ+〉 and −Z1Z2 |Ψ+〉 = |Ψ+〉, state |Ψ−〉 satisfies
−X1X2 |Ψ−〉 = |Ψ−〉 and −Z1Z2 |Ψ−〉 = |Ψ−〉. Therefore the Bell states are
stabilized by the operators X1X2, −X1X2, Z1Z2 and −Z1Z2, as shown in
Table 1.3, up to a global phase. What is essentially shown here is that many
quantum states can be described by working with the operators that stabilize
them. Note that in this notation, X1 is the operator X acting on the first

Bell State Operators
|Φ+〉 X1X2, Z1Z2

|Φ−〉 −X1X2, Z1Z2

|Ψ+〉 X1X2, −Z1Z2

|Ψ−〉 −X1X2, −Z1Z2

Table 1.3: The Bell states and their corresponding operators, which stabilize
them.

qubit and X2 is the same operator acting on the second qubit. Also note
that one operator stabilizes two different Bell states like the Bell states |Ψ+〉
and |Φ+〉 have one common operator, X1X2.

The stabilizer formalism is primarily based on Pauli group Gn on N
qubits. The Pauli group G1 on a single qubit is the group consisting of 1
and all the Pauli operators (X,Y ,Z), together with the multiplicative factors
±1, ±i,

G1 ≡ {±1,±i1,±X,±iX,±Y,±iY,±Z,±iZ} .

This set of matrices forms a group under the operation of matrix multiplica-
tion.

Suppose S is a subgroup of Gn and define Vs to be the set of N qubit
states which are fixed by every element of S. Vs is the vector space stabilized

1.2. STABILIZER FORMALISM 15

by S and S is said to be stabilizer of the space Vs since every element of Vs
is stable under the action of elements in S.

For the case where n = 3 qubits and S1 ≡ {1, Z1Z2, Z2Z3, Z1Z3}, the
subspace fixed by Z1Z2 is spanned by |000〉, |001〉, |110〉 and |111〉 and the
subspace fixed by Z2Z3 is spanned by |000〉, |100〉, |011〉 and |111〉. The
subspace spanned by the states |000〉 and |111〉 is VS1 . Another example for
n = 3 qubits is S2 ≡ {1, X1X2, X2X3, X1X3}. The subspace fixed by X1X2

is spanned by |+ + +〉, |+ +−〉, |− −+〉 and |− − −〉 and the subspace
fixed by X2X3 is spanned by |+ + +〉, |−+ +〉, |+−−〉 and |− − −〉, where
|+〉 = 1√

2
(|0〉+ |1〉) and |−〉 = 1√

2
(|0〉 − |1〉). The subspace spanned by the

states |+ + +〉 and |− − −〉 is VS2 .
A more compact way of describing a group is by using generators. As

explained in Appendix A, a set of elements g1....gK in a group G is said to
generate the group G if every element of G can be written as a product of
elements from the list g1...gK and we write G = 〈g1...gK〉. For the last two
cases of n = 3 qubits, S1 = 〈Z1Z2, Z2Z3〉 and S2 = 〈X1X2, X2X3〉 as Z1Z3 =
(Z1Z2) (Z2Z3), X1X3 = (X1X2) (X2X3) and 1 = (Z1Z2)

2 = (X1X2)
2. In

order to see that a particular vector is stabilized by a group S we need only
to check that the vector is stabilized by the generators, making this a most
convenient representation [2].

Two conditions have to be met so that a subgroup S of the Pauli group
can be used as the stabilizer for a non-trivial vector space [2]:

a) The elements of S commute

b) −1 is not an element of S

For example, let M and N be elements of S. Then M and N are tensor
products of Pauli matrices. By assumption −NM = MN so we have − |ψ〉 =
−NM |ψ〉 = MN |ψ〉 = |ψ〉, following from the fact that M and N stabilize
|ψ〉. Therefore − |ψ〉 = |ψ〉, which implies that |ψ〉 is the zero vector and
therefore this is a contradiction to the first condition. As a contradiction to
the second condition, note that if −1 is an element of S then −1 |ψ〉 = |ψ〉.

An example of the stabilizer formalism is the seven qubit Steane code [2],
which is given by the state vectors,

|0L〉 = 1√
8

[|0000000〉+ |1010101〉+ |0110011〉+ |1100110〉
+ |0001111〉+ |1011010〉+ |0111100〉+ |1101001〉]

|1L〉 = 1√
8

[|1111111〉+ |0101010〉+ |1001100〉+ |0011001〉
+ |1110000〉+ |0100101〉+ |1000011〉+ |0010110〉] .

(1.5)

The six generators g1 through g6 shown in Table 1.4, generate a stabilizer for
the code space of the Steane code, which is a more compact way of describing

16 CHAPTER 1. INTRODUCTION

the code with relation to the specification in terms of state vectors Equation
1.5.

Name Operator
g1 1⊗ 1⊗ 1⊗X ⊗X ⊗X ⊗X
g2 1⊗X ⊗X ⊗ 1⊗ 1⊗X ⊗X
g3 X ⊗ 1⊗X ⊗ 1⊗X ⊗ 1⊗X
g4 1⊗ 1⊗ 1⊗ Z ⊗ Z ⊗ Z ⊗ Z
g5 1⊗ Z ⊗ Z ⊗ 1⊗ 1⊗ Z ⊗ Z
g6 Z ⊗ 1⊗ Z ⊗ 1⊗ Z ⊗ 1⊗ Z

Table 1.4: Stabilizer generators for the Steane seven qubit code. Note that
the symbol ⊗ can be omitted for simplicity.

1.3 Stabilizer Operator

A stabilizer operator on N qubits is a tensor product of the operators taken
from the set of Pauli operators (1.3) and the identity matrix 1. For K = N
a generator set G = {g1...gK} uniquely determines a single state |ψ〉 that
satisfies gk |ψ〉 = |ψ〉 for all k = 1, . . . , N . Any state for which such a
generator set exists is called stabilizer state. Such a state has trivially the
property that gk |ψ〉 〈ψ| = |ψ〉 〈ψ| for all k such that [1],

|ψ〉 〈ψ| =
N∏
k=1

1 + gk
2

. (1.6)

Considering two parties A and B, the reduced density matrix of the stabilizer
state can be computed as [1]

ρA = TrBρ =
1

2N
∑
g∈S

TrBg. (1.7)

which means that only operators g contribute, that have identity operators
acting on all qubits belonging to B.

1.4 Mixed Stabilizer States

In the case of mixed states characterized by mixed stabilizer states, one
simply considers sets of G that are linearly dependent. As a consequence,

1.5. STABILIZER ARRAYS 17

by multiplying stabilizers, some of them become identical to 1 and only K
linearly dependent ones remain. Then the common eigenspace of these K
operators will have a dimension larger than 1. The density operator is again
just the projector onto this eigenspace, rescaled to trace 1 [1],

℘ =
N∏
k=1

1 + gk
2

ρ =
1

2N−K
℘ (1.8)

Given that ℘ is a projector onto a subspace of dimension 2N−K , the entropy
of ρ is simply N −K [2].

1.5 Stabilizer Arrays

A stabilizer array is a rectangular array of K rows and N columns, where the
elements are Pauli operators (1.3) or the Identity matrix. Table 1.5 shows
a general form of a rectangular array which corresponds to a generator set
G = {g1 · · · gK} on N qubits, The element in the k-th row and n-th column

g1
1 g2

1 · · · gN1
g1
2 g2

2 · · · gN2
...

...
...

...
g1
K−1 g2

K−1 · · · gNK−1

g1
K g2

K · · · gNK

Table 1.5: A Stabilizer array corresponding to a generator set G = {g1 · · · gK}
on N qubits.

is the n-th tensor factor (corresponding to qubit n) of the k-th generator
gk. In some applications it is necessary to deal with generator phase factors,
±1,±i, from which only ±1 make sense for the case of stabilizer states since
are Hermitian. Phase factors are stored in a K-dimensional vector s, where
sk is the phase factor of generator gk.

1.6 Elementary Operations [1]

The allowed elementary operations for transforming a stabilizer array are
divided in two kinds, the row and column operations. In the case of row

18 CHAPTER 1. INTRODUCTION

operations, the stabilizer state is not altered but only the generator set. The
row transposition interchanges two rows in the stabilizer array and the row
multiplication multiplies one row with another one. The multiplication table
for Pauli operators is shown in Table 1.6.

1 X Y Z
1 1 X Y Z
X X 1 iZ −iY
Y Y −iZ 1 iX
Z Z iY −iX 1

Table 1.6: Multiplication table for Pauli operators.

The second kind are the column operations, which may alter the state.
Single-qubit operations act on one given column by permuting the Pauli op-
erators among themselves. These operations can be constructed from com-
binations of Hadamard gates (H) and Π/4 gates (P). Table 1.7 presents the
truth table for single-qubit operations employed by the CNF algorithm.

X Y Z Unitary
X Y Z 1

Z X Y PH
Y Z X HP †

−X Z Y PHP †

Y X −Z HPPHP †

Z −Y X H

Table 1.7: Truth table for the single-qubit operations employed by the CNF
algorithm.

Transposing two columns in the bipartite case is only allowed when both
columns (qubits) belong to the same party. The CNOT gate between two
qubits, one being the control qubit and one the target qubit, operates on
the two corresponding columns of the stabilizer array. Table 1.8 shows the
CNOT gate employed by the CNF algorithm.

1.6. ELEMENTARY OPERATIONS [1] 19

C T C ′ T ′ C T C ′ T ′

1 1 1 1 Y 1 Y X
1 X 1 X Y X Y 1

1 Y Z Y Y Y −X Z
1 Z Z Z Y Z X Y
X 1 X X Z 1 Z 1

X X X 1 Z X Z X
X Y Y Z Z Y 1 Y
X Z −Y Y Z Z 1 Z

Table 1.8: Truth table for CNOT gate employed by the CNF algorithm. C
and T refer to control and target qubit, respectively. The primed columns
give the values after the operation.

Chapter 2

The Normal Forms [1]

2.1 Row-Reduced Echelon Form

The Row-Reduced Echelon Form (RREF) is a normal form using elementary
row operations only. In this normal form, the stabilizer state represented by
the stabilizer array is not changed, is applicable to states on any number of
parties and is an efficient way to eliminate linearly dependent rows from the
array. There are three case:


1
... RREF′

1

 ,

σ ∗ · · · ∗
1
... RREF′

1

 and



σ1 ∗ · · · ∗
σ2 ∗ · · · ∗
1
... RREF′

1

 .

RREF′ is a sub-array that is also in RREF form. The symbol ∗ denotes
either a Pauli operator or an identity 1. Furthermore, σ, σ1 and σ2 are Pauli
operators, where σ1 and σ2 anticommute.

The RREF algorithm works by applying a sequence of elementary row
operations to the stabilizer array.

Count the number of different Pauli operators in the first column.

a) If there are no Pauli operators in column 1, consider that column done.

b) If there is only 1 kind of Pauli operator, first make first row with this
Pauli the top row, then multiply top row with all other rows with same
Pauli in column 1 and consider column 1 and top row done.

c) If there are at least 2 different kinds of Pauli operators, let k1 be the first
row where column 1 contains a Pauli operator and k2 be the first row

20

2.1. ROW-REDUCED ECHELON FORM 21

where it contains a different Pauli operator. Following that make row
k1 the top row and row k2 the second row. Then multiply every other
row with either the top row, second row, both or none, depending on
the element in column 1 as described in Table 2.1. Thereafter continue
until all columns/rows done.

Initial stabilizer array: σ1 ∗ · · · ∗
σ2 ∗ · · · ∗
g ∗ · · · ∗


Depending on the content of row 3, do the following:

g = 1: Do nothing
g = σ1: Multiply row 1 with row 3.
g = σ2: Multiply row 2 with row 3.
g = σ3: Multiply row 1 with row 3 and then row 2 with row 3.

Table 2.1: Required operations to eliminate any Pauli operator from row 3
of the stabilizer array. The operators σ1, σ2 and σ3 are a permutation of X,
Y and Z.

2.1.1 Checking independence of a set of generators

The easiest way to check independence of a set of generators is to compute
the RREF of the stabilizer array. Dependencies between generators will show
up as RREF rows containing only 1 operators. Removing these all-1 rows
leaves an independent set of generators.

2.1.2 Partial Trace of a Stabilizer State

A useful and important operation is the partial trace. The RREF algorithm
is the central part in the following efficient partial trace algorithm:

Algorithm PTRACE

1. By column permutations bring the columns of the qubits to be traced
out in first position.

2. Bring those columns to RREF.

22 CHAPTER 2. THE NORMAL FORMS [1]

3. Remove the rows containing the column leader(s).

4. Finally, remove those columns themselves.

Proof. To prove that this algorithm indeed calculates the partial trace,
consider once again the three cases for the RREF:


1
... RREF′

1

 ,

σ ∗ · · · ∗
1
... RREF′

1

 and



σ1 ∗ · · · ∗
σ2 ∗ · · · ∗
1
... RREF′

1

 .

We have to show that the state described by RREF’, say ρ′, is the state
obtained from the original stabilizer state ρ by tracing out the qubit per-
taining to column 1. Denote the sequences of ∗ operators by g, g1 and g2,
respectively.

In the first case, ρ = 1
2
⊗ ρ′ and tracing out qubit 1 yields Tr1ρ = ρ′. In

the second case,

ρ =
1⊗ 1 + σ ⊗ g

2
(1⊗ ρ′) =

1

2
(1⊗ ρ′ + σ ⊗ gρ′)

and again, as Pauli operators have trace 0, Tr1ρ = ρ′. In the third and final
case,

ρ = 1⊗1+σ1⊗g1
2

1⊗1+σ2⊗g2
2

(1⊗ 2ρ′)
= 1

2
(1⊗ ρ′ + σ1 ⊗ g1ρ

′ + σ2 ⊗ g2ρ
′ + σ1σ2 ⊗ g1g2ρ

′),

resulting yet in Tr1ρ = ρ′.

2.2 Single-Party Normal Form

The CNF algorithm applies a sequence of elementary operations to the sta-
bilizer array. After every iteration of the algorithm the stabilizer array has
the block structure

X 1 · · · 1 1 · · · 1 1 · · · 1

1 X · · · 1 1 · · · 1 1 · · · 1
...

...
. . .

...
...

...
...

...
...

...
1 1 · · · X 1 · · · 1 1 · · · 1

1 1 · · · 1 ∗ · · · ∗ 1 · · · 1
...

...
...

...
...

...
...

...
...

...
1 1 · · · 1 ∗ · · · ∗ 1 · · · 1


.

2.2. SINGLE-PARTY NORMAL FORM 23

The block containing the asterisks has not yet been brought to normal form.
The columns on the left of the block containing the asterisks, correspond
to qubits that are in an eigenstate of the X operator, the columns on its
right correspond to qubits in a totally mixed state. The final form, after the
completion of the algorithm, is

X 1 · · · 1 1 · · · 1

1 X · · · 1 1 · · · 1
...

...
. . .

...
...

...
...

1 1 · · · X 1 · · · 1

1 1 · · · 1 1 · · · 1
...

...
...

...
...

...
...

1 1 · · · 1 1 · · · 1


.

Hence there is a possibility that the rows of the initial stabilizer array might
not be independent.

2.2.1 Algorithm CNF

Count the number of different Pauli operators in the first column.

a) If there are no Pauli operators in column 1, then transpose column 1
with the last column and decrease the last column by 1.

b) If there is only 1 kind of Pauli operator, let k be the first row where
column 1 contains a Pauli operator and make row k the top row by
transposing it with the top row. Then apply whatever single-qubit
operation on the last column that brings that Pauli operator to an X’
multiply the top row with all other rows that have an X in column 1.
Thereafter consider the elements of the first row to each of the columns
beyond the first one that contains in the first row a Pauli different from
X and apply a single-qubit operation to turn it into an X. Following.
apply a CNOT operation on the columns which now have an X in the
first row, with control column 1. Finally, Increase the top row and first
column by 1.

c) If there are at least 2 different kinds of Pauli operators, let k1 be the
first row where column 1 contains a Pauli operator and k2 be the first
row where column 1 contains a different Pauli operator. Make row k1

the top row by transposing row k1 with the top row. Then make row k2

the second row by transposing row k2 with the top row +1. Afterwards
bring the element on the top row to an X and the element on the top

24 CHAPTER 2. THE NORMAL FORMS [1]

row +1 to a Z by applying a single-qubit operation on the first column.
Thereafter consider the first two rows’ find the first column beyond the
first one that contains an anti-commuting pair on those rows and bring
the anti-commuting pair to an (X,Y) pair by applying a single-qubit
operation to that column. Then apply a CNOT operation to that
column, with column 1 as control.

d) If there exists a non-zero size, continue with step 1, else terminate.

2.2.2 Proof of correctness of algorithm CNF

• In the case where the first column containing 1 only, the column is
excluded.

• In the case where a column contains 1 operators and Pauli operators
of just one kind, the first of these Pauli operators is brought to the
top row and then the row is excluded. Then a single-qubit rotation is
applied to bring the Pauli operators in standard form, which in this
case is an X operator.

2.2.3 Alternative proof of projection formulas 1.6 and
1.7

By the proof of the CNF1 algorithm, a state described by a certain stabilizer
array is unitarily equivalent to the state described by the normal form of that
array.

Let the initial stabilizer group S be given by a stabilizer array. Let S ′

be the stabilizer group described by the normal form of that array, with K
generators

g′k = 1⊗ . . .⊗X ⊗ . . .⊗ 1,

with the X operator in the k-th tensor factor. The stabilizer state corre-
sponding to the normal form is therefore

ρ′ = 1
2N

∑
i1...iK∈{0,1}

X i1 ⊗ . . .⊗X iK ⊗ 1⊗N−K

= ((1 +X)/2)⊗K ⊗ (1/2)⊗N−K

= 1
2N−K

K∏
k=1

1+g′k
2

.

Let U be the unitary corresponding to the sequence of elementary operations
that brought stabilizer array to its normal form. S consists of the elements
g = Ug′U †, g′ ∈ S ′, and can be generated by generators gk ≡ Ug′kU

†. Then
the stabilizer state corresponding to S is given by

2.2. SINGLE-PARTY NORMAL FORM 25

ρ = 1
2N

∑
g∈S

g = 1
2N

∑
g′∈S′

Ug′U † = Ug′U †

= 1
2N−K

K∏
k=1

U 1+g′k
2
U † = 1

2N−K

K∏
k=1

1+gk

2
.

Chapter 3

Implementation using Maple

3.1 Row-Reduced Echelon Form

In order to produce RREF in maple, first Maple has to make use of a package
called LinearAlgebra which is a revised package of an older version known as
linalg. In this spreadsheet, both packages were used as follows,

> restart:with(linalg):with(LinearAlgebra):

where the command restart is used by maple to restart the session and
clear the internal memory of the kernel. Following that, Maple has to recog-
nize the Pauli operators X, Y and Z and the identity matrix,

> X := Matrix(2,2,[0,1,1,0]): Y := Matrix(2,2,[0,-I,I,0]):
> Z := Matrix(2,2,[1,0,0,-1]): II := Matrix(2,2,[1,0,0,1]):

Before Maple runs through the algorithm, last thing left to do is assign a
random stabilizer array,

> RSA := array (1..dim,1..dim, [[X, Z, II, II, II], [Z, X, Z,
Z, II], [II, Z, X, II, Z], [II, Z, II, X, II], [II, II, Z, II,
X]]);

where dim is the dimension of the stabilizer array which in this case
should be assigned number 5 since there are 5 qubits in the stabilizer array
assigned into Maple kernel as shown above. In order to check whether the
stabilizer sets commute with each other, a simple routine can be constructed
shown as Algorithm 1,

If the stabilizer sets commute with each other then the following outcome
should be obtained from Maple,

i, j, Check =

 0 0

0 0


where i and j indicate the stabilizer sets and the zero matrix indicates

that sets i and j do commute. Throughout the algorithm, Maple will have

26

3.1. ROW-REDUCED ECHELON FORM 27

Algorithm 1 A simple routine which performs the commutation relation in
between the stabilizer sets to check whether they commute.

> for i from 1 to dim - 1 do
> for j from i to dim - 1 do
> Check := 0:
> for k from 1 to dim do
> Check := Check + MatrixMatrixMultiply(RSA[i,
k],RSA[j + 1, k]) - MatrixMatrixMultiply(RSA[j + 1,
k],RSA[i, k])
> od:
> print(i , j + 1, ’Check’ = Check);
> od:
> od:

to recognize whether two matrices are identical using a procedure shown as
Algorithm 2,

Algorithm 2 A procedure which enables Maple kernel to identify whether
two matrices equal each other.

> Equal_Matrix := proc (M1,M2)
> local Equal_Element, r, c:
> Equal_Element := 0:
> for r from 1 to 2 do
> for c from 1 to 2 do
> if M1[r, c] = M2[r, c] then Equal_Element :=
Equal_Element + 1
> fi:
> od:
> od:
> end:

In order now to obtain the RREF form of the random stabilizer array,
Maple has to go through a number of for loops. One way of doing so is the
following,

28 CHAPTER 3. IMPLEMENTATION USING MAPLE

Algorithm 3 RREF: Identify the Number of Different Paulis in column n
in the active region

> NDP := 0: XP := 0: YP := 0: ZP := 0:
> for m from n to dim do
> if Equal_Matrix(RSA[m, n], X) = 4 and XP = 0 then
XP := 1
> elif Equal_Matrix(RSA[m, n], Y) = 4 and YP = 0
then YP := 1
> elif Equal_Matrix(RSA[m, n], Z) = 4 and ZP = 0
then ZP := 1
> fi:
> od:
> NDP := XP + YP + ZP:

Algorithm 4 RREF: Identify which row contains the Pauli operator for
the case where NDP = 1 and thereafter swap it with the top row in the
active region. Its important to note that elementary operations take place
throughout the whole stabilizer array.

> RS := 0:
> for l from n to dim while RS = 0 and NDP = 1 do
> if Equal_Matrix(RSA[l, n], X) = 4 then RS := l
> elif Equal_Matrix(RSA[l, n], Y) = 4 then RS := l
> elif Equal_Matrix(RSA[l, n], Z) = 4 then RS := l
> fi:
> od:
> if NDP = 1 then RSA := swaprow(RSA, n, RS) fi:

3.1. ROW-REDUCED ECHELON FORM 29

Algorithm 5 RREF: Multiply the row which contains the same Pauli oper-
ator as the one in the top row.

> for i from n to dim - 1 while NDP = 1 do
> if Equal_Matrix(RSA[n, n], X) = 4 and
Equal_Matrix(RSA[i + 1, n], X) = 4 then
> for j from 1 to dim do
> RSA[i + 1, j] := MatrixMatrixMultiply(RSA[n,
j], RSA[i + 1, j])
> od:
> elif Equal_Matrix(RSA[n, n], Y) = 4 and
Equal_Matrix(RSA[i + 1, n], Y) = 4 then
> for j from 1 to dim do
> RSA[i + 1, j] := MatrixMatrixMultiply(RSA[n,
j], RSA[i + 1, j])
> od:
> elif Equal_Matrix(RSA[n, n], Z) = 4 and
Equal_Matrix(RSA[i + 1, n], Z) = 4 then
> for j from 1 to dim do
> RSA[i + 1, j] := MatrixMatrixMultiply(RSA[n,
j], RSA[i + 1, j])
> od:
> fi:
> od:

Algorithm 6 RREF: As in Algorithm 3, this algorithm identifies how many
different Pauli operators are in column n and assigns the row number for
each different Pauli.

> XP := 0: YP := 0: ZP := 0: NDP := 0: XRS := 0: YRS
:= 0: ZRS := 0:
> for m from n to dim do
> if Equal_Matrix(RSA[m, n], X) = 4 and XP = 0 then
> XP := 1:
> XRS := m:
> elif Equal_Matrix(RSA[m, n], Y) = 4 and YP = 0
then
> YP := 1:
> YRS := m:
> elif Equal_Matrix(RSA[m, n], Z) = 4 and ZP = 0
then
> ZP := 1:
> ZRS := m:
> fi:
> od:
> NDP := XP + YP + ZP:

30 CHAPTER 3. IMPLEMENTATION USING MAPLE

Algorithm 7 RREF: Swap the top two rows of the stabilizer array with the
first two rows which contain different Pauli operators.

> Stop_X := 0: Stop_Y := 0: Stop_Z := 0: KU := n:
> for k from n to dim while NDP > 1 do
> if Equal_Matrix(RSA[k, n], X) = 4 and Stop_X = 0
then
> RSA := swaprow(RSA, KU, XRS):
> Stop_X := 1:
> KU := KU + 1:
> elif Equal_Matrix(RSA[k, n], Y) = 4 and Stop_Y =
0 then
> RSA := swaprow(RSA, KU, YRS):
> Stop_Y := 1:
> KU := KU + 1:
> elif Equal_Matrix(RSA[k, n], Z) = 4 and Stop_Z =
0 then
> RSA := swaprow(RSA, KU, ZRS):
> Stop_Z := 1:
> KU := KU + 1:
> fi:
> od:

Algorithm 8 RREF: Perform Pauli elimination operations according to Ta-
ble 2.1.

> for p from n to dim - 2 while NDP > 1 do
> if Equal_Matrix(RSA[p + 2, n], II) = 4 then next
> elif Equal_Matrix(RSA[n, n], RSA[p + 2, n]) = 4 then
> for j from 1 to dim do
> RSA[p + 2, j] := MatrixMatrixMultiply(RSA[n,
j], RSA[p + 2, j])
> od:
> elif Equal_Matrix(RSA[n + 1, n], RSA[p + 2, n]) = 4
then
> for j from 1 to dim do
> RSA[p + 2, j] := MatrixMatrixMultiply(RSA[n +
1, j], RSA[p + 2, j])
> od:
> else
> for j from 1 to dim do
> RSA[p + 2, j] := MatrixMatrixMultiply(RSA[n,
j], RSA[p + 2, j]):
> RSA[p + 2, j] := MatrixMatrixMultiply(RSA[n +
1, j], RSA[p + 2, j]):
> od:
> fi:
> od:

3.2. CLIFFORD NORMAL FORM 31

Algorithms 3 to 8 should be enclosed in a for loop,
> for n from 1 to dim - 1 do
> Algorithm 3
> .
> .
> .
> Algorithm 8
> od:

so that they will be repeated dim − 1 times in order to proceed to the
next column and row of the stabilizer array where a new active region will
be defined. After running through algorithms 3 to 8, dim−1 times, a second
check should be performed in order to establish whether the stabilizer sets
commute with each other. Refer to Appendix B for the outcome of the
algorithm.

3.2 Clifford Normal Form

As it has it has been describe in Chapter 3.1, in order to produce RREF in
maple, first Maple has to make use of a package called LinearAlgebra which
is a revised package of an older version known as linalg. The same implies for
the CNF as we will be making use of matrix multiplication commands and
other commands used by those packages. In this spreadsheet, both packages
were used as follows,

> restart:with(linalg):with(LinearAlgebra):

where the command restart is used by maple to restart the session and
clear the internal memory of the kernel. Following that, Maple has to recog-
nize the Pauli operators X, Y and Z and the identity matrix,

> X := Matrix(2,2,[0,1,1,0]): Y := Matrix(2,2,[0,-I,I,0]):
> Z := Matrix(2,2,[1,0,0,-1]): II := Matrix(2,2,[1,0,0,1]):

Before Maple runs through the individual algorithms, last thing left to
do is assign a random stabilizer array,

> RSA := array (1..K,1..N, [[X, II, II, II, II], [II, II, Z,
II, Y], [II, II, Y, Y, Z], [II, II, X, II, X]]);

where K and N are the dimensions of the stabilizer array which in this
case should be assigned number 4 and number 5, respectively since there
are 4 stabilizer sets and 5 qubits in the stabilizer array assigned into Maple
kernel as shown above.

Once again Algorithm 2 will be used so that Maple will recognize whether
two matrices are identical.

In order now to obtain the CNF form of the random stabilizer array,
Maple has to go through a number of Algorithms individually. The decision,

32 CHAPTER 3. IMPLEMENTATION USING MAPLE

which Algorithm will be used first and which will follow, is based entirely on
the description of the CNF Algorithm in Chapter 2.2.1. In order to measure
the number of different Pauli operators, we make use of Algorithm 3 and
assign dim with the number of stabilizer sets, which in this case is four. For
the first case where there are no Pauli operators in the first column of the
active region, we make use of the command,

> RSA := swapcol(RSA, NL, NR):
> NR := NR - 1:

to swap columns NL(the first column in the active region) and NR(the
last column in the active region) in the stabilizer array and then decrease NR

by 1.

For the second case we make use of the command,

> RSA := swaprow(RSA, KU, RS):

to swap rows KU(the first row in the active region) and RS, which must
be assigned its value using Algorithm 4. Using Table 1.7, we apply any
single-qubit operation on the first column of the active region, NL, so that
the Pauli operator in column NL and row KU will be transformed to an X.
Using the following Algorithm,

> for k from KU to K - 1 do
> if Equal_Matrix(RSA[KU, NL], X) = 4 and Equal_Matrix(RSA[k
+ 1, NL], X) = 4 then
> RSA[k + 1, NL] := MatrixMatrixMultiply(RSA[KU, NL],
RSA[k + 1, NL]):
> fi:
> od:

which is a shorter version of Algorithm 5, we multiply KU with all other
rows in the active region that haveX in columnNL. Considering the elements
of the first row of the active region, apply a single-qubit operation to each of
the columns beyond the first one, to turn the Pauli which is different from
X, into an X, by making use of Algorithm 9,

Considering now the same columns, which now have an X in the first
row, apply a CNOT operation with control column NL as is shown in Table
1.8, using Algorithm 10. After this operation, KU and NL must increase by
1 in order to decrease the size of the active region.

For the third case, Algorithms 6 and 7 must be used in order to make
row KU the row with the first different Pauli operator and row KU + 1 the
row with the second different Pauli operator. Thereafter Algorithm 9 should
be used once again as the single-qubit operation. When considering the first
two rows of the active region, KU and KU +1, then the single-qubit operation
Algorithm must be amended as shown in Algorithm 11, since the operation
takes place throughout the rows.

3.2. CLIFFORD NORMAL FORM 33

Algorithm 9 CNF: Single-qubit operation.

> for n from NL + 1 to N do
> if Equal_Matrix(RSA[KU, n], Y) = 4 and
Equal_Matrix(RSA[KU + 1, n], Z) = 4 then
> RSA[KU, n] := X: RSA[KU + 1, n] := - Z:
> for k from KU + 2 to K while Equal_Matrix(RSA[k,
n], X) = 4 do
> RSA[k, n] := Y
> od:
> elif Equal_Matrix(RSA[KU, n], X) = 4 and
Equal_Matrix(RSA[KU + 1, n], Y) = 4 then
> RSA[KU, n] := - X: RSA[KU + 1, n] := Z:
> for k from KU + 2 to K while Equal_Matrix(RSA[k,
n], Z) = 4 do
> RSA[k, n] := Y
> od:
> elif Equal_Matrix(RSA[KU, n], Y) = 4 and
Equal_Matrix(RSA[KU + 1, n], X) = 4 then
> RSA[KU, n] := X: RSA[KU + 1, n] := Z:
> for k from KU + 2 to K while Equal_Matrix(RSA[k,
n], Z) = 4 do
> RSA[k, n] := Y
> od:
> elif Equal_Matrix(RSA[KU, n], Z) = 4 and
Equal_Matrix(RSA[KU + 1, n], X) = 4 then
> RSA[KU, n] := X: RSA[KU + 1, n] := Z:
> for k from KU + 2 to K while Equal_Matrix(RSA[k,
n], Y) = 4 do
> RSA[k, n] := - Y
> od:
> elif Equal_Matrix(RSA[KU, n], Z) = 4 and
Equal_Matrix(RSA[KU + 1, n], Y) = 4 then
> RSA[KU, n] := X: RSA[KU + 1, n] := Z:
> for k from KU + 2 to K while Equal_Matrix(RSA[k,
n], X) = 4 do
> RSA[k, n] := Y
> od:
> fi:
> od:

34 CHAPTER 3. IMPLEMENTATION USING MAPLE

Algorithm 10 CNF: CNOT operation.

> for n from NL + 1 to N do
> for k from KU to K do
> for j from 1 to N - n do
> if Equal_Matrix(RSA[k, n], II) = 4 and
Equal_Matrix(RSA[k, n + j], II) = 4 then next
> elif Equal_Matrix(RSA[k, n], II) = 4 and
Equal_Matrix(RSA[k, n + j], X) = 4 then next
> elif Equal_Matrix(RSA[k, n], II) = 4 and
Equal_Matrix(RSA[k, n + j], Y) = 4 then
> RSA[k ,n] := Z: RSA[k ,n + j] := Y:
> elif Equal_Matrix(RSA[k, n], II) = 4 and
Equal_Matrix(RSA[k, n + j], Z) = 4 then
> RSA[k ,n] := Z: RSA[k ,n + j] := Z:
> elif Equal_Matrix(RSA[k, n], X) = 4 and
Equal_Matrix(RSA[k, n + j], II) = 4 then
> RSA[k ,n] := X: RSA[k ,n + j] := X:
> elif Equal_Matrix(RSA[k, n], X) = 4 and
Equal_Matrix(RSA[k, n + j], X) = 4 then
> RSA[k ,n] := X: RSA[k ,n + j] := II:
> elif Equal_Matrix(RSA[k, n], X) = 4 and
Equal_Matrix(RSA[k, n + j], Y) = 4 then
> RSA[k ,n] := Y: RSA[k ,n + j] := Z:
> elif Equal_Matrix(RSA[k, n], X) = 4 and
Equal_Matrix(RSA[k, n + j], Z) = 4 then
> RSA[k ,n] := - Y: RSA[k ,n + j] := Y:
> elif Equal_Matrix(RSA[k, n], Y) = 4 and
Equal_Matrix(RSA[k, n + j], II) = 4 then
> RSA[k ,n] := Y: RSA[k ,n + j] := X:
> elif Equal_Matrix(RSA[k, n], Y) = 4 and
Equal_Matrix(RSA[k, n + j], X) = 4 then
> RSA[k ,n] := Y: RSA[k ,n + j] := II:
> elif Equal_Matrix(RSA[k, n], Y) = 4 and
Equal_Matrix(RSA[k, n + j], Y) = 4 then
> RSA[k ,n] := - X: RSA[k ,n + j] := Z:
> elif Equal_Matrix(RSA[k, n], Y) = 4 and
Equal_Matrix(RSA[k, n + j], Z) = 4 then
> RSA[k ,n] := X: RSA[k ,n + j] := Y:
> elif Equal_Matrix(RSA[k, n], Z) = 4 and
Equal_Matrix(RSA[k, n + j], II) = 4 then next
> elif Equal_Matrix(RSA[k, n], Z) = 4 and
Equal_Matrix(RSA[k, n + j], X) = 4 then
> RSA[k ,n] := Z: RSA[k ,n + j] := X:
> elif Equal_Matrix(RSA[k, n], Z) = 4 and
Equal_Matrix(RSA[k, n + j], Y) = 4 then
> RSA[k ,n] := II: RSA[k ,n + j] := Y:
> elif Equal_Matrix(RSA[k, n], Z) = 4 and
Equal_Matrix(RSA[k, n + j], Z) = 4 then
> RSA[k ,n] := II: RSA[k ,n + j] := Z:
> fi:
> od:
> od:
> od:

3.2. CLIFFORD NORMAL FORM 35

Algorithm 11 CNF: Single-qubit operation revised.

> for n from NL + 1 to N do
> if Equal_Matrix(RSA[KU, n], Y) = 4 and
Equal_Matrix(RSA[KU + 1, n], Z) = 4 then
> RSA[KU, n] := X: RSA[KU + 1, n] := Y:
> for k from KU + 2 to K while Equal_Matrix(RSA[k,
n], X) = 4 do
> RSA[k, n] := Z
> od:
> elif Equal_Matrix(RSA[KU, n], Y) = 4 and
Equal_Matrix(RSA[KU + 1, n], X) = 4 then
> RSA[KU, n] := X: RSA[KU + 1, n] := Y:
> for k from KU + 2 to K while Equal_Matrix(RSA[k,
n], Z) = 4 do
> RSA[k, n] := - Z
> od:
> elif Equal_Matrix(RSA[KU, n], Z) = 4 and
Equal_Matrix(RSA[KU + 1, n], X) = 4 then
> RSA[KU, n] := X: RSA[KU + 1, n] := Y:
> for k from KU + 2 to K while Equal_Matrix(RSA[k,
n], Y) = 4 do
> RSA[k, n] := Z
> od:
> elif Equal_Matrix(RSA[KU, n], Z) = 4 and
Equal_Matrix(RSA[KU + 1, n], Y) = 4 then
> RSA[KU, n] := X: RSA[KU + 1, n] := - Y:
> for k from KU + 2 to K while Equal_Matrix(RSA[k,
n], X) = 4 do
> RSA[k, n] := Z
> od:
> elif Equal_Matrix(RSA[KU, n], X) = 4 and
Equal_Matrix(RSA[KU + 1, n], Z) = 4 then
> RSA[KU, n] := - X: RSA[KU + 1, n] := Y:
> for k from KU + 2 to K while Equal_Matrix(RSA[k,
n], Y) = 4 do
> RSA[k, n] := Z
> od:
> fi:
> od:

36 CHAPTER 3. IMPLEMENTATION USING MAPLE

Finally apply Algorithm 10 and terminate the operation when the active
region has zero-size, else repeat the procedure.

Conclusion

Stabilizer codes are with out any doubt the most convenient way of repre-
senting long winded states and thus they can be regarded as the future of
quantum information and quantum computing.

Throughout this review of [1], I showed that the RREF and CNF forms
can be implemented in another mathematical package apart from MatLab
as it has been already stated by the writers of [1]. My main goal was to
implement the CNF algorithm in Maple the way I implemented the RREF
algorithm, i.e. compute the reduced forms by running the stabilizer array
through a single algorithm and not by individually running the stabilizer
array through smaller algorithms. I admit that even the RREF algorithm
had not been thoroughly checked and also I have mot crossed referenced my
results with the MatLab routines, provided by the writers of [1]. This was
due to the lack of time and also due to my low knowledge in the MatLab
package. Also as I have realized throughout this dissertation, it is absolutely
tedious to try and implement an algorithm which will not stack in any random
stabilizer array, as there are many different examples and therefore it is
much easier to run the stabilizer array through much smaller algorithms
individually according to the constrains of the RREF/CNF algorithms.

37

Acknowledgments

The academic year 2008/09 was probably the worst year of my career as
a physicist. This is due to my failure to pass the exams in the Master of
Science for which this dissertation was submitted as a partial fulfillment of
the requirements. Nevertheless I have enjoyed the last few months more than
anything as i got great satisfaction from successfully producing a dissertation
in spite of the psychologically difficult period I endured. The successful
completion of this dissertation was all I needed to regain my will to move on
with my career as a physicist. Of course this would not have been possible
if my supervisor, Dr Terry G Rudolph had not given me the chance to work
with him despite my failure to pass his exam.

Also I would like to thank my friend, Cecilia N Gyansah who has sup-
ported me this year and encouraged me to move from this challenging year.
I wish her the best in her medical career and that she becomes one of the
greatest doctors.

38

Bibliography

[1] Koenraad M.R. Audenaert and Martin B. Plenio, E-print arXiv quant-
ph/0505036.

[2] M.A. Nielsen and I.L Chuang, Quantum computation and quantum in-
formation, Cambridge University Press, 2000.

[3] Daniel Gottesman, Stabilizer Codes and Quantum Error Correction,
quant-ph/9705052v1

[4] Jaeger G. Quantum information. An overview (Springer, 2007)(ISBN
0387357254)(291s)CsQc

[5] Nakahara9789812814487

39

Appendix A

Group Theory

In this appendix some of the fundamental concepts and important definitions
are summarized.

A.1 Basic definitions

A group (G, ·) is a non-empty set G with a binary group multiplication
operation ‘·’, with the following properties:

• closure, g1 · g2 ∈ G for all g1, g2 ∈ G.

• associativity, (g1 · g2) · g3 = g1 · (g2 · g3), for all g1, g2, g3 ∈ G.

• identity, ∃e ∈ G such that ∀g ∈ G, g · e = e · g = g.

• inverses, ∀g ∈ G,∃g−1 ∈ G such that g · g−1 = e and g−1 · g = e.

A group G is finite if the number of elements in G is finite. The order
of a finite group G is the number of elements it contains, denoted as |G|.
A group G is said to be abelian if g1g2 = g2g1∀g1, g2 ∈ G. The order of
an element g ∈ G is the smallest positive integer r such that gr equals the
identity element e. A subgroup H of G is a subset of G which forms a group
under the same group multiplication operation as G.

Theorem A.1.1 (Lagrange’s Theorem) Let G be a finite group, and let
H be a subgroup of G. Then the order of H divides the order of G.

If g1 and g2 are elements of G, then the conjugate of g2 with respect to g1

is the element g−1
1 g2g1. If H is subgroup of G, then it is known as a normal

subgroup if g−1Hg = H∀g ∈ G. The conjugacy class Gx of an element x in
a group G is defined by Gx ≡ {g−1xg|g ∈ G}.

40

A.2. GENERATORS 41

The Pauli group on n qubits is a non-Abelian group. For a single qubit,
the Pauli group is defined to consist of all the Pauli matrices with multiplica-
tive factors ±1, ±i,

G1 ≡ {±1,±i1,±X,±iX,±Y,±iY,±Z,±iZ} .

This set of matrices forms a group under the operation of matrix multiplica-
tion.

A.2 Generators

The study of groups is often greatly simplified by the use of a set of group
generators for the group being studied. A set of elements g1...gl in a group
G is said to generate the group G if every element of G can be written as a
product of elements from the list g1...gl and G = 〈g1...gl〉.

The great advantage of using generators to describe groups is that they
provide a compact way of describing the group. Suppose G has size |G| and
g1...gl is a set of elements in group G and g is not an element of 〈g1...gl〉.
Let f ∈ 〈g1...gl〉. Then fg /∈ 〈g1...gl〉 since if it were then we would have
g = f−1fg ∈ 〈g1...gl〉 which is false. Thus for each element f ∈ 〈g1...gl〉 ∃fg ∈
〈g1...gl, g〉 but fg /∈ 〈g1...gl〉. Thus adding the generator g to 〈g1...gl〉 increases
the size of the group being generated, from which we conclude that G must
have a set of generators containing at most log (|G|) elements.

A.3 Cyclic groups

A cyclic group G possesses an element a such that any element g ∈ G can
be expressed as an for some integer n. a is known as a generator of G and
G = 〈a〉. A cyclic subgroup H generated by g ∈ G is the group formed by
{e, g, g2...gr−1}, where r is the order of g and therefore, H = 〈g〉.

Appendix B

RREF: Maple Outcome

Here are shown the results provided by Maple after going through the im-
plementation of RREF form in Maple as described in section 3.1. First the
random stabilizer array takes the following form as presented by Maple,

RSA :=



 0 1

1 0

  1 0

0 −1

  1 0

0 1

  1 0

0 1

  1 0

0 1


 1 0

0 −1

  0 1

1 0

  1 0

0 −1

  1 0

0 −1

  1 0

0 1


 1 0

0 1

  1 0

0 −1

  0 1

1 0

  1 0

0 1

  1 0

0 −1


 1 0

0 1

  1 0

0 −1

  1 0

0 1

  0 1

1 0

  1 0

0 1


 1 0

0 1

  1 0

0 1

  1 0

0 −1

  1 0

0 1

  0 1

1 0




After going through the commutation relation algorithm 1, to check

whether the stabilizer sets commute with one another, the following output
should be presented,

1, 2, Check =

 0 0

0 0


1, 3, Check =

 0 0

0 0



42

43

1, 4, Check =

 0 0

0 0


1, 5, Check =

 0 0

0 0


2, 3, Check =

 0 0

0 0


2, 4, Check =

 0 0

0 0


2, 5, Check =

 0 0

0 0


3, 4, Check =

 0 0

0 0


3, 5, Check =

 0 0

0 0


4, 5, Check =

 0 0

0 0



44 APPENDIX B. RREF: MAPLE OUTCOME

After going through algorithms 3 to 8, the following outcome is produced
with intermediate steps which are presented on request, in order to produce
the final result,

‘LinearAlgebra:-Column‘ = 1

ElementaryOperation1 − RowSwapKU

 0 1

1 0

  1 0

0 −1

  1 0

0 1

  1 0

0 1

  1 0

0 1


 1 0

0 −1

  0 1

1 0

  1 0

0 −1

  1 0

0 −1

  1 0

0 1


 1 0

0 1

  1 0

0 −1

  0 1

1 0

  1 0

0 1

  1 0

0 −1


 1 0

0 1

  1 0

0 −1

  1 0

0 1

  0 1

1 0

  1 0

0 1


 1 0

0 1

  1 0

0 1

  1 0

0 −1

  1 0

0 1

  0 1

1 0




ElementaryOperation2 − RowSwapKU + 1

 0 1

1 0

  1 0

0 −1

  1 0

0 1

  1 0

0 1

  1 0

0 1


 1 0

0 −1

  0 1

1 0

  1 0

0 −1

  1 0

0 −1

  1 0

0 1


 1 0

0 1

  1 0

0 −1

  0 1

1 0

  1 0

0 1

  1 0

0 −1


 1 0

0 1

  1 0

0 −1

  1 0

0 1

  0 1

1 0

  1 0

0 1


 1 0

0 1

  1 0

0 1

  1 0

0 −1

  1 0

0 1

  0 1

1 0





45

‘LinearAlgebra:-Column‘ = 2

ElementaryOperation1 − RowSwapKU

 0 1

1 0

  1 0

0 −1

  1 0

0 1

  1 0

0 1

  1 0

0 1


 1 0

0 −1

  0 1

1 0

  1 0

0 −1

  1 0

0 −1

  1 0

0 1


 1 0

0 1

  1 0

0 −1

  0 1

1 0

  1 0

0 1

  1 0

0 −1


 1 0

0 1

  1 0

0 −1

  1 0

0 1

  0 1

1 0

  1 0

0 1


 1 0

0 1

  1 0

0 1

  1 0

0 −1

  1 0

0 1

  0 1

1 0




ElementaryOperation2 − RowSwapKU + 1

 0 1

1 0

  1 0

0 −1

  1 0

0 1

  1 0

0 1

  1 0

0 1


 1 0

0 −1

  0 1

1 0

  1 0

0 −1

  1 0

0 −1

  1 0

0 1


 1 0

0 1

  1 0

0 −1

  0 1

1 0

  1 0

0 1

  1 0

0 −1


 1 0

0 1

  1 0

0 −1

  1 0

0 1

  0 1

1 0

  1 0

0 1


 1 0

0 1

  1 0

0 1

  1 0

0 −1

  1 0

0 1

  0 1

1 0





46 APPENDIX B. RREF: MAPLE OUTCOME

ElementaryOperation3 −KU + 1 SamePauliOperatorMatrixMultiply

 0 1

1 0

  1 0

0 −1

  1 0

0 1

  1 0

0 1

  1 0

0 1


 1 0

0 −1

  0 1

1 0

  1 0

0 −1

  1 0

0 −1

  1 0

0 1


 1 0

0 1

  1 0

0 −1

  0 1

1 0

  1 0

0 1

  1 0

0 −1


 1 0

0 1

  1 0

0 1

  0 1

1 0

  0 1

1 0

  1 0

0 −1


 1 0

0 1

  1 0

0 1

  1 0

0 −1

  1 0

0 1

  0 1

1 0




‘LinearAlgebra:-Column‘ = 3

ElementaryOperation1 − RowSwapKU

 0 1

1 0

  1 0

0 −1

  1 0

0 1

  1 0

0 1

  1 0

0 1


 1 0

0 −1

  0 1

1 0

  1 0

0 −1

  1 0

0 −1

  1 0

0 1


 1 0

0 1

  1 0

0 −1

  0 1

1 0

  1 0

0 1

  1 0

0 −1


 1 0

0 1

  1 0

0 1

  0 1

1 0

  0 1

1 0

  1 0

0 −1


 1 0

0 1

  1 0

0 1

  1 0

0 −1

  1 0

0 1

  0 1

1 0





47

ElementaryOperation2 − RowSwapKU + 1

 0 1

1 0

  1 0

0 −1

  1 0

0 1

  1 0

0 1

  1 0

0 1


 1 0

0 −1

  0 1

1 0

  1 0

0 −1

  1 0

0 −1

  1 0

0 1


 1 0

0 1

  1 0

0 −1

  0 1

1 0

  1 0

0 1

  1 0

0 −1


 1 0

0 1

  1 0

0 1

  1 0

0 −1

  1 0

0 1

  0 1

1 0


 1 0

0 1

  1 0

0 1

  0 1

1 0

  0 1

1 0

  1 0

0 −1




ElementaryOperation3 −KU SamePauliOperatorMatrixMultiply

 0 1

1 0

  1 0

0 −1

  1 0

0 1

  1 0

0 1

  1 0

0 1


 1 0

0 −1

  0 1

1 0

  1 0

0 −1

  1 0

0 −1

  1 0

0 1


 1 0

0 1

  1 0

0 −1

  0 1

1 0

  1 0

0 1

  1 0

0 −1


 1 0

0 1

  1 0

0 1

  1 0

0 −1

  1 0

0 1

  0 1

1 0


 1 0

0 1

  1 0

0 −1

  1 0

0 1

  0 1

1 0

  1 0

0 1





48 APPENDIX B. RREF: MAPLE OUTCOME

‘LinearAlgebra:-Column‘ = 4

ElementaryOperation1 − RowSwapKU

 0 1

1 0

  1 0

0 −1

  1 0

0 1

  1 0

0 1

  1 0

0 1


 1 0

0 −1

  0 1

1 0

  1 0

0 −1

  1 0

0 −1

  1 0

0 1


 1 0

0 1

  1 0

0 −1

  0 1

1 0

  1 0

0 1

  1 0

0 −1


 1 0

0 1

  1 0

0 −1

  1 0

0 1

  0 1

1 0

  1 0

0 1


 1 0

0 1

  1 0

0 1

  1 0

0 −1

  1 0

0 1

  0 1

1 0




And final going through the commutation relation algorithm 1 the fol-

lowing outcome should be received, proving the legitimacy of the stabilizer
array in its RREF form,

1, 2, Check =

 0 0

0 0


1, 3, Check =

 0 0

0 0


1, 4, Check =

 0 0

0 0


1, 5, Check =

 0 0

0 0


2, 3, Check =

 0 0

0 0


2, 4, Check =

 0 0

0 0


2, 5, Check =

 0 0

0 0



49

3, 4, Check =

 0 0

0 0


3, 5, Check =

 0 0

0 0


4, 5, Check =

 0 0

0 0



Appendix C

CNF Example [1]

Initial Random Stabilizer Array(RSA),

RSA :=



 0 1

1 0

  1 0

0 1

  1 0

0 1

  1 0

0 1

  1 0

0 1


 1 0

0 1

  1 0

0 1

  1 0

0 −1

  1 0

0 1

  0 −i

i 0


 1 0

0 1

  1 0

0 1

  0 −i

i 0

  0 −i

i 0

  1 0

0 −1


 1 0

0 1

  1 0

0 1

  0 1

1 0

  1 0

0 1

  0 1

1 0




Swap second column with the rightmost column NR and decrease NR

by 1,

RSA :=



 0 1

1 0

  1 0

0 1

  1 0

0 1

  1 0

0 1

  1 0

0 1


 1 0

0 1

  0 −i

i 0

  1 0

0 −1

  1 0

0 1

  1 0

0 1


 1 0

0 1

  1 0

0 −1

  0 −i

i 0

  0 −i

i 0

  1 0

0 1


 1 0

0 1

  0 1

1 0

  0 1

1 0

  1 0

0 1

  1 0

0 1




Perform single-qubit operation on the second column which is the leftmost

column of the active region known as NL,

50

51

RSA :=



 0 1

1 0

  1 0

0 1

  1 0

0 1

  1 0

0 1

  1 0

0 1


 1 0

0 1

  0 1

1 0

  1 0

0 −1

  1 0

0 1

  1 0

0 1


 1 0

0 1

  −1 0

0 1

  0 −i

i 0

  0 −i

i 0

  1 0

0 1


 1 0

0 1

  0 −i

i 0

  0 1

1 0

  1 0

0 1

  1 0

0 1




Perform single-qubit operation on the third column of the stabilizer array

or the second column of the active region,

RSA :=



 0 1

1 0

  1 0

0 1

  1 0

0 1

  1 0

0 1

  1 0

0 1


 1 0

0 1

  0 1

1 0

  0 1

1 0

  1 0

0 1

  1 0

0 1


 1 0

0 1

  1 0

0 −1

  0 −i

i 0

  0 −i

i 0

  1 0

0 1


 1 0

0 1

  0 −i

i 0

  1 0

0 −1

  1 0

0 1

  1 0

0 1




Perform a CNOT operation on the second column of the active region

with control column NL,

RSA :=



 0 1

1 0

  1 0

0 1

  1 0

0 1

  1 0

0 1

  1 0

0 1


 1 0

0 1

  0 1

1 0

  1 0

0 1

  1 0

0 1

  1 0

0 1


 1 0

0 1

  1 0

0 1

  0 −i

i 0

  0 −i

i 0

  1 0

0 1


 1 0

0 1

  0 1

1 0

  0 −i

i 0

  1 0

0 1

  1 0

0 1




Multiply the last row of the active region with its first row,

52 APPENDIX C. CNF EXAMPLE [1]

RSA :=



 0 1

1 0

  1 0

0 1

  1 0

0 1

  1 0

0 1

  1 0

0 1


 1 0

0 1

  0 1

1 0

  1 0

0 1

  1 0

0 1

  1 0

0 1


 1 0

0 1

  1 0

0 1

  0 −i

i 0

  0 −i

i 0

  1 0

0 1


 1 0

0 1

  1 0

0 1

  0 −i

i 0

  1 0

0 1

  1 0

0 1




Perform a single-qubit operation on the third column of the stabilizer

array, since KU and NL have been increased by 1,

RSA :=



 0 1

1 0

  1 0

0 1

  1 0

0 1

  1 0

0 1

  1 0

0 1


 1 0

0 1

  0 1

1 0

  1 0

0 1

  1 0

0 1

  1 0

0 1


 1 0

0 1

  1 0

0 1

  0 1

1 0

  0 −i

i 0

  1 0

0 1


 1 0

0 1

  1 0

0 1

  0 1

1 0

  1 0

0 1

  1 0

0 1




Multiply the fourth row of the stabilizer array with the third row,

RSA :=



 0 1

1 0

  1 0

0 1

  1 0

0 1

  1 0

0 1

  1 0

0 1


 1 0

0 1

  0 1

1 0

  1 0

0 1

  1 0

0 1

  1 0

0 1


 1 0

0 1

  1 0

0 1

  0 1

1 0

  0 −i

i 0

  1 0

0 1


 1 0

0 1

  1 0

0 1

  1 0

0 1

  0 −i

i 0

  1 0

0 1




Perform a single-qubit operation on the fourth column of the stabilizer

array,

53

RSA :=



 0 1

1 0

  1 0

0 1

  1 0

0 1

  1 0

0 1

  1 0

0 1


 1 0

0 1

  0 1

1 0

  1 0

0 1

  1 0

0 1

  1 0

0 1


 1 0

0 1

  1 0

0 1

  0 1

1 0

  0 1

1 0

  1 0

0 1


 1 0

0 1

  1 0

0 1

  1 0

0 1

  0 1

1 0

  1 0

0 1




Finally, perform a CNOT operation on the fourth column of the stabilizer

array,

RSA :=



 0 1

1 0

  1 0

0 1

  1 0

0 1

  1 0

0 1

  1 0

0 1


 1 0

0 1

  0 1

1 0

  1 0

0 1

  1 0

0 1

  1 0

0 1


 1 0

0 1

  1 0

0 1

  0 1

1 0

  1 0

0 1

  1 0

0 1


 1 0

0 1

  1 0

0 1

  1 0

0 1

  0 1

1 0

  1 0

0 1





