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Summary

Integration of Magneto Optical Traps in Atom Chips

Samuel Pollock

This thesis describes the manufacture and demonstration of microfabricated hollow pyramidal
mirrors for the purposes of integrated laser cooling and trapping of atoms on an atom chip. A
single incident circularly polarised laser beam is reflected inside the pyramid hollow creating
all the required beams of the correct polarisation to create a magneto optical trap (MOT).
Many pyramids can be manufactured on the same device to produce many cold atom sources
as the etching process is intrinsically scalable, with the number of simultaneous traps possible
only limited by the size of the input beam.

The pyramids created in silicon have an apex angle of 70°, and the principles of a MOT
created from the resultant irregular beam geometry were studied in a macroscopic glass model
of a 70° pyramid. The scaling of atom number with trap dimensions at small scales was exper-
imentally found to be well described by a power law with an exponent of 6. This value was
confirmed with simple theoretical considerations and numerical simulations of the motion of
incoming atoms into the pyramids.

An imaging scheme capable of resolving the atomic fluorescence from a strong background
of scattered light from the mirror surfaces was developed which offers the prospect of imaging
small MOTs containing on the order of 100 atoms inside the pyramids.

The processes required to create the pyramids in silicon by anisotropic etching in potassium
hydroxide are refined to produce structures on a mm-scale. The resultant surfaces are smoothed
using a process of isotropic plasma etching and finally coated with a metallic layer of suitable
reflectivity to create mirrors. These devices were tested and the cooling and capture of rubidium
atoms from a background vapour was demonstrated to result in a MOT of several 1000 atoms

at a temperature of ~ 170uK in a 4.2mm wide (3.0mm deep) silicon pyramid.
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Chapter 1

Atom Chips

This chapter details the motivation behind the research presented in this thesis. Initially an
overview of the field of ‘atom chips’ will be provided. I have chosen to break this down into a
discussion of ‘generations’ of experiments, where each generation builds upon the advances and
discoveries made in the previous one. It is not the intention to imply that experiments labelled
as an early generation are inferior to later generations, but instead that later generations use

a lot of now well-established techniques developed by early generations.

1.1 The Zeroth Generation - Pioneers

The focus of this thesis is research and development of new techniques for the advancement of
atom chip technology. The basic concept of the atom chip is a miniaturised device to perform
experiments on cold trapped atoms, essentially being an atomic-physics lab on a chip.

Atom chips arose from the field of atom-optics, where the motion of neutral atoms is
controlled using optical, magnetic and electric fields. The field of atom-optics was characterised
by the celebrated experiments of Stern & Gerlach, Dunoyer and Estermann in the early part
of the 20th century. It underwent a revolution in the late 1970s with proposals from Hénsch
and Schawlow [1], and Wineland and Dehmelt [2] that laser light could be used to cool atoms
and reduce their kinetic energy. This was experimentally realised for neutral atoms in 1982 by
Philips and Metcalf who were able to demonstrate reduction of the atomic velocity by 40% [3].
The same researchers went on to apply laser cooling to the practical realisation of magnetic
trapping of neutral atoms, first demonstrated in 1985 [4]. The interaction of alkali atoms (such
as Li, K, Cs etc.) with a magnetic field is particularly strong due to the presence of an unpaired
electron which results in an atomic magnetic moment of the order of the Bohr magneton. The
interaction energy between an atom and a magnetic field (=~ up |B]) is still significantly weaker
than an atom’s typical thermal energy, but the new laser cooling techniques of Hansch and
Schawlow allowed for the reduction of this thermal energy to the below the magnitude of the
trapping potential. The ability to manipulate atoms in magnetic traps in this way eventually
led to the first realisation of Bose-Einstein condensation (BEC) in a dilute gas of alkali atoms|5].

Magnetic traps on a chip using microfabricated conductors were originally proposed as one
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of many novel magnetic trap concepts in mid-1998 [6]. The small dimensions of the microscopic
conductors create steep gradients and large curvature leading to tightly confining potentials
for atoms a few microns away from the wires with much lower power consumption [7]. This is
a great advantage for the preparation of BECs, produced using radio-frequency evaporation of
atoms in magnetic traps, as the rate at which evaporation can proceed is faster in tighter traps.
Magnetically confined atoms in traps formed with microfabricated wires were experimentally
demonstrated in 1999 by Reichel et al. [8], and in 2000 by Folman et al.[9]. At roughly the
same time, teams at JILA and Harvard [10] [11] had been able to demonstrate guiding of atoms
on a chip.

The term ‘atom-chip’ was quickly adopted to describe integrated atom-optical surface de-
vices, created using state of the art microelectronic, micro electromechanical (MEMS) and
photonic microfabrication techniques. The hope was to eventually confine, control and manip-
ulate ultra cold atoms entirely using these techniques, allowing for a new generation of sensors
and quantum information devices. A definition of what could compromise an ideal-atom chip

was given by Folman et al [9].

“A final integrated atom chip should have a reliable source of cold atoms, for exam-
ple, a BEC, with an efficient loading mechanism, single mode guides for coherent
transportation of atoms, nanoscale traps, movable potentials allowing controlled col-
lisions for the creation of entanglement between atoms, extremely high resolution
light fields for the manipulation of individual atoms, and internal state sensitive de-
tection to read out the result of the processes that have occurred (e.g., the quantum

computation).”

Developments in fabrication of microwires using lithographic techniques over the next few
years enabled demonstration of new magnetic tools for the manipulation of atoms, such as

splitters, switches, linear atom colliders and novel magnetic transporters.

Figure 1.1: One of the original atom chips as demonstrated by Folman et al. in 2000[9]
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1.2 Generation I - Towards BEC

The next logical step marking the boundary of a new generation of atom-chips, was to take a
sample of cold atoms and cool them to quantum degeneracy using the early atom chips. The
possibility of on-chip production of BECs had been strongly debated as it was thought that
the local environment of the atom-chip would be too hostile for condensation. However, in
2001 two groups, one at the Max-Planck Institute in Munich and one at Tiibingen University,
within 4 days of each other successfully produced the first atom-chip Bose-Einstein Condensate
[12][13].

Early experiments discovered two major undesirable features arising from magnetic traps
created by microwires. Firstly, thermal fluctuation of the charges in the wire generates mag-
netic field noise causing decoherence through magnetic dipole spin-flip transitions[14]. Sec-
ondly, current in microwires does not flow perfectly along the length of the wire but meanders,
resulting in uneven magnetic traps which cause a BEC to break up in a process known as
‘fragmentation’[15]. The fragmentation of BECs in wire traps has been subsequently reduced
by up to two orders of magnitude by reduction in the geometric roughness of the wires using

improvements in the microfabrication process[16].

1.2.1 Permanent Magnet atom chips

An alternative to producing magnetic trapping fields on an atom chip using microfabricated
conductors is to use microscopic structures of permanent magnetisation [17]. This offers several
substantial advantages in that there is no power dissipation, no fluctuations in magnetic field
from temporal or spatial current variation, and near field noise from thermal electron movement
is avoided [18]'. Audio tape, floppy discs, videotape, magnetic and magneto-optical films have
been used to create microtraps which have all successfully held atoms at trap frequencies up
to IMHz (for comparison, one of the original BEC on a chip experiments created wire traps
with transverse frequencies of 6.2kHz [12]).

A chip made from a piece of commercial videotape has been demonstrated by Sinclair et
al.[18]. Magnetic traps are formed on the tape by writing a sinusoidal pattern of magnetization
along the length of the videotape. A bias field is added to create atomic waveguides, but due
to the low susceptibility and high coercivity of the videotape this does not result in erasure of
the patterns. BECs have been created in these waveguides and the magnetic traps have been
manipulated to form a conveyor belt for cold atoms, transporting them several mm across the
chip surface.

It has been demonstrated [19] [20] [15] that patterns of magnetization for atom traps can
be created in magneto optical films. Two notable examples of magneto optical materials used
are magnetically hard ferrite-garnet materials deposited on a dielectric substrate and Co/Pt

thin films which can create traps on the order of 1um in size. Traps are created by uniformly

!Permanent magnet atom chips do however still feature fragmentation which arises from imperfections in the

magnetic medium
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magnetising the film, then locally heating it with a laser in the presence of a weak field applied
in the opposite direction to the initial magnetization. Using this technique it is possible to
create any desired magnetization pattern in the film, traps can also be reconfigured in-situ,
as the only things required are an external magnetic field and a focused laser beam. The
magneto-optical films used by Shevchenko et al. [20] are transparent giving superb advantages
in optical access, and the ability to create a standard MOT by passing one MOT beam through
the chip itself.

1.2.2 Multi-Layer Magnetic traps on Chips

A recent development of note is the formation of a multi-layer atom chip, namely the com-
bination of a ‘carrier-chip’ with an ‘atom-optics’ chip. By separating the heavy-duty current
carrying structures responsible for trapping and guiding and the micron-sized conductor struc-
tures responsible for precision atom-optics manipulation, the atoms can be effectively shielded
from the harmful effects of Johnson noise and fragmentation (the atom-optics layer with which
the atoms interact only requires a tiny amount of metal). Another benefit with the multilayer
structure is that the chip does not need bulky and inaccurate external bias fields, as these can

all be generated on the chip[21].

1.3 Generation II - ‘Atom-Chip Devices’

As the techniques for production of on-chip BECs began to become established, experiments
could begin to exploit the unique features of atom-chips to create miniature integrated atom-

optical devices.

1.3.1 Atom Interferometers

The properties of atoms at ultracold temperatures have been used to demonstrate matter-wave
interference. Sensitive measurements of quantum phase using an interferometer means highly
sensitive devices can be created from atom-chips. For example condensates in interferometers
have been proposed for a measurement of the Casimir-Polder force[22], and to make a very
sensitive measurement of dg/¢[23]. Atom interferometry offers substantial advantages over
current techniques, in the case of Sagnac gyroscopes, an atomic implementation is theoretically
capable of improving the best conventional SNR by up to 101[24].

There are several techniques for realising the atomic implementation of the traditional in-
terferometer component, the beamsplitter, by means of dynamically splitting atoms trapped in
a single potential well into a double well (and back again). Atoms can be split using the optical
dipole force, or by using the effect of condensate fragmentation arising from inhomogeneities in
permanent magnetic trap [23]. However, these processes are generally not coherent, preserving
little phase repeatability between experiments [25].

The current most popular technique for atom chips is the use of Radio Frequency (RF)
dressed potentials to split a magnetic trap [26]. A BEC of 1.1 pum has been split to separations
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from 3.4 pym to 80um using a 50 pum wire. The potential barrier between the two wells can
be controlled with extremely high precision, creating either entirely separate, isolated wells or

allow access to the tunneling regime[25].

1.3.2 Non-interferometric sensing with BECs

Non-interferometric techniques have also been used to measure fields and forces using atom-chip
devices. For example a technique has been devised to sense the nature of electric and magnetic
fields close to a current carrying conductor. A one dimensional BEC close to the surface of
an atom chip has been used to measure variations in E or B from small perturbations to the
trapping potential causing fragmentation. This allowed for precision measurements to be made
close to an accuracy of 107?T in magnetic field, or the electric field induced by a charge of 10e
at a distance of 10pum[27]. The close proximity of the atom chip surface has also been used to
make a sensitive measurement of the Casimir-Polder force at distances as far away as 5um|[28].

The use of atom chips for sensing offers many advantages over other more tradition methods.
For example current magnetometers either offer high sensitivity at low spatial resolution (e.g.
with SQUIDs) or high spatial precision with poor sensitivity (Magnetic force microscopy), but
not both simultaneously. Sensing with BECs offers a good degree of spatial resolution and
sensitivity which conveniently straddles the region between these two current magnetometry

techniques|[27].

1.3.3 Magnetic Lattices

Periodic optical lattices are extensively used for manipulating ultracold atoms and for per-
forming fundamental physics experiments such as Mott insulator to superfluid transitions [29].
Periodic lattices also have potential application in quantum information science since they
may provide registers of single-atom qubits ,and can act as ‘quantum-simulators’ of condensed
matter systems [30]. Arrays of magnetic traps, or ‘magnetic lattices’ offer several advantages
over their optical counterparts. As the size of the traps is not fixed, the spacing between sites
can be made as large as required and is not limited to the wavelength of the laser forming the
lattice. This also implies much easier addressing of single sites with lasers. Each individual site
typically can also hold larger numbers of atoms (> 10° atoms per site) than optical lattices.
Magnetic lattices in 1D, 2D and 3D in two separate experiments have been demonstrated by
Grabowski et al.[31]. The traps can be achieved in an arrangement of overlapping layers of
perpendicular wires by varying the current directions in each wire. A figure detailing these
configurations is displayed in [31]. Permanent magnetic lattices have been demonstrated by
Singh et al. [19] and Whitlock et al. [32]. Whitlock created traps in a 300 nm-thick FePt film,
patterned using optical lithography to create an array of loffe-Pritchard traps with a density
of 1250 traps per square mm. Up to 500 atom clouds have been trapped in each site, and have
been cooled to degeneracy. By manipulating the external fie