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ABSTRACT

Achieving precise control over an array of ultracold molecules would provide a unique tool-set
for carrying out quantum simulations and quantum computations, as a result of the molecules’
rich internal structure. To realise this aim, the molecules have to be cooled and trapped. This
is much more difficult for molecules than for atoms due to their complex internal structure.
This thesis presents preliminary work towards realising a versatile, permanent magnet trap for
buffer gas cooled molecules. Atoms are used throughout to test the feasibility of the trap, as

they are easier to produce and detect.

Two novel methods for trapping buffer gas cooled atoms in a permanent magnet trap are
investigated. The first of these involves trapping the atoms directly from a cryogenic buffer gas
cooled ablation plume. Dy atoms, with a magnetic moment of 10up, are trapped with a lifetime
of 800 + 30 ps, thought to be limited by collisions with a high density of background buffer gas

atoms remaining in the trap region.

Information gained from the direct trapping experiments motivated the design of a second
trapping set-up. Here, a beam of Dy atoms is first extracted from a cryogenic buffer gas source,
and when this beam reaches the trapping region, a fraction of the atoms are stopped through
collisions with cold helium gas present in the trapping region. This second method reduces the
density of buffer gas required in the trap region. The trap lifetime achieved in this arrangement
of 810 + 40 ps is no longer than in the direct trapping experiments, but this arrangement is
much more stable and repeatable. The lifetime here is also thought to be limited by collisions

with background buffer gas atoms.
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CHAPTER 1

INTRODUCTION

Cold molecules are poised to provide a wealth of new science, even exceeding that of their
atomic counterparts. This is predominantly due to their vastly richer structure as a result of
rotational and vibrational energy levels. It is this complicated internal structure that also makes
molecules much more difficult to cool than atoms. As a result, the field of cold molecules is still
in its infancy compared to cold atoms, with the majority of the cooling and trapping techniques
described in this chapter having only been developed in the last decade, and many of them
much more recently than that.

With so much having already been achieved with ultracold atoms, such as precise control
in optical lattices [1] or the creation of BECs [2], one might wonder what exactly can be
accomplished with cold molecules that can not already be done with atoms. Some of these
reasons are summarised in section 1.1. Essential to the implementation of these are the cooling
and trapping of molecules, which are discussed in more detail in section 1.2. There are two
temperature regimes that are referred to when it comes to cold molecules: cold (1 mK-1K)
and ultracold (< 1mK). Different temperature regimes and molecule densities typically require

different cooling methods and allow for many different applications.

1.1 Applications of cold molecules

There are numerous research directions where cold molecules can be a real asset, some of which
are already being explored and others which will likely be possible in the near future with
the advancement of molecular cooling and trapping techniques. Two of the major research
directions for cold molecules are discussed in some detail in this section, which also highlights

some other applications.

10



1.1. APPLICATIONS OF COLD MOLECULES

1.1.1 Precision spectroscopy

One of the main uses of cold molecules is for precision spectroscopy and the testing of fundamen-
tal theories in laboratory-based experiments [3]. In some modern theories of particle physics,
the fundamental constants, such as the fine structure constant, are predicted to vary with time,
position or the local density of matter [4]. Cold molecules can be used to search for such vari-
ations by carrying out precise spectroscopy to measure the frequency of molecular transitions
in the lab, and comparing those to astronomical measurements. For example, ground state mi-
crowave transitions of OH molecules were measured precisely by using cold, Stark decelerated
OH molecules [5]. Comparing these to astrophysical measurements of the same transitions,
constraints could be put on the time evolution of the fine structure constant. Similarly, very
accurate measurements of microwave transitions in CH [6] were compared to data from the
interstellar medium in the Milky Way to constrain the variation of the fine structure constant
between the high density environment of the earth and the low density environment of the
interstellar medium. Additionally, there are suggestions that if the fine structure constant were
different in the past then there should be an associated change in the electron-proton mass ratio,
me/myp, which may be a lot larger. Atomic structure has almost no dependence on m./m,, but
molecular structure does through rotational and vibrational energy levels. There have been a
number of proposals to use molecular transitions to probe the time variation of m./m,, [7, 8, 9]
by comparing laboratory measurements with high redshift astronomical data. Cold molecules
would allow very accurate laboratory measurements of these transitions, putting ever tighter
constraints on the variation of these fundamental constants. Several of these measurements
have already been made [10, 11].

Cold molecules can also be used to measure the electric dipole moment (EDM) of the
electron much more sensitively than measurements made using atoms [12]. Unless time reversal
symmetry (T) is violated, the electron EDM should vanish entirely. Observing a non-zero
electron EDM would therefore be a measure of T violation, and by extension also CP violation.
With CP violation being necessary to explain the matter-antimatter imbalance in the universe,
it is clearly of great interest to make accurate measurements of the electron EDM. In the last
few years, first YbF molecules [13] and subsequently ThO molecules [14] have allowed the most
accurate measurements of the electron electric dipole moment to date, putting a new upper

bound on the electron EDM. The YbF experiment [13] used a room temperature supersonic
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1.1. APPLICATIONS OF COLD MOLECULES

beam of YbF molecules, whilst the ThO experiment [14] used a cryogenic buffer gas beam of
ThO molecules, helping them to improve upon the electron EDM measurement from [13] as the
slower beam increased their interaction time. One future possibility to improve the accuracy of
the electron EDM measurement is to create a molecular fountain by laser cooling YbF molecules
from a cryogenic buffer gas source [15], thereby increasing the interaction time even further.
With the Standard Model of particle physics predicting an almost zero value for the electron
EDM, searching for a non-zero value is a very powerful tool in determining the validity of
extensions to the Standard Model, each of which predict different, much larger, values of the

electron EDM [16].

1.1.2 Quantum information and quantum simulations

Cold polar molecules are of particular interest, as the large dipole-dipole interactions between
them could potentially allow them to be used for quantum simulations [17, 18] and quantum
computation [19]. An applied electric field polarises the molecules through the mixing of ro-
tational states. As these are close in energy, the field needed to fully polarise the molecules is
relatively small. This consequently allows these dipole-dipole interactions to be manipulated
with external DC electric fields and AC microwave fields [20] leading to tunable interactions
between the molecules. DeMille’s proposal for a molecular quantum computer [19] consists of
polar molecules arranged in a 1D optical lattice, with one molecule per lattice site. An external
electric field is applied to the 1D array, consisting of a constant bias field on top of a linear
field gradient, which allows the molecules to be addressed individually as they all experience
a different Stark shift. The two qubit states are the electric dipole moments (EDMs) of the
molecules, aligned either with or against the external electric field. The qubits are coupled
together through the dipole-dipole interaction, and transitions between qubit states to carry
out quantum computing operations can be driven by microwave pulses.

There are many quantum aspects of ultracold many-body systems that would be interesting
to simulate, but that are intractable on classical computers. Instead of simulating these quantum
processes classically, ultracold molecules can be used to directly simulate a complex quantum
system by engineering the system of molecules to have a Hamiltonian that matches that of
an interesting, but not fully understood many-body system. The long range dipole-dipole
interactions between polar molecules would provide a novel and versatile tool set to carry out

these simulations. Micheli et al. [17] have shown how such a toolbox of ultracold polar molecules

12



1.2. OVERVIEW OF MOLECULAR COOLING AND TRAPPING

in an optical lattice could be used in practice to carry out quantum simulations.

One of the major requirements to carry out quantum computation and quantum simu-
lations using ultracold polar molecules, is that the molecules must be confined to a one or
two-dimensional array such as an optical lattice [21]. This was recently achieved for the first
time in both a 2D and 3D optical lattice [22], starting to pave the way for some of these quantum

information and simulation applications to be realised.

1.1.3 Other applications

As well as the two major applications of cold molecules discussed above, there are several other
areas where cold molecules can be of great importance. One of these is in ultracold chemistry,
where cold molecules will allow accurate studies of chemical reactions at low temperatures,
and the role that quantum effects have on the reaction rates. Another, related direction is
to manipulate collisions of molecules at ultracold temperatures using external electromagnetic
fields, thereby achieving control over chemical reactions [23].

Nanodeposition of molecules onto solid materials has the potential to greatly advance litho-
graphic processes used to produce transistors on chips. Ordinarily, optical lithography is carried
out using a laser beam to transfer a pattern onto a light sensitive chemical on the substrate,
with subsequent chemical treatments then depositing the desired material onto the pattern.
The size of the features that can be created in this way is limited by the diffraction of the laser
light. Atomic/molecular lithography would deposit the atoms/molecules directly on the surface
from a cold beam, thereby removing diffraction as a limiting factor and allowing the creation of
much smaller features. Atomic lithography is already well established, for example with laser
cooled Cr [24] or Cs [25] atoms. Extending this to cold molecules would allow for much greater

versatility.

1.2 Overview of molecular cooling and trapping

The field of molecular cooling and trapping is fast expanding, with new techniques continu-
ally being developed and improved. The complicated energy level structure that makes cold
molecules so appealing for new research, at the same time means that the cooling and trap-
ping techniques that are already well established for atoms (predominantly laser cooling) are

often not readily applicable to molecules. Laser cooling in atoms works because they contain
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1.2. OVERVIEW OF MOLECULAR COOLING AND TRAPPING

a closed multilevel system that allows many absorption and emissions cycles, and hence mo-
mentum transfer from a large number of photons from the laser beam. Molecules on the other
hand, have no such closed system as emission can occur to a number of different vibrational
states. This makes laser cooling molecules extremely difficult. Nonetheless, several methods
are currently in existence that are able to cool molecules and, as described in [26], they can be
divided into two categories: direct and indirect. The vast majority of these molecular cooling
and trapping techniques are currently carried out with diatomic molecules, however polyatomic
molecules are also increasingly being investigated (see for example [27] and [5]), particularly as

they may allow the study of interesting phenomena in cold chemistry [28].

1.2.1 Cooling methods

Indirect cooling

Indirect methods involve creating cold molecules from their constituent atoms that have already
been cooled and trapped using laser cooling— the main advantage here being that the methods
for the cooling and trapping of atoms are already very well established and are capable of
producing ultracold atoms with relative ease. Simply confining the constituent atoms to a trap
will not cause them to form molecules naturally as the density in the traps is too low, resulting
in a lack of 3-body collisions that would be required to form molecules. Additionally, forming
molecules from 3-body collisions would heat the molecules, which is undesired. As such, there
are two main ways to form molecules from ultracold trapped atoms: photoassociation [29] and
magnetoassociation [30].

Photoassociation (PA) is achieved by tuning a laser beam to a resonant transition from the
ground state of two free atoms to an electronically excited bound state of the molecule. This
produces a molecule in a weakly bound, highly excited vibrational state. From this state there
are then two possible decay channels: one to the bound electronic ground state of the molecule
and another to a pair of free atoms, which are lost from the trap. Decay to a deeply bound
molecular state is unlikely, due to unfavourable wavefunction overlap, and this makes it very
difficult to form vibrational ground state molecules in this way. Nevertheless, it is possible to
find suitable PA transitions with favourable decay channels that allow ground state molecules to
be formed. Some examples for these include LiCs created in the rovibrational ground state [31]

from a dual Li-Cs MOT, or more recently the formation of RbCs molecules in the rovibrational
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1.2. OVERVIEW OF MOLECULAR COOLING AND TRAPPING

ground state [32].

Magnetoassociation occurs via a Feshbach resonance, which is a resonance in the collision
cross-section that occurs when the energy level of a weakly bound molecular state crosses that of
the free atoms. Usually, the bound molecular state and the free-atom state have different mag-
netic moments and so a magnetic field can be applied to tune the states through the resonance.
There is an avoided crossing at the resonance, and by sweeping the magnetic field through this
avoided crossing, the free atoms can be turned into bound molecules. Contrary to PA, the
weakly bound molecule that is formed after a Feshbach resonance is in the electronic ground
state, albeit still in a highly excited vibrational state. Stimulated Raman adiabatic passage
(STIRAP) can then be used to coherently transfer the weakly bound Feshbach molecules into
the rovibrational ground state, as was done in 2008 with KRb molecules [33] and more recently
with RbCs molecules [34, 35]. The difficulty with forming molecules through Feshbach reso-
nances is that a suitable Feshbach resonance has to be found that can be swept with realistically
achievable magnetic fields, and these do not necessarily exist for every potential molecule.

Typical temperatures that can be achieved using these indirect cooling methods are hundreds
of uK for PA and hundreds of nK for magnetoassociation, mainly because the constituent
atoms are already at these temperatures before the molecules are formed. Whilst both of these
methods are currently capable of producing colder molecules than direct cooling methods, they
are limited to very specific species of molecules— those whose constituent atoms can be laser
cooled and trapped, and where suitable Feshbach or PA resonances can be found. For more
versatile and widely applicable techniques, we need to look at methods that cool the molecules

directly.

Direct cooling

Whilst direct methods are so far not capable of reaching ultracold temperatures, they are much
more versatile and have managed to create a wide variety of cold molecular species. Perhaps one
of the most versatile direct cooling techniques is through elastic collisions with a cryogenically
cooled buffer gas— buffer gas cooling. As this technique is used in this thesis, it is explained
in more detail in section 2.1. It typically involves introducing the molecules into a cold cell
of (often helium) buffer gas, and allowing the molecules to thermalise to the temperature of
the buffer gas through elastic collisions. This was first demonstrated for molecules in 1998

[36], achieving a temperature of 300 mK, and has since been applied to numerous molecules.
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Typically, temperatures achieved using buffer gas cooling are in the region of 1 K, depending on
the type of buffer gas used, and as such it is generally seen as a first stage cooling technique, with
further cooling required to get down to lower temperature regimes. It is, however, extremely
versatile and can, in theory, be applied to any molecule as it only relies on elastic collisions
with a buffer gas. A cold beam of buffer gas cooled molecules can also be created by having an
aperture in one side of the buffer gas cell [37]. Such a buffer gas beam has, for example, been
used to measure the electron EDM (see section 1.1.1), or it can be used as the starting point
for Stark deceleration (see below).

One of the major techniques for the direct cooling of molecules involves slowing down molecu-
lar beams using the Stark shift that molecular energy levels experience in an electric field [38, 39].
These Stark decelerators consist of an inhomogeneous electric field that causes molecules in a
low field-seeking state to decelerate. The fields are then switched appropriately to ensure that
the molecules in the beam are always travelling up the ‘potential hill’ and can thus be slowed
down. This technique has been used to decelerate a range of polar molecules including CO [38],
YbF [40] and OH [39], all of which were decelerated from a supersonic molecular beam. It is
also possible to Stark decelerate molecules from a buffer gas cooled molecular beam [41, 42]. As
these buffer gas beams have a lower starting velocity compared to room temperature supersonic
beams, Stark deceleration to rest is made significantly easier and therefore allows much heavier
molecules to be decelerated. Once these molecular beams have been slowed down they can be
loaded into a variety of molecular traps, discussed in section 1.2.2.

There has also been considerable progress towards the direct laser cooling of molecules [43],
despite the difficulty of doing this compared to atomic laser cooling. The problem with laser
cooling molecules is that molecules have multiple vibrational energy levels, with no selection
rules governing which vibrational state an electronically excited molecule decays down to. This
makes it difficult to find a closed cycling transition that allows enough absorption and emission
cycles for the molecules to be laser cooled, as the molecule will readily decay into a different
vibrational state that is not addressed with the cooling laser. The branching ratios for the
different vibrational levels an excited molecule can decay down to are determined by the Franck-
Condon (FC) factors. Therefore, molecules have to be found with favourable FC factors that
ensure that the vast majority of the excited molecules decay down to the same vibrational
state. Even then, repump lasers are still required for some of the other vibrational levels that

a significant fraction might decay down to. Despite these requirements, suitable molecules
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have been found, and laser cooling was first achieved in 2010 for SrF [43]. A beam of SrF
molecules has since also been slowed using laser beams [44], and a beam of CaF molecules has
been laser cooled and slowed [45]. Two-dimensional magneto-optical compression of a beam
of YO molecules has also been demonstrated [46], and most recently a 3D magneto-optical
trap of SrF molecules has been achieved [47]. A number of other molecules have also been
earmarked as potential candidates for laser cooling [48, 49]. The ability to laser cool molecules
effectively has huge potential for the applications discussed in section 1.1, however it will likely
remain applicable to only a very specific set of molecules as they require a very favourable set
of transitions.

Collisional cooling, which includes sympathetic and evaporative cooling, can be used to cool
the molecules down to the ultracold temperature regime, once they have been confined to a trap
(see section 1.2.2). This can only take place once a sufficiently high density of molecules has been
trapped and elastic collisions dominate over inelastic collisions. Evaporative cooling involves
successively removing molecules with the highest energies, leaving the lower energy molecules,
and thereby reducing the overall temperature of the sample. Elastic collisions constantly re-
thermalise the sample, ensuring that the high energy tail of the distribution gets repopulated
and can continue to be removed. Until recently, this technique had only been applied to trapped
atomic distributions, but it has now been demonstrated for OH radicals in a magnetic trap [50].
Sympathetic cooling would cool a sample of trapped molecules through elastic collisions with an
ultracold sample of trapped atoms. The ultracold atoms would essentially act as a refrigerant
for the molecules, bringing the molecular sample down to the ultracold temperature regime. A
number of schemes have been proposed to achieve this [51, 52|, although it has not been realised

to date.

1.2.2 Trapping methods

In order to study molecules over longer timescales, they can be held in traps made of electric
and/or magnetic fields. Electrostatic traps make use of the Stark effect that molecular energy
levels experience in electric fields. The Stark shift may be positive or negative, corresponding to
low field-seeking and high field-seeking states respectively. If the molecule is in a low field-seeking
state, a static trapping arrangement with an electric field minimum at the centre confines the
molecules. This was first demonstrated by Gerard Meijer’s group for ND3 [27], loaded from a

Stark decelerated molecular beam. There are, however, a number of disadvantages to trapping
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low field-seeking molecules: the ground state of every molecule is high-field seeking and has
the largest Stark shift; for heavy molecules, all the low-lying states are high-field seeking; and
non-adiabatic transitions can put molecules into high-field seeking states (discussed further
in section 2.2.1). As a result, it is often advantageous to be able to trap high field-seeking
molecules. This can be done in an AC electric trap, also first achieved by Gerard Meijer’s
group in 2005 [53]. This trap works by creating an electric field that has a maximum in one
direction and a minimum in the other and then rapidly switching the two directions so that
a high field-seeking molecule is trapped. Another proposed method for trapping ground state,
high field-seeking molecules is to confine them to an anti-node maximum of a standing wave
microwave field [54].

Magnetic trapping works on the same principle as electrostatic trapping, but this time makes
use of the Zeeman shift of the energy levels rather than the Stark shift. Creating a magnetic
field arrangement with a minimum at the centre would again allow low field-seeking molecules
to be trapped. As magnetic trapping is used throughout this thesis, the principles behind it
are explained in more detail in section 2.2. The first demonstration of the magnetic trapping of
molecules was in 1998 by J. Doyle’s group [36], where buffer gas cooled molecules were trapped
in a magnetic field generated by superconducting coils. This same method has since been used
to trap a variety of molecules, as shown in table 2.1. There are also other ways of loading
molecules into magnetic traps, for example from a Stark decelerated beam [55].

In addition to the two main magnetic and electric trapping methods, magneto-optical trap-
ping of molecules has also been realised in the last two years, first in 2D for YO [46] and then
in 3D [47, 56], loaded from a laser cooled buffer gas beam of SrF. The most recent of these
achieved a trap lifetime of 136 ms [56]. Since its first demonstration in 1987 [57], magneto-
optical trapping has become one of the most widely used trapping methods in atomic physics,
but had previously been limited to atoms for the same reasons as described above for laser
cooling. Demonstrating it for molecules therefore marks a significant step towards realising
some of the applications in section 1.1.

The ultimate aim in order to realise many of the applications described in section 1.1 is to
confine molecules to an optical lattice so that they can be used for quantum simulations and
computations. The interaction of atoms with light causes a ‘light shift’ of the atom’s ground
state by an amount equal to h§2?/(45), where Q? is proportional to the light intensity and &

gives the detuning of the light from resonance. If the laser light is detuned below resonance
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then the light shift is negative, with the highest intensity light causing the largest negative light
shift. This results in a force on the atoms attracting them towards regions of high intensity,
called the optical dipole force. This can be used to confine atoms to regions of high intensity
laser light, such as in the tight focus of a Gaussian laser beam in optical dipole traps [58]. First
demonstrated in 1987 [59], an optical lattice generates a standing wave pattern of light using
counter-propagating laser beams. This creates an ‘egg box’ potential of maxima (and minima)
of the light field, to which the atoms can be confined through the optical dipole force. By
having this array of ‘traps’, atoms can be confined individually, allowing unprecedented levels
of control over each atom [1]. It is therefore also the ultimate aim to be able to readily confine
molecules in the same way, such as first achieved for polar molecules in 2D in 2011 [60] and
in 3D in 2012 [22]. The molecules trapped in these cases were created from ultracold atoms
through magnetoassociation and STIRAP, as in [33], with lifetimes in the 3D optical lattice
up to 25s [22]. Reaching the ultracold temperature regime using direct cooling methods would

provide an even more versatile way of loading molecules into optical lattices.

1.2.3 More novel cooling and trapping methods

As well as the more universally used cooling and trapping techniques for molecules described
above, there have been a few more novel approaches that are highlighted here. The first of
these is by Lu et al. [61], where a cold, buffer gas cooled beam of CaF molecules is loaded
directly into a magnetic trap without any further laser cooling or Stark deceleration of the
beam. The beam is produced from a two-stage buffer gas cell [62], with a velocity as low
as 30m/s. A superconducting magnetic trap is placed downstream that creates a quadrupole
trapping potential for low field-seeking (LFS) molecules. As the LFS molecules approach the
trap, they will experience a potential hill that they have to get over to make it into the trap
region, which slows the molecules. As the molecules reach the maximum of this potential
hill, they are optically pumped into a high field-seeking (HFS) state. This results in them
experiencing a new potential hill on the approach to the trap centre where the magnetic field is
zero, slowing the molecules further. As they reach the trap centre, the molecules are pumped
back into the LFS state, leaving them trapped with a lifetime of 500ms [61]. This optical
pumping cycle allows the molecules to be slowed using only the magnetic field, and therefore
makes it a fairly versatile method that could be applied to other species.

Centrifugal forces have also been used recently to slow molecules [63]. A beam of molecules
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is guided by a spiral shaped electric quadrupole guide mounted on a disk. The molecules enter
the guide at the outer edge of the disk and the guide finishes at the centre of the disk, where the
molecules emerge. By spinning the quadrupole guide, the molecules experience a centrifugal
force barrier as they approach the centre of the disk, slowing them down. This allows the
authors to slow beams of polar molecules from 200m/s to 15m/s [63]. Another method that
has been used is to photo-dissociate a beam of NO2 molecules so that the NO fragment recoils
with a velocity that is exactly equal and opposite to the velocity of the beam, leaving the NO
molecules stationary [64]. These more novel trapping methods have all been developed in the
last few years. Their full potential has therefore not yet been fully investigated, and they may

well become more widely used in the future.

1.3 A permanent magnet trap for buffer gas cooled atoms and

molecules

The work presented in this thesis is aimed at realising a simple, versatile permanent magnet
trap for buffer gas cooled molecules, from which further cooling can then take place to reach
the ultracold temperature regime. To investigate the feasibility of the trapping arrangements
in this thesis, atoms are used throughout as they are easier to produce and detect. Once it has
been established that the trapping arrangement works for atoms, it is then a fairly simple step
to use the same arrangement for molecules, since the methods we use are applicable to both
atoms and molecules.

The experiments in this thesis share some similarities with traditional buffer gas magnetic
trapping experiments [36], and some major differences. We use permanent magnets rather than
superconducting coils as this leads to a much simpler experimental set-up, and the geometry and
arrangement of the magnets can be easily adapted in order to suit the requirements of the trap.
However, permanent magnets do not provide as high a trapping field as the superconducting
coils. The traps used in this thesis also have a much more open geometry, rather than the
traditional, fully enclosed buffer gas cell, to allow the buffer gas to leave the trap region more
quickly once the atoms have thermalised.

Magnetic trapping of neutral atoms goes back a long way, with the first such experiment
carried out in 1985 [65], where laser cooled neutral atoms were confined in a quadrupole trap

made up of two anti-Helmholtz coils (see figure 2.3 for an example of such a set-up). Magnetic
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trapping of buffer gas cooled neutral atoms has since been achieved in the Doyle group [66],
where superconducting anti-Helmholtz coils were used to create the quadrupole trapping field.
Trapping atoms using permanent magnets is not a new venture either [67], however the atoms
here had to be loaded into the trap from an optical molasses set-up. More recently, photodisso-
ciation of a molecular beam of Bro molecules has been used to trap Br atoms using permanent
magnets [68]. Molecules have also been loaded into a permanent magnet trap from a Stark
decelerated beam [55]. Both of the atomic species used in this thesis, dysprosium and lithium,
have previously been buffer gas cooled and magnetically trapped using superconducting coils
[69, 70]. However, buffer gas loading of a permanent magnet trap has not been achieved before.

This thesis begins with an overview of the theory behind buffer gas cooling and magnetic
trapping, presented in chapter 2. Chapter 3 then discusses different permanent magnet arrange-
ments that were considered to provide the trapping field. Two different methods for trapping
buffer gas cooled atoms are subsequently presented. The first of these involves directly trapping
the atoms from a buffer gas cooled cloud by placing two permanent magnets around the region
where the cloud is formed. This is presented in chapters 4 and 5 for Li and Dy respectively.
Knowledge gained from these experiments motivated the second method of trapping Dy atoms
from a buffer gas cooled beam, presented in chapter 6. The results are summarised in chapter

7, where some future improvements to the set-up are also discussed.
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CHAPTER 2

BACKGROUND & THEORY

2.1 Buffer gas cooling

2.1.1 The principle

Buffer gas cooling works by allowing molecules to thermalise with a cryogenically cooled helium
buffer gas at 4 K through elastic collisions. This was first demonstrated, for CaH molecules, by
J. Doyle’s group [71, 36], and has now been used to cool a number of molecular species (see
table 2.1). Figure 2.1 shows a schematic for a typical buffer gas experiment. Helium is used
to cool the cold plate (and hence cold cell) of a cryocooler to 4K. The helium buffer gas is
then allowed to flow, either continuously or pulsed, into the cold cell through the inlet, and
thermalises to 4 K through collisions with the cold plate and the walls of the cell. The desired
molecules are then loaded into the cell and, through elastic collisions with the helium buffer gas,
thermalise down to 4 K. It is not possible to use the cold plate to cool the molecules directly
as the vapour pressure of molecules at low temperatures is essentially zero, meaning that the
molecules would stick to the surface of the cold plate [72].

A common method for introducing the desired molecules inside the cell is by laser ablation
of a suitable target (see section 2.1.2), which releases the molecules directly into the buffer
gas. Whilst this is probably the most widely used method, there are several other methods
that have been used to load molecules into buffer gas cells. The two main alternative methods
are beam injection and capillary filling. Beam injection involves creating an aperture in one
side of the buffer gas cell which allows a room temperature beam of the molecules to enter
the cell and thermalise with the buffer gas, as used for NH molecules in [73]. This requires

finely balancing the helium density inside the cell and the size of the aperture to make sure
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Figure 2.1: Diagram of a typical buffer gas cooling set-up. Cold helium is used to cool the cold
plate, and hence the cold cell, to 4 K. Helium gas is then pumped into the cold cell and allowed
to thermalise to the temperature of the cell walls. Laser ablation of the solid target creates
the desired molecules inside the cell. These then thermalise with the cold helium gas through
elastic collisions.
that enough molecules make it into the cell with a high enough helium density for them to
thermalise, without the outflow of helium from the same aperture pushing the molecules back
out of the cell. These problems are avoided in capillary filling, where a capillary tube connects
a room temperature molecular gas reservoir with the cold buffer gas cell, with the walls of the
capillary tube guiding the molecules into the cell. This was first demonstrated for CO molecules
in [74] and has since been demonstrated for a number of molecules, including O4 [75] and ND3
[76]. Capillary filling has its own drawbacks, predominantly due to the fact that the capillary
has to be kept at a temperature above the freezing point of the molecules. This means that a
significant heat load might be deposited onto the buffer gas cell, raising its temperature, as well
as the possibility of the end of the capillary tube becoming cold enough to freeze the molecules
before they reach the buffer gas. As suitable solid targets were readily available for both of the
atomic species buffer gas cooled in this thesis, laser ablation was used for both of these.

The main advantage of buffer gas cooling over other molecular cooling techniques is that it
is incredibly versatile, as it only relies on elastic collisions between the molecules of interest and
the buffer gas. Therefore, in theory, it can be applied to many different species of molecules. As

well as this, it is capable of producing higher density molecular clouds than Stark deceleration
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(10 ecm ™3 as opposed to 10%cm™2) [26]. Once the molecules have been loaded into the buffer
gas cell, they can either be studied in detail by allowing them to diffuse to the cell walls; they
can be extracted from the cell to form molecular beams; or they can be magnetically trapped.

These are discussed in more detail in sections 2.1.2, 2.1.3 and 2.2 respectively.

2.1.2 Gas dynamics inside a buffer gas cell
Laser ablation

Laser ablation is a process that involves removing material (in this case the particles of interest)
from a solid target through absorption of a laser pulse. A high enough intensity laser beam
will cause the formation of a plume of material from the target [77], which is the desired effect
to introduce molecules into the buffer gas cell. The higher the intensity of the laser beam, the
more molecules will be released from the target, however the precise number of molecules re-
leased during ablation is very hard to determine theoretically due to the complicated interaction
between the solid and the laser light. Even though the process has a highly complicated nature
and is poorly understood, some estimates can be made for the number of molecules released
from the target during the ablation process by considering the absorption of laser light by a
target material [78]. In order for molecules to be released from the target, the target material
has to be vaporised. The energy required to convert a mass m of material into a vapour can be
given by [78],

E=m(Cs(Ty, —T)+ Cr(Ty — Trn) + Ly + Ly), (2.1)

where Cs and C7, are the solid and liquid specific heat capacities, T, and T, are the melting
and boiling points of the material, L; and L, are the latent heats of fusion and vaporisation
and T is the initial temperature of the material. Assuming that Cs ~ Cp = C, the mass of

material released from a target is given by

E
C(Ty—T)+ Ly + Ly

(2.2)

m =

The energy that is absorbed by the material, E, can be written as £ = E,(1 — R), where E,
is the energy of the laser pulse incident on the target and R is the reflectivity of the target

material. Hence, the number of atoms/molecules released from the ablation target during a
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single laser pulse is given by

E,(1-R)

n= ,
mmolC(Tv — T) + Lf + L,

(2.3)

where my,, is the mass of an individual atom/molecule. This gives an upper limit to the
number of atoms/molecules that can be produced through ablation as it assumes that all of the
absorbed energy goes towards bringing the particles to boiling point, whereas in reality part of
the energy will heat the surrounding target material. It also assumes constant heat capacities
and ignores the fact that the mass released from the target will consist of other ablation by-
products as well as the desired atoms/molecules. The ablation pulses used in the experiments
in this thesis have a pulse width of 5-7ns and typically have an energy of 10mJ (see section
4.2.4). Taking Li as an example, inserting the appropriate constants and assuming an ablation
pulse energy of 10mJ, equation 2.3 puts an upper limit of 10'® on the number of Li atoms that

can be produced from a single ablation pulse.

Collisions and thermalisation

After the ablation, the molecules must thermalise with the helium buffer gas before they diffuse
to the cell walls. This occurs through elastic collisions ! between the molecules and the helium
which cools both the translational and rotational energy of the molecules [80]. Thermalisation
of the translational temperature can be modelled using a hard sphere model, where m denotes
the mass of the buffer gas atom and M the mass of the molecule being cooled. Using energy and
momentum conservation (the conditions for an elastic collision), the difference in temperature

of a molecule before and after a collision with a buffer gas atom is given by [80],
AT = (Tr — Tp)/k, (2.4)

where Tg and 717 denote the temperature of the buffer gas and the initial temperature of the

molecule respectively and x = (M +m)?/(2Mm). Rewriting this as a differential equation,

R T (25)

! An elastic collision is a collision in which the total kinetic energy of the particles involved does not change,
however their individual kinetic energies can change. This is in contrast to inelastic collisions where the internal
energy of the particles, and hence total kinetic energy, can change. [79]
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where T; is the temperature of the molecule after ¢ collisions with the buffer gas. The solution

of the above equation is as follows,
T;)Tg = (T;)Tp — 1)e” /% + 1. (2.6)

Doing a rough order of magnitude calculation assuming 77 ~ 10000K, Tp ~ 1 K and M/m =
50, around 100 collisions are necessary in order to cool the molecules to within 30% of the buffer
gas temperature.

In order to study the molecules at low temperatures, or extract a cold beam from the cell,
it is essential that the molecules thermalise with the helium buffer gas before they reach the
cell walls. To ensure this is the case, the buffer gas density must be high enough. The rate
of elastic collisions between the molecules and the buffer gas depends on the elastic collision
cross section. Assuming a typical elastic collision cross section, o, between molecules and the
buffer gas of around 107'* cm?, and a mean free path of the molecules of A\ = 1/(v/2no), the
minimum buffer gas density required for molecules to thermalise before they reach the cell walls
of a typical 1cm diameter cell is of the order of 106 cm™3. This also sets a lower limit on the
temperature of the buffer gas as the helium will have a certain saturated vapour density at low
temperatures. In order to achieve a density of 10'%cm™3, the helium can be no colder than
700 mK [80].

There have been several studies of the formation, diffusion and thermalisation of molecules
produced by laser ablation of a target inside a buffer gas cell. One is the work of Skoff et al.
[81], who studied the dynamics of YbF molecules using absorption imaging and spectroscopy.
The authors found that the YbF molecular plume expanded ballistically after being formed at
the target and that this expansion was subsequently arrested by the helium buffer gas. The
higher the helium density inside the cell, the closer to the ablation target the expansion was
arrested, with the entire cell being filled with molecules if the helium density is low enough.
The subsequent diffusion of the molecules through the helium was modeled and experimentally
observed to find the diffusion cross sections for YbF in He at several temperatures. They also
found that both the rotational and translation temperature of the molecules thermalise with
the buffer gas on a timescale shorter than 50 us when the helium density is 102 m~3. However,
the initial ballistic expansion leads to some heating of the buffer gas, which was subsequently

observed to cool back to the temperature of the cell walls on a longer timescale. Another
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study is that of Lu and Weinstein [82], who investigated the dynamics and collisions of TiO
molecules in a helium buffer gas at 5 K. They found that the decay lifetime of molecules inside
the cell initially increases linearly with increasing helium density, as expected if the lifetime is
dominated by diffusion to the cell walls, where the molecules are lost as they condense onto the
cold surface. However, above a helium density of about 10?2 m~3, the lifetime actually starts
to decrease with increasing helium density as a result of inelastic collisions which cause the
molecules to decay into the lowest vibrational state, which the authors do not detect. A similar
pattern was found in [83], where gold, silver, lithium and rubidium atoms were studied in several
different buffer gases: helium, nitrogen, neon and argon. However, in this case the decrease in

3 was attributed to dimer formation,

lifetime above buffer gas densities of approximately 1024 m™
atom loss on clusters or atom loss on impurities in the buffer gas, rather than inelastic collisions.
Additionally, the authors found that the decay time did not depend on which type of buffer gas
was used.

The calculations in this section have provided an indication of the typical buffer gas densities
required inside a buffer gas cell and have given an upper limit to the number of atoms/molecules
that can be produced from an ablation pulse. As the experiments in this thesis have an open ge-
ometry, rather than the typical closed buffer gas cells, the helium will dissipate over time rather
than remaining at a constant density. This has to be taken into account in our experiments,

and this helium dissipation is studied in more detail throughout the experimental chapters 4, 5

and 6.

2.1.3 Beams from a buffer gas cell

Another application of buffer gas cooling is the creation of atomic or molecular beams. This
is achieved by slightly modifying a standard buffer gas cell to include a small aperture in one
face, as shown in figure 2.2. Molecules are then introduced to the buffer gas cell as normal,
and after they have thermalised with the buffer gas, both the molecules and the buffer gas are
allowed to escape the cell through the aperture. Usually, the aim is to produce a high-flux
beam of cold, slow-moving molecules. Hence, care has to be taken to ensure that the helium
density inside the cell is high enough for the molecules to efficiently thermalise, but low enough
to prevent the molecules exiting the cell at too high a speed [84]. The density of the helium
inside the cell is kept constant by allowing a continuous flow of helium into the cell to replace

that lost through the aperture [80]. In order to ensure that only the desired molecules remain
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Figure 2.2: Diagram of a typical buffer gas beam set-up, showing how the aperture in the cell
allows the molecules and buffer gas to escape. The flow of helium through the inlet is balanced
with that escaping from the aperture to keep a constant helium density inside the cell. The
magnetic guide placed near the aperture selects only the desired molecules from the beam.

in the beam, a curved magnetic guide can be placed at the exit of the cell [75]. A fraction of
the molecules follows the guide, whereas the non-magnetic helium atoms do not. The magnetic
guide only works for paramagnetic molecules, however a source of cold polar molecules can
also be guided using an electrostatic guide. This has been demonstrated in [85] with a room
temperature effusive source of ammonia molecules, and later from a cryogenic buffer gas source

of ND3 molecules in [86] and [76].

2.2 Magnetic trapping

The aim of this work is to demonstrate magnetic trapping of buffer-gas cooled atoms and
molecules. The phenomenon that makes magnetic trapping of both atoms and molecules possible
is the Zeeman shift of the energy levels in a magnetic field. This shift arises due to the interaction
between the magnetic field and the magnetic dipole moment of the atoms or molecules, and
leads to an energy shift that, in low fields (where the Zeeman splitting is much less than the

splitting between neighbouring energy levels), is proportional to the magnitude of the magnetic
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field,

AE(:U7y,Z) =grmgrUuB B($7y,Z), (27)

where gr is the Lande g-factor, mpg denotes which magnetic sub-level the atom or molecule
is in and pp is the Bohr magneton. The gr mp up factor is called the magnetic moment of
the atom or molecule in this particular quantum state. It is also made explicitly clear that
the magnetic field in a typical magnetic trap is a function of x, y and z. Since each energy
level, labelled by F, is split into mp sub-levels from —F' to F, it is clear from equation 2.7
that the energy of some mp levels will increase with magnetic field and the energy of others
will decrease. Particles in a state with positive magnetic moment are low field-seeking as their
energy increases with magnetic field and hence their energy will be lower in a weaker field. For
the same reason, particles in a state with negative magnetic moment are high field-seeking.
For higher fields, where the Zeeman splitting becomes comparable to the difference in energy
between neighbouring levels, this linear dependence no longer holds. An example of this can be
seen in figure 4.2, which shows the energy level dependence with magnetic field for the ground
state of lithium. In this regime, some states turn over from low to high-field seeking states, or
vice versa, due to the mixing of states of different F but same mp. Only the ‘stretched’ states
(those with biggest F and biggest |mp|) remain unaffected and continue to shift linearly as they
have no other states to mix with. When the Zeeman splitting becomes much larger than the
energy difference between neighbouring levels — the so called strong field regime — the Zeeman
shift again becomes linear, however some states will have turned from high to low-field seeking

or vice versa (see figure 4.2). In this strong field regime the energy shift is now given by [87],

AE = (mjg; — migr)ppB + Amimy, (2.8)

where gy and g are the g-factors corresponding to the total electronic angular momentum and
to the nuclear spin angular momentum, and A is the hyperfine constant. In the strong field
regime the energy shift no longer depends on which F' level the atom is in, but instead on the I,
J, mr and mj sub-levels. These are now the better quantum numbers to describe each energy
level, as illustrated in figure 4.2.

From equation 2.7, the force on the atom or molecule that arises due to the Zeeman shift is
given by,

Force = —gpmp up VB(z,y, 2). (2.9)
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In order to confine atoms or molecules to a trap, their kinetic energy must be converted to
potential energy. This is achieved by designing a trap that has a magnetic field minimum at
the centre, with the field increasing in all directions away from the centre. One such design
that is commonly used is the anti-Helmholtz coil arrangement, shown in figure 2.3. This has a
magnetic field zero at the centre, with the magnitude of the field near the centre of the trap

increasing linearly in all directions away from the centre as [88],

B = A\/p? + 422, (2.10)

where A is the field gradient and p = 22 +y?. Particles in a weak field-seeking state can then be
trapped, as their internal energy levels (and hence potential energy) will increase away from the
trap centre, thus removing kinetic energy. From equation 2.9, it can be seen that this positive
magnetic field gradient results in a force on the particles back towards the centre of the trap.
For the particles to remain in the trap, their initial kinetic energy must be low enough that
they do not go beyond the confines of the trap before they are brought to a halt. Particles in a

strong field-seeking state are automatically lost from the trap. [89]
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Figure 2.3: (a) Anti-Helmholtz coil arrangement for a magnetic trap. With the currents in the
two coils in opposite directions a magnetic field zero is created at the centre of the trap. Near
the centre of the trap the magnitude of the magnetic field increases linearly with distance from
the centre. (b) The potential energy surface of a low-field seeking atom or molecule in the trap.

In order for the kinetic energy of the molecules to be low enough that they can be trapped
in this way, they must first be cooled. This must be done within the confines of the trap, which
is where buffer gas cooling comes in. The first demonstration of this by J. Doyle’s group [36]

used superconducting coils in an anti-Helmholtz configuration similar to that in figure 2.3(a)
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2.2. MAGNETIC TRAPPING

around the buffer gas cell. This led to a magnetic trap 3T deep, which, for low-field seeking
states of 1 up magnetic moment, corresponds to a 1.3K trap depth. This is more than deep
enough to trap a significant fraction of the buffer gas cooled molecules. Unfortunately however,
the presence of the buffer gas brings with it the added problem of trap loss through inelastic

collisions between the molecules and the buffer gas, which is explained in detail in section 2.2.1.

2.2.1 Trap loss
Spin-flip collisions

There are two main channels through which molecules can be lost from the trap. These are
in addition to the fact that some molecules are simply travelling too fast to be confined. The
first of these loss mechanisms is inelastic collisions between the molecules and the buffer gas.
Whilst elastic collisions are essential to ensure the molecules are fully cooled, inelastic collisions
in which the internal energy changes can result in the molecules ‘spin flipping’ into high field-
seeking states, thereby losing them from the trap. This is possible because a low field-seeking
molecule is in a higher energy state than a high field-seeking molecule, and therefore a collision
between the molecule and the buffer gas can result in the molecule ‘relaxing’ into a high field-
seeking state.

In atom-atom as well as atom-molecule collisions these spin flip transitions can occur through
three major channels: spin-exchange, dipolar relaxation and interaction anisotropy [80]. Spin
exchange involves the direct trading of spins between two collision partners, often as a result
of the interaction between the electron spin of one atom with the nuclear spin of the other
[90, 91]. However this is not an issue for collisions with He as it has zero electronic and nuclear
spin. Dipolar relaxation only occurs between two particles with magnetic moments— the spin-
spin interaction between the magnetic moments can then lead to angular momentum exchange
between the electrons and the relative motion of the particles [80]. This is again not applicable
to helium atoms, where the long-range interaction is instead mediated by the van der Waals
potential. Interaction anisotropy occurs as a result of the helium atom distorting the spatial
charge cloud around the trapped atom. For atoms with a non-zero orbital angular momentum
(i.e. non S-state atoms), a collision with a helium atom can induce an admixture of different
orbital angular momentum, My, states. The spin-orbit interaction in the atom then leads to

an admixture of different Mg states, and can therefore result in a spin-flip transition. On the
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other hand, atoms that are in the M} = 0 orbital angular momentum state have a symmetric
angular charge distribution, and hence require the helium atom to first mix in a state with
higher orbital angular momentum to induce a spin-flip transition. This is very rare due to the
large energy difference between the My = 0 state and higher orbital angular momentum states
[80] and therefore S-state atoms are much less susceptible to inelastic collisions than non S-state
atoms.

The three mechanisms described above apply as much to atom-atom collisions as atom-
molecule collisions, however there is an additional mechanism that allows a helium atom to
cause a diatomic molecule to spin-flip into a high field-seeking state. This is the interaction
between the helium atom and the molecule’s rotational wavefunction. Much in the same way
that an atom’s orbital angular momentum determines the angular charge distribution around the
atom, the rotational state of a molecule determines the lab-frame charge distribution around the
molecule. In the molecule’s rest frame, the charge distribution is likely to be highly asymmetrical
given that the two constituent atoms are nearly always different. However in the lab frame,
the rotation of the molecules has to be taken into account, which results in this asymmetry
being averaged out so that the helium atom essentially does not see it. In the rotational ground
state (R = 0), this rotation is spherically symmetric and therefore leads to a symmetric charge
distribution analogous to that of an S-state atom. This makes it difficult for a helium atom to
exert a torque on the molecule. Higher rotational states, on the other hand, are not spherically
symmetric, leading to asymmetric charge distributions around the molecule in the lab frame.
A collision with a helium atom can then easily couple to the rotational angular momentum of
the molecule by exerting a torque on it. There is then an interaction internal to the molecule
that couples the spin to the rotational wavefunction, the spin-rotation interaction [92]. These
two mechanisms can then combine to cause a spin-flip of the molecule. Due to the symmetry
of the molecule’s charge distribution in the lab frame, spin-flip collisions of rotational ground
state molecules are much less likely than molecules in a higher R state, and therefore makes it
desirable to trap molecules in the rotational ground state.

These loss processes mean that it is vital to ensure that the rate of elastic collisions between
the molecules and the buffer gas is much higher than the rate of inelastic collisions. As well as
this, to increase trapping lifetimes, it is important to remove the buffer gas from the cell after
thermalisation before the molecules have a chance to undergo spin-flip collisions. This can be

done by rapidly pumping out the helium through a hole in the side of the cell [93]. If this is
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achieved successfully then trap lifetimes are likely to be limited by effects such as Majorana

transitions (see below) or molecule-molecule collisions [80].

Majorana transitions

The second major loss mechanism in magnetic traps is through Majorana transitions near the
field minimum, which can flip the spin of the atom into a high field-seeking state. Near the
centre of the trap, where the field is very close to zero, the energy difference between the low
and high field-seeking states is very small. If, in addition to this, the field is changing rapidly
with position, this can lead to a non-adiabatic transition from the low to the high field-seeking
state [94, 95]. These transitions are often called Majorana transitions. The condition for the

atom to pass through the centre of the trap adiabatically is [89],

uB  1dB

1d5 2.11
n Bt (2.11)

where p is the magnetic moment of the atom and B is the magnetic field. If the fractional
rate of change of the magnetic field becomes comparable to the Zeeman splitting between
the low and high field-seeking states then Majorana transitions become likely. As a result, it
might be advantageous to have a non-zero trap minimum so that there is a much larger energy
difference between the low and high field-seeking states, and hence these Majorana transitions
are suppressed. This has been realised in several different magnetic trapping configurations

such as the Ioffe-Pritchard [96] and TOP [97] traps.

2.2.2 Molecular species trapped to date

Several different species of molecules have now been cooled and trapped using the technique of

buffer gas loading, details of which are summarised in table 2.1. This table shows only those

Species ‘ Temperature (mK) ‘ Trap Lifetime (s) ‘ Reference

CaH 400 0.5 [36]
CrH 650 0.12 (98]
MnH 650 0.18 98]
ND* 550 0.5 [72]
NH* 500 20 [99]

Table 2.1: The different species of molecules that have been buffer gas cooled and magnetically
trapped, showing the temperature and trap lifetimes (1/e lifetimes) achieved. *ND and NH
were loaded into the buffer gas cell using a molecular beam-loading technique rather than laser
ablation (see the references for details).
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molecules that have been cooled and trapped, however there are many additional species of
molecules that have been cooled using a buffer gas. Most of the trap lifetimes so far achieved
are of the order of 500 ms and are limited by the loss channels described in section 2.2.1. More
recently however, trapping of NH has been achieved with lifetimes of more than 20s [99]. This
was accomplished by creating an aperture at the back of the cold cell and sending in a pulse
of helium rather than a steady flow as was the case in previous experiments. This results in a
rapid decrease in the helium density after the molecules have been loaded into the trap, and
hence fewer spin-flip collisions leading to the much longer lifetimes that they observe [99]. In
addition to molecules, buffer gas loading has also been used to magnetically trap atoms, for
example in [66, 100]. All these species were trapped in a superconducting magnet arrangement,

with trap depths in the region of 3T, as opposed to the permanent magnets used in this thesis.

34



CHAPTER 3

MODELLING PARTICLES IN THE TRAP

Two different magnet arrangements were investigated in order to assess their suitability for the
trapping of Li atoms. As Li atoms are very easy to make (from ablation of a solid Li target)
and detect, they were deemed a suitable candidate to attempt the first trapping experiments.
As well as this, the inelastic scattering cross section between ground-state Li and He is much
smaller than the elastic scattering cross section so trap loss through spin-flip collisions should
be negligible [69]. The trajectories, phase space acceptance ! and trap loss of Li atoms in the
two different trapping arrangements were modelled, the results of which are presented in this

chapter.

3.1 Six-magnet trap

The first magnet arrangement that was investigated is shown in figure 3.1(a), with six NdFeB
magnets arranged with their north poles facing inwards to create a magnetic field zero at the
centre. The holes inside each magnet allow easy access to the trap for the ablation and detection
lasers. The Radia plug-in [101] for Mathematica was used to determine the shape and magnitude
of the magnetic field produced by this magnet arrangement, with a cross section of it shown in
figure 3.1(b). It is clear that this arrangement fulfils the requirement of having a magnetic field
minimum at the centre with the field increasing in all directions away from the centre. Figure
3.1(b) also shows the dip in the magnetic field around the edges at x = 0 and y = 0 due to the
presence of the holes in the magnets. This results in a slightly lower trap depth than would
have been achieved without the holes, however the holes are a necessary requirement to allow
laser access to the trap. The choice of this trap was motivated by the small magnetic field over

a large volume, which minimises the Zeeman broadening of the Li transition, making it easier

!The initial positions and velocities of particles that can remain trapped
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Figure 3.1: (a) First proposed arrangement of the six permanent NdFeB magnets making up
the trap, each with their north poles facing inwards to create a magnetic field zero at the centre.
The holes inside the magnets allow the ablation and detection lasers to enter the trap, with the
ablation target positioned inside one of the holes of the magnets. (b) Magnitude of the magnetic
field inside the trap with this magnet arrangement. A cross section of the field is shown in the
x-y plane at z = 0 (the centre of the trap). This magnet arrangement leads to a trap depth of
approximately 0.25T.

to detect. Additionally, it means that a large volume of the cloud of atoms buffer gas cooled in

the trap region will be at small magnetic field, and hence at the bottom of the trap potential.

3.1.1 Trajectories of particles in the trap

The trajectories of the particles inside the trap were modelled in Mathematica. By inserting
the magnetic field from figure 3.1(b) as a function of z, y and z into equation 2.9, the force on
a particle in the x, y and z directions can be found. The magnetic moment of the particle was
assumed to be 1 up, which is correct for the most favourable state in Li. A cloud of particles was
then created with random initial positions and a Maxwell-Boltzmann distribution of velocities
at 4 K. The force calculated from equation 2.9, along with the initial positions and velocities,
were then used to solve the equations of motion for each particle in the distribution. This gives
a trajectory as a function of time for all the particles in the trap. Particles whose trajectories
went beyond the boundaries of the trap because they were going too fast were deemed to be
lost from the trap and were ignored in any further calculations. Figure 3.2 shows a typical
trajectory of a trapped particle. Due to the ‘bucket’ like nature of the trapping field, the edges
essentially act as walls which the particles bounce off. This results in a very irregular trajectory

in which the particles spend most of their time in regions where the magnetic field is low— this
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will prove to be an issue when it comes to Majorana transitions (see section 3.1.2).
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Figure 3.2: 2D projection into the x-y plane of the typical trajectory of a particle in the
six-magnet trap (red line). A contour plot of the magnitude of the magnetic field is also
shown, with darker areas indicating low magnetic field and lighter areas high magnetic field.
Contours are labelled by their magnetic field values. The initial conditions for this trajectory
are: (z,y,2) = (—2.2,—-1.5,-2.1) mm and (vg, vy, v,) = (12.8,-11.2,—-10.5) m/s.

An initial distribution of Li atoms assumed to be at a temperature of 4 K due to thermali-
sation with the buffer gas was modelled. The fraction of particles lost over the edge of the trap
because they were travelling too fast was calculated to be 2 99.5%. This is a large fraction,
but is not unexpected since the trap depth of 0.25 T corresponds to a temperature of 0.11K,
far smaller than the initial temperature of the atomic distribution. The Maxwell-Boltzmann
velocity distribution gives the distribution of particle velocities at a particular temperature and

is given by

= 4 2%kpT 1

where kp is the Boltzmann constant, T' is the temperature, m is the mass of the particle and
v is the velocity of the particle. The maximum velocity a particle can have and still remain
trapped can be calculated by equating the kinetic energy of a particle with the potential energy

of the particle at the trap edge, i.e. the Zeeman shift at a field equivalent to the trap depth.
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This maximum trapping velocity is then given by

Utrap = \/ 2,U'Bdepth/m7 (32)

where p is the magnetic moment of the particle and Bygepep, is the trap depth. For Li atoms with
a magnetic moment of 1 pp in this trap with trap depth of 0.25 T, the maximum trap velocity is
20m/s. Integrating the Maxwell-Boltzmann distribution from equation 3.1 from 0 up to vipap,
with T' = 4K, we find the expected fraction of trapped atoms to be 0.63%. This is slightly
higher than the 0.5% trapped fraction calculated from the numerical simulations above. The
discrepancy is explained by the fact that, in the numerical simulations, the atoms are distributed
throughout the trap, with some starting part of the way up the potential hill, instead of them all
starting at the bottom of the potential as assumed in the analytical calculation. Both estimates
of the trapped fraction are very small, however since laser ablation typically produces in the
region of 102 —10'3 atoms [69, 83], only trapping < 0.5% of the particles is likely to be sufficient.

vy (m/s)
20

-20C

Figure 3.3: Phase space acceptance of the six-magnet trap in the x direction. The plot shows
the initial x position against initial velocity in the x direction (v;) of the particles that can be
trapped.

A good way to determine which particles are trapped is to plot the phase space acceptance
of the trap. This determines which initial positions and velocities of the Li atoms will remain
in the trap. A grid of starting positions against velocities was generated and subsequently the
trajectories of particles with each of these initial conditions were calculated. This was then used
to determine which initial conditions led to a trapped particle. Figure 3.3 shows the phase space
acceptance of the six-magnet trap in the x direction which, due to the symmetry of the trap,

will be the same in the y and z directions. The phase space acceptance is almost rectangular
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3.1. SIX-MAGNET TRAP

because the trap has a flat bottom and steep walls. The trapping region only extends to 5 mm
from the centre as this is where the magnets are located. The sharp cut-off in the velocity is a
result of the steep gradient of the magnetic field at the trap edges. The numerical value for the
one-dimensional phase space acceptance (calculated by integrating over the area of the plot in

figure 3.3) of this trap is 350 mmms 1.

3.1.2 Trap loss through Majorana transitions

Even though spin-flip collisions between Li and the He buffer gas are deemed negligible, Majo-
rana transitions to a high field-seeking state are still a possibility. These Majorana transitions
are driven by the motion of the atoms through regions where the magnetic field is close to zero.
To estimate the rate of Majorana transitions for the Li atoms, typical values of 1/B dB/dt and
the Zeeman shift in frequency units have to be compared [89], where B is the magnitude of the
magnetic field and ¢ is time. If the two quantities are comparable then the particle has entered
the ‘non-adiabatic’ region and a Majorana transition to a high field-seeking state becomes likely.
To obtain an estimate of the fraction of particles that undergo Majorana transitions, we used

the condition,
1dB S up B
B dt ho

(3.3)

If this condition was satisfied at any point during the trajectory of the particle then the particle
was deemed to have undergone a Majorana transition. Whilst this is not an exact calculation
since the transition still occurs with some non-unity probability, it should give a good order of
magnitude estimate of the rate of Majorana transitions.

We started with a cloud of Li atoms at 4 K, and of those atoms not lost over the edge of
the trap, the number lost through Majorana transitions was computed using the condition in
equation 3.3 and the relation dB/dt = (VB) - v. It was found that after 100 ms, approximately
80% of the atoms were lost through Majorana transitions. This fraction is much too high to
achieve a good trapping lifetime of the order of 1s (see table 2.1) as most of the atoms would
have been lost before then. This trap arrangement is therefore unlikely to be useful for Li atoms,
however it may still be used in the future for trapping molecules as they are heavier and would
therefore be travelling slower than the Li atoms, making the dB/dt term on the left hand side

of equation 3.3 smaller, thus reducing the Majorana transition probability.
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3.2 Quadrupole trap

To avoid Majorana transitions, a trap design was needed where the field was not so small over
such a large area. The dependence of the magnitude of the field with distance from the trap
centre is determined by the number of poles making up the trap. This dependence varies as
r"~1 [102], where r is the radial distance from the trap centre and n is the order of the multipole
field, which is equivalent to the number of magnetic dipoles making up the field. This means
that for the trap in figure 3.1, with six magnetic dipoles, there is an r® dependence of the
magnetic field, leading to the ‘bucket’ shaped trap. To counteract this, the number of poles
in the trap must be reduced. This led to the design in figure 3.4(a) using only two cylindrical
magnets with their north poles facing each other, giving a quadrupole trap.

From figure 3.4(b) it can be seen that this trap gives a similar field to that from the anti-
Helmholtz coil arrangement (figure 2.3), with the field increasing linearly with distance from
the centre rather than the previous r® dependence. Since only two magnets are used, there is
no need to incorporate any holes in the magnets as there is now full access to the trap in the
x — y plane for the ablation and detection lasers. This trap arrangement gives a slightly higher
trap depth than the trap described in section 3.1, but more importantly there is a very small
region where the field is close to zero, which should reduce Majorana transitions as the right
hand side of equation 3.3 is now much larger.

Modelling trajectories of Li atoms in the trap as in the previous section, with a distribution
of particles starting at 4 K, we found that < 0.75% were trapped (i.e. not lost over the edge of
the trap), a slight improvement on the six-magnet trap. Calculating the trapped fraction using
the Maxwell-Boltzmann distribution from equation 3.1 and the maximum trapped velocity from
equation 3.2, gives a value of 0.87%. This is again slightly higher than the fraction from the
numerical simulations, for the same reason as explained above in the six-magnet trap section.
Figure 3.5 shows a typical trajectory of a particle in this trap. Due to the nature of the trap, the
particles follow a much more regular pattern around the trap centre, and if they are in an orbit
around the centre, there is an angular momentum barrier that prevents them from reaching the
trap minimum. This should significantly reduce the likelihood of Majorana transitions.

Figure 3.6 shows the phase space acceptance of the quadrupole trap in both the x and z
directions. The phase space acceptance for this trap is much more oval than that for the six-

magnet trap in figure 3.3. This is because the field in this trap increases linearly with distance
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Figure 3.4: (a) Arrangement of the two NdFeB magnets in the trap with their north poles facing
inwards to create the field zero at the centre. The ablation and detection lasers can enter the
trap anywhere in the x — y plane. (b) Magnitude of the magnetic field inside the trap with this
magnet arrangement. A cross section of the field is shown in the z — y plane at z = 0 (the
centre of the trap). This arrangement leads to a trap depth of approximately 0.31 T
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Figure 3.5: 2D projection into the x-y plane of a typical trajectory of a particle in the quadrupole
trap (red line). A contour plot of the magnitude of the magnetic field is also shown, with
darker areas indicating low magnetic field and lighter areas high magnetic field. Contours are
labelled by their magnetic field values. The initial conditions for this trajectory are: (x,y,z) =
(—1.7,0.7,—6.8) mm and (vg, vy, v,) = (—15.2,7.8,3.1) m/s.
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from the centre, unlike the field for the six-magnet trap which is very flat. As a result, the six-
magnet trap is able to accept higher velocities towards the edges of the trap than the quadrupole
trap. We see from figure 3.6(a) that the size of the trapping region in the x direction (also in
the y direction due to symmetry) is much larger than for the six-magnet trap, extending to just
over 9mm from the centre. It is also a slightly deeper trap, shown by the higher maximum
velocity that remains trapped. In the z direction (see figure 3.6(b)) the size of the trapping
region only extends to 5mm from the centre as this is where the magnets are positioned. The
numerical values for the one-dimensional phase space acceptance in the x and z directions for
this trap are 460 and 300 mmms~' respectively. In the x and y directions this is significantly
higher than for the six-magnet trap, whereas in the z direction it is slightly lower.
Vyx (M/s)

20:
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Figure 3.6: Phase space acceptance of the quadrupole trap in both the x and z directions, shown
in (a) and (b) respectively. Due to the symmetry of the trap, the phase space acceptance in the
y direction will be the same as in the x direction.

Going through the same procedure as in section 3.1.2 for calculating Majorana transitions,

it was found that none of the Li atoms had undergone a Majorana transition after 100 ms. This
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is clearly a significant improvement on the six-magnet trap and led to the conclusion that this
magnet arrangement is suitable for trapping Li atoms.

When it comes to using this arrangement to trap molecules however, there might be a
different problem. Whilst spin-flip collisions between Li and the He buffer gas are negligible,
this is not the case for most molecules, as explained in section 2.2.1. Due to the nature of the
field in this trap, any inelastic collision between a molecule and He that causes the molecule
to spin-flip into a high field-seeking state will result in the molecule being ejected from the
trap very rapidly. This is due to the steep gradient in the field leading to a large force on the
molecule (see equation 2.9). In the first trap in section 3.1, a spin-flip transition does not result
in a rapid ejection of the molecule because the field gradient is small. There is an opportunity
for a further spin-flip collision, restoring the molecule to the trapped state before it is lost. The
helium density drops with time, and so after a certain time there are no more collisions. In the
first trap, molecules are only lost if they are in the high field-seeking state after the collisions
cease, while in the second trap they are lost as soon as a collision puts them into the high

field-seeking state.

3.3 Conclusion

Typical trajectories, trapped atom fractions and losses were studied for two different trapping
arrangements: a six-magnet trap and a simple quadrupole trap. The main findings are sum-
marised in table 3.1. The quadrupole trap has a slightly higher trap depth and phase space
acceptance, leading to the higher fraction of 4 K atoms that remain trapped. Numerical simu-
lations of particle trajectories were carried out to get an estimate of Majorana losses for both
trapping arrangements. The bucket-like nature of the six-magnet trapping field resulted in
severe Majorana losses as the particles spend a large amount of time in regions of near-zero

field. This made the six-magnet arrangement unsuitable for trapping Li atoms. In the simple

‘ Six-magnet trap ‘ Quadrupole trap

Trap depth (T): 0.25 0.31
Fraction of 4 K atoms trapped (numerical): 0.5% 0.75%
Fraction of 4K atoms trapped (theoretical): 0.63% 0.87%
1D phase space acceptance (mmms™!): 350 460 (x and y); 300 (z)
Majorana losses after 100 ms: 80% 0

Table 3.1: Summary of the key findings for the two trap arrangements, assuming an initial
atomic distribution at 4 K.

43



3.3. CONCLUSION

quadrupole trap, on the other hand, there are no Majorana losses in the same period. This
information, in combination with the higher trap depth of the quadrupole trap, led to the con-
clusion that the quadrupole arrangement is more suitable to trap atoms and hence was used

throughout the experiments in this thesis.
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CHAPTER 4

LITHIUM EXPERIMENTS

The ultimate goal of this experiment is to create a permanent magnet trap for molecules.
To investigate the feasibility of the trap, the first experiments focus on cooling and trapping
lithium atoms as their magnetic moment of 1up is similar to that of most molecules of interest.
Additionally, lithium is easy to detect and the inelastic scattering cross section between Li
and He is much smaller than the elastic scattering cross section so trap loss through spin-flip

collisions should be negligible [69].

4.1 Lithium details

Lithium is detected on the 671nm D2 25} 5(F = 2) — 2P35(F = 3) transition, shown in figure

4.1. The natural linewidth of the transition is 5.92 MHz so the hyperfine states of the upper
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Figure 4.1: Energy level diagram of “Li showing the D2 transition used for detection.



4.1. LITHIUM DETAILS

state are partly unresolved. This can lead to excitations to one of the other hyperfine states
and subsequently result in decay down to the ground F' = 1 state. Once they are optically
pumped into the F© = 1 ground state, the atoms no longer fluoresce since the transition from
F =1 is ~800 MHz from resonance. Figure 4.2 shows how the ground state energy levels of Li
change with magnetic field, calculated from the Breit-Rabi formula for J = 1/2 atoms [103]. As
the trap depth in our set-up is about 0.31T (see figure 3.4(b)), we will mostly be dealing with
atoms in the strong field regime. In this regime, all of the F = 1 states are high-field seeking.
Of the five F = 2 states, four are low-field seeking and can be trapped. The magnetic moment
of Li in the strong-field regime is 1 upg, which gives a trap depth in our trap of about 0.14 K.
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Figure 4.2: Zeeman shift of the 25, /2 ground state of lithium as a function of magnetic field.

The Zeeman splitting of the excited state in the magnetic field looks rather complicated
due to the presence of the four closely spaced hyperfine levels. In strong fields, the components
separate out into four groups, having m; = 3/2, 1/2, -1/2 and -3/2. Those with m; = 3/2
have a magnetic moment of 2 ug, compared to 1 ug for the ground state. With magnetic fields
in the trap ranging from 0 up to 0.31 T, this equates to a Zeeman broadening of the transition

of up to 4 GHz.
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4.2 Experimental set-up

4.2.1 Trap design

The modelling of particles in two different trapping arrangements in chapter 3 led to the con-
clusion that a simple quadrupole arrangement consisting of two cylindrical NdFeB magnets, as
shown in figure 3.4(a), would provide the most effective trapping field. The magnets, supplied
by eMagnets UK [104], have a diameter and height of 20 mm and are placed 10 mm apart. To
establish whether the field shown in figure 3.4(b), calculated using the Radia plug-in for Math-
ematica [101], is an accurate representation of the field, measurements of the fields produced
by the magnets were made using a Lake Shore Model 425 gaussmeter. Both the field from the
magnets individually and the field produced by the magnets in the arrangement from figure
3.4(a) were measured. These were both found to agree with the expected field from the Radia
calculations.

A suitable set-up had to be designed to hold the magnets in place in this arrangement. The
aim of the trap design was to ensure that it remained as open as possible, rather than the
closed cell used in the Doyle group experiments [36], allowing the helium to leave the trapping
area without the need to pump it away, thus resulting in fewer spin-flip collisions. This also
allows good access for the ablation and detection laser beams. With this in mind, the trap was
designed as shown in figure 4.3. An aluminium frame is placed on top of the cold plate to hold
the magnets. As the north poles of the two magnets face each other, the repulsion between them
keeps the upper magnet in place without the need to fasten it. The helium buffer gas is pulsed
into the trap region through a solenoid valve (Parker Series 9 pulsed valve), with a copper tube
mounted on top of the valve to guide the pulse towards the trapping region. Typically, the
valve delivers on the order of 10'® helium atoms per pulse [81]. The lithium is subsequently
ablated into the buffer gas from a solid target and allowed to thermalise, with the buffer gas
then escaping the trap region, leaving the lithium atoms trapped. The valve is sunk into the
copper cold plate to ensure that the buffer gas is as cold as possible before it enters the trap
region. We also have the option of placing a copper shield (heatsunk to the cold plate) around
the trap region to confine the initial helium pulse and give the atoms/molecules more time to
thermalise. Two methods of detection are possible in this set-up: absorption measurements

on a photodiode (see figure 4.6) and laser-induced fluorescence detection on a photomultiplier
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Figure 4.3: The design for the magnetic trap, showing how the magnets are held in place whilst
keeping the trap as open as possible. The copper cold plate is attached directly to the 4 K
cold plate of the cryocooler, with an aluminium frame placed on top to hold the magnets. The
helium gas enters the trap through a pulsed valve, which is sunk into the copper cold plate in
order to maximise thermalisation of the helium gas to 4 K. A copper tube is mounted to the top
of the valve to guide the pulse into the trap region. The direction of the ablation and detection
lasers are also shown (for laser details, see section 4.2.4). A fluorescence collection lens is placed
at 45° to the detection beam, with the fluorescence light detected on a photomultiplier tube
placed outside the vacuum chamber (details in figure 4.5).

tube (PMT), which is described in more detail in section 4.2.3. Both these detectors are placed

outside the vacuum chamber.

4.2.2 The apparatus

The trap from figure 4.3 is attached to the top of the crycooler cold head, as shown in figure
4.4. We use a closed-cycle cryocooler with 1.5 W of cooling power at 4K (Sumitomo Heavy
Industries RDK-415D). It works by pumping cold helium up through the central column of the
cryocooler to the cold plate to cool it to 4 K. Several thermometers (made up of ruthenium
oxide resistors with a 1.5 k() resistance at room temperature) are placed around the cold plate
in order to accurately monitor its temperature. The crycooler also has a 50K stage on which
an aluminium radiation shield is placed that surrounds the trap set-up. This acts to prevent
any room temperature heat radiation from impinging directly onto the cold plate and raising its

temperature. The radiation heat load from the 50 K surfaces onto the 4 K cold head is negligible
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compared to the 1.5 W of cooling power. A vacuum chamber surrounding the set-up is pumped
down using a turbo pump (Leybold Turbovac 361) attached to the bottom of the chamber (see
figure 4.4). The base pressure achieved in the chamber when pumped out and cooled down is
1 x 10" mbar. The other openings at the bottom of the chamber are necessary to allow access

for the gas inlet tubes for the valve, the pressure gauges and the thermometer wiring.

Vacuum

chamber %

Ports for ablation
and detection
lasers

Trap on top
of 4 K cold
plate
Radiation
shield
Hole for
turbo
pump
50 K plate
Cryocooler

Figure 4.4: Cut-out of the experimental apparatus showing the cryocooler, 4 K plate, 50 K plate,
radiation shield and vacuum chamber.

To pump away the helium as quickly as possible, a charcoal sorption pump is placed around
the trap which, when cooled to cryogenic temperatures, traps any helium that hits it. Coconut
charcoal was used for the sorption pump as it has been identified as one of the best adsorbers of
helium at cryogenic temperatures, with a pumping speed of up to 6.71/(s cm?) at 4 K [105]. The
coconut charcoal was bonded to the inside of a copper cylinder using a Stycast epoxy, and the
cylinder was then placed on top of the cold plate, surrounding the trap, so that it is anchored
to the 4K stage. This provides a total pumping area of approximately 600 cm?, giving a total
pumping speed of up to 40001/s for helium. Comparing this to the pumping speed of 3401/s for

helium from the turbo pump (Leybold Turbovac 361), located significantly further away from
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the trap region, we see that the helium is mainly pumped by the charcoal.

4.2.3 Laser-induced fluorescence detection

The most sensitive detection method in our set-up is the laser-induced fluorescence (LIF) de-
tection on a photomultiplier tube (PMT). As it is an integral part of the experiment, especially

when looking for signal of trapped atoms, it is described in more detail here.

Inside vacuum \\ Outside vacuum
chamber \ chamber

AR-coated window
IR filter

LIF from trap \
centre > " PMT
Iris

—>

26.2 mm 26.2 mm

. 50 mm diameter plano-
! convex lenses

Figure 4.5: Schematic of the LIF detection set-up, showing the positions of the lenses, IR filter
and iris. The lenses are 50 mm diameter plano-convex lenses with a back focal length of 26.2 mm.
The filter is a coloured glass short-pass filter, transmitting visible light and absorbing IR. The
iris has an adjustable diameter from 1 mm to 10 mm.

Figure 4.5 shows the LIF detection set-up for these experiments. A 50 mm diameter, short
focal length (26.2mm) collection lens is situated close to the trap region to capture as much
fluorescence as possible. The collimated light is then focused onto the PMT (Hamamatsu
Photonics R5070A) with the second lens. An IR filter is placed in front of the PMT to prevent
any light from the ablation laser being registered on the PMT. The adjustable iris diameter
allows the spatial filtering of light from the trap region to minimise the amount of laser scatter
from other regions of the trap reaching the PMT. Additionally, to prevent the probe beam
scattering off surfaces in the trap region and being detected on the PMT, the faces of the

magnets were coated in black soot.
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Taking into account the magnet geometry in the trap and the position of the collection lens,
the collection efficiency of this LIF set-up is 6.25%. With a quantum efficiency of the PMT at
the relevant wavelength of 7%, the total detection efficiency of the LIF set-up is 0.44%.

Throughout, the PMT was used in ‘current mode’, with a current-voltage amplifier convert-
ing the signal into a measurable voltage that was then recorded. However, in order to convert
this measured voltage into an actual photon count rate, the PMT had to be calibrated. This
was done by placing the PMT inside a blacked out box together with a red LED. A current
was passed through the LED and, with the PMT in ‘photon counting mode’, the number of
photons registered on the PMT in a 10 us interval was recorded from an oscilloscope. This was
repeated several times to get an average photon count rate for that LED current. The PMT
was then plugged into the current-voltage amplifier to measure the voltage output correspond-
ing to that photon count rate. By doing this for several different LED currents, a calibration
graph of voltage vs. photon count rate was obtained that could then be used for all subsequent

experiments. The calibration was R = 930kHz/V.

4.2.4 Laser set-up

Figure 4.6 shows a schematic of the laser set-up. The probe light comes from a 10 mW, 671 nm
external cavity diode laser (ECDL), which allows us to address the relevant lithium transitions
shown in figure 4.1. The ECDL consists of a 671 nm laser diode, a collimating lens to collimate
the diode output and a reflective diffraction grating to provide the optical feedback and form
the external cavity. The ECDL is constructed inside a home-built laser housing. The output of
the ECDL passes through an optical isolator to prevent back-reflections into the laser from the
fibre couplers, and then into a single-mode optical fibre. Going straight into an optical fibre has
the advantage that, if anything needs to be adjusted inside the diode laser, the output beam
just needs to be realigned with the first fibre, with all subsequent optics remaining unaffected.
After the first fibre, several portions of the main beam are split off using non-polarising beam
splitters, allowing beams to be sent to the wavemeter, the scanning Fabry-Perot cavity and the
two confocal Fabry-Perot cavities. The main beam then enters a second optical fibre to the
experiment table. There, a mechanical shutter unblocks or blocks the probe beam so that the
laser-induced fluorescence can be distinguished from any other sources of light. Finally, using a
neutral density filter wheel (not shown in figure 4.6), the probe power through the trap region

can be adjusted to the desired level.
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Figure 4.6: Schematic of the laser set-up and how it fits in with the rest of the experimental
apparatus. PD refers to Thorlabs DET100A photodiode detectors, BS to beam-splitters with
a transmission:reflection ratio, FC to fibre couplers and FSR to the free spectral range of the
cavities. The transmission through the cavities is used to monitor the change in laser frequency.

The frequency of the probe light can be scanned by supplying a voltage to a piezo located
inside the ECDL to adjust the position of the reflection grating and thereby adjust the length of
the external cavity of the diode laser. Typically, a frequency range up to 5 GHz can be scanned
in this way before the laser ‘mode hops’ into a different mode. The frequency is monitored
using the wavemeter and the transmission through the two cavities, which is measured on the
photodiode detectors. The fringes from the scanning Fabry-Perot cavity are monitored on an
oscilloscope to ensure the laser stays in single-mode operation.

The Li target is ablated using a Continuum Minilite MLII 1064 nm Q-switched Nd:YAG
laser. This has a maximum pulse energy of 50 mJ with a pulse width of 5-7ns. Throughout all
of the data sets in this thesis, unless mentioned otherwise, the pulse power from the ablation laser
was kept at 25% of the maximum (12.5mJ) for the Li experiments, and 20% of the maximum

(10mJ) for the Dy experiments.
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4.2.5 Data collection procedure and terminology

The experiment is controlled from a computer, with a National Instruments (NI) PCI-6534
pattern generator used to control the firing of the ablation laser and valve, and an NI PCI-6251
data acquisition card used to record the data. Data collection starts with a He pulse from the
valve, fired at a time t,qpe, with the valve pulse length (VPL) set in advance and typically
being on the order of 200 us. The Li atoms are subsequently ablated into the gas pulse, with
the zero in time taken from the point at which the ablation laser Q-switch is fired. The time
at which the valve is fired is typically around t,4;0e = —500 us. The absorption and LIF of Li
in the trap region are measured as a function of time on the photodiode detector and PMT
respectively, the outputs of which are recorded by the computer. The complete cycle of firing
the valve, firing the ablation laser and recording absorption and LIF signals is referred to as a
single ‘shot’. For all of our data, unless mentioned otherwise, these ‘shots’ are taken at a rate
of 2 Hz, as we found that this gave us the best yield from the target.

When the Li target is hit by the ablation laser, the ablation plume that is released from the
target emits a huge amount of fluorescence for the first few 100 us, even without the presence
of the probe beam. This fluorescence is detected by the PMT and obscures any real LIF signal.
In order to eliminate this we take an ‘On-shot’ with the probe beam on, followed immediately
by an ‘Off-shot’ where the probe beam is blocked using the shutter, but everything else fires
as normal. Subtracting the ‘Off-shot’ signal from the ‘On-shot’ signal ensures that only the
real LIF signal is left. This was done for all of our data, and as a result all plots of LIF signal
throughout this thesis refer to the signal after the ‘Off-shot’ has been subtracted.

Frequency scans are taken by stepping the probe beam frequency between shots for several
hundred shots over the desired frequency range. Recording the transmission through the cavities
for each shot gives a fringe pattern which calibrates the change in laser frequency. The frequency
spectrum is then obtained by averaging the absorption and/or LIF signals between certain time
‘gates’ for each shot, and plotting the result against the laser frequency. Scans of the valve
pulse length (VPL) or t,.e can also be taken in the same way by stepping these parameters
between one shot and the next, rather than the probe laser frequency. The signal can then be

plotted as a function of VPL or ty4pe-
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4.3 Results

4.3.1 Data with ‘dummy magnets’

The first stage of the experiment, once the set-up was completed, was to determine the tempera-
ture of the lithium atoms after ablation and thermalisation with the buffer gas. The temperature
is determined from the Doppler broadening of the spectral lines. This measurement cannot be
done with the magnets in place because the Zeeman broadening due to the inhomogeneous
magnetic field is far too large. Therefore the permanent magnets in the set-up were replaced
by aluminium cylinders of the same shape and size, which are referred to as ‘dummy magnets’.
This way the physical arrangement of the trap was identical to the one with real magnets, giving
us a good indication of what the initial temperature of the lithium atoms will be in the actual
set-up.

To measure the temperature, an absorption/LIF profile was obtained by scanning the de-
tection laser frequency (with a power of 12 yW) across the 671 nm resonance transition. This
gives an absorption/fluorescence profile as a function of frequency. For the first few 100 us after
ablation the signal was sufficient for absorption detection on the photodiode, however at later
times fluorescence detection on the photomultiplier tube (PMT) was used. Figure 4.7 shows
typical absorption and fluorescence spectra for the Li atoms after thermalisation with a helium
pulse from the valve. The absorption profile was recorded 300 us after ablation and the fluores-
cence profile 650 us after ablation, with a gate window duration of 50 and 300 us respectively
L. The valve was fired 900 us before the ablation laser (tyaiwe = —900 us), as this gave the
highest amount of absorption. The He pulse length from the valve (VPL) was 200 us. The two
peaks in the spectra arise as a result of the two hyperfine ground state levels, with the distance
between the two peaks of about 800 MHz corresponding to the splitting between the two levels
(see figure 4.1). The most likely candidates for the broadening mechanisms that give rise to the
peak shapes are Doppler broadening and pressure broadening, which give rise to a Gaussian
profile and a Lorentzian profile respectively. A Voigt profile (a convolution of a Gaussian and
Lorentzian profile) fit to the spectra shows that the line shapes are dominated by the Gaussian

component and hence Doppler broadening, with pressure broadening negligible. The spectra in

!This means that the signal was averaged between 275 and 325 us for the absorption and averaged between
500 and 800 us for the LIF, with the result plotted against the frequency
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(a) Absorption spectrum of Li taken 300 us after ablation. Temperature ~ 22 K.
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Figure 4.7: Frequency scans over the Li detection transition after thermalisation with the buffer
gas, with ‘dummy magnets’ in place. The frequencies are relative to the transition from the
ground F' = 2 state. Two scans are shown, taken at 300 and 650 us after firing the ablation
laser. Fluorescence detection on a PMT was used at later times as the signal was too low for a
good absorption signal. To determine the Doppler width, and hence the temperature of the Li,
a Gaussian profile with two peaks was fit to the data points (solid line), and the temperature
subsequently calculated from the linewidth of the peaks.
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figure 4.7 can therefore be well approximated by fitting a double Gaussian of the form,

_(f*f(n)2 (f*fo2)2

const. + Ae” 202 4+ Be 202 | (4.1)

where A and B are the heights of the peaks, o is the width of the peaks, f is the frequency and
fo1 and fgo are the centres of each peak. These fits are shown in figure 4.7. The width of the
peaks is related to the temperature of the atoms by,

m (o x \)?

T =
kp

: (4.2)

where A is the wavelength of the detection, m is the mass of Li and kp is the Boltzmann
constant. For the two plots in figure 4.7, the temperature was calculated to be 22 + 2 K 300 us
after ablation and 8 + 1 K 650 us after ablation. This means that the lithium has successfully
thermalised with the buffer gas as the temperature of the lithium coming directly off the ablation
target will be more in the region of 10000 K.
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Figure 4.8: Plot of the temperature of the Li atoms against time after ablation, with ‘dummy
magnets’. Temperatures were obtained by fitting a double Gaussian to the Doppler broad-
ened frequency scans, as in figure 4.7. The orange points are those obtained from absorption
measurements and the blue points those obtained from fluorescence measurements.

Figure 4.8 shows how the temperature of the Li atoms changes with time after ablation. As
explained above, for early times after ablation, absorption measurements were used to determine
the temperature and for later times fluorescence measurements were used. The Li atoms are
still at a temperature of about 45 K after 50 us, however they then thermalise quickly down to

20 K. The slight rise in the temperature 250 us after ablation appears in all of our data and we
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do not currently have an explanation for it. The Li subsequently cools further so that, around
500 us, it has reached its coldest temperature of about 8 K. The data from the fluorescence
measurements do not show any further decrease in temperature below 8 K. Even though the Li
has clearly thermalised with the buffer gas, it does not reach the 4 K temperature of the cold
plate. This slightly higher temperature is likely to be a result of the valve warming up slightly
when it fires, meaning that the helium actually comes out of the valve at a temperature slightly
above 4K. This phenomenon has been observed before [41] and is a known problem. Unlike
in a standard buffer gas cell, such as illustrated in figure 2.1, the helium here has no walls to

collide with to thermalise back to 4 K.

1.5x10° . : :
1.0x10°%} 1
S
L
& |
3 500000 1
0 o Mw‘w P N
0 500 1000 1500 2000

Time after ablation (us)

Figure 4.9: Typical laser-induced fluorescence signal from Li in the trap region as a function
of time after ablation, with dummy magnets in place. The red line is the recorded signal and
the blue line is an exponential fit to the decaying portion of the signal, with a decay lifetime of
76 £ 1ps.

A typical LIF signal from Li in the trap region is shown figure 4.9. The negative signal
at the start, followed by a sharp rise, is a result of the subtraction of the ‘Off-shot’ from the
‘On-shot’, a procedure which is explained in section 4.2.5. The signal saturates the PMT for
the first 100 us for both the ‘On’ and ‘Off-shots’, and the difference between the two results in
what appears to be a negative LIF signal. This is an artificial consequence of our data collection
procedure. It is only when the signal no longer saturates the PMT that we get an actual measure
of the fluorescence from the trap region, hence the sharp rise in signal around 100 us. Fitting
an exponential to the decaying portion of the signal gives a decay time of 76 4+ 1 ps. The mean

speed of lithium at a temperature of 8 K is about 170 m/s. This means that, in free flight, the
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Li atoms would take about 12 us to leave the probe region of diameter 2 mm. The fact that the
decay time is longer than this suggests that the atoms are still colliding with the helium gas.

The timescale for atoms to diffuse to the edges of a cube of side-length L is [106],

LQ
_ 4.
D= 302 (43)
where D is the diffusion coefficient and is given by [106],
2rkpT 1
3 [2mhel 1 (4.4)

T 16 i nop’

where T is the temperature, i is the reduced mass as defined below in equation 4.7, n is the
helium density inside the cube and op is the Li-He diffusion cross-section, which is roughly
10718 m? [81]. Using the decay time of 76 us, this gives an estimate of the He number density

in the trap region of 4 x 10?2 m—3.

4.3.2 Data with magnets

The lithium temperature of 8 K after thermalisation with the buffer gas was deemed cold enough
to attempt the trapping experiments, so the magnets were placed back inside the set-up. The
expected fraction of 8 K atoms that can be trapped is 0.31%, as opposed to 0.87% for 4 K atoms.
The presence of the magnetic field makes detection more complicated as the atoms are shifted
out of resonance very quickly due to the steep gradient of the field. As explained in section
4.1, the transition is Zeeman broadened by up to 4 GHz- much more than the approximately
100 MHz resulting from Doppler broadening. This means that a single detection frequency can
only probe a very small volume of the trapping region, and hence a relatively small number of
atoms. As a result, absorption on the photodiode is not sensitive enough and only laser induced
fluorescence detection on the PMT was used.

The trapping of Li was optimised by varying the valve pulse length, the time the valve was
fired and the helium pressure behind the valve. Figure 4.10 shows fluorescence signal from
lithium in the trap region as a function of time, for the settings that provided the best signal.
Sometimes we noticed that there was fluorescence from the Li even if the detection beam was off-
resonance by more than 100 GHz. In order to make sure that the signal was definitely lithium,

both on-resonance and off-resonance data sets were taken for comparison. Both of these are
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Figure 4.10: Laser-induced fluorescence signal of lithium in the trap region as a function of time,
with magnets in place. The probe beam is aligned with the centre of the trap and on-resonance
for the red line, and 200 GHz off-resonance for the blue line. The black line is an exponential
fit to the tail of the signal, giving a decay time of 10.0 £ 0.2 ms.

plotted in figure 4.10, and it is clear that, whilst there is some signal when the detection beam
is off-resonance, there is significantly more when it is on-resonance. Both have a high peak at
the start which decays rapidly and is therefore mostly untrapped lithium that is still present
after the ablation. After 7ms however, there is a part of the signal with a longer decay time
(7 &~ 10ms when exponential decay curve was fit to the data) that only appears with the on-
resonance detection beam. Comparing this to the typical decay time with ‘dummy’ magnets of
76 us, this significantly longer decay time is likely to be a result of lithium trapped for a short
period of time.

The period of oscillation in the trap can be estimated by equating the force on the Li atoms
due to the magnetic field (equation 2.9) with mwv?/r, the centripetal force at distance r from

the trap centre. The oscillation period is then given by,

2
r 9 mr

Tosc =

where g is the magnetic moment of the atom, VB is the magnetic field gradient and m is the
Li mass. In our trap, the magnetic field gradient in the x and y directions is 33 T/m and in the
z direction it is 65 T/m. With the atoms likely residing in orbits no further than 5mm from
the trap centre, the oscillation period can be up to 2.7ms. This means that the 10 ms decay

timescale seen in figure 4.10 corresponds to at least a few oscillations in the trap.
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The lifetime could be limited by either optical pumping into an untrapped /undetected state,
collisions with background gas in the vacuum chamber, or both. To investigate the first possibil-
ity, an acousto-optic modulator (AOM) was used as a fast shutter to switch the probe beam on
rapidly at various different times after ablation. This found that the Li signal was not affected
by when the probe beam was turned on, which suggests that optical pumping is not a factor
in limiting the Li lifetime in the trap. As a result, it is likely that the lifetime is limited by
collisions with background gas in the trap region. The average time between collisions with a
background gas atom is given by 7., = A/vpe;, where A is the mean free path and v, is the
relative velocity between He and Li. If it is assumed that every collision with a helium atom
knocks a Li atom out of the trap, then 7.,; can be used as a rough estimate of the expected

lifetime of Li. Using the definitions of A and v,.;, the average time between collisions is,

1 [ T
TCOll \/ino' SkBT? ( )

where ¢ is the collision cross section, n is the helium density, T" is the temperature and p is the

reduced mass,

_ _MLiMHe (4.7)
mr; + MHe

Converting the helium density to a pressure, we find that a 10 ms trap lifetime corresponds to
a background helium pressure of about 3 x 10~" mbar. With a base pressure in the chamber of
10~ " mbar when the valve is not running, a background helium pressure of 3 x 10~7 mbar when
the valve is running does not seem unreasonable.

The 10.0 £ 0.2ms trap lifetime is significantly longer than the 76 + 1ps decay time seen
with dummy magnets with the same conditions. It is therefore very likely to be the effect of
the magnetic field that is trapping the atoms. The background helium pressure that would
correspond roughly to a 10ms trap lifetime also seems very reasonable. In order for the 10 ms
decay time to be caused by diffusion through the helium gas rather than magnetic trapping,
equation 4.3 shows that the helium pressure in the trap region would have to be > 1 mbar. This
is completely inconsistent with the pressure readings on the Penning gauge and it is therefore
unlikely that diffusion is causing the long decay time. Unfortunately, the signal in figure 4.10
was not reproducible after this original data set, and as a result we were unable to conduct

further tests to determine with absolute certainty that the Li was trapped.
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4.4 Improvements to Set-Up

The Li trapping experiments in this chapter brought to light some issues in the set-up that had
to be resolved. These issues are outlined in this section, along with the improvements made to

solve them.

4.4.1 Photomultiplier tube switching circuit

Constantly exposing the PMT to the bright light from the ablation plume, and thereby satu-
rating it, caused random voltage spikes in the PMT output, even long after the light from the
ablation plume had gone. These spikes have a duration of a few tens of us, an amplitude of
about 3-5V and an average frequency of about 50 Hz. This obscured the signal from Li in the
trap and made it very noisy. Attempting to reduce the amount of ablation plume light incident
on the PMT by placing a bandpass filter in front of the PMT to only transmit light at our
desired detection frequency was unsuccessful as it was found that most of the light from the
ablation plume was at a similar frequency. Mechanical shutters that would open and close on a
quick enough time scale (< 100 us) to block the initial light from the ablation plume and then
open again to transmit the Li fluorescence were not available. As a result, the only way to
overcome this problem was to switch off the high voltage supply to the PMT during the initial
ablation plume, and then switch it on again a few 100 us after ablation. This required a fast

high voltage switching circuit.

PMT operation

Figure 4.11(a) shows a typical PMT and voltage divider circuit. The PMT consists of a pho-
tocathode, a series of dynodes and an anode, with the voltage divider circuit outside the PMT
ensuring each of the dynodes is held at the right voltage. The photocathode, typically held at
around —1kV, emits electrons when photons are incident upon it. These electrons are acceler-
ated into the first dynode, producing even more electrons. As each successive dynode is held at
a slightly higher voltage than the previous one, electrons are continually accelerated between
each dynode, with an ever increasing number of electrons produced at each stage. This cascade
eventually results in a large number of electrons hitting the anode, producing a current spike

that signals that a photon has been registered on the photocathode.
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Figure 4.11: (a) Schematic of a typical PMT and voltage divider circuit which holds each of the
dynodes at the right voltage. K is the photocathode, Dy the dynodes, P the anode and -HV the
negative high voltage supplied to the photocathode, typically around —1kV. (b) Diagram of
the switching circuit. Resistors 1 to 3 in the PMT voltage divider circuit have been replaced by
100V zener diodes. By supplying the optocoupler with either a TTL ‘high’ or TTL ‘low’, dynode
1 can be switched rapidly between -1300 and —1000V. At —1000V the PMT will operate as
normal, and at —1300V the lower voltage on dynode 1 compared to the photocathode will
suppress any gain in the PMT.

Switching circuit

The circuit that was designed to switch the PMT on and off is based on that described in
[107], and is shown in figure 4.11(b). The original PMT voltage divider circuit was modified
by replacing resistors 1 to 3 with 100V zener diodes. The photocathode, held at —1250V, is
supplied from a separate power supply to the one that supplies the dynodes. When the TTL
to the optocoupler is ‘low’, the phototransistor is in the ‘open’ position and there is a 300V
drop across the zener diodes, holding dynode 1 at —1000V. This allows normal operation of
the PMT. Switching the TTL to ‘high’ closes the phototransistor and pulls dynode 1 down to
—1300V (the remaining dynodes in the voltage divider circuit are therefore also pulled to a
lower voltage). As dynode 1 is now at a lower voltage than the photocathode, there should be

no electron acceleration between the photocathode and dynode 1 and hence the PMT gain is
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Figure 4.12: Comparison of signal output from the PMT with and without the switching circuit,
with a constant background photon rate incident on the PMT. Red line: no switching circuit;
blue line: PMT switched on at ¢ = 0.

greatly suppressed. Switching the TTL to ‘low’ again returns the PMT to normal operation.

Figure 4.12 shows a constant background signal recorded on the PMT with and without the
switching circuit. When using the switching circuit to switch the PMT on at t = 0, it can be
seen that, whilst the PMT switches on within a few 100 us, the gain is initially slightly low,
rising up to the full gain within about 5ms. This is likely to be a result of the other dynodes
taking time to reach the right voltage as this timescale is of the same order of magnitude as
the time constant for an RC circuit of 7 = R11C;. Despite the gain being low for the first few
ms, the PMT will still see any signal present, it will just be slightly lower than if the PMT had
reached the full gain.

Figure 4.13 shows the signal on the PMT with and without the switching circuit for a Li
data set (i.e. with ablation and detection lasers on and the valve firing). Without the switching
circuit (red line), the ablation plume saturates the PMT for 600 ps and then decays. The blue
line shows that, even with the PMT ‘off’, the ablation plume still saturates the PMT for the
first 200 us. The switching circuit is then switched ‘on’ after 200 us, with the PMT taking a
few 100 pus to actually switch on. The LIF signal observed when the switching circuit is used
decays much more rapidly than when it is not used. This leads to the conclusion that a large
part of the signal recorded without the switching circuit is artificial, and is merely a residue of
the huge saturation the PMT experiences due to the ablation plume. This makes the use of

the switching circuit crucial in distinguishing real signal from artificial signal. The timescale on
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Figure 4.13: Comparison of laser-induced fluorescence signal on the PMT with and without the
switching circuit, with ablation and detection lasers on. Red line: no switching circuit; blue line:
PMT switched on 200 us after ablation. To illustrate the effect of the switching circuit, only the
‘On-shots’ are shown, rather than the usual subtraction of the ‘Off-shot’ from the ‘On-shot’.

which this artificial PMT saturation signal decays is about 2ms. This is not too far removed
from the 10ms trap lifetime seen in figure 4.10. It is therefore possible that this 10ms trap

lifetime is actually an artefact of the PMT saturation rather than real LIF signal.

4.4.2 Lengths of He gas pulses

One of the requirements for our trapping arrangement to work is that the He buffer gas is
introduced as a short pulse into the trapping region, and subsequently disappears quickly once
the Li has thermalised with it. To measure the lengths of the He gas pulses coming out of
the valve, a fast ionisation gauge (Beam Dynamics Model FIG-1 Fast Ionization Gauge) was
mounted at the exit of the tube that guides the pulse into the trap region (see figures 4.3 and
4.14(a)). The length of the gas pulse with various configurations was measured: 1) with the
valve tube mounted as in figure 4.3; 2) with a 1 cm straight valve tube mounted on top of the
valve; 3) from the valve directly. These three configurations are shown in figure 4.14.

Figure 4.15 shows the results from these measurements, with the total area under each curve
(and therefore total amount of gas expelled) normalised to 1. With the original valve tube, the
rise time of the gas pulse is quite long and the decay time of 3700 us is likely to be far too
long for the requirements of the experiment. Having a shorter, straight tube makes the pulse

shorter and concentrates more of the pulse in the initial peak. It also reduces the decay time

64



4.4. IMPROVEMENTS TO SET-UP

22

(a) Valve with original tube  (b) Valve with shorter, straight (c) Valve on its own
tube

Figure 4.14: The configurations of the solenoid valve (Parker Series 9 pulsed valve) whose He
pulse lengths were tested, with the original valve tube (a), the shorter, straight valve tube (b)
and the valve on its own (c).
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Figure 4.15: Comparison of He pulse lengths from the valve, in the configurations from figure
4.14, measured using a fast ionisation gauge (FIG). By fitting exponential decay curves to the
data the decay times, 7, were found. Red line: original valve tube, 7 = 3700 us; green line: 1
cm straight valve tube, 7 = 1300 us; blue line: valve directly, 7 = 30 us. Plots are normalised
so that the area under each curve is 1. Inset shows the same plot with different axis scales to
show the full height of the blue peak.
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to 1300 us. It is clear however, that the pulse from the valve directly is much shorter than the
pulses coming from either of the valve tubes, with all of the gas coming out in one clean pulse
without a long tail. The decay tail that emerges when a tube is mounted on top of the valve
is likely to be detrimental to the trap lifetimes as helium is still flowing out of the tube, and

therefore colliding with trapped Li atoms, for tens of milliseconds after the valve has fired.

Horizontal valve set-up

In light of the data on the lengths of the gas pulses from the valve (see figure 4.15), it was
decided that the valve should be mounted in such a way that a valve tube is not necessary
anymore. This would avoid any problems due to long gas pulses emerging from the valve tube.
Figure 4.16 shows the new design for the trap arrangement, with the valve mounted horizontally,
directly facing the trapping region. This avoids the use of any valve tubes, and therefore gives

much more control over the length of the gas pulse entering the trap region.

Target Detection beam

Fluorescence
collection lens

NdFeB magnets

Ablation
beam

Solenoid valve

Cold plate

To gas line

Figure 4.16: New design for the magnetic trap with the valve mounted horizontally, therefore
pulsing the helium directly into the trapping region.

4.5 Conclusion

The thermalisation of the Li atoms with the helium buffer gas was studied with aluminium

cylinders in place of the magnets. Absorption and LIF spectra of Li were taken, and by mea-
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suring the widths of the transition peaks at different times after ablation, the temperature of
the Li was calculated as a function of time. It was found that the Li thermalised with the buffer
gas within about 500 us of the ablation laser firing. However, the final temperature of the Li
atoms was in the region of 8 K, rather than the 4 K temperature of the cold plate. This was
attributed to the fact that the valve warms up slightly as it fires the helium pulse, with the
helium therefore exiting the valve at a temperature slightly above 4 K. The open nature of the
trap means that the helium does not then have many walls to collide with to cool back down
to 4 K.

The magnets were returned to the set-up to attempt the Li trapping experiments. The
best lifetime observed for Li in the trap was 10.0 & 0.2ms. This is thought to be limited by
collisions with background helium gas that is still present in the trap region; an assumption
that is consistent with a rough calculation of the helium pressures involved. However, later
tests showed that this observed decay time could be an artefact of the saturation of the PMT

due to the ablation plume light.
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CHAPTER 5

DYSPROSIUM EXPERIMENTS

From the lithium experiments in chapter 4, we were unable to improve upon, or reproduce, the
data from figure 4.10, where Li was detected in the trap with a decay time of 10 ms. As a result,
we decided to try the experiment with dysprosium instead of lithium. With a magnetic moment
in the most favourable state of 10up, rather than lithium’s 1up, the trap depth of dysprosium
(Dy) in the same trap is a factor of 10 higher than that of of Li; 1.4 K compared to 0.14 K.
Assuming a starting atomic distribution at 4 K, the fraction of Dy atoms that can be trapped
in our arrangement is about 20% of those atoms that are in the most favourable trapping
state. The corresponding fraction for Li is just under 1%. Changing the set-up to trap Dy was
straightforward as it simply required the Li target to be changed for a Dy metal target, with
the rest of the set-up remaining identical to that for the Li experiments, described in section
4.2. The detection frequency for Dy at 684 nm (see section 5.1) does not differ hugely from the
671 nm Li transition, and the same laser system could be used as for Li by just replacing the
671 nm diode in the external cavity diode laser for a 684 nm diode.

With the ten-fold increase in trap depth compared to Li, trapping Dy atoms should be
significantly easier. However, the higher mass of Dy (162.5 a.m.u. compared to 7 a.m.u for Li)
means that significantly more collisions will be necessary in order to cool the Dy atoms down
to 4 K after ablation. Using equation 2.6, the number of collisions required to cool Dy atoms
to within 30% of the buffer gas temperature of 4 K, assuming they come off the ablation target
with a temperature of 10000 K, is 190. This is compared to the approximately 20 collisions
required to cool Li to the same temperature. Nevertheless, the advantages to be gained from

the higher trap depth make Dy a worthwhile candidate for trapping experiments.
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5.1. DYSPROSIUM DETAILS

5.1 Dysprosium details

We detect Dy by exciting the 683.731nm transition from the ground 4f°6s? 5Ig state to the
excited 4f°(%H")5d6s? °I state. The natural linewidth of this transition is 95+13kHz [108]. This
is a relatively unstudied transition, with a more commonly used transition being the °Ig to °Kg
transition at 421 nm (see for example [109]). However, our transition was chosen because of the
ease of changing our detection laser from the Li frequency to this Dy frequency. Additionally,
our transition is not Zeeman broadened hugely in the magnetic field (see section 5.1.1), making

detection easier.

Isotope Mass (a.m.u.) Abundance (%) Nuclear spin

160Dy 159.93 2.34 0
161Dy 160.93 18.91 5/2
162Dy 161.93 25.51 0
163Dy 162.93 24.90 5/2
164Dy 163.93 28.18 0

Table 5.1: The different isotopes of dysprosium along with their mass, relative abundance and
nuclear spin.

Table 5.1 lists the five stable isotopes of dysprosium, along with their mass, relative abun-
dance and nuclear spin. The two odd isotopes have nuclear spin and therefore exhibit ground
state hyperfine structure. With a nuclear spin of I = 5/2 and angular momentum of J = 8,
the ground states of these two isotopes are split into six hyperfine levels from F = 11/2 to

F = 21/2. The hyperfine shift of a level with total angular momentum F' is given by

K+

Egps = (5.1)

2|

BIK(K +1)=2I(I+1)J(J +1)
4 I(2I —1)J(2J — 1)
where K = F(F+1)—J(J+1)—I(I +1) and A and B are the magnetic dipole and electric
quadrupole coupling constants [110]. Using the values for the A and B constants from [111],
the hyperfine splitting of the ground state can be calculated and is shown for both isotopes in
figure 5.1(a). Since the angular momentum of the excited state is also J = 8, it is also split into
six hyperfine levels, shown in figure 5.1(b) for both isotopes and calculated from the A and B
constants taken from [108].

In addition to the hyperfine structure of 1Dy and 3Dy, there is a shift in transition
frequency for each isotope. These isotope shifts for the 684 nm transition are shown in table

5.2, where the %Dy transition is taken to be the centre frequency, with the shifts of the other
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Figure 5.1: Hyperfine splitting of the ground °Ig state and the 4f(°H?)5d6s? °Ig excited state
of Dy, for both the 161 and 163 isotopes.

isotopes shown with respect to this frequency.

The combination of five different isotopes, with two of them exhibiting hyperfine structure,
leads to a relatively complex field-free spectrum of Dy. As our transition is a AJ = 0 transition
with large J, the strongest transitions between the hyperfine levels of the odd isotopes are
the AF = 0 transitions. This leads to six visible hyperfine components for each of the two
odd isotopes, with the other hyperfine components negligibly weak by comparison. These,
in addition to the three transitions for the even isotopes, mean a total of 15 transitions will
contribute to the full spectrum. Using the values from figure 5.1 and table 5.2, the theoretical

spectrum can be calculated, and is shown in figure 5.2. The relative intensity of each line
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Isotope Isotope shift (MHz)

164Dy 0

163Dy -823
162Dy -1091
161Dy -2099
160Dy -2309

Table 5.2: Isotope shifts of the Dy isotopes with respect to the 64Dy isotope. Values taken
from [108].

is estimated from the abundance of each isotope, with the hyperfine components for the odd
isotopes each assumed to have a line intensity proportional to their statistical weights of 2F + 1.
Whilst this is not exactly correct, it suffices as an approximation to the spectrum, as shown
by the fact that the theoretical spectrum is in close agreement with the measured Doppler-free
spectrum from [108]. As is evident from figure 5.2, the 04Dy line is the most intense line that
is furthest away from other transitions that might artificially broaden it, and as a result this is

the line we detect for most of the data in this chapter.
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Figure 5.2: Theoretical field-free, Doppler-free Dy spectrum, showing the transitions from all
five isotopes. Each transition is labelled in the form ‘isotope: F sub-level’, except where the
isotope does not display hyperfine structure, in which case it is just labelled by the isotope
number. Transitions with AF = £1 are very weak compared to those with AF = 0, and so are
not shown.

From the excited state there exists an additional decay channel down to the metastable
4f19652 5T; state [112]. A previous study of the 684 nm transition in [108] measured an upper

limit to the branching ratio between these two decay channels of 1:100. The existence of this
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additional decay channel has to be considered in the detection process which could artificially

lower the measured trap lifetime by optically pumping the atoms into an undetected state.

5.1.1 Zeeman shift

In the presence of the magnetic field, the Dy energy levels will be split into their Zeeman

sub-levels. For the even isotopes without any hyperfine splitting, the Zeeman shift is given by

AE =gymyup B, (5.2)

where g is the g-factor corresponding to the total electronic angular momentum, m; denotes
the magnetic sub-level and pp is the Bohr magneton. For the ground state of Dy, g; = 1.242
[113] and the state will split into its 17 m  sub-levels from mj; = —8 to m; = 8. Figure 5.3
shows how the ground state of the even Dy isotopes is split into its magnetic sub-levels as a
result of the magnetic field. The mj = 8 level is the most favourable for trapping as it has the
highest magnetic moment of almost 10up, and therefore has a trap depth in our trap of 1.4 K.
Note that the fine-structure splitting between J = 8 and J = 7 is 124 THz, which is more than
3 orders of magnitude larger than the Zeeman shift in all relevant fields. Mixing between J
levels is therefore negligible and the Zeeman shift is indeed linear at all fields, as expressed by

equation 5.2.
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Figure 5.3: Zeeman splitting of the ground state of Dy, for the even isotopes that exhibit no
hyperfine structure.

The excited state used to detect the atoms has g; = 1.25 [113], which does not differ
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significantly from that of the ground state. Given that the excited state is also a J = 8 level,
the Zeeman shift for the excited state will be almost exactly the same as that in figure 5.3 for
the ground state. This makes detection in the magnetic field significantly easier for Dy than
for Li, as the AM = 0 components will hardly be broadened in the inhomogeneous magnetic
field. For the two odd isotopes with hyperfine structure, the Zeeman splitting is significantly
more complicated because the magnetic field strongly mixes states of different F' that have the
same value of mp. However, since we have chosen to detect primarily on the 94Dy transition,

these do not have to be considered in detail.

5.2 Dummy magnet experiments

As with the Li experiments, the first step here was to replace the magnets in the trap with
aluminium cylinders of the same shape and size, which we refer to as ‘dummy magnets’. This
allows the initial parameters required to cool the Dy atoms to be determined without the

complicating effects of the magnetic field.

5.2.1 Measured Dy spectrum & temperature

Despite coming to the conclusion in section 4.4.2 that it was necessary to switch to a horizontal
valve set-up, the data here were still taken with the original ‘valve tube’ set-up from figure 4.3 as
the new horizontal valve set-up was still being built. Figure 5.4 shows a typical Dy absorption
spectrum after thermalisation with the helium buffer gas, taken in exactly the same way as
for the Li spectra (see section 4.2.5). The spectrum shows the lines from all of the isotopes
and hyperfine levels that are expected from the theoretical spectrum in figure 5.2, but Doppler
broadening of the lines means that they are not all individually resolved.

Since the frequency spacing between each of the peaks in the spectrum is known from the
theoretical calculations, it is possible to fit Gaussians to all 15 peaks of the full spectrum from
figure 5.4 by fixing the spacing between the peaks and having as the free parameters: the height
of each peak, the width of the peaks (assumed to be the same for each peak) and an overall
constant offset. For later times when the signal is lower, only the two main 94Dy and 162Dy
peaks can be resolved, and so only two Gaussian peaks are fit to the spectrum. The function
used to fit to the spectra is

_G—fo)?
const. + X; Aje” 202 | (5.3)
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Figure 5.4: Measured absorption spectrum of Dy after thermalisation with the He buffer gas
(blue line), with dummy magnets. Frequencies are relative to the 4Dy transition. The two
largest peaks result from the %Dy and 62Dy isotopes. The spectrum was taken from data
gated between 80-100 us after ablation, with a VPL = 200 us and t,40e = —900 ps. The red
line is a 15-Gaussian fit (equation 5.3) to the full spectrum, with o = 53 + 1 MHz.

where the A; are the heights of the peaks, o is the width of the peaks, f is the frequency and the
foi are the centres of each peak and are fixed from the theoretical values. The sum runs from
i =1 to 15 when all 15 peaks are resolved and from ¢ = 1 to 2 when only the two main peaks
are resolved. A typical full fit to all 15 peaks is plotted in figure 5.4, showing good agreement
with the measured spectrum. Not all 15 peaks from the theoretical spectrum in figure 5.2 are
individually resolved in the fit in figure 5.4 as a result of Doppler broadening. Fitting equation
5.3 to spectra at different times after ablation allows the widths of the peaks to be determined
as a function of time. Assuming that the width of the peaks arises purely as a result of Doppler
broadening, it is related directly to the temperature of the Dy atoms through equation 4.2. The
temperature of the Dy atoms can then be determined as a function of time after ablation, and is
shown in figure 5.5. This shows that the Dy thermalises with the buffer gas within 200 us which,
as with the Li experiments (see section 4.3.1), seems to be at a temperature of around 8 K. A
two-exponential decay curve fit to the data is also shown, which confirms the final temperature
of about 8 K and gives an initial temperature of about 700 K. Despite the increased number
of collisions required for thermalisation due to its heavier mass, the time taken for the Dy to
thermalise is significantly shorter at 200 us than the 500 us required for Li. Given that the valve
settings are identical for both the Dy and Li data (VPL = 200 us and t,470e = —900 us), the Dy
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Figure 5.5: Temperature of Dy as a function of time after ablation, showing that it thermalises
with the He buffer gas within 200 us. A two-exponential decay fit to the data is also shown,
indicating a final temperature of about 8 K.

thermalisation time would have been expected to be much longer than the Li thermalisation
time. This could be explained by significantly different ablation dynamics for the Dy target
compared to the Li target, particularly as a slightly higher ablation pulse power of 12.5mJ had
to be used for the Li target compared to the 10 mJ used for the Dy target. This could mean
the Dy atoms come off the target at a lower temperature than the Li atoms. It is also possible

that the cross-section for collisions with helium is much larger for Dy than for Li.

5.2.2 Velocity measurements of the Dy cloud

In order to ascertain whether the Dy cloud is stationary after thermalisation with the He buffer
gas, the centre-of-mass velocity of the Dy cloud was measured. This was done by introducing
a counter-propagating probe beam into the set-up, overlapped exactly with the original probe
beam. Two absorption spectra were then taken simultaneously, one for each of the probe beams,
using two separate photodiodes. If the Dy cloud has no centre-of-mass velocity, the two spectra
should overlap perfectly, but if the cloud does have some centre-of-mass velocity in the direction
of the probe beams then the two spectra will be Doppler shifted with respect to each other.

The frequency difference between the two spectra is then related to the velocity by
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Figure 5.6: Top-down view of the counter-propagating beam arrangement in the original set-up
with the valve tube. PDs are photodiodes and BSs beamsplitters.

where vouq is the cloud velocity in the probe beam direction, fy is the actual transition fre-
quency, c is the speed of light and Af is the frequency difference between the two spectra. The
frequency difference between the two spectra is divided by two to account for the fact that one
spectrum will be shifted to a higher frequency and one spectrum to a lower frequency, with
the actual transition frequency fy being exactly halfway between the two spectra. Note that
this measurement only determines the centre-of-mass velocity component in the direction of the

probe beam.

Original valve tube

Figure 5.6 shows how the counter-propagating probe beam arrangement fits into the original
set-up with the valve tube (see figure 4.3) that was used for all previous data in this thesis.
The probe beam is split using a 50:50 beamsplitter, with one beam sent into the chamber in
the original direction and the other beam in the opposite direction, overlapped exactly with
the original probe beam. Two further beamsplitters pick off the appropriate beams to allow
the two photodiodes to record the absorption spectra. The probe beam light is delivered to the
experiment in the same way as depicted in figure 4.6, with the optical isolator in the set-up

preventing any light feeding back into the diode laser.
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Figure 5.7: Counter-propagating probe beam data with original valve tube. (a) Absorption
spectra from the two photodiodes (gated 36-48 us), showing the frequency shift between the
two spectra. Frequencies are relative to the 4Dy transition. (b) Centre-of-mass velocity of
the Dy cloud as a function of time after ablation, with the red points calculated from the shift
between the 152Dy peaks and the blue points from the shift between the 94Dy peaks. Positive
velocities are in the direction away from PD 1. Error bars are on the order of a few m/s and
are not visible on this scale. For these data, VPL = 235 us and ;410 = —600 ps.

Figure 5.7(a) shows the absorption spectra of Dy from the two probe beams, from data gated
between 36-48 us after ablation. There is a clear frequency shift between the spectra from PD 1
and PD 2, signifying a centre of mass velocity of the Dy cloud away from PD 1. The direction
that the Dy cloud appears to be travelling in is consistent with the fact that the valve tube
points slightly away from PD 1 (see figure 5.6). This suggests that the Dy cloud is entrained
in the flow of gas from the valve. By fitting Gaussians to the 2Dy and 94Dy peaks of each
spectrum, the centres of those peaks can be determined. The frequency shift between the 152Dy
peaks and between the 4Dy peaks of the two spectra can then be calculated and inserted into
equation 5.4 to extract a velocity for the Dy cloud. Doing this for several different times after
ablation gives a velocity of the Dy cloud as a function of time, shown in figure 5.7(b). The
velocities calculated from the 162 and 164 peaks are in very close agreement, as expected, and
show that there is a centre-of-mass velocity of the Dy cloud from t =~ 20 us onwards. The cloud
starts off at a velocity of about 160m/s and increases to about 250m/s at 80 us, after which
time the Dy signal becomes too low to observe the absorption spectra. The large velocity can
be explained by the helium pulse expanding supersonically into vacuum and, given that it has
almost no walls to collide with after it comes out of the valve tube, it will keep this velocity
when the Dy is ablated into it. The Dy then becomes entrained in the helium flow, giving it

a large centre-of-mass velocity. The maximum supersonic flow velocity of a beam is given by
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[114],

~y 2kpT

where T' is the temperature, m is the mass of the particles and v = 5/3 for a monatomic
gas. We know from the Li experiments and figure 5.5 that the He emerges from the valve at
a temperature in the region of 8 K. Inserting this, along with the mass of He, into equation
5.5 gives a supersonic velocity of 288 m/s for an 8 K helium pulse. As the valve tube is at an
approximately 45° angle with respect to the probe beam, the expected supersonic velocity in
the probe beam direction is 204 m/s. Figure 5.7(b) shows the velocity of the Dy cloud increasing
over time from 160m/s to 250 m/s. This increase might be explained by the initial ablation
plume arresting the He velocity slightly, with further helium from the valve tube (see section
4.4.2) subsequently pushing this velocity back up again. The final velocity of 250 m/s is greater
than the 204 m/s expected from an 8 K supersonic beam. This discrepancy could arise due to
the fact that the angle of the valve tube with respect to the probe beam is not exactly known,
but is more likely to be indicative of the temperature of the valve increasing slightly, with the
helium therefore emerging slightly warmer. A supersonic velocity in the direction of the probe
beam of 250 m /s would correspond to a helium temperature of about 12 K. Given that the trap
depth in our trap of 1.4 K corresponds to a capture velocity of 14.5m/s for Dy, it is extremely
unlikely that we would have been able to trap Dy in this arrangement as the centre-of-mass

velocity of the Dy cloud is far too high.

Valve tube with copper cylinder

In order to contain the helium pulse from the valve tube and to prevent the Dy cloud from
having such a large centre-of-mass velocity, a copper cylinder, depicted in figure 5.8(a), was
introduced into the set-up around the (dummy) magnets and the trap region. It was screwed
onto the cold plate so that it thermalised to 4 K, with the helium pulsed into the copper cylinder
through a small hole. The helium can then collide a few times with the 4 K walls of the cylinder
to lose its centre-of-mass velocity and become more of a cloud. The Dy can then be ablated into
the helium cloud, rather than being entrained in a flow from the valve tube as before. Figure
5.8(b) shows how the copper cylinder fits into the set-up with the counter-propagating beams.
The top of the copper cylinder is left open so that the helium can still leave the trap region

rapidly once the Dy has thermalised.
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Figure 5.8: (a) Copper cylinder used to contain the initial helium pulse, showing the holes for
the probe and ablation lasers, as well as for the helium pulse and LIF detection. (b) Top-down
view of the counter-propagating beam arrangement with the copper cylinder in place. PDs are
photodiodes and BSs beamsplitters.

To determine whether the copper cylinder reduces the centre-of-mass velocity of the Dy
cloud, the same counter-propagating probe beam measurements were taken as above for the
original set-up. The VPL of 245 us and t,45pe 0of —4000 s used in this set-up are different to
those used in the set-up without the copper cylinder. The VPL is higher because the helium
now has to enter the trap region through a small hole in the copper cylinder (see figure 5.8(a)),
resulting in a fraction of the helium pulse not reaching the trap region. Having a lower helium
density in the trap region results in a lower Dy signal after ablation. Therefore, in order to have
roughly the same amount of helium in the trap centre as before, the VPL was increased until
the Dy signal was comparable to that without the copper cylinder. The helium also needs to
be given time to collide with the cylinder walls and lose its centre-of-mass velocity before the
Dy is ablated into it, hence the earlier t,q7,. of —4000 us rather than the —600 us used for the
data in figure 5.7.

Comparing the frequency shift between the spectra from the two probe beams again allowed
the velocity of the Dy cloud to be determined as a function of time after ablation, and is shown
in figure 5.9. With the copper cylinder in place, the Dy cloud initially has almost no centre-of-
mass velocity, however the velocity then increases up to 120 m/s at about 370 us, after which the
signal becomes too low to observe a spectrum and hence determine the velocity. The first thing

to note is that the copper cylinder causes the Dy to stay in the trap region for much longer than
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Figure 5.9: Centre-of-mass velocity of the Dy cloud as a function of time after ablation, with
the valve tube and copper cylinder. The red points are calculated from the shift between the
162Dy peaks and the blue points from the shift between the 4Dy peaks. Positive velocities are
in the direction away from PD 1. For these data, VPL = 245 us and t,414e = —4000 ps.

without it, given that the signal in figure 5.7(b) had already disappeared after 80 us, compared
to 370 us here. This is explained by the copper cylinder containing the initial helium pulse
and preventing it from acquiring the large centre-of-mass velocities that caused the signal to
disappear so quickly in figure 5.7(b). Unfortunately however, even though the Dy cloud initially
has a low velocity, it still acquires a large velocity over time. The copper cylinder initially results
in a ‘cloud’ of helium with no centre-of-mass velocity that the Dy is ablated into, but the large
tail of the helium pulse coming out of the valve tube (see section 4.4.2) then proceeds to collide
with the Dy, slowly giving it a centre-of-mass velocity. This further emphasises the need for a
horizontal valve set-up, as in figure 4.16, and confirms that this trapping arrangement will not
work with the valve tube in place as the long-lasting helium tail will cause all Dy atoms to be

lost from the trap very quickly.

Horizontal valve with copper cylinder

As a result of the above conclusions, the switch was made to the horizontal valve set-up shown
in figure 4.16. The copper cylinder was still kept in place to contain the initial helium pulse
from the valve. To determine whether this arrangement leads to a stationary cloud of Dy in

the trap region, the same counter-propagating probe beam experiments were conducted, with

80



5.2. DUMMY MAGNET EXPERIMENTS

LIF collection Dy target

lens

Dummy magnets

po1 | J P02

50:50 ) 50:50
BS \ ' BS

Horizontal
valve in
mount

Copper
cylinder

Ablation
laser

From
diode

50:50BS | phcer

Figure 5.10: Top-down view of the counter-propagating beam arrangement with the horizontal
valve and copper cylinder. PDs are photodiodes and BSs beamsplitters.
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Figure 5.11: Centre-of-mass velocity of the Dy cloud as a function of time after ablation, with
the horizontal valve and copper cylinder. The red points are calculated from the shift between
the 192Dy peaks and the blue points from the shift between the 64Dy peaks. Positive velocities
are in the direction away from PD 1. For these data, VPL = 200 us and t,q0e = —2000 us.
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a diagram of the set-up shown in figure 5.10.

Again, comparing the frequency shift between the spectra from the two probe beams at
different times after ablation allows the velocity of the Dy cloud to be determined as a function
of time, shown in figure 5.11. The initial, negative centre-of-mass velocity could arise as a result
of the Dy coming off the target at a slight angle before the ablation plume is arrested. After
25 s, despite a few fluctuations in velocity between 10 and —10m/s, the Dy cloud does not
acquire any large centre-of-mass velocity. This shows that switching to the horizontal valve
set-up has been successful in eliminating the problems with centre-of-mass velocity that were
encountered with the valve tube. The +10m/s threshold that the velocity does not seem to

surpass is below the capture velocity for this trap arrangement of 14.5m/s.

5.3 Magnet experiments

The ‘dummy magnet’ experiments showed that we have managed to create a stationary cloud
of Dy atoms in the trap centre that thermalises with the He buffer gas. The next step was to

return the magnets to the set-up and attempt the trapping of Dy atoms.

5.3.1 Voltage on magnet

Despite the use of the PMT switching circuit (see section 4.4.1), it was noticed that there was
still a significant background fluorescence signal that did not depend on the presence of the
probe laser. It can therefore not be due to LIF from Dy in the trap region. This is a problem
because it gives a large background that masks the real signal we are searching for. The black
line in figure 5.12 shows a typical fluorescence signal from the trap region with magnets in place,
which is very comparable to the signal from figure 4.13 where the switching circuit was first
used. The black line in figure 5.12 however, is very similar irrespective of whether the probe
beam is on or off. This indicates that the slowly-decaying tail is likely due to something other
than Dy atoms fluorescing in the trap region for a significant period of time after ablation.
Given that laser ablation is a complex process (see section 2.1.2), different ions and clusters
are likely to be released from the target during ablation. These could give rise to the observed
fluorescence. To remove the ions, a wire was attached to the top magnet in the trap set-up so
that a voltage could be applied to the magnet surface. To electrically isolate the magnet from

the rest of the set up, the parts that were touching the magnet holder (see figure 4.3) were
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Figure 5.12: Fluorescence signal from the trap region with magnets in place, showing the effect
of the magnet voltage and red filter on the signal. The probe laser is off, i.e. only Off-shots are
shown. Black line: no voltage, no filter; green line: no voltage, filter; blue line: 20V on magnet,
no filter; red line: 20V on magnet, filter. The PMT is switched on at 500 us. Inset shows the
same data with the tail signal magnified.

coated in boron nitride. This is a good electrical insulator but a thermal conductor, allowing
the magnet to still cool down to 4 K. The bottom magnet remained grounded to the cold plate,
creating a voltage difference between the top and bottom magnets. With 20V applied to the
top magnet (blue line in figure 5.12), a significant part of both the first and second peak in the
signal that was previously present has disappeared. This part of the signal must have been due
to ions in the trap region, and removing the ions in this way ensures that the signal that is left
is only due to neutral particles. The negative part of the signal occurs because the PMT takes
some time to switch on fully (see section 4.4.1). Removing the ions does not seem to eliminate
the slow decaying tail that is present regardless of whether the probe beam is on or off. In
order to reduce this tail, a red coloured glass filter (610 nm long pass) was placed in front of the
PMT so that only light in the desired frequency range is transmitted. The green line in figure
5.12 shows the signal with no voltage on the magnet, but the filter in place, showing that the
tail of the signal is reduced significantly. This shows that a large part of the fluorescence is at
wavelengths shorter than 610 nm. We also know from placing a visible light band-pass filter in
front of the PMT that the fluorescence is at wavelengths longer than 300 nm, as this filter did
not reduce the tail signal. The red line in figure 5.12 shows the signal with both 20V on the

magnet and the red filter in place, clearly showing that both the peaks and the slowly-decaying
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tail have been reduced significantly. The background fluorescence tail has not been eliminated
entirely, but it is now small enough that the rest of it is easily eliminated by subtracting the
‘Off-shot’ from the ‘On-shot’— a procedure that is explained in section 4.2.5. Now when we turn
on the probe laser, we only see resonant Dy signal. All subsequent data in the experiment were

therefore taken with 20V on the magnet and the filter in place in front of the PMT.

5.3.2 Spectrum of Dy in the magnetic field

With the background fluorescence signal eliminated as a result of the changes described in
section 5.3.1, it was possible to take LIF spectra of Dy in the magnetic field. Figure 5.13 shows
a typical spectrum of Dy in the magnetic field, with both the %Dy and 62Dy lines present.
The probe beam is vertically polarised, making it approximately parallel to the magnetic field.
This suppresses the broad background signal from the Zeeman broadened Am = 41 transitions,
making the Am = 0 transitions more easily observable. The 94Dy and 62Dy spectral lines
are split into two separate peaks that were not present in the field free spectrum from figure
5.4, where the 164 and 162 lines were just single peaks. The splitting of the lines into these
two separate peaks is due to the presence of both low-field seeking (LFS) and high-field seeking
(HFS) Dy atoms i.e. those with positive and negative values of m  respectively. In section 5.1.1,
it was noted that, for the ground state g;, = 1.242, whereas for the excited state g;, = 1.25.
This leads to slightly different Zeeman shifts for the ground and excited states. The Am =0

transitions will therefore be shifted from the field-free resonance by,

AE =mypp B(gs, —94,); (5.6)

where pp is the Bohr Magneton and B is the magnitude of the magnetic field. The relative
intensities of the Am = 0 transitions are given by the square of the Clebsch-Gordan coefficients,

and hence the square of the 3-j symbol,

J 1 J
: (5.7)

my 0 —my

where J = 8 and m ranges from -8 to 8. The highest intensities are for the largest m values,
i.e. -8 and 8, with the intensity going to zero for mj ; = 0. It is this property of the relative

intensities that results in a splitting of the peaks in the magnetic field, rather than a broadening,
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Figure 5.13: LIF spectrum of Dy in the magnetic field, showing the split peak of the 64Dy
and 92Dy lines. Frequencies are relative to the field-free 4Dy transition. The probe beam is
vertically polarised, i.e. approximately parallel to the magnetic field.

as those highest m; transitions also have the largest shift from field free resonance (see equation
5.6). By adding together Doppler broadened Gaussian peaks for each of the Am = 0 transitions,
with the relative frequencies given by equation 5.6 and the relative intensities given by equation
5.7, the split peaks can be modelled. This model can be fit to the data from figure 5.13 to
extract a value for the magnetic field of 0.11T. This magnetic field value is well within the
range of fields present in the trap (the trap depth is 0.31T), and suggests that the probe beam
is not quite going through the trap centre, where the magnetic field would be closer to zero. The
above model is somewhat simplified as the probe beam has a FWHM diameter of 1.15 mm, and
therefore the PMT collects fluorescence from a relatively large area with a spread of magnetic
field values. This means the detected atoms do not necessarily reside at a single magnetic field
value. However, the calculation does serve to reassure that the splitting of the lines into two

peaks is indeed a result of the presence of LFS and HFS states.

5.3.3 Decay of low and high-field seeking peaks

The low-field seeking atoms can be trapped in the magnetic trap, whereas the high-field seeking
ones are ejected. This makes it possible to study whether atoms are successfully trapped by
measuring the relative heights of the LFS and HFS peaks in the spectrum. The 64Dy peak

was chosen for this analysis as it is furthest away from any other transitions (see figure 5.2). A
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Figure 5.14: Height of the LFS peak relative to the height of the HFS peak as a function of
time after ablation. Data points are shown for four different valve pulse lengths (VPLs) from
200 to 230 us.

double Gaussian was fit to the split 164 peak in the spectrum, and the heights of the two peaks
determined from the fit. This was done for several different times after ablation in order to get
the heights of the LFS and HFS peaks as a function of time. Given that both peaks will decay
over time as the overall signal decays, the height of the LFS peak was calculated relative to the
height of the HFS peak to look for any trapping effects. Figure 5.14 shows the relative height
of the LFS peak as a function of time for four different valve pulse lengths (VPLs). For each of
the VPLs, the relative height of the LFS peak seems to increase with time, which is expected
given that the atoms in HFS states are ejected from the trap region much more quickly than
those in LFS states. This is clear evidence that the Dy atoms are indeed trapped. We also
see that the relative height of the LFS peak increases much more rapidly for the two lowest
VPLs of 200 and 210 us, than for the two higher VPLs of 220 and 230 us. There are three
factors that can influence the decay time and hence the ratio of the peaks: diffusion through
the helium gas; magnetic trapping/ejection for the LFS/HFS atoms; and spin-flip collisions and
momentum kicks from background helium gas that cause trap losses. For the highest VPLs,
where the highest amount of helium gas is pulsed into the trap region, the HFS atoms will
take some time to diffuse through the helium and they will therefore be ejected from the trap
relatively slowly. This explains why the relative height of the LFS peaks does not increase
as rapidly, because the decay of both the LFS and HFS signal is dominated by diffusion and

therefore occurs at almost the same rate. For the lower VPLs on the other hand, the amount of

86



5.3. MAGNET EXPERIMENTS

helium pulsed into the trap region is lower, which allows the HFS atoms to leave the trap region
more rapidly, with the LF'S atoms remaining trapped for some time. This results in the sharper
increase in relative height of the LFS peak in figure 5.14. Estimates of the helium densities
involved in each case are calculated in subsequent paragraphs. The lower VPLs seem to lead
to more favourable trapping conditions as the helium density in the trap region is lower and
therefore trap losses through spin-flip collisions will be minimised. However, there is a balance
to be struck, as reducing the VPL below 200 us reduces the overall signal so much that it was
not possible to observe the spectra. This is because the plume of ablated Dy atoms has to be
stopped inside the trap region, requiring a sufficiently high helium density. The difference in
amount of helium gas pulsed into the trap region for the different VPLs also accounts for the
fact that for the highest VPL of 230 us, the spectrum can be observed for longer as the higher

helium density leads to a longer diffusion time for the Dy atoms (see equation 4.3).
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Figure 5.15: Laser-induced fluorescence signal of Dy in the trap for both the LFS and HFS
resonance, with a VPL = 210 us. The black lines are the exponential fits to the decaying part
of the curves. The HFS curve is best approximated by a single exponential with a decay time
of 180 & 1 ps, and the LFS curve by a two-exponential decay (equation 5.8) with decay times of
180 £ 9 ps and 360 + 30 ps.

Figure 5.15 shows time-resolved fluorescence signals from Dy in the trap for the LFS and
HEFS resonance separately. The settings were the same as those which provided the best ratio of
LFS to HFS peaks in figure 5.14. The signal from the LEF'S atoms is greater than that from the
HFS atoms almost from the start. The decaying part of the HF'S signal is well approximated

by a single exponential decay curve with a decay time of 180 + 1 ps. The typical timescale for

4K Dy atoms to leave the probe beam region in free flight is about 80 s, suggesting that this
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longer decay time is due to diffusion through the helium gas. The LFS signal on the other hand,

is better approximated by a two-exponential decay curve of the form,
Ae”t/T 4 BT (5.8)

where A and B are constants and 7 and 7 are the decay times. Fitting this function to the
decaying part of the LFS signal, the first decay time is the same as for the HFS signal at
180 + 9 ps, but the second decay time is significantly longer at 360 £+ 3ps and is likely to be
a result of the trapping field. Using equation 4.5, the oscillation period for Dy in the trap
can be up to 4 ms for the widest orbits. This means that the 360 us decay time is not likely to
correspond to any full oscillations of Dy in the trap. Despite the relatively short trap time-scales
involved of only a few 100 us, the presence of an additional, longer second decay time for the
LFS atoms shows clear evidence that there is trapping of Dy atoms in this set-up.

If we assume, as for the Li experiments, that every collision with a helium atom kicks
a Dy atom out of the trap, then using equation 4.6 with a Dy-He collision cross-section of
10718 m? [115], a trap lifetime of 360 4 30 ps would correspond to a background helium density
of approximately 2 x 10! m~3 (pressure of 10~° mbar). In reality, as Dy is much heavier than
He, not every collision will cause a Dy atom to be lost from the trap and the actual helium density
is therefore likely to be higher than this. As they are not trapped, the decay time of the HFS
atoms of 180 + 1 ps is likely dominated by diffusion through the helium gas. Using equation 4.3,
a diffusion time of 180 11s corresponds to a helium density of approximately 6 x 10?2 m~3. This is
probably a more accurate estimate of the He density in the trap region. Past measurements have
shown that on the order of 10'® atoms are released per valve pulse [116]. This corresponds to a
density of about 3 x 10?2 m~3 if these atoms fill the copper cylinder surrounding the trap region.
This is fairly consistent with the density of 6 x 10?2 m—2 calculated from the diffusion time of
the HFS atoms. Whilst this helium density will decay over time, the fact that it is relatively
high means that the 360 4+ 30 ps decay time for the LFS atoms is caused by a combination of
both diffusion through the helium and magnetic trapping.

The same time-resolved LIF signals as in figure 5.15 can be plotted for the data from figure
5.14 with the highest VPL of 230 us. Both the HFS and LFS signals are well approximated by
single exponential decays in this case, with a LFS decay time of 287 4+ 1 s and a HFS decay

time of 281 4+ 2ps. The LFS decay time is slightly longer than the HFS decay time, but the
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difference is much less than for the VPL of 210 us, which explains the much slower increase in
the relative height of the LF'S peak in figure 5.14. Using equation 4.3, the HFS decay time of
281 + 2y1s corresponds to a helium density of approximately 9 x 10?2 m~3, assuming the decay
is dominated by diffusion. The decay time of 287 + 1 ps for the LFS atoms is actually less
than the 360 + 30 ps decay time with the lower VPL of 210 us. This suggests that the higher
helium density is increasing trap losses through either spin-flip collisions or momentum kicks,

and therefore confirms that using the lower VPLs leads to more favourable trapping conditions.

5.3.4 Mapping out the field

From equation 5.6 and the model in section 5.3.2, we saw that the splitting between the double
peak of the transition lines in the spectra depends on the magnetic field being experienced
by the Dy atoms. Given that the magnetic field, in turn, depends on the position of the Dy
atoms in the magnetic trap, moving the probe beam to a different position to detect a different
part of the Dy cloud should give rise to a different splitting in the double peak. By taking
spectra of the 19Dy line with the probe beam in different positions, the spacing between the
double peaks can be mapped out as a function of position. This is shown in the 3-dimensional
plot in figure 5.16, where the spacing between the peaks is plotted as a function of position

of the probe beam in the vertical and horizontal directions. The probe beam position was
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Figure 5.16: Spacing between the double peak of the %Dy line for different probe beam posi-
tions. The z direction is the vertical direction perpendicular to the faces of the magnets, with
x being in the horizontal plane.

measured on a CCD camera placed at the exit of the vacuum chamber. The apertures in the
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Figure 5.17: Contour plot of the magnetic field corresponding to the spacing between the double
peak of the 194Dy line, as a function of probe beam position. This is drawn from the same data
as figure 5.16, but with the peak spacing converted to a magnetic field using the model from
section 5.3.2.

copper cylinder surrounding the trap region (see figure 5.8(a)) that the probe beam has to pass
through constrained the range of positions we were able to probe to the ones shown in figure
5.16. A contour plot derived from the same points is shown in figure 5.17, with the spacing
between the double peaks converted to a magnetic field using the model in section 5.3.2. The
area where the magnetic field is lowest corresponds to the probe beam going through the trap
centre. The magnetic field never goes down to zero because the probe beam has a finite size
(FWHM diameter of 1.15mm), and therefore, even with the probe beam going through the
trap centre, regions of non-zero field are still probed. One thing to note from figure 5.17 is
that the trap centre appears to be at z = —1.5mm, rather than at z = 0mm. This is caused
by a combination of the incorrect determination of the trap centre when positioning the probe
beam and the thermal contraction of the set-up when it cools down to 4 K, which lowers the
trap centre. The shape of the contour plot resembles that of the magnetic field produced by
the magnets (see figure 3.4(b)), which confirms the assumption that the splitting of the lines

into two peaks is caused by LFS and HF'S states.
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5.4 Buffer gas in the trap region

In section 5.3.3, evidence of the trapping of Dy in the magnetic trap was shown. However, the
trap lifetimes were never longer than a few 100 us. The likely cause of this short trap lifetime
is the presence of excess helium buffer gas in the trap region causing trap losses. There is
no way to measure the helium density in the trap region directly, and estimating it from the
amount of helium released in the valve pulse is difficult as the trap still has a relatively open
geometry, making it difficult to determine how quickly the helium will leave the trap region.
The presence of helium can however be indirectly estimated by looking at the Dy signal. To
obtain an indication of the length of time that helium remains in the trap region, the Dy signal
was measured for different valve firing times, t,40e. Recall that the valve is pulsed first, to inject
helium gas, then the ablation laser fires. We also know that the Dy signal measured shortly
after ablation depends strongly on the helium density in the trap region, because the helium has
to stop the ablation plume. Therefore, by measuring the Dy signal as a function of time delay
between the valve and the ablation laser firing, we can determine how the helium density in the
trap region changes with time. Figure 5.18 shows such a t,4,¢ scan for the set-up with magnets
and copper cylinder in place. The Dy signal with the probe beam on the %Dy resonance is
measured as a function of t,4ye, With £y40e changed between each shot (see section 4.2.5). From

the plot it is clear that the largest signal appears at around t,40e = —500 s, which is similar
LIF (H2)
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Figure 5.18: Dy LIF signal as a function of the valve firing time, t,40e, With copper cylinder.
The ablation laser is fired at ¢t = 0, with the LIF signal recorded 450 us after ablation.
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to the t,q0e used to take the data in section 5.3. This is not surprising since that ¢4, Was
chosen as it provided the highest Dy signal. However, figure 5.18 also shows that the signal
does not go down to zero even if the valve is fired at t,4p = —500ms. This means that, even
if the Dy target is ablated 500 ms after the valve has fired, we still see a significant amount of
Dy signal. If the valve is not fired at all, the signal is truly zero, so figure 5.18 suggests that
there must still be a significant amount of helium in the trap region even 500 ms after the valve
has fired. This is detrimental to trap lifetimes, and suggests that the geometry of the trap is
not open enough and does not allow the helium to dissipate quickly enough. In section 5.4.2
a calibration procedure is explained which allows figure 5.18 to be converted into a plot of the
helium density as a function of time. First though, we introduce a strategy for allowing the

helium to leave the trap region more rapidly.

5.4.1 Mesh cylinder

To allow the helium buffer gas to leave the trap region more quickly, the copper cylinder
surrounding the trap region was replaced with a more open cylinder, shown in figure 5.19. A

70% reflective, 30% transparent copper mesh was placed around the rectangular holes so that the

Ablation
laser
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Figure 5.19: The new copper cylinder placed around the trap region, with a transparent copper
mesh used to cover up the rectangular holes. This should allow the helium to leave the trap
region more quickly.
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trap region was still partially enclosed, otherwise the same problem with centre-of-mass velocity
of the Dy cloud would have been encountered as in section 5.2.2. Counter-propagating probe
beam measurements with the mesh cylinder confirmed that the Dy cloud is indeed stationary in
this case. The partially transparent mesh should however allow the helium to escape the trap
region more quickly.
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Figure 5.20: Dy LIF signal as a function of the valve firing time, ¢ 4, With mesh cylinder.
The ablation laser is fired at t = 0, with the LIF signal recorded 450 us after ablation.

Figure 5.20 shows a scan of the LIF signal versus valve firing time, ¢,44e, With the mesh
cylinder in place. As with the full copper cylinder, the peak in the plot is at around t,qpe =
—500 us. However, for earlier t,45ye times the signal is much lower than it was in figure 5.20,
implying that there is less helium gas remaining in the trap region than before. Especially
approaching a t,q,e = —500ms the signal is almost at zero. The signal is not completely zero
however, which suggests that even though the amount of helium remaining in the trap region
for long periods of time is lower, the mesh cylinder has not allowed it to completely disappear
within the time scales measured. The reason for this is discussed in section 5.4.2.

Figure 5.21 shows the LFS and HFS signal from Dy in the trap with the mesh cylinder
instead of the copper cylinder. The plot shown is for the settings that gave the longest decay
time of the LFS atoms. Fitting a single exponential to the HFS signal gives a decay time of
118 + 1 ps, which is less than the 180 + 1 s decay time for the HF'S atoms with copper cylinder
from figure 5.15. As the helium density is expected to be lower for the mesh cylinder, it follows

that the decay time for the HFS atoms is also lower as it is expected to be dominated by
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Figure 5.21: Laser-induced fluorescence signal of Dy in the trap for both the LFS and HFS
resonance, with a VPL = 210 us. The copper cylinder has been replaced by the mesh cylinder.
The black lines are the exponential fits to the decaying part of the curves. The HFS curve is
best approximated by a single exponential with a decay time of 118 4+ 1 ps, and the LFS curve
by a two-exponential decay (equation 5.8) with decay times of 108 £ 1 ps and 800 =+ 30 ps.

diffusion through the helium. The LFS signal in figure 5.21 clearly has a second, longer decay
tail that the HFS signal does not have. Therefore, as with the copper cylinder data, the LFS
signal is better modelled by the two-exponential decay from equation 5.8. This gives a second
decay time of 800 + 30 s, compared to 360 + 30 ps for the copper cylinder data. Introducing
the mesh cylinder has therefore improved the trap lifetime of the LF'S atoms compared to that
with the copper cylinder. This is likely to be a result of a lower buffer gas density in the trap

region after the Dy has thermalised.

5.4.2 Calibrating LIF signal with helium pressure

The plots in figures 5.18 and 5.20 show that helium is present in the trap region long after the
valve has fired. As the plots only look at the Dy signal, there is no measure of what helium
pressure this corresponds to. To convert the Dy signal to a helium pressure, it is necessary
to calibrate the Dy signal against helium pressure. This was achieved by closing off the turbo
pump attached to the vacuum chamber, and filling the chamber with a constant background
pressure of helium gas. To ensure that the background pressure remained constant throughout
the chamber, the charcoal sorption pumps that normally sit around the trap region were removed

as they would otherwise pump away helium near the trap region. The pressure was measured
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on the Penning gauge attached to the outside of the chamber. The Dy target was then ablated
without firing the valve, and the LIF signal on resonance measured for different background

pressures of He gas.
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Figure 5.22: Dy LIF signal on resonance for different constant background pressures in the
chamber. The point that appears at a pressure of Ombar is taken at 10~7 mbar, the base
pressure in the chamber.

Figure 5.22 shows the LIF signal on resonance against helium pressure in the chamber. For
pressures from 10~7 mbar (the base pressure in the chamber) up to 10~* mbar, the Dy signal
hovers between a few thousand up to 10* Hz, but there is no obvious change in signal. This
means that for pressures below 104 mbar, there is not enough helium present to affect the Dy
signal. When the background pressure is increased above 10~% mbar the Dy signal starts to
increase exponentially with it (note the plot is logarithmic), with the Dy signal reaching 106 Hz
once the background pressure approaches 1073 mbar. The trend from the plot allows for an
estimation of the helium pressures in the trap region.

Returning to the signal against t,4se plot in figure 5.18, where the full copper cylinder is
still in place, the average signal for the points from ¢ 4 = —500 to —490ms is 8 x 10* Hz.
Comparing this to the calibration plot in figure 5.22, it suggests that there is a helium pressure
of at least 3 x 10~% mbar (density of 5 x 1020 m~3) in the trap region 500 ms after the valve has
fired. Given that the base pressure in the chamber when the valve does not fire is 10~7 mbar,
there must be residual helium from the valve pulse in the trap region for this length of time. Even

when the copper cylinder was replaced by the mesh cylinder (see figure 5.20), the average signal
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for a tygwe from -500 to —490 ms is 1.7 x 10* Hz, which from the calibration plot corresponds to
a pressure in the trap region of at least 104 mbar (density of 2 x 102 m~3). These are unlikely
to be accurate measures of the helium pressure in the trap region, but even as an order of
magnitude estimate, it is clear that the pressure is high even 500 ms after the valve has fired.
Using equation 4.6 to estimate the time between collisions at a pressure of 104 mbar gives a
value of 40 us. If we pessimistically assume that a single collision is enough to remove a Dy
atom from the trap, the expected trap lifetime is also 40 us. This confirms that the trap lifetime
in figure 5.21 was likely limited by collisions with helium in the trap region.

The time it should take for the helium from the valve pulse to leave the trap region is much
shorter than the 500 ms time-scales on which we still see a significant fraction of helium present.

The theoretical atom flux from a supersonic valve is given by [114],

B 2%pT ~ 1/2 92 1/(v-1)
s (1) G5, i

where A is the area of the valve nozzle, T is the temperature of the atoms, m is the mass of

the atoms, ng is the atom density behind the valve and v = 5/3 for a monatomic gas. The
valve exit aperture has a diameter of 1 mm and the helium pressure behind the valve is 2 bar,
which corresponds to a helium density of 102" m™3 at 4 K. Inserting those values into equation
5.9 and multiplying by a typical valve pulse length (VPL) of 200 us gives 101 atoms expelled
from the valve in a single pulse. Assuming all of the helium from the valve enters the copper
cylinder surrounding the trap region, this gives an initial helium density in the trap region of
6 x 1023 m™3. In fact, it is well established that the solenoid valve does not fully open on these
short timescales and the actual quantity of helium delivered is smaller. This is confirmed by
experimental observations of a similar solenoid valve, which suggest that on the order of 10'®
atoms are delivered per valve pulse [116]. Numerical simulations of helium in our trap region
estimate that, even with the full copper cylinder in place, the helium should dissipate from the
trap region on a timescale of at most 10 ms, and therefore the helium density should be below
102 m~3 after 90ms and several orders of magnitude lower still after 500ms. The fact that
the helium density is still 5 x 102°m™3 500 ms after the valve has fired suggests that there is
another ‘source’ of helium keeping the helium density in the trap region high. The obvious
candidate for this would be a leak from the valve, even when it is closed. However, this would

mean that there should be Dy signal when there is helium pressure behind the valve but the
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Figure 5.23: LIF signal of Dy on resonance for different temperatures of the cold plate, with
the valve firing 50 ms before the ablation laser.

valve is not fired. This is not the case and therefore rules out a leaking valve. The other option
that remains is that some of the helium is adsorbed onto a cold surface near the trap region, and
slowly released over time. This would be alleviated by raising the temperature of the cold plate
to above 4 K as it is unlikely that this adsorption would take place at temperatures significantly

above the condensation temperature of helium. This is explored further in the next section.

5.4.3 Data at different temperatures

The temperature of the trap set-up was adjusted by placing a small heater on the cold plate.
The delay between firing the valve and firing the ablation laser was set to 50ms (i.e. tyawe =
—50ms), and the corresponding Dy signal measured for different temperatures of the cold plate.
This is therefore a measure of how much helium is still in the trap region 50 ms after the valve
has fired. Figure 5.23 shows the Dy signal as a function of the cold plate temperature. It is
immediately clear that the amount of signal reduces with increasing temperature, with the signal
appearing to level off above 6.5 K. The value to which it levels off is consistent with the region
in figure 5.22 that corresponds to helium pressures between 107 and 10~% mbar. Unfortunately
the calibration does not allow for a more accurate determination of the helium pressure, but
it is clear from figure 5.23 that the higher temperatures result in the helium leaving the trap
region much more quickly. This is consistent with the assertion that the helium is somehow

being adsorbed by a cold surface and slowly released over time, and that this does not now
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occur at the slightly higher cold plate temperature. We already know from section 4.2.2, as well
as [105] and [117], that carbon materials, in particular coconut charcoal, are good adsorbers of
helium at 4 K. Perhaps this means that the soot used to coat the magnet surfaces and inside
of the copper cylinder to minimise laser scatter (see section 4.2.3) adsorbs some of the helium
at 4K and slowly releases it over time, keeping the helium pressure in the trap region high.
The high helium pressure in the trap region when at a temperature of 4 K, even hundreds
of ms after the valve has fired, is clearly going to severely limit trap lifetimes. Running the
experiment at 6.5 K to limit the amount of helium, and comparing the lifetimes of the LFS and
HFS atoms, did not improve upon the trap lifetime from figure 5.21. This leads to the wider
conclusion that it is extremely difficult to get long trap lifetimes in this set-up because of the
close proximity of the ablation to the trap region. The unpredictable and explosive nature of
the ablation process means that a high helium density is required initially in order to contain
the ablation plume. This already results in the presence of significant amounts of helium in the
trap region, which then has to be removed. With the ablation happening so close to the trap
region, the trap lifetimes will also be extremely sensitive to exactly how the ablation plume
comes off the target, and any slight changes will probably result in no trapping at all. With so
many effects having to come together successfully in a relatively small trap region, it makes it

very difficult to achieve longer trap lifetimes in this trap.

5.5 Conclusion

Spectra of Dy taken with the ‘dummy magnets’ in place showed all of the transitions expected
from the theoretical calculations. Fitting Gaussians to the spectrum at different times after
ablation allowed the widths of the lines to be extracted, and hence the temperature of Dy to be
measured as a function of time. This showed that the Dy thermalised with the helium buffer
gas within 200 us.

By introducing a counter-propagating probe beam to the ‘dummy magnet’ set-up, the centre-
of-mass velocity of the Dy cloud was measured. This showed that for the original set-up, the Dy
cloud had a centre-of-mass velocity of at least 180 m/s right from the start. Introducing a copper
cylinder to contain the initial helium pulse limited the centre-of-mass velocity immediately after
ablation, however the long tail of the helium pulse emanating from the valve tube resulted in

the Dy cloud still acquiring a velocity of over 100m/s at later times. This problem was finally
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solved by switching to the horizontal valve set-up with copper cylinder, which showed that the
Dy cloud acquired very little, or no centre-of-mass velocity. This was the arrangement that was
then used for subsequent experiments with magnets.

When switching to the real magnets, it was noticed that there was still a significant back-
ground fluorescence signal that did not depend on the probe laser. This background was not
present with the dummy magnets and so is related to the magnetic field. By applying a voltage
to the top magnet to remove ions created after ablation, and by placing a red filter in front
of the PMT, this background fluorescence was removed, leaving only resonant Dy signal. This
allowed the spectrum of Dy to be taken in the magnetic field, which showed the splitting of the
resonance lines into high and low-field seeking components. By measuring the heights of the
HFS and LFS peaks, evidence of the trapping of Dy was seen in the magnetic trap when the
valve pulse length was set to an optimum value. The trap lifetime of 360 & 30 s is suspected
to be limited by excess helium in the trap region.

This was confirmed in subsequent experiments, where the helium density in the trap region
was measured as a function of time. There was still a helium density of about 2 x 102°m™3 in
the trap region 500 ms after the valve was fired. Replacing the copper cylinder with a mesh
cylinder so that the helium can leave the trap region more quickly improved the trap lifetime
to 800 % 30 ps but did not solve the problem entirely. Finally, it was discovered that this large
background helium density could be greatly reduced by raising the temperature of the cold
plate to 6.5 K. This suggests that the helium is being adsorbed onto a cold surface near the
trap region and slowly released over time, keeping the helium pressure in the trap region very
high. Unfortunately, running the experiment at 6.5 K did not improve the trap lifetimes of Dy
in the trap.

Whilst there has been clear evidence of trapping in this arrangement, it is also clear from
the data in this chapter that it will be difficult to improve upon the trap lifetime of 800 £ 30 ps.
There are many different factors that need to come together in order for this trap to be more
successful. Given the explosive and unpredictable nature of laser ablation, the close proximity
of the ablation target to the trap region makes this very difficult as it would require a very
precise set of circumstances to stop and cool the ablation plume within the trap region, but
with the helium then dissipating quickly enough to leave the Dy trapped. The solution to this
problem would seem to be to separate the ablation process from the trapping process, and this

is explored in more detail in the next chapter.
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CHAPTER 6

TRAPPING FROM A DYSPROSIUM BEAM

Motivated by the conclusions drawn from the Dy experiments in the previous chapter, we
decided to try trapping atoms from a beam rather than directly from the ablation source. The
close proximity of the ablation source to the trap region made it difficult to achieve long trap
lifetimes due to the high densities of helium required in the trap region to stop and cool the
ablation plume. By separating the ablation and cooling process from the trapping process, this
problem is avoided. A high helium density is used inside a buffer gas cell to create a beam
of Dy atoms. This beam then propagates to the trap region where it is stopped by a second
helium pulse with a much lower density, leaving the Dy atoms trapped whilst the helium atoms

dissipate.

6.1 Buffer gas beams

Buffer gas beams are typically extracted through an exit aperture in one side of a buffer gas
cell, as explained in section 2.1.3. This allows a beam of the atoms/molecules of interest to
escape from the cell entrained in the buffer gas flow. The properties of the beam are usually
dominated by the properties of the buffer gas, as the buffer gas density is typically several
orders of magnitude higher than that of the atoms/molecules of interest. A summary of the
flow properties and types of buffer gas beams is presented in [37]. There are three different
types of flow regime for a buffer gas beam: effusive, intermediate/partially hydrodynamic and
supersonic (fully hydrodynamic). In effusive sources, there are very few or no collisions near
the exit aperture of the cell and therefore the velocity distribution of the beam that emerges
from the cell is simply a sampling of the thermal distribution inside the cell, weighted by the

speed since the probability of finding the aperture is proportional to the speed. Such sources
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are typically made by ensuring that the aperture thickness and diameter are smaller than the
mean free path of the gas, ensuring that no collisions occur near the aperture. In the supersonic
regime there are many collisions near the aperture and the buffer gas behaves more like a fluid,
with the beam properties similar to those of a supersonically cooled beam. In the intermediate
regime there are enough collisions near the aperture to alter the beam properties from those of
the thermal distribution inside the cell, but not enough for the beam to be fully supersonic.
Buffer gas beams of molecules are now created on a regular basis and are relatively easy to
produce, such as for ThO [118] and YbF [119]. Most of these have velocities between 100 and
200m/s. Creating a purely effusive source with a high flux at cryogenic temperatures is difficult,
and in reality most buffer gas beams are in the partially hydrodynamic regime [37]. However,
a new two-stage cell technique [62] has been developed to produce beams with near effusive
velocity distributions. Such a two-stage cell has been used to directly load CaF molecules into
a magnetic trap without any further laser cooling of the beam [61]. These two-stage buffer
gas cells may become the norm to produce slow, intense sources of cold molecules, but in the

experiments in this chapter a single stage buffer gas cell was used.

6.2 The experiment

The design for our set-up is shown in figures 6.1 and 6.2. This new set-up is placed on a cold
plate into the same experimental apparatus described in section 4.2.2. The cell consists of a
vertical cylindrical column with 2 mm access holes for the helium pulse and ablation laser; a
simplified version of the final design in chapter 6 of [120]. The Dy target is clamped to the
outside of one of the cell walls, with the face of the target exposed to the central column, and
hence the ablation laser (see figure 6.3(a)). The helium is then pulsed into the cell through
the valve, and propagates through the access hole into the central column. At this point the
Dy target is ablated and the plume released from the target thermalises with the helium buffer
gas inside the central column. Two cross sections through the cell are depicted in figure 6.3,
showing how the helium pulse propagates into the central column and out of the cell. A pulsed
beam of cold Dy and helium atoms then emerges from the top of the cell and propagates in the
direction of the magnets.

This beam travels through the 8 mm hole in the centre of the bottom magnet and into the

trap region. The top valve is pulsed so that the helium pulse reaches the trap region at the
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Figure 6.1: Experimental set-up of the two-valve configuration, showing the positions of the cell
and second valve relative to the trap region. One of the NdFeB magnets is depicted, showing
the 8 mm hole through the centre that allows the Dy beam and second helium pulse to reach
the trap region. The positions of the two probe beams are also depicted.
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Figure 6.2: Close-up depiction of the cell, showing how the valve pulses the helium into the
main central column of the cell through a 2 mm hole. The target is clamped to one side of the
cell, with the ablation laser passing through a 2mm hole from the opposite side to ablate the
Dy into the helium pulse. The beam then emerges from the hole in the top of the cell.
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Figure 6.3: Cross sections of the cell from figure 6.2, showing the channels for the helium pulse
and ablation laser, and the central column from which the beam emerges.

same time as the Dy beam. Collisions between the beam and the helium pulse then result in
a fraction of the beam remaining stationary in the trap centre. As the trap has a very open
geometry, the helium will then dissipate quickly, leaving the Dy trapped. Since there only need
to be enough collisions in the trap region to stop a Dy beam that is already cold, rather than
having to stop and cool a 10 000 K ablation plume as in the original set-up, the density of helium
required in the trap region is much lower. With the second valve positioned so close to the top
magnet, the magnetic field from the magnet actually forces the valve to be permanently open.
To avoid this, a steel plate is placed between the top magnet and the second valve to shield the
second valve from the magnetic field.

The atoms in the trap are detected by collecting laser-induced fluorescence (LIF) on a photo-
multiplier tube (PMT). The probe laser beam passes through the trap centre, and fluorescence
is collected by a large lens placed perpendicular to the probe beam, as shown in figure 6.1.
The arrangement of the lenses, iris and PMT is the same as in figure 4.5. In addition, in order
to maximise the collection efficiency, a curved mirror is placed directly opposite the collection
lens on the other side of the trap region to reflect and focus fluorescence back towards the trap
centre, so that it can also be collected by the lens and detected. This gives a collection efficiency
of 10%. The quantum efficiency of the PMT at the relevant wavelength is 7%, and so the total
detection efficiency of this LIF set-up is 0.7%.

The two NdFeB magnets forming the trap region are cylindrical, with their north poles

facing each other to form a quadrupole trap with a magnetic field zero at the centre. This is a
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Figure 6.4: Magnitude of the magnetic field formed by the two magnets in the set-up. The x
direction is parallel to the magnet faces, with the z direction perpendicular to the magnet faces.
The trap depth is 0.23 T.

similar arrangement to the previous trapping experiments for Dy and Li, shown in figure 3.4(a),
with the key difference being an 8 mm cylindrical hole through the middle of the magnets (see
figure 6.1) to allow the beam of Dy atoms to propagate into the trap region. This magnet
geometry was required to ensure access for the probe beam and fluorescence collection optics.
The hole in the top magnet is necessary not just to make the trap symmetrical, but also to
allow the helium pulse from the top valve into the trap region. The magnets have been scaled
up compared to the magnets used in the previous experiments, with a diameter and height of
40 mm, spaced 20 mm apart. This leads to a trap shape similar to the previous set-up (see figure
3.4(b)), where the magnets had a 20 mm diameter and height, and were placed 10 mm apart,
but gives a much larger trapping area, making it easier to capture the Dy atoms in the trap.
Figure 6.4 shows the magnitude of the magnetic field in this magnet arrangement, calculated
using the Radia plug-in [101] for Mathematica. In the plane parallel to the faces of the magnets
the field essentially increases linearly away from the centre, similar to the field from the full
cylindrical magnets shown in figure 3.4(b). It is only in the direction perpendicular to the
magnet faces that the effect of the hole becomes apparent in a reduction in the trap depth.
The trap depth in this arrangement is 0.23 T, compared to the 0.31 T from the previous set-up.
Whilst this is a significant reduction, the trap depth of 0.23 T, corresponding to 1 K for Dy in

the most favourable state, is still high enough to trap 14% of 4 K Dy atoms (see equation 3.1).
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The capture velocity of Dy in this trap is calculated using equation 3.2 to be 12.5m/s.

6.3 Calculations

Calculations were carried out to determine the feasibility of this new two-valve trap arrangement.
We would like to know the helium density needed to stop Dy atoms from the beam, and how
this compares to the density needed to stop and cool the ablation plume in the previous set-up.

From the hard sphere model in equation 2.6, it was calculated that roughly 190 collisions
are required to cool the Dy atoms from a temperature of 10000 K immediately after ablation
to within 30% of the buffer gas temperature of 4 K. If this is to occur inside the cell from figure
6.2, these 190 collisions have to take place before the Dy atoms have a chance to diffuse to the

cell walls, where they will be lost. The mean free path of the atoms is given by,

1

A= ,
V2no

(6.1)

where n is the helium density and o is the elastic collision cross section between Dy and helium
and is well estimated to be 10718 m? [115]. For the required 190 collisions to occur before the
Dy atoms diffuse to the cell walls, the mean free path can be no bigger than the diameter of
the cell divided by the number of collisions. This means that, with a cell diameter of 5 mm (see
figure 6.3(a)), a helium number density of at least 1022 m~3 is needed inside the cell. A bigger
cell diameter would not require as high a helium density to ensure the Dy atoms thermalised
before hitting the cell walls. However, with such a wide cell diameter, an aperture would have
to be placed at the exit of the cell to ensure a collimated beam. Having an aperture that is
smaller than the cell diameter leads to recirculation regions and hence a loss of flux [119]. To
avoid this, the cell diameter was kept at 5 mm.

It is important that not all of the helium that is pulsed into the cell ends up propagating
through to the trap region along with the Dy beam, as this would hugely increase the helium
density inside the trap region. As the beam leaves the cell, the centre-line helium density

decreases as [121],

PO
(14 152 0r2) oy

where pg is the initial helium density, ¥ = 5/3 for a monatomic gas and M is the Mach number.

The Mach number is defined as the ratio of the local value of flow speed, u, to the speed of
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sound, a, in the given gas,

M= (6.3)

a

As the pressure in the cell is significantly greater than the background pressure in the chamber,
we are operating in the supersonic flow regime. In this regime, and for an axisymmetric expan-
sion (which is the case in our cell as the exit aperture is circular), the Mach number is defined

as a function of distance from the cell as [121],

M(X)=Xx7"1 <Cl(7) + 02)((7) + C;(;) + C;;;f)) for X > 0.5, (6.4)
M(X)=1+A()X*+ B(y)X3for0 < X < 1, (6.5)

where X is the reduced distance from the cell exit aperture and is defined as X = z/D, with x
the actual distance from the cell and D the diameter of the exit aperture. The coefficients C1,
Cy, C3, Cy4, A and B for a monatomic gas (i.e. v =5/3) are known [121].

It is imperative to ensure that the helium density has decreased sufficiently by the time the
beam reaches the bottom magnet, after which it is guided through the hole in the magnet into
the trap region. Inserting the definition of the Mach number, M, from equations 6.4 and 6.5
into equation 6.2 for the beam density allows the helium density in the beam to be calculated
as a function of reduced distance from the cell. The diameter of our cell aperture is 5 mm, and
the distance from the top of the cell to the bottom of the first magnet is 32.6 mm, leading to
a reduced distance of 6.52 to the bottom of the first magnet. With a starting density in the
cell of 1022m~3, the helium density of the beam at the entry point to the first magnet will
be 4 x 10 m~3. This is almost two orders of magnitude lower than the density required from
the second valve to stop the Dy in the trap region (see calculation in following paragraph) and
therefore the helium density from the first beam will not contribute significantly to the total
helium density inside the trap region.

For this trap set-up to be successful, the number of collisions required to stop the beam of
Dy atoms inside the trap region has to be realistically achievable. Using equation 5.5, a 4K
supersonic beam would emerge from the cell at 204 m/s. Using a 1-dimensional hard sphere
model, and assuming the collisions between the Dy and helium atoms to be elastic, energy
and momentum conservation can be used to estimate that 14 collisions with helium atoms are

required to stop a Dy atom from 200 m/s to rest. This is significantly less than the 190 collisions
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required to cool the Dy atoms after ablation. These 14 collisions need to take place within the
trap region, otherwise the Dy atoms will be lost from the trap. Even though the full distance
between the magnet faces is 2 cm, the cooling collisions are likely to have to take place within a
1cm region at the trap centre to have a realistic chance of trapping the atoms. Using the mean
free path equation 6.1, and assuming that 14 collisions have to take place within a distance of
1 cm, then 14\ < 0.01, which leads to a minimum helium density in the trap region of 102" m=3.
This is an order of magnitude lower than the helium density required to stop and cool the Dy

atoms from the ablation plume, and therefore greatly improves the trapping prospects compared

to the set-up in chapter 5, where the Dy atoms were trapped directly after ablation.

6.4 Results

The calculations above have shown that there is a significant helium density advantage to this
trap set-up over the set-up from figure 4.3. As with the Li (chapter 4) and Dy (chapter 5)
experiments, aluminium ‘dummy magnet’ cylinders were placed inside the set-up in place of
the magnets to test various trapping parameters before reverting back to real magnets for the

trapping experiments.

6.4.1 Dummy magnet results

In addition to the probe beam through the centre of the trap region, a second probe beam
28 mm above the cell exit aperture was used to record the absorption signal of the Dy beam as
it emerges from the cell (see figure 6.1). Figure 6.5 shows a typical absorption signal above the
cell and the corresponding LIF signal in the trap region, in the case where dummy magnets are
used and the top valve is not fired. The probe frequency was tuned to the %Dy transition as
for the data in the previous chapter. Taking the time between the maxima of the absorption
and LIF peaks, along with the distance between the two probe beams, a rough estimate of the
velocity of the beam is 170 + 10 m/s. From equation 5.5, the velocity of a supersonic beam
entrained in 4 K helium should be 204 m/s. This shows that the number of collisions near the
cell exit aperture is not quite high enough to lead to a fully supersonic beam (see section 6.1).

The maximum absorption measured 28 mm above the exit aperture of the cell is 2.4%. The
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Figure 6.5: Laser-induced fluorescence (LIF) signal of Dy in the trap region (blue line). Ab-
sorption signal just above the cell (red line) scaled up and plotted on the same axes. The y-axis
values only apply to the blue LIF line, with the red absorption peak maximum being at 2.4%
absorption. Inset is a LIF spectrum of Dy in the trap region, taken from average LIF signal
gated between ¢t = 800 and 900 us, with the frequencies relative to the %Dy transition. All
data taken with ‘dummy magnets’ and without the top valve.

fractional absorption is given by,

I@'n - Iout

P 1—e "%, (6.6)

where n is the atom number density, z is the width of the Dy beam and ¢ = 3\%/(27) is
the resonant absorption cross-section for a two-level atom. Of course, Dy is not really a two-
level atom, and as a result the absorption cross-section for the transition used for detection is
calculated to be a factor of 6 smaller. Additionally, the resonance line is Doppler broadened,
with a temperature of 4 K. At any one frequency, we are only resonant with a particular velocity
sub-set of the Doppler broadened line. To take into account all atoms in the Doppler profile, the
absorption cross section is reduced by a factor v/27I'/(120p), where I' is the natural linewidth of
the transition and op = \/kpT/(mA2) is the Doppler broadened linewidth. Using this adjusted
absorption cross section, a value for nz can be found using equation 6.6. Integrating this over
the beam area (FWHM diameter of 1.15mm), the instantaneous '**Dy atom number at peak

absorption is calculated to be approximately 2 x 108. Integrated over the full length of the
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absorption signal, this gives a total number of 4Dy atoms in the pulse of about 3 x 10°.

The inset in figure 6.5 shows a typical Dy LIF spectrum in the trap region with dummy
magnets. Each of the theoretical transitions from figure 5.2 are much more clearly resolved
than they were in figure 5.4, which shows the Dy spectrum in the original trap. This is because
the Dy in the original trap was in an 8 K thermal distribution, and so the lines were Doppler
broadened. In the beam set-up on the other hand, the spatial filtering of the LIF detection
due to the iris in front of the PMT means that only the central part of the beam is detected,
where atoms with low transverse velocities reside. This reduces the Doppler broadening of the

spectral features.

4x108} \
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o) I ——— \.______ —— et
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Figure 6.6: LIF signal from the trap region with dummy magnets, with (orange) and without
(blue) the top valve. Fitting exponential decay curves to the part of the signal where t >
1400 ps, gives a decay time of 156 4+ 1 ps without firing the top valve and 240 + 2 us when the
top valve is fired.

Figure 6.6 shows the effect on the LIF signal when firing the top valve. The valve pulse
length of the top valve, VPLy,,, was 230 us; the top valve firing time, ;) paive, Was 300 us; and
the He pressure behind the top valve was 100 mbar. As before, ¢t = 0 is taken from the time
at which the ablation laser is fired. Firing the top valve with these settings arrests part of
the Dy signal from about 1050 us after ablation, and leaves a second tail in the signal with a
longer decay time than the signal without the top valve. The decay time of this second tail is
240 £ 2 ps, compared to the 156 + 1 s decay time when the top valve is not fired. This clearly
shows that the helium pulse from the top valve affects the passage of the Dy beam through the

trap region, and causes a portion of it to have a longer decay time. The increase in decay time
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Figure 6.7: Dummy magnet data for the decay time of the Dy signal in the trap region for
different top valve firing times, t;opvaive. The ablation laser is fired at ¢ = 0.

when the top valve is fired can be explained by the fact that the helium pulse from the top
valve collides with the Dy beam in the trap region and slows down the tail of the beam, which
then appears as a longer decay time.

The signal in figure 6.6 was for a top valve firing time, t;0p vaive, 0f 300 us, and resulted in the
signal being arrested from about 1050 us. The time at which the top valve is fired determines
at what point the He pulse starts to affect the Dy pulse, with later #;,pyaive times resulting in
the signal being arrested at later times. This ‘arrest time’ is directly related to tiopvaive, i-€-
increasing tiop vaive by 100 us would result in the signal also being arrested 100 us later. Fitting
exponential decay curves to the tail of the signal for different top valve firing times gives the
plot in figure 6.7 of decay time against tiopyaive.- The later the top valve firing time, the longer
the decay time of the tail of the signal. This increases all the way to a decay time of almost
400 ps with a topvaive 0f 600 ps. Beyond the t4opyaive 0f 600 s, the signal gets arrested so late
that there is not enough signal left to detect. The longer decay times for later topyaive times
are speculated to arise because firing the top valve later increases the density of helium in the
trap region at the time when the tail of the Dy beam arrives. This increases the diffusion time
of the arrested Dy in the trap region.

There are two ways to control the amount of helium introduced into the trap region from

the top valve; either by changing the helium pressure behind the valve or by varying the valve
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Figure 6.8: Dummy magnet data for the decay time of the Dy signal in the trap region against
the valve pulse length of the top valve, VPLy,,.

pulse length of the top valve, VPL;,,. Changing VPL;,, has proven to give us finer control
over the amount of helium and therefore this was varied whilst keeping the pressure behind
the valve constant. Fixing topvaive @t 400 us and increasing VPLy,, led to a larger fraction of
the Dy signal being arrested. Fitting exponential decay curves to the remaining Dy signal tail
shows that the decay time increases for increasing VPLy,,. A plot of the decay time against
VPL;ep, is shown in figure 6.8. This shows that the decay time goes up to 570 £20yps for a
VPLy,, of 233 us, after which the VPLy,, becomes so high that all of the Dy signal is cut off.
The increase in decay time can be explained by a higher helium density in the trap region due
to the increased VPLy,,, and therefore the Dy takes longer to diffuse away through the helium
(see equation 4.3). The fact that the decay time keeps increasing for increasing VPLy,, confirms
that the decay time is likely dominated by diffusion through the helium gas.

It is clear from figure 6.8 that increasing the amount of helium pulsed into the trap region
from the top valve increases the observed decay time of the Dy signal. However, this is not
necessarily the best strategy when trapping Dy in the magnetic field as high background helium
densities can lead to trap loss through spin-flip collisions or momentum kicks. For the best
trapping prospects, we want the helium pulse to convert as high a fraction of the Dy beam
as possible into a cloud of 4K atoms with no centre of mass velocity. It is possible to get an

indication of whether the Dy is in a cloud or a beam by looking at the widths of the peaks in
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the frequency spectra.
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Figure 6.9: Temperature of Dy in the trap region against time after ablation, with dummy
magnets. Data were taken for several different top valve firing times, with: #;o,yaive = 500 us
(black dots); topvaive = 100 ps (orange dots); tiopvaive = —100 ps (green dots). The temperature
when the top valve is not fired is also shown (blue dots).

In a beam, there are very few collisions between Dy atoms and the helium, or between the
Dy atoms themselves. This means that as the beam propagates, the atoms with lower transverse
velocities remain in the central part of the beam, and those with higher transverse velocities
move to the outer edges of the beam. With the limited field of view of the LIF detection,
only those atoms with the lowest transverse spreads are detected, which leads to the narrow
spectral lines seen in the inset in figure 6.5. Fitting Gaussian peaks to those spectral lines
shows a ‘temperature’ of about 1.4 K. The iris in front of the PMT has a diameter of about
10 mm which means that the field of view of the PMT is also 10 mm in diameter as the LIF
set-up has one-to-one imaging (see figure 4.5). By taking the beam to be at a temperature
of 4K, and assuming it to expand freely in the transverse direction from the moment it exits
the cell, only those atoms with a temperature below 0.6 K are expected to be within the field
of view of the PMT. However, the beam is not actually a point source, and atoms starting in
‘off-axis’ positions in the exit aperture can still reach the LIF detection region, even with higher
transverse velocities. Taking this into account, we can expect to detect atoms with temperatures
up to 1.4 K. This is in agreement with experimental observations.

In a cloud of atoms, collisions between the atoms ensure that the whole cloud is thermalised
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to the same temperature. This means that, despite the limited field of view of the LIF detection,
if an atomic cloud is present in the trap region, the temperature measured from the line widths
in the spectrum will correspond to the actual temperature of the cloud. By taking spectra of the
164Dy line at different times after ablation and fitting a Gaussian to the peak, the temperature
of the Dy can be determined as a function of time. Figure 6.9 shows this temperature variation
for three different ¢ yaive times, as well as for no top valve. When the top valve is not fired, the
‘temperature’ of the Dy remains at about 1.4 K as the Dy just passes through the trap region as
a beam. However, if the top valve is fired, the temperature of the Dy appears to rise and levels
off between 3-4 K. This temperature increase can be attributed to part of the Dy beam being
turned into a cloud as a result of the top valve helium pulse. The later t;op,yaive, the later this
increase in temperature occurs. Figure 6.9 shows that for a ;) yaive of 100 us, the fastest part
of the Dy pulse passes through as a beam, but then the rest of the pulse is turned into a cloud
at a temperature between 3 and 4 K. Firing the top valve later, at t;op yaive = 500 s, results in
the cloud being formed much later and therefore a lot of the Dy will have passed through the
trap region as a beam. Firing the top valve earlier, at ¢;,) yqive = —100 ps, means that none of
the pulse passes through the trap region as a beam, but the temperature is initially significantly
higher at almost 7K. It has been observed before that the early part of a pulsed, supersonic
helium buffer gas beam emerges from the cell hotter than the rest of the pulse [120]. This would
explain why the temperature is observed to be at almost 7K initially, for ¢;opvaive = —100 ps.
It would seem desirable to let the fastest atoms pass through the trap region as a beam as they
are unlikely to be trapped anyway, and therefore a 14y yaive 0f 100 us was used for the magnet

results below.

6.4.2 Magnet results

The dummy magnet results have shown that the top valve pulse has a clear effect on the Dy
beam and that it turns at least part of the Dy beam into a cloud at the trap centre. The
magnets were therefore returned to the set-up to see if these atoms could be trapped. The
strength of the magnetic field from the two magnets affected the firing of both the solenoid
valves. If the same valve pulse length, on the order of 200 us, was used as with the dummy
magnets then no helium was released during the pulse as the field from the magnets slowed the
valve opening process and therefore prevented the valve from opening in that time. In order

to release the same amount of helium during the valve pulses (determined by measuring the
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Figure 6.10: Plot of LIF signal from the trap region with magnets in place, for different top
valve pulse lengths, VPL;,,. Blue line: no top valve; orange line: VPLy,, = 315 us; green line:
VPL;op = 325 us. Plots are offset by 100 kHz for comparison.

background pressure in the chamber on the Penning gauge whilst firing the valve), the valve
pulse lengths had to be increased to values on the order of 300 ys.

As with the dummy magnets, firing the top valve caused a second decay tail to appear in the
signal. Figure 6.10 shows a comparison of the LIF signal from the trap region for two different
top valve pulse lengths, VPLp,, as well as for no top valve. Without the top valve, the signal
passes through the trap region with a 230 £ 30 s decay time. This is similar to the lowest
decay times seen for dummy magnets in figures 6.7 and 6.8. When the top valve is fired with
an optimum VPL;,, of 315 us, there is a very clear tail in the signal with a longer decay time
of 810 &40 ps. If VPLy,, is increased even further to 325 us, then a large second bump appears

in the signal. When fitting an exponential to the decaying part of the bump though, the decay
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Figure 6.11: Magnet data for the decay time of the Dy signal in the trap region against the
valve pulse length of the top valve, VPL;gp.

time is only 206 £ 3 ps— similar to the decay timescale without a top valve pulse.

Figure 6.11 shows the decay time against VPLy,,. There is a clear peak in the decay time
for a VPLy, of 315 us, after which the decay time decreases again down to similar levels seen
without the top valve pulse. This decrease in decay times is not seen in figure 6.8 for dummy
magnets, where the decay time keeps increasing for increasing VPL;,,. This means that, with
the magnets in place, the increase in decay time is unlikely to be due to diffusion through higher
helium densities, as it was for dummy magnets. For an optimum VPL;,,, the helium pulse slows
the Dy just enough to be in the capture range of the magnetic trap. Increasing VPLy,, further
then adds more background helium to the trap region which increases trap losses and therefore
decreases the decay time. When VPLy,, reaches 325 us, the decay time is no longer than the
timescale on which we see the original beam pulse decay.

The VPL,, was 315 us for the maximum decay time with magnets, and 233 us for the
maximum decay time with dummy magnets. Unfortunately, these VPLy,, values are not a good
comparison of the amount of helium pulsed into the trap region in each case as the magnetic field
affects the firing of the valve. Instead, we can look at the background pressure in the chamber
measured on the Penning gauge during each data run. This pressure was 3 x 10~ mbar for the
magnet data with the longest decay time of 810 + 40 ps. The decay time with dummy magnets

for a VPLy,, that gave a similar background pressure was much lower at around 200 & 2 ps. The
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maximum decay time seen with dummy magnets of 570 + 20 ps is for a much higher background
pressure of 9 x 10”9 mbar, and even then this decay time is less than that seen with magnets.
It is therefore clear that, to achieve the longest dummy magnet decay time, a lot more helium
was pulsed into the trap region and it is therefore very unlikely that the long decay time with
magnets could have been caused by diffusion through the helium. This, in combination with
the fact that there is a clear peak in decay time against VPLy,, for magnets (figure 6.11), as
opposed to the continual increase in decay times with VPLy,, for dummy magnets (figure 6.8),
provides strong evidence that there is magnetic trapping in this set-up. Using equation 4.5, the
oscillation period in this trap can be up to 7-8 ms, and therefore the trap lifetime of 810 + 40 ps
is not likely to correspond to many oscillations of Dy in the trap. The trap lifetime is likely
limited by collisions with background helium gas, as the decrease in lifetime for higher VPLy,,
in figure 6.11 confirms.

In the direct trapping experiments in chapter 5, we were able to distinguish between LFS and
HF'S atoms by a splitting of the peaks in the spectrum (see figure 5.13). The difference between
the decay times of the LF'S and HFS atoms were then used to determine whether the atoms
were trapped. In the magnetic trap used for the beam trapping experiments in this chapter, the
magnets were scaled up, increasing the trap area and decreasing the magnetic field gradient.
This decreased magnetic field gradient means that, with the probe laser passing through the
trap centre, the range of magnetic field values probed with the LIF detection is smaller. This
reduces the spacing between the peaks, as this is determined by the strength of the magnetic
field (see equation 5.6). It is therefore difficult to accurately distinguish between the LFS and

HFS peaks in the spectrum, which is why this method is not used here.

6.5 Conclusion

In these experiments, Dy atoms were trapped from a buffer gas cooled beam, rather than
directly after ablation. Trapping in this way was motivated by results from the previous Dy
trapping experiments in chapter 5, which indicated that the helium density required to stop the
ablation plume resulted in high helium densities in the trap region which limited trap lifetimes.
By separating the ablation process from the trapping process, these high helium densities were
avoided.

A simple copper cell with a circular exit aperture was used to create a pulsed beam of Dy
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atoms with a forward velocity of about 170m/s and a 64Dy atom number of approximately
3 x 10°. This beam propagated vertically into the trap region, where it was stopped by a
counter-propagating helium pulse from a valve placed just above the trap region.

The first experiments with dummy magnets showed that the helium pulse from the top valve
has a clear effect on the Dy beam. The helium pulse arrested the tail of the Dy beam, leaving a
new tail with a significantly longer decay time. Increasing the top valve pulse length, VPLy,
to introduce more helium into the trap region increased the decay timescale for this second tail,
until VPL;,, was so long that the whole tail of the Dy beam was arrested, with no signal left
to detect. The longest decay timescale seen was about 570 £ 20 ps. The increase in the decay
timescale with increasing helium in the trap region is likely a result of diffusion through the
higher helium gas density.

Conducting the same experiments with the magnets in place did not lead to a continual
increase in decay time with increasing VPL;,,, but instead showed a peak in decay time for a
VPLyp, of 315 ps, after which the decay time decreased again. The longest decay time observed
in this case was 810 £ 40 ps. This decay time was observed for a much lower helium density
in the trap region than the longest decay time with dummy magnets, and can therefore be
attributed to magnetic trapping of the Dy atoms. The trap lifetime here is comparable to the
longest lifetimes seen in the direct Dy trapping experiments in chapter 5, however in this case
the trapping process was much more repeatable and controllable due to the separation of the
ablation from the trap region. The fact that the trap lifetime here is not longer than that seen
in the direct trapping experiments, despite the helium density being lower, could be explained
by the slightly lower trap depth, which means that fewer collision are required to lose atoms.

A potential way to increase the trap depth is discussed in section 7.3.
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CHAPTER 7

CONCLUSION & OUTLOOK

Two different arrangements for magnetically trapping buffer gas cooled atoms are presented in
this thesis: direct trapping from an ablation plume and trapping from a cryogenic buffer gas
cooled beam. A summary of the main findings is presented in this chapter, as well as some

potential improvements to increase trap lifetimes.

7.1 Direct trapping after ablation

The first experiments focused on trapping Li and Dy atoms directly from a buffer gas cooled
ablation plume. The magnetic trap consisted of two cylindrical NdFeB magnets, aligned with
their north poles facing each other to form a quadrupole trapping field at the centre. A 4K
helium pulse was delivered to the trap region through a solenoid valve, and the Li/Dy atoms
were subsequently ablated into the helium pulse from a solid precursor target. This allowed
the atoms to thermalise with the helium in the trap region. The trap geometry was kept as
open as possible to then allow the non-magnetic helium atoms to disappear, leaving the Li/Dy
atoms trapped in the magnetic field. Detection of the atoms in the trap was either through
absorption, detected on a photodiode, or through laser-induced fluorescence (LIF) detected
on a photomultiplier tube (PMT). The whole trap set-up was kept at 4K by a closed-cycle
cryocooler.

For the initial Li experiments, the helium pulse was guided into the trap region through a
copper tube attached to the solenoid valve. With aluminium cylinders (‘dummy magnets’) in
place of the magnets, non-Zeeman broadened frequency spectra of Li were taken. The widths
of the transition peaks were then used to determine the temperature of the Li as a function of

time, showing that the Li thermalised with the helium within about 500 us. With the magnets
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back in place, it appeared that Li was detected in the trap region with a lifetime of 10ms,
thought to be limited by collisions with background helium gas. However, as later tests showed,
it is also possible that this long decay time was actually a result of artificial signal caused by
saturation of the PMT due to the bright ablation plume light.

To avoid this problem in subsequent experiments, a fast switching circuit was designed that
allowed the PMT to be switched off during the ablation pulse and then rapidly switched on
again to capture the LIF signal. Additionally, delivering the helium to the trap region with
the copper tube attached to the valve resulted in a long helium tail emerging from the tube
for many tens of milliseconds, when the helium pulse should actually be around 200 us long.
This is likely to have severely reduced trap lifetimes. To ensure that a short helium pulse was
delivered as required, the trap was redesigned so that the valve pulses the helium directly into
the trap region, without the need for a copper tube. This gave much greater control over the
length and timing of the helium pulses.

With these modifications implemented, we decided to try the experiment with Dy atoms in-
stead of Li. With a magnetic moment of 10, Dy has a tenfold higher trap depth than Li in the
same trap arrangement. A favourable detection transition also means that the Zeeman broad-
ening of the resonance lines is very small, making detection in the magnetic field significantly
easier. With ‘dummy magnets’ in place, the thermalisation of Dy with the helium buffer gas
was observed to occur within about 200 us. Absorption data taken with a counter-propagating
probe beam in place showed a centre-of-mass velocity of the Dy cloud up to 250m/s in the
direction of the probe beam. This was assumed to result from the Dy being entrained in a
supersonic helium pulse from the valve; and was solved by placing a copper cylinder around
the trap region to contain the helium pulse, and ablating the Dy into the resulting, stationary
helium cloud.

Having achieved a cold, stationary Dy cloud in the trap region, the magnets were placed back
into the set-up. In the magnetic field, it was possible to distinguish between low-field seeking
(LFS) and high-field seeking (HFS) atoms due to a splitting of the spectral peaks. This showed
that, for an optimal valve pulse length, the LFS signal decayed with a lifetime of 360 4 30 s,
compared to the decay time of the HFS atoms of 180 4+ 1 ps. This is clear evidence that there
is trapping of the Dy in the magnetic field. The LFS decay time is assumed to be limited by
collisions with excess helium in the trap region. Subsequent experiments confirmed that there

was indeed a high helium density in the trap region of about 2 x 102 m™—3, even 500 ms after
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the valve had fired. Replacing the copper cylinder with a mesh cylinder increased the lifetime
of the LFS atoms to 800 £ 30 ps, as the helium was able to leave the trap region more rapidly,
but a significant background helium density still remained. By increasing the temperature of
the set-up to 6.5 K, this background helium density was reduced significantly, suggesting that
the helium was being adsorbed onto a cold surface near the trap region and slowly released over
time. Running the experiment at these slightly higher temperatures did not appear to improve
the trap lifetimes though.

There has been clear evidence, particularly from the Dy experiments, of magnetic trapping
directly from the buffer gas cooled ablation plume. However, the data from both the Dy and
Li experiments highlighted the difficulty of improving upon the trap lifetimes achieved in this
set-up. With the ablation happening so close to a relatively small trap region, a high helium
density is required initially in order to stop and cool the ablation plume. Removing such a
high helium density quickly enough to achieve longer trap lifetimes has proven difficult. The
relatively unpredictable nature of laser ablation demands that a very precise set of circumstances
have to come together in a small area in order for the atoms to be trapped, and whilst we have

seen evidence of this, achieving repeatable, longer lifetimes has proven difficult.

7.2 Trapping from a Dy beam

To reduce the helium density inside the trap region, we decided to separate the ablation process
from the trapping process. In doing so, it allowed higher helium densities to be used to stop
and cool the ablation plume, with lower helium densities then required in the trap region. This
separation was realised by having a cell on top of the cold plate, in which the Dy was ablated
and thermalised with a helium pulse from a solenoid valve. An aperture at the top of the cell
allows a buffer gas cooled beam of Dy atoms to emerge, and travel vertically up towards the
trap region, which was again constructed from cylindrical NdFeB magnets and placed a few
cm above the cell. Once the beam had reached the trap region, a second helium pulse from
another valve was pulsed into the trap region from above, arresting some of the Dy beam and
leaving it trapped. Holes through the centre of the magnets allowed the Dy beam and helium
pulse to enter the trap region. The helium densities required in the trap region to stop the Dy
beam were calculated to be significantly lower than those required to stop and cool the ablation

plume.
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As with the direct trapping experiments, ‘dummy magnets’ were first placed into the set-up
to test the effect of the second valve pulse on the Dy beam. These experiments showed that
the Dy beam emerged from the cell with a velocity of about 170m/s and a 4Dy atom number
of approximately 3 x 10°. When pulsing the second valve, a clear effect on the Dy beam was
observed, with part of the beam being arrested by the helium pulse, leaving a tail with a longer
decay time. This decay time increased the more helium was pulsed into the trap region, and
was therefore attributed to diffusion through the helium gas. With magnets in place, the decay
time did not keep increasing with increasing helium density, but instead peaked at a much lower
helium density in the trap region, with the decay time decreasing again if the helium density was
increased further. With an optimum amount of helium pulsed into the trap region, the Dy pulse
is slowed just enough for the atoms to be trapped, with any further increase in helium resulting
in trap losses, which lowers the observed trap lifetime. The decay time achieved of 810 % 40 ps
was significantly longer than the 200 4+ 2 ps decay time observed with ‘dummy magnets’ for
similar helium pressures, providing clear evidence of magnetic trapping.

Even though the decay time observed in this set-up was no longer than that from the direct
trapping experiments, this method was much more repeatable and reliable. Having the atoms
enter the trap region from a buffer gas cooled beam ensured a more consistent delivery than
directly from an ablation plume. As buffer gas beams of molecules are now readily produced
(see for example [84]), this trapping method would, just like the direct trapping, not be limited

to atomic species.

7.3 Possible improvements

There are a number of possible improvements that could be made to the set-up to increase
the trap lifetimes. The main limiting factor to the trap lifetimes appears to be collisions with
background helium gas. The most drastic improvements would therefore be achieved by reducing
the background buffer gas density.

One main problem that was identified, particularly in the Dy experiments in chapter 5, is
the adsorption of helium onto cold surfaces near the trap region. This helium is then slowly
released over time, keeping the background helium density in the trap region relatively high,
and reducing trap lifetimes. In the case of the beam trapping experiments in chapter 6, we can

estimate how quickly the helium should dissipate from the trap region. The diffusion equation
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Figure 7.1: Expected helium density as a function of time at the centre of the trap region of
the beam trapping set-up. Density is calculated by solving the diffusion equation. A density of
10" m~3 corresponds to the background pressure in the chamber.

is given by,
on(r,t)
ot

=V - [D(n(r,t))Vn(r,t)], (7.1)

where n(r,t) is the helium number density as a function of position and time and D is the
diffusion coefficient as a function of density, given by equation 4.4. The collision cross section
for He-He collisions is approximately 107! m? [122]. To estimate the helium density as a
function of time, equation 7.1 can be solved in one dimension, assuming a trap region 2cm in
diameter, with a starting Gaussian distribution of helium atoms with a peak density of 1022 m~3.
The result is plotted in figure 7.1. This shows that the helium density at the centre of the trap
region initially decays fairly slowly as the helium density is still high, resulting in a short mean-
free-path. Then as the density drops, the mean-free-path also becomes much longer, resulting
in a rapid decay at around 350 us down to the background level in the chamber. The plot shows
that the helium should dissipate completely within a few hundred microseconds, however the
Dy trap lifetimes observed are no longer than for the direct trapping experiments. This suggests
that in the beam trapping set-up there is also some adsorption of helium onto surfaces, which
is slowly released over time. To reduce background helium densities and increase trap lifetimes,
this adsorption has to be avoided.

One possible route for exploration is to use a neon buffer gas, rather than helium, such

as in [76]. As neon has a higher boiling point than helium, it would immediately stick to
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any 4K surfaces it comes into contact with. This effectively means that all surfaces act as
sorption pumps, rather than just the charcoal, as is the case for helium. Neon would therefore
be pumped away far more efficiently than helium. The disadvantage is that, in order to deliver
a sufficiently high density of neon to the trap region, the gas lines and valve (and the cell in the
beam experiments) would have to be kept at around 15K [76] to keep the neon in the gas phase.
This brings with it some added experimental complications as these components would have to
be thermally isolated from the 4 K parts of the set-up. Additionally, the atoms/molecules to be

trapped would start at 15 K rather than 4 K, reducing the fraction that can be trapped.

107" 1

Density (m'3)

102 ¢ 1

1 2 3 4
Temperature (K)

Figure 7.2: Saturated He vapour density as a function of the temperature of the gas [123].

Lowering the temperature of the trap, to 1 K for example, would allow the helium to remain
frozen onto the surfaces rather than being released over time. Figure 7.2 shows the saturated
vapour density of helium as a function of temperature. This shows that, at 1 K, the saturated
vapour density is about 3 orders of magnitude lower than at 4 K. This means that any helium on
1K surfaces would be frozen out. Temperatures below 4 K can be achieved by using a dilution
refrigerator [123], or more practically by installing a small reservoir of helium cooled by the
cryocooler and then pumping on the vapour above the liquid in the reservoir in order to lower
its temperature to 1 or 2 K. The trap could initially be held at 4 K to create the cloud of helium
gas in the trap region for the Dy atoms to thermalise with. Then, once the atoms are trapped,
the temperature could quickly be reduced down to 1K to freeze out any helium on the surfaces

and prevent it from being released over time.
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LIF

. Top valve
collection P

Probe LIF
beam collection
mirror
. . e
LIF collection

lens

(a) Top-down cross section (b) Side view cross section

Figure 7.3: Potential horizontal magnet arrangement for the beam trapping experiments. (a)
Top-down cross section of the cylindrical magnet and LIF arrangement, showing the LIF collec-
tion optics at a slight angle so that the holes in the magnets are no longer needed. (b) Side view
cross section showing how the new magnet arrangement would fit into the same beam trapping
set-up as in figure 6.1.

In the case of the beam trapping experiments, a significant improvement could be made
by placing the magnets horizontally rather than vertically, as shown in figure 7.3. In this
arrangement, the Dy beam would travel in free space all the way to the trap region, rather than
being guided through the hole in the bottom magnet as in figure 6.1. This would allow the
helium density in the beam to decrease by an additional order of magnitude before reaching
the trap region (see equation 6.2), reducing the amount of background helium. Additionally,
if the LIF set-up is arranged as shown in figure 7.3, there would be no need for any holes in
the magnets for the probe beam, increasing the trap depth from 0.23T to 0.36 T. Even if the
LIF detection could not be arranged in this way, and the probe beam had to pass through the

magnets, the hole diameter could easily be reduced to 2mm, giving a trap depth of 0.37T. In
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both cases, a higher fraction of the 4 K Dy could be trapped. Trap lifetimes should also increase,

as collisions with background helium gas would be less likely to eject an atom from the trap

through momentum kicks.
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