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Abstract

This thesis presents work undertaken with cold rubidium atoms interacting with an optical

microcavity. The optical microcavity used is unique in its design, being formed between an

optical fibre and silicon micromirror. This allows direct optical access to the cavity mode,

whilst the use of microfabrication techniques in the design means that elements of the system

are inherently scalable. In addition, the parameters of the system are such that a single atom

has a substantial impact on the cavity field.

In this system, two types of signal arise from the atoms’ interaction with the cavity field;

a ‘reflection’ signal and a ‘fluorescence’ signal. A theoretical description for these signals is

presented, followed by experiments which characterise the signals under a variety of experi-

mental conditions. The thesis then explores two areas: the use of the microcavity signals for

atom detection and the investigation of how higher atom numbers and, as a result, a larger

cooperative interaction between the atoms and the cavity field, impacts the signals.

First, the use of these signals to detect an effective single atom and individual atoms whilst

falling and trapped is explored. The effectiveness of detection is parameterised in terms of

detection confidence and signal to noise ratio, detection fidelity and dynamic range.

In the second part of this thesis, the effect of higher atom numbers on the reflection and

fluorescence signals is investigated. A method for increasing the atom number is presented,

alongside experiments investigating the impact on the measured signals. This is followed by

experiments which explore the dispersive nature of the atom-cavity interaction by measuring

the excitation spectrum of the system in reflection and fluorescence. In doing so, it is shown

that, for weak coupling, these two signals are manifestly different.
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RHS: The DAVLL error signal, with the lock point indicated. . . . . . . . . . 101

3.22 The gradient of the DAVLL error signal about the zero-crossing for different

vapour cell temperatures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

3.23 Schematic of the components used in the phase lock. The top left hand side

shows the set up for a phase-locked voltage controlled oscillator, whose signal,

at 6.035 GHz, is used to mix down the optical beatnote signal to ∼ 800 MHz.

The top right hand side shows the set up for detecting the optical beatnote, at

6.835 GHz. The mixed down signal is the ‘VCO’ input to the Evaluation Board,

where it is compared to a ‘Reference clock’ signal, which is provided by the

Meguro Signal Generator. The Evaluation Board contains a phase-frequency

detector and charge pump, which outputs current pulses at a frequency pro-

portional to the phase difference between the two input signals. The loop filter

integrates these currents pulses, providing a voltage signal used for the peizo

and current servo loops. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

3.24 LHS: Saturated absorption spectroscopy for the |F = 1〉 → |F ′ = 0, 1, 2〉 transi-
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RHS: The phase lock error signal. . . . . . . . . . . . . . . . . . . . . . . . . . . 105

3.25 The performance of the BoosTA. LHS: Measured output power versus current,

for a constant injection power of 2 mW. At this injection power a maximum

output power of 210 mW can be produced. RHS: Measured output power ver-

sus injection power, for a constant current of 1500 mA. This indicates that the

saturated output power for this current is 375 mW. . . . . . . . . . . . . . . . . 106
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4.1 The recorded counts from the APD for a single shot of a reflection experiment,

taken with τint = 50µs. At time t = 0 on the graph the MOT has already loaded

for 3 seconds and the dashed lines indicate other key points in the experiment.

At t = 10 ms, the MOT field is switched off and the cooling light is red-detuned

for the optical molasses. At t = 40 ms the trapping light is switched off, allowing

the atoms to fall. The signal produced by the atom cloud as it falls through the

cavity mode is centred at t ∼ 75 ms, reaching a peak count level of 25 counts in

50µs (or 540 kCounts/sec) compared to a background level of 12 counts in 50µs

(or 240 kCounts/sec). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.2 Understanding the reflection signal. LHS: Neff as a function of time, calculated

using Eq.(4.1) and assuming NA = 19.7 × 106, T = 38.7µK and y0 = 5.1 mm.

This implies that at the peak in atom density, we would expect there to be

∼ 1 atom averaged across the cavity mode. RHS: The APD counts averaged

over ten shots of the experiment. The Gaussian-like signal caused by the falling

atoms is visible, centred at ∼ 30 ms. Shown alongside the data is a fit, described

in the main text, which produces estimates of NA = 1.89 ± 0.08 × 107, y0 =

5.12± 0.02 mm and T = 29.7± 0.8µK. . . . . . . . . . . . . . . . . . . . . . . . 111

4.3 Understanding the fluorescence signal. LHS: The counts recorded by the APD

for a single shot of the experiment. At t = 0 the MOT has been loading for 3

seconds. Dashed lines indicate key points in the experimental; at t = 10 ms the

MOT field is turned off and the atoms are released into the optical molasses;

at t = 20 ms the shutter for the cavity pump light is closed and, following a

∼ 2 ms delay, the cavity count rate falls to a low background level of ∼ 1 count

per 50µs; at t = 40 ms the cooling light is switched off and the atoms fall

towards the cavity. At t ∼ 73 ms a narrow peak is visible, corresponding to the

collected fluorescence produced by the atoms as they fall through the cavity. At

t = 125 ms the pump light is turned on to check that the cavity remained on

resonance. RHS: A section of a recorded trace averaged across 250 fluorescence

experiments. This data was taken using τint = 2µs (as opposed to τint = 50µs

shown on the LHS), allowing the structure of the fluorescence signal to be visible.

Shown alongside the data is an exponential fit, which gives an estimate of the

1/e lifetime of 114.0 ± 0.4µs. The background counts have also been reduced to

0.004 counts in 2µs, the result of improved beam alignment. . . . . . . . . . . . 114
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4.4 Fluorescence signal produced using one beam (shown in the darker red) and two

counter-propagating beams (shown in the lighter red). The y-axis corresponds

to the number of counts at the APD per 100µs time bin, summed for five

experimental shots. The two-beam signal has an amplitude of nearly three times

that of the one-beam case. In addition, the two-beam signal decays more slowly,

having a FWHM of 500µs compared to 300µs in the one-beam case. . . . . . . 116

4.5 The effect of atomic saturation on the reflection signal. LHS: The normalised

reflection signal measured for increasing cavity pump rates, taken with (in dark

blue) and without (in light blue) repumping light circulating inside the cav-

ity. There appears to be no significant difference between the two and fits to

Eq.(4.5) confirm this. Shown alongside the data are fits to Eq.(4.5), where

the atom-cavity coupling rate, g and a factor parameterising the pumping ef-

ficiency are free parameters. The fit to the case without repump estimates

g = 2π × (82.4 ± 1.6) MHz. RHS: The normalised reflection signal calculated

for pump rates between 0.1 − 500 MCounts/sec using the fit parameters found

from the LHS data. The effect of saturation is clear, with the reflection signal

reducing substantially for pump rates > 10 MCounts/sec. The vertical, dashed

line indicates the typical upper pumping rate limit used for reflection experiments.119

4.6 Peak fluorescence counts, Nfl, measured as a function of pump beam power,

P . The measured data is shown alongside a fit to Eq.(4.7) which gives Nsat =

34.8 ± 1.9 and Psat = 50.4 ± 10.6µW. . . . . . . . . . . . . . . . . . . . . . . . 120
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4.7 The reflection signal as a function of pump beam detuning. LHS: The reflection

signal, calculated using Eq.(4.8), shown for three different coupling regimes.

(g, γ) are kept constant at 2π × (98, 3) MHz respectively, whilst the value of

κ is changed. The dark blue shows κ = 2π × 5200 MHz or κ � g, which is

the regime we work in; the medium-toned blue shows κ = 2π × 141 MHz, or

κ =
√

2g2 − γ2 and is the threshold for the strong coupling regime; the light

blue shows κ = 2π×50 MHz or κ < g, well into the strong coupling regime. The

increased height and width of the lineshape as κ reduces (and thus CN increases)

is visible. RHS: The normalised reflection signal measured as a function of pump

beam detuning (shown in units of γ). A fit to Eq.(4.8) is shown alongside the

data, which estimates CN = 0.39 ± 0.01. The inner pair of dashed lines indicate

the bare-atom linewidth of γ. The outer pair of dashed lines indicate the Purcell-

enhanced linewidth of 2CNγ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

4.8 The fluorescence signal as a function of pump beam detuning. LHS: The cal-

culated fluorescence signal plotted for three coupling regimes, using Eq.(4.9).

(g, γ,Ω) are kept constant at 2π × (98, 3, 10) MHz respectively, whilst the value

of κ is changed. The dark red shows κ = 5200 MHz or κ� g, which is the regime

we work in; the medium-toned red shows κ = 141 MHz, or κ =
√

2g2 − γ2 and

is the threshold for the strong coupling regime; the light red shows κ = 50 MHz

or κ < g, well into the strong coupling regime. The increased height and width

of the lineshape as κ reduces (and thus CN increases) is visible. RHS: The av-

erage peak fluorescence counts, Nfl, collected at the APD in a 50µs time bin

versus detuning, ∆a of the pumping beam. The fit shown is to Eq.(4.9), which

estimates CN = 1.01 ± 0.16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

4.9 The reflection and fluorescence signals as a function of Neff . LHS: The reflection

spectral width as a function of atom number density at the cavity. There appears

to be a linear dependence and a linear fit shown alongside the data gives a

y-intercept of 1.09 ± 0.04 and a gradient of (0.06 ± 0.01) × 108 cm3. RHS:

The fluorescence counts measured in 5µs as a function of Neff , calibrated using

reflection signals. A fit to the function y = axb, shown alongside the data, gives

an estimate of b = 1.05 ± 0.06, confirming the linear dependence of fluorescence

signal with Neff in the regime of low atom number. . . . . . . . . . . . . . . . . 127
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4.10 The fluorescence counts as a function of pump beam polarisation. LHS: The

peak fluorescence counts recorded at the APD in 50µs, measured as a function

of waveplate angle. The data show a sinusoidal variation. Fitting to a sinusoidal

function of fixed period 180 ◦ estimates a peak/trough contrast of 1.81 ± 0.14 ,

which compares well to master equation simulations discussed in the main text.

It should be noted that the zero in degrees is arbitrary and just corresponds

to 2× the waveplate angle. RHS: Fluorescence lineshapes taken at polarisation

angles corresponding to the maximum (lighter red) and minimum (darker red)

in fluorescence counts (290 ◦ and 200 ◦ respectively). Shown alongside the data

are the respective fits to Eq.(4.9). For the ‘max’ data, this fit estimates CN =

1.01± 0.16. For the ‘min data’ the fit estimates CN = 0.77 ± 0.24. Dashed lines

indicate the FWHM for each dataset; the outer pair show the FWHM for the

‘max’ data, the middle pair the FWHM for the ‘min’ data and the inner pair

for the atom in free space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

4.11 The excited state populations as a fraction of total population for the magnetic

hyperfine levels mF = −3,−2,−1, 0, 1, 2, 3, calculated from the master equation

simulation discussed in the main text. LHS: Fractional populations in the case of

pumping by σ±-polarised light. The atomic population builds up in the higher

magnitude mF levels as transitions with a net angular momentum change of ±1

are favoured. RHS: Fractional populations in the case of pumping by π-polarised

light. Population builds up in the lower magnitude mF states as transitions with

no net angular momentum change are favoured. . . . . . . . . . . . . . . . . . . 131

4.12 Comparison of the signal variance and mean. LHS: The variance/mean as a

function of time for the reflection signal, calculated for 300 shots. The white line

shows the variance/mean calculated for groups of integration time-bins, 200 long.

RHS: The variance versus the mean for the fluorescence signal, calculated for

250 shots. The linear fit with zero intercept shown alongside the data produces

a gradient of 1.04 ± 0.01. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
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4.13 The average drop signal in reflection and calculated SNR. LHS: The average of

300 reflection experiments. The white line shows a Gaussian fit to the aver-

age, from which the peak normalised reflection signal is 2.00 ± 0.01 lab units,

equivalent to an Neff = 1.1, and the FWHM is 8.6 ms. RHS: The SNR as a

function of integration time, calculated for the average drop signal shown on

the LHS. The blue data points show calculations of the SNR from the data and

using Eq.(4.11). The solid and dashed lines are theoretical calculations of the

SNR as a function of τint. The solid line takes into account the Gaussian time

dependence of the signal, whilst the dashed line does not. From this, the SNR

rises quickly, equalling 1 after 37µs and peaking at 10 after 6.65 ms. This latter

roll-over occurs when τint equals 1.5× the FWHM of the Gaussian signal. . . . 136

4.14 Using Poisson statistics to calculate the detection fidelity. LHS: The distribution

of counts per 2µs integration time bin for the signal counts (lighter blue) and

the background counts (darker blue). Fitting these distributions to a Poisson

distribution gives estimates of the respective means as x̄fitsig = 0.3008 ± 0.0002

and x̄fitbg = 0.1621 ± 0.0003. RHS: The joint probability for detecting a signal

count level ≥ u and a background count level < u as a function of integration

time. Three values of u are shown; u = 3 is shown in the darkest blue; u = 2 is

shown in the medium-toned blue; and u = 1 in the lightest blue. As u increases

the peak fidelity decreases and occurs for larger τint. . . . . . . . . . . . . . . . 138

4.15 The range of Neff which can be discriminated by our atom detector. The

solid lines show the differentiated signal with respect to Neff as a function of

Neff , for two different pumping rates: 810 kCounts/sec (in lighter blue) and

81 kCounts/sec (in darker blue). The dashed lines show the signal fluctuations

as a function of Neff . Where the solid and dashed line of each colour meet,

shown by the solid points, indicates the upper limit of the detection range. For

the higher pumping rate this occurs at Neff = 26.2 and for the lower pumping

rate this occurs at Neff = 14.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
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4.16 The SNR as a function of integration time, calculated for a fluorescence signal

averaged over 250 drops. The period of τint always begins for the time bin

after the pump beam is switched on. The dark red data points are discrete

calculations of the SNR from the averaged data, calculated by summing over

increasing numbers of time bins. The solid line is the SNR, calculated assuming

an exponential signal, with parameters found by fitting to the average signal. It

shows good agreement to the data points. The dashed line is the SNR calculated

assuming a constant, peak signal — this diverges from the solid line and data

points once τint ≥ 20µs. SNRs > 1 are easily achievable, with the SNR equalling

1 after only 4µs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

4.17 Calculating the detection fidelity using the fluorescence signal. LHS: The distri-

bution of signal counts, shown in the lighter red, and background counts, shown

in the darker red. Unlike reflection, the count distributions are quite different.

RHS: The joint probability to detect Nsig ≥ u AND Nbg < u as a function of

τint. Three threshold values are shown; u = 1 is shown in the darkest red; u = 2

is shown in the medium-toned red; and u = 3 in the lightest red. As u increases

so too does the fidelity of the measurement, although a corollary of this is having

to wait longer. A fidelity of 95 % can be achieved after 10.3µs if we use u = 1

counts as the counting threshold. This can be increased to 99 % after 15.6µs

using u = 2 and even further increased to 99.7 % after 22.6µs using u = 3. . . . 141

4.18 Box-car analysis of simulations of the signal from a single atom passing through

the cavity. LHS: An example input (bottom) and output (top) trace used to

determine the optimal τint. The input trace is 250µs long, in 50, 000× 5 ns time

bins. The counts across the trace have a Poissonian distribution, with a mean

of 0.0025 counts/bin. The output trace is calculated, per bin, using Eq.(4.13).

RHS: The same output traces, but now re-binned with τint = 500 ns (top) and

τint = 10µs (bottom). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

4.19 The SNR of the reflection signal as a function of τint, produced using simulations

of atom traces as detailed in the main text. A SNR optimum of ≈ 2.1 occurs at

τint = 20µs, indicating that this is the best value of τint to use. . . . . . . . . . 145
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4.20 The probability of an atom having a given peak coupling rate, calculated by

randomly assigning coordinates inside the cavity mode to one atom, one million

times. The bounds for each coordinate are set by the cavity length and cavity

waist. LHS: The probability of occurrence of a given peak coupling rate, g.

The coupling rates are grouped into 1 MHz wide bins spanning a range −98 →

98 MHz. RHS: The probability of occurrence of a given peak C. The peak

cooperativities are grouped into 0.005 wide bins spanning a range 0→ 0.31. . . 146

4.21 The SNR of the reflection signal calculated as a function of peak atom coop-

erativity, assuming τint = 20µs. This indicates that a threshold of C ≥ 0.13

produces an SNR ≥ 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

4.22 The normalised reflection signal calculated as a function of input counting rate,

for three values of the cooperativity; C = 0.1 in dark blue, C = 0.2 in the

medium-toned blue and C = 0.3 in light blue. For all three cases it appears as

though saturation begins to take place at ∼ 50 MCounts/sec, but the larger the

cooperativity the larger the rate of decrease in the signal. . . . . . . . . . . . . 148

4.23 Detecting a single falling atom with the fluorescence signal (1). LHS: The signal

to noise ratio as a function of integration time, calculated for a beam power of

170µW. Two peak cooperativities are shown; C = 0.3 in light red and C = 0.1

in dark red. The dashed line indicates the average time the atom spends in

the cavity before being pushed out by the fluorescence beam. This is where the

SNR peaks, at SNR = 1.01 and SNR = 0.57, respectively. RHS: The peak signal

to noise ratio as a function beam power. The same two cases as for the LHS

are shown here. For C = 0.3 shown in light red, a peak of SNR = 1.01 occurs

for a beam power of 180µW - although this value varies by only 1% between

80 − 350µW. For C = 0.1 shown in dark red, the peak is SNR = 0.57 and has

a similarly large range over which it barely changes. . . . . . . . . . . . . . . . 150

4.24 Peak fluorescence detection SNR as a function of cooperativity, calculated as-

suming a pump beam power of 200µW. This indicates that atoms with C ≥ 0.29

will produce a signal with SNR ≥ 1. . . . . . . . . . . . . . . . . . . . . . . . . 151
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4.25 Detecting a single trapped atom in reflection (1). LHS: The mean lifetime, τmean

for an atom inside a dipole trap in the cavity, calculated as a function of Jin. The

primary cause of atom loss out of the dipole trap is assumed to be from scattering

cavity pumping light. Its is evident that τmean is inversely proportional to Jin;

for Jin = 1 MCounts/sec, τmean = 6.7 ms, whereas for Jin = 0.5 MCounts/sec,

τmean = 13.3 ms. RHS: The reflection measurement SNR as a function of τint

for Jin = 0.25 MCounts/sec, so that τmean = 26.6 ms. As expected, the peak of

SNR = 64 occurs when τint = τmean. . . . . . . . . . . . . . . . . . . . . . . . . 152

4.26 Detecting a single trapped atom in reflection (2). LHS: The highest achievable

SNR as a function of Jin. τmean is calculated for each value of Jin and it is

assumed that the highest achievable SNR occurs when τint = τmean. Higher

Jin results in higher values of the SNR, until Jin ∼ 1 MCounts/sec, when the

SNR begins to saturate at ∼ 75. This is because the constant dipole trap light

contribution to Nbg becomes negligible in comparison to that from the cavity

pumping light and, once in this regime, any increase in Nsig is counteracted

by a corresponding increase in Nbg. RHS: The minimum value of τint required

to achieve an SNR ≥ 1, calculated as a function of Jin. As Jin increases, this

minimum time reduces, enabling faster detection. A corollary of this is that the

atom spends less time in the trap. . . . . . . . . . . . . . . . . . . . . . . . . . 153

4.27 Detecting a single trapped atom using the fluorescence signal (1). LHS: The

mean lifetime for an atom inside the dipole trap when being detected using the

fluorescence signal. The atom’s scattering rate increases for higher pump beam

powers, so that the time taken to scatter sufficient photons to be lost from the

trap reduces. For a beam power of 100µW, the mean lifetime is 56µs. The

curvature is caused by saturation of the atomic scattering rate. RHS: The SNR

as a function of τint, calculated for a beam power of 100µW. The dashed line

indicates the average lifetime for an atom in the trap of 56µs. This is the point

at which the SNR peaks, at a value of 2.2. . . . . . . . . . . . . . . . . . . . . . 155
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4.28 Detecting a trapped atom using the fluorescence signal (2). LHS: The SNR as

a function of beam power, calculated assuming τint = τmean. As for the case in

reflection, the SNR increases with increasing pump beam power, but when the

power ≥ 100µW the SNR saturates. The saturated SNR is ∼ 2.3. RHS: The

minimum τint required to achieve an SNR ≥ 1, calculated as a function of pump

beam power. The minimum required τint decreases with increasing beam power.

However, the rate at which it reduces saturates quickly; only 7µW of power are

needed for a minimum τint of 10µs, but reducing this further to 1µs requires

beam powers of several watts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

5.1 The counts measured at the APD averaged over ten shots of a push beam ex-

periment. The reflection signal resulting from pushed atoms is clearly visible as

the tall, narrow feature, centred at approximately 35 ms. The residual reflec-

tion signal from falling atoms is centred at approximately 75 ms. The relative

signal heights are 2.70 ± 0.09 for the pushed atoms and 1.75 ± 0.02 for the

dropped atoms (both in lab units), corresponding to collective cooperativities

of 1.75 ± 0.39 and 0.31 ± 0.01 respectively. This implies that the pushed signal

corresponds to Neff = 5.5 atoms. . . . . . . . . . . . . . . . . . . . . . . . . . . 161

5.2 Example experiment traces using the multi-push method. TOP LHS: The re-

flection signal, showing 30 pushes out of the MOT at a repetition rate of 2 kHz.

Each pulse contains two peaks; one is scattered light from the push beam itself

and the other is the reflection signal caused by atoms. This latter signal de-

cays exponentially with time, as indicated by the decreasing, dashed line. The

horizontal, dashed line indicates the constant level of the scattered light pulses.

TOP RIGHT: Zoomed-in version of the trace on the left, from 32 ms to 54 ms.

At this scale it is possible to clearly distinguish between the scattered light

pulses and the reflection signal pulses. BOTTOM: The normalised reflection

signal in lab units for the data shown on the LHS as a function of pulse number.

This demonstrates the utility of this method, which allows us to test amplitudes

ranging from ∼ 2.5− 1 in one experimental run. . . . . . . . . . . . . . . . . . 162
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5.3 Example trace of a multi-push experiment with a sequence alternating between

reflection and fluorescence measurements. The trace shows 40 pushes; 20 flu-

orescence pulses interspersed with 20 reflection pulses. To collect fluorescence

the cavity drive beam is shuttered off from the cavity, explaining the alternating

height of the background. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

5.4 Characterising the effect of the push beam. LHS: The normalised reflection

signal for different durations of the push beam. Shown alongside the data is a

saturation fit, which estimates the fully saturated reflection signal to be 3.04 ±

0.33. RHS: Fluorescence lineshapes taken for atoms pushed for 300µs (in lighter

red) and 100µs (in darker red), alongside Lorentzian fits to the datasets. Both

lineshapes are red-shifted with respect to the fluorescence beam (which is located

below the MOT and cavity), with their lineshapes shifted by several MHz. As

might be expected, the effect is more pronounced for longer durations. The fits

produce central frequencies which are red-shifted from resonance by −9.82 ±

0.86 MHz and −30.79 ± 1.06 MHz for 100µs and 300µs, respectively. These

correspond to velocities of 7.67 ± 0.67 m s−1 and 24.0 ± 0.83 m s−1, respectively. 165

5.5 The normalised reflection signal with cavity pump beam detuning. The lighter

blue dataset corresponds to a detuning scan across the first pulse in a multi-push

experiment and the darker blue dataset corresponds to the same scan for the

seventeenth pulse. Lorenztian fits to each dataset are shown alongside, producing

estimates of CN = 3.55 ± 0.11 and CN = 0.40 ± 0.04, respectively. . . . . . . . 167

5.6 Comparison of the different methods for estimating CN . LHS: A graph of ‘CN

from width’ versus ‘CN from height’, where the dropped atom data is shown in

dark blue and the pushed atom data is shown in light blue. Ideally, these two

methods should produce identical results and all the data points would lie on

a straight line of unity gradient, as indicated by the dashed line. The data do

broadly follow this pattern, with some clear exceptions caused by failings in the

fitting procedure, discussed in the main text. RHS: A graph of ‘CN from width’

versus ‘CN from height’, this time calculated using ‘synthetic’ data produced by

randomly distributing atoms inside the cavity mode. Some of the features of the

real data are replicated here, such as the scatter about the unity gradient line

for higher CN and, to a lesser extent, the stratum of data at very low CN . . . . 169
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5.7 A comparison of the ‘known CN ’ with the ‘measured CN ’ for the synthetic data,

calculated using the single-parameter fitting method. The stratum at low CN

has been eliminated and the scatter about the unity-gradient line is substantially

reduced. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

5.8 The normalised reflection signal as a function of collective cooperativity, CN ,

calculated using the single parameter fitting method. The dropped atom data

are shown in dark blue circles, whilst the pushed atom data are shown in light

blue squares. Fits to Eq.(5.2) are shown alongside. The discrepancies between

the data are caused by differences in fringe visibility. . . . . . . . . . . . . . . . 171

5.9 Simulations of the behaviour of the fluorescence signal with increasing Neff .

LHS: Comparing the effects of having a uniform Ω for all atoms (in light red) to

the real case, where Ωj varies with the position of the jth atom (in dark red).

The non-uniform case is simply reduced by ∼ 1/2, equivalent to the ratio of

mean-to-peak intensity, with the rollover position unchanged. RHS: The effect

of detuning the driving beam, with a position-dependent Ωj . Four detunings are

shown, with darker to lighter red corresponding to ∆a = 2π × (0, 3, 6, 9) MHz,

respectively. As the detuning increases, the rollover appears to shift to higher

values of Neff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

5.10 The fluorescence signal with increasing Neff . LHS: Experimental data showing

the fluorescence signal measured for different Neff (bottom horizontal axis) and

CN (top horizontal axis). The dashed line at Neff = 1/2C indicates where the

rollover in fluorescence signal amplitude would be expected to occur. The data

appear to increase linearly with Neff at first, consistent with the ‘disordered

scattering’ limit - but no rollover is apparent. RHS: Comparison of simulated

data (the dark red line) and experimental data from the LHS (the light red

points). The simulated data assumes a drive beam Rabi frequency of 2π×10 MHz

and a detuning of 2π×5.4 MHz. There is a good match between them, indicating

that detuning may well be the reason for the lack of rollover in the signal. . . . 173
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5.11 The reflection (LHS) and fluorescence (RHS) signals, calculated as functions

of detuning, ∆, where ∆ = ∆c = ∆a. These are shown for three different

values of Neff , with the cavity parameters kept constant at (g, γ, κ) = 2π ×

(98, 3, 5200) MHz respectively. TOP: Neff = 1. For the reflection signal, the

Lorentzian cavity profile is visible, with a small perturbing feature caused by
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Chapter 1

Introduction

1.1 Cavity QED

The interaction between matter and light is of fundamental interest. One of its most basic

manifestations occurs when a single, two-level atom interacts with a single mode, or photon,

of the electromagnetic field. This can be described by the Jaynes-Cummings model [1]. In the

absence of any mutual interaction, the atom is either in its ground state, |g〉 or excited state, |e〉

and the field can either have photon number |0〉 or |1〉. In the Jaynes-Cummings model, when

these entities are coupled by an interaction of strength, or ‘Rabi’ frequency, g, the system can

be described in terms of two ‘dressed states’; |g, 1〉 and |e, 0〉. In this way, a single excitation

is shared between the atom and the field and, as the coupled system evolves coherently, this

excitation oscillates between the dressed states at a rate, 2g. A more formal discussion of this

model is presented later, but for now it is important to note that the timescale on which this

interaction occurs, and any effects arising from it, will be determined by the size of g.

This model has some limitations. For one, it treats both the atom and field as simple

two-state objects. Firstly, an atom (which is not hydrogen) is really a complex, multi-electron

system; even without external forces it has fine and hyperfine structure above and beyond

its basic transitions between electronic energy states, see for example [2]. In reality, however,

one can instead address a quasi two-level system found in, for example, alkali atoms such as

ceasium and rubidium. For such atoms, a single ‘outer’ electron enables an approximation to a

simplified level scheme which can contain atomic ‘cycling transitions’ connecting two hyperfine

states. On these transitions, an electron can be multiply excited and de-excited with only a

small probablility of coupling to other states. The two states of the cycling transition can thus

be treated as the ground, |g〉 and excited, |e〉 states of the atomic two-level system.
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Secondly, an atom in free space does not generally couple to a single mode of the field, but

rather a continuous spectrum of electromagnetic modes, causing its excited state population

to irreversibly decay at a rate 2γ, see for example [3]. By tailoring the atom’s surrounding

environment, however, one can create circumstances where the effects of a single quanta of

excitation are observable. From Fermi’s Golden Rule we know that the atom’s decay rate is

dependent on the density of electromagnetic states and this can be substantially altered by the

presence of an optical cavity. The cavity, formed by two mirrors separated by a distance, d and

with a mode volume, V , will only allow a discrete set of spatial, polarisation and frequency

modes to resonate and one can hope to arrange it so that an atom placed inside it will only

interact strongly with one such mode, with strength g. When g � γ, a photon in the cavity

mode will have a larger influence over the atom than the other modes in the 4π steradians of

free space. This modification of the atom’s decay rate is known as the Purcell effect [4] and

the regime within which it occurs is that of cavity quantum electrodynamics [5].

Critical then to achieving a system which accurately approximates the Jaynes-Cummings

model is a large Rabi frequency between the cavity mode and the atom, given by:

g =

√
ωeg|µeg|2
2ε0h̄V

(1.1)

In the above, ωeg and µeg are the frequency and matrix element of the atomic transition,

respectively; ε0 is the permittivity of free space; and h̄ is Planck’s constant. From this, the

rate is proportional to the energy density of the cavity mode, so that experiments looking to

achieve a large g must work with small mode volumes. For the |F = 2〉 → |F ′ = 2〉 transition

of the D2 line of 87Rb discussed in this thesis, γ = 2π × 3.03 MHz, so that the critical mode

volume, for which g = γ, occurs when V = 2300 × 10−15 m3. Typically, experiments working

in the optical regime have cavities with V ∼ (3− 300)× 10−15 m3.

Besides its simplified treatment of the atom and the field, the Jaynes-Cummings model

also ignores any losses which would lead to decoherence. One such decoherence mechanism

already discussed is the spontaneous decay of the atom, at a rate 2γ. Loss of photons from

the cavity mode caused by transmission, absorption or scattering at the cavity mirrors has a

similar decohering effect. The rate at which this occurs is given by 2κ, motivating the use

of high finesse cavities to increase the lifetime of photons inside the cavity. Improvements in

the mirror fabrication process have enabled the development of smooth, high-reflectivity and

low-loss mirrors, with cavity finesses typically scanning ranges 100− 106 in the optical regime

and reaching as high as ∼ 10× 109 for microwave cavities [6].
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Figure 1.1: Schematic of a coupled atom-cavity system. The system is described by three rates;

the rate of coherent coupling between the atom and the field, g; the spontaneous emission rate

of the atom, γ; and the decay rate of the cavity field, κ.

Figure 1.1 shows a schematic of a cavity QED system, with the three main rates; g, γ and

κ indicated. The figure of merit in this system is the size of g, compared to the damping rates;

γ and κ. Ideally, one needs a g such that a single photon saturates the atomic response and,

conversely, that a single atom has a profound effect on the field.

Considering the effect of a cavity photon on the atom first, an atom will be saturated when

it is driven by a field with a Rabi frequency equal to
√

2γ. As will be shown later, in a cavity

with n photons, the Rabi frequency is given by 2g
√
n. Thus, the number of photons required

to saturate the atom is known as the saturation photon number, nph, given by:

nph =
γ2

2g2

The atomic influence on the cavity field can be quantified by considering a group of N

atoms inside the cavity mode, each with a resonant absorption cross section given by σ0, see for

example [7]. If the cavity supports m reflections of the photon from the internal mirrors faces,

in the limit of low saturation the fraction of intra-cavity excitation which will be absorbed

by the atoms is given by Nmσ0/A, where A is the cross sectional area of the cavity mode.

Demanding that this equals unity gives N = A/mσ0, where now N = Ncrit, the critical atom

number. We can make the approximation that A ∼ V/d and σ0 ∼ λ2. In addition, m will

be given by the product of the photon round-trip time and the loss rate; m = (c/2d) 1/κ.

Substituting in these expressions gives N = 2V/λ2c. Using Eq.(1.1) to replace V gives:

Ncrit ∼
κ

g2
0

(
|µeg|2

h̄ε0λ3

)
=
κγ

g2
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The values of Ncrit and nph give thresholds for when we might expect to see quantum

phenomena arising from the atom-cavity interaction. For nph < 1, or, equivalently, g �

γ, the interaction between a single atom and a single photon inside the cavity will cause

nonlinear optical effects. When Ncrit < 1, or g2/κγ � 1, a single atom will profoundly affect

the cavity field, enabling its detection. These regimes have become increasingly accessible to

experimentalists in the last two decades, with astounding results.

1.2 Realisations of cavity QED

There are many different physical implementations of cavity QED; including using Rydberg

atoms traversing microwave cavities [8], trapped ions [9, 10] and neutral atoms in optical

cavities [11]. Outside of these branches of physics, cavity QED has been explored in solid state

environments, for example using quantum dots embedded within semiconductor micropillars

[12] and photonic crystal nanocavities [13].

Cavity QED experiments using atoms fall into two distinct categories: those using Rydberg

atoms interacting inside superconducting microwave cavities and those using low-lying atoms

interacting inside optical cavities. Initially, due to technical limitations, many early cavity

QED experiments were of the former type [14, 15], as the atomic and field lifetimes in the

Rydberg systems are on the order of several microseconds, substantially lowering the threshold

g required to reach strong coupling. The microwave cavities used are larger, on the order of

several millimetres in length, although working with this type of radiation means that the

cavity must be cryogenically cooled to limit the effect of thermal photons. Atoms are delivered

into the cavity using an atomic beam directed through the mode centre, the timescales being

such that the transit time for an atom is substantially smaller than the cavity field decay rate,

so that consecutive atoms effectively sample the same field. In this way, effects resulting from

the interaction of the cavity mode with, on average, small numbers of atoms could be measured

[16, 17]. Whilst the measured effects are not the result of the interaction of one-and-the-same

atom, a feature of these systems is that the atom-field interaction takes place slowly, making

it possible to study entanglement and produce tailored quantum states [8].

Achieving strong coupling in the optical regime is more challenging, firstly because the

decay rates are much faster (e.g. tens of nanoseconds), requiring a larger g and setting a

limit on the dimensions of the cavity; optical cavities are typically only a few hundred microns

long. A corollary of this is that the interaction between the atom and the cavity takes place

on a faster timescale. With improvements in the production of cavity mirrors, the regime of
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strong coupling became possible to reach in the optical domain [18, 19]. Like their Rydberg

counterparts, these experiments used atomic beams, although here the transit time became a

limiting factor as it necessarily resulted in interaction times smaller than the equivalent time

in which the atom-cavity interaction took place. In addition, these experiments are stochastic,

with fluctations in the number of atoms in the cavity.

The introduction and development of laser cooling of neutral atoms, see for example [20],

mitigated these factors, making it possible to trap and cool atoms to sub-milliKelvin temper-

atures in a magneto-optical trap (MOT) [21]. By doing so, experiments could be performed

in both the strong coupling regime and a regime where the atomic kinetic energy is smaller

than the atom-cavity interaction energy, enabling investigations of the motional dynamics of

the atom inside the cavity. In addition, these experiments involved detecting the interaction

between a single atom and the cavity field in real time. Typically, atoms could be loaded into a

MOT and dropped through the cavity [22] or pushed into the cavity using an atomic fountain

[23, 24].

These sources of colder, slower atoms have also made it possible to trap a single atom inside

the cavity using optical dipole traps (see for example, [25]) implemented either as intra-cavity

dipole traps [26, 27] or as transverse standing-wave optical dipole traps which are also used

to controllably transport atoms into the cavity [28, 29, 30, 31]. These trapping schemes allow

experiments to take place on one-and-the-same atom and provide a high degree of localisation

and position control. It should be noted, however, that whilst these cold atom systems have

developed to enable trapping of an atom inside a cavity for several seconds, experiments using

one-and-the-same trapped ion inside a cavity have been performed for durations several orders

of magnitude longer, for example in [32], exploiting the tight localisation produced by the use

of electrostatic traps.

Optical trapping inside the cavity has also been implemented in tandem with cavity cooling

[30, 33] to increase the storage time for atoms inside the cavity, in some cases to several seconds

[30]. This cooling mechanism can be considered classically as being caused by the position-

dependent change in refractive index [34] caused by the atom moving around the cavity mode.

For a blue-detuned cavity this has a cooling effect, caused by the finite response time of the

cavity to changes in the atom-cavity coupling and, as a consequence, the intracavity intensity.

In addition, the atom-cavity interaction has been used to cool atoms to their lowest ground

state of axial motion inside the trap [35].

Whilst the work described above focuses on the interaction between a single atom strongly
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coupled to a cavity, there has been work at the other extreme, studying the interaction of high

density atom clouds [36, 37] and Bose Einstein Condensates (BECs) [38, 39] inside a cavity.

These experiments are able to exploit the square-root proportional increase in coupling with

atom number [40] to increase the collective coupling of the atom cloud to the cavity. Such

clouds of atoms have shown additional cooling forces caused by self-organisation inside the

cavity mode [41, 42]. In the case of the BEC experiments, all the atoms are in an identical

quantum state and can be treated as a single ‘super atom’ coupled to the cavity.

The majority of experiments discussed thus far have been ‘macro’ experiments, with stan-

dalone atom traps and cavities; but cavity QED has also been implemented using atom chips

[38, 43, 44, 45]. Atom chips aim to miniaturise atomic physics experiments by integrating

magnetic and electric-field producing elements on devices of typically a few cm2 [46, 47]. In

some experiments, current-carrying wires on atom chips have been used to trap and guide

atoms through ‘macro’ cavities [44, 45]. Alternatively, Fabry-Perot type microcavities have

been built by integrating optical elements, such as single-mode fibres and micromirrors, onto

atom chips [38, 43, 48]. Technical advances are moving towards monolithic, fully integrated

devices; a monolithic microcavity achieving high coupling rates with low losses has also been

implemented with whispering gallery mode microtoroids [49] and a recent proposal forms a

Fabry-Perot microcavity using a waveguide integrated on a silicon substrate [50].

1.3 Experiments and applications of cavity QED

The applications of cavity QED are varied and wide-ranging, but this section focuses on three

areas relevant to the optical microcavity experiment discussed in this thesis; single atom de-

tection, coupled atom-cavity spectroscopy and quantum information processing.

1.3.1 Single atom detection

Confidently detecting a single atom is of huge practical importance to many branches of physics.

In quantum information processing, for example, fast detection of a single atom enables one

to determine the presence of a qubit which could subsequently be used to perform quantum

logic operations. In general, one can detect an atom by illuminating it with resonant or near-

resonant light and measuring either a dispersion (i.e. a phase shift) or absorption of the light,

or by collecting emitted fluorescence.

One difficulty associated with measuring either a dispersion or absorption are that the

changes one measures as a result of a single pass of the light by a single atom are small
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[51]. Single atom sensitivity is possible, but principally by integrating over long periods [52],

requiring the atom to be localised in a trap. Small numbers of atoms have been detected in

this way using atom chips; one demonstration measures the change in coupling between two

optical fibres mounted on the chip, caused by the presence of ≤ 100 atoms [53] and a more

recent experiment measures the change in coupling produced by one atom on average between

two waveguides integrated onto the chip [54].

Alternatively, one can collect fluorescence emitted by the atom. This has the inherent

difficulty of distinguishing a small signal count rate from a single atom from the background

noise. Again, this can be overcome in trapped ion [55] and trapped atom [56, 57] experiments,

where fluorescence detection is in standard use, because the tight localisation of the ion or atom

combined with trapping times of several milliseconds make it possible to integrate the resulting

fluorescence signal for long periods, thereby confidently distinguishing it from the background

light collected by the detector.

Detecting non-localised, neutral atoms by collecting fluorescence is more difficult because

of the finite duration over which fluorescence is emitted (i.e. the short time that the atom is

in the detection region, typically only a few tens of microseconds), which limits the integration

time available for detecting the signal. One method for overcoming this uses near-4π collection

mirrors [58] to achieve a high collection efficiency of signal photons, detecting an atom during

its 60µs transit through the setup with virtually 100 % certainty. Alternatively, one can use

filtering optics to distinguish signal photons from background counts. One such example in-

volves using two optical fibres mounted at 90 degrees to each other on an atom chip to detect

atoms which are magnetically guided between them; one fibre emits light to excite atoms and

the multimode fibre collects the fluorescence. This system detects single atoms with a high

signal to noise ratio and with an efficiency of 66 %. Another proposed implementation involves

collecting fluorescence with a miniature aspheric lens and fibre optic mounted onto an atom

chip surface [59].

Detection of a single atom by absorption, dispersion and collecting fluorescence can be

significantly enhanced using an optical cavity. For absorption and dispersion measurements,

the multi-pass effect of the cavity means that a single atom can produce an easily detectable

change in the light. In the limit of strong coupling, the transits of single atoms through an

optical cavity are clearly discernable as changes in the transmission of the cavity [22, 23, 60],

which can be measured in real time. Aside from detecting the presence of a single atom, such

experiments can also provide information about the atom’s motion inside the cavity [61] and
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changes in its internal hyperfine states [31]. In fluorescence, the Purcell effect can be exploited

to enhance the collection of the atom’s fluorescence. In the strong coupling regime streams of

single photons produced by a trapped atom can be collected [62, 63].

Strong coupling isn’t, however, a prerequisite for atom detection using optical cavities. An

atom resolution of 0.1 has been achieved by measuring changes in cavity transmission with a

g2/κγ < 1 [44]. Separately, an experiment using a medium finesse cavity surrounding a single

atom magnetically trapped on an atomic chip achieved a 75% detection efficiency in 250µs by

collecting atomic fluorescence and single atom resolution by monitoring changes in transmission

[45]. Alternatively, coincidence counting can be used to increase the detection fidelity. This

has been implemented in an intermediate coupling regime, detecting an atom with more than

99.7 % confidence after 1µs [64].

Optical cavities integrated onto atom chips have also been proposed as a means to confi-

dently detect single atoms [65]. A cavity formed by two fibre-tips mounted on an atom chip

was used to detect < 50 rubidium atoms [66] and an etched micro-toriod formed from silicon

has been used to detect single falling atoms [49]. The optical microcavity experiment at CCM,

discussed throughout this thesis has also demonstrated single atom sensitivity and high detec-

tion fidelities [43, 67], using both changes in the reflected light from the cavity and collection

of emitted fluorescence.

1.3.2 Spectroscopy of the coupled atom-cavity system and non-linear optics

The spectroscopy of a coupled atom-cavity system can be quite different to that of its con-

stituent parts. When strongly coupled, an atom in the cavity can lead to a resolved splitting of

the cavity resonance. This ‘normal mode splitting’ has been measured for a one atom on aver-

age in optical cavities [18, 19] and microwave cavities [17] and has been subsequently repeated

for one-and-the-same trapped atoms. The splitting itself is a manifestation of the two dressed

states of the system, which show an avoided crossing as the cavity, atom and pumping light are

tuned into resonance. This avoided crossing can be measured directly because the excitation

spectrum of the atom-cavity system is proportional to the transmission spectrum. It has been

measured for a single, trapped, strongly-coupled atom [68] and a BEC [39]. The presence of

the cavity also modifies the atom’s spectroscopy, leading to a measurable enhancement [69] or

inhibition [70] of the atom’s spontaneous emission.

As mentioned, these experiments all measure the transmitted light through the cavity. In

contrast, the spectroscopy presented here measures the reflected light from the cavity.
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1.3.3 Quantum information processing

Cavity QED systems have been proposed as a building block for quantum networks [71]. In

such a scheme, a single atom trapped in an optical cavity (a ‘quantum node’) is a means to

store a ‘qubit’, with photons transferring qubits between nodes. This relies on being able to

efficiently transfer information between the atom and photon and being able generate single

photons on demand.

Substantial progress has been made towards this latter criterion [62, 63, 72] using optical

cavities. These implementations generally make use of a ‘dark state’ to transfer the atom

from one hyperfine level to another, with the atom excited by a laser field and de-excited by

the cavity vacuum field, thereby producing a single photon. Using such methods, streams of

several thousand photons from a single, trapped atom have been produced [62]. These photon

streams have a manifestly quantum nature, exhibiting sub-Poissonian fluctuations and photon

anti-bunching [62, 63]. There has also been success in controlling the amplitude, frequency

[73], polarisation [74] and, recently, the phase [75] characteristics of the emitted photons.

A second prerequisite for quantum information processing with cavity QED is the ability to

efficiently transfer information between atoms and photons. This has been demonstrated in the

optical regime, with the atom-cavity interaction used as a mechanism for entangling atoms and

photons [76], for generating multi-photon entanglement [77] and for transferring a quantum

state between an atom and photon [78]. Using Rydberg atoms, increasingly complex quantum

states can be tailor-made by multiple interactions between a cavity field and consecutive atoms,

for example [79] and [80].

In contrast to these experiments, which are deterministic, an alternative approach uses

ensembles of atoms coupled to a cavity to generate photons and transfer quantum states. Whilst

this is probabilistic — the generation of a photon or of state transfer is heralded [37, 81, 82, 83].

Cavity QED systems have also been proposed as a tool for building quantum gates using

nonlinearities arising from an atom’s interaction with a single photon. The low nsat required in

cavity-QED systems means that non-linear optical effects, such as absorptive optical bistability

[84, 28] and phase shifts [85] can be demonstrated for cavity fields with less than one photon

on average.

One factor to be considered, however, when appraising any system’s potential for quantum

information processing is its scalability. This underlines the motivation for cavity QED research

using scalable devices such as atom chips. The microcavity discussed in this thesis, formed using

scalable, microfabrication techniques, represents a step towards this.
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1.4 Outline of this thesis

This thesis presents experimental research carried out with cold rubidium atoms interacting

with an optical microcavity, at the Centre for Cold Matter (CCM), Imperial College London

and under the supervision of Prof. E. A. Hinds. The optical microcavities discussed here

have previously been developed and used at CCM [43, 86], demonstrating the ability to detect

atoms with single atom sensitivity by measuring changes in the intensity of the light reflected

back from the cavity and by collecting atomic fluorescence. This work forms part of a broader

research effort throughout the group to trap, manipulate and detect atoms on atom chips, with

recent successes including the successful implementation of etched pyramids for use in atom

trapping [87] and a microfabricated photonic waveguide chip [54].

The optical microcavity discussed in this thesis is unique in its design, being formed between

the tip of an optical fibre and silicon micromirror and with parameters such that a single atom

has a substantial impact on the cavity field. This thesis presents experiments characterising

the atom-cavity interaction in the microcavity and demonstrating the single atom sensitivity

of the cavity. The results are used to quantify the system’s functionality as an atom detector.

The relation between the cavity signals and atom number inside the cavity is also explored and

atom-cavity spectroscopy is performed for different atom numbers to demonstrate the dispersive

nature of the interaction. This latter measurement highlights key differences between the two

types signals we measure in our system.

In Chapter 2 the basic theoretical results describing the atom-cavity interaction are pre-

sented, using the Jaynes-Cummings Hamiltonian as a starting point. These results are used to

provide a theoretical description for the signals arising from the cavity.

Chapter 3 provides an overview of the experimental apparatus used for the work presented

in this thesis. This includes a description of the optical cavities, including calculations of its

key parameters; the laser system used for preparing and loading atoms into the cavity; the

computer control which automates data collection; and the optical setup used for detecting

and filtering atom-cavity signals.

Chapter 4 focuses on the use of the microcavities for atom detection. The two types of signal

resulting from the atom-cavity interaction are discussed and characterised, with particular

consideration to the optimal conditions for detection. This is followed by a discussion of atom

detection using these signals, including achievable signal-to-noise ratio, signal fluctuations,

experiment sensitivity and detection fidelity.

Chapter 5 presents the method for and results from increasing the number of atoms inside
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the cavity. In this way, a regime of higher cooperativity is accessed, allowing a series of experi-

ments investigating the dispersive nature of the atom-cavity interaction and demonstrating the

key differences between the signals arising from the cavity.

In Chapter 6 two goals for the immediate future of the experiment are discussed; the loading

and trapping of a single atom inside the cavity, and the coherent control of the atom inside

the cavity. Progress towards these goals is presented, including a discussion of dipole trapping

and the necessary Stark shift of the atoms’ internal states. The development of a moving

lattice for controllably loading atoms into the cavity is discussed and the technology required

to coherently control an atom, via electromagnetically induced transparency in a vapour cell,

is demonstrated.

Chapter 7 summarises the key results presented in this thesis and proposes areas for future

research, including the possibility for further integration of our microcavities with other atom-

chip devices.



Chapter 2

Atoms and cavities

This chapter presents the underlying theory describing the experiments discussed in this thesis.

The key concepts are optical cavities, the normal mode structure of their electric fields and

how atoms interact with them. The latter topic is modeled by the famous Jaynes-Cummings

Hamiltonian [1], which describes the interaction between a single two-level atom and a single

mode of the electromagnetic field. Furthermore, it is shown that the atom-cavity interaction

has two distinct limits of interest; that of so-called ‘strong coupling’ or of a ‘fast cavity’. Finally,

a theoretical form for the signals we can expect to measure arising from the atom-cavity field

interaction is presented.

2.1 Optical cavities

The focus of this section is optical cavities; including the properties of their internal, transmit-

ted and reflected electric fields and their internal mode structure.

2.1.1 Reflection and transmission properties of an optical cavity

Optical cavities are formed between two reflecting surfaces and light entering the cavity will

be reflected back and forth between them. One simple cavity geometry to consider is a ‘Fabry

Perot’ cavity, shown schematically in Figure 2.1. This is formed between two parallel, plane

mirrors separated by a distance d. With each mirror is associated a field amplitude reflection

and transmission coefficient, quantified by r1, r2 and t1, t2 respectively.

When a plane wave enters the cavity it will be reflected back and forth between the mirrors,

with each round trip accumulating a phase shift φc = 2nkd, where k is the wavenumber

of the light and n is the refractive index of the medium. Successive reflections will interfere

42
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Figure 2.1: A schematic of a Fabry-Perot optical cavity. The cavity is formed by two mirrors

separated by a distance d. Each mirror has an associated reflection and transmission field-

amplitude coefficients, r1, r2 and t1, t2, respectively. A field of amplitude Ein impinges on mirror

one, leading to a circulating field, Ecirc inside the cavity and a transmitted field, Eout = t2Ecirc.

constructively when φc equals an integer number of wavelengths, leading to the cavity resonance

condition:

2kd = 2πm or λ =
2d
m
, where m is an integer. (2.1)

In addition to an accumulating phase shift, each round trip will also be associated with a

reduction in field amplitude, given by r1r2. For an initial transmitted field, Eint1, after n

round trips, the circulating intra-cavity field will be given by (r1r2)nE0t1e
i2knd, leading to a

total field (summing over n→∞) of:

Ecirc =
∞∑
n=0

(
r1r2e

i2kd
)n
t1Ein =

Eint1
1− (r1r2)ei2kd

The circulating intensity, Icirc ∝ |Ecirc|2:

Icirc =
Imax

1 + 4r1r2
(1−r1r2) sin(kd)2

where Imax =
Iin

(1− r1r2)2
(2.2)

This is the well-known Airy Function, see for example [88], which results in a series of equally-

spaced resonance peaks in the reflected and transmitted intensity, as either the length of the

cavity, or the frequency of the light, is changed. The frequency separation of the peaks is

referred to as the free spectral range of the cavity, νFSR, where νFSR = c/2d, in units of Hz.

In our experiment, we measure the light reflected back from the cavity. This can be thought

of as having two contributions; the light initially reflected from the first mirror, −E0r1; and

the fraction of light circulating inside the cavity which is re-transmitted through the mirror,

Ecirct1r2e
i2kd. The total reflected intensity then becomes:
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Figure 2.2: The reflected intensity as a function of cavity length, d, shown for two values of

the mirror reflectivities. The solid, light green line is calculated for r1 = r2 = 0.99 and the

dashed, dark green line is calculated for r1 = r2 = 0.8. In both cases λ = 780 nm. Each cavity

fringe is caused by the destructive interference between the initially reflected light at mirror

one and the backwards leakage through mirror one of the circulating cavity field. As the mirror

reflectivites increase, the resonance fringes become narrower.

Ir ∝ | − Einr1 + Ecirct1r2e
i2kd|2 = I0r

2
1

∣∣∣∣∣(
t1r2
r1

+ r1)ei2kd − 1
1− r1r2ei2kd

∣∣∣∣∣
2

(2.3)

Figure 2.2 shows a plot of Eq.(2.3) as φC is scanned, in this case by changing the cavity

length; the solid line is calculated for r1 = r2 = 0.99 whilst the dashed lines is for r1 = r2 = 0.8.

In both cases, λ = 780 nm. The cavity fringes are caused by destructive interference between

the two contributions of Eq.(2.3). The finite width of these fringes is caused by the cavity

losses and, as is evident from the figure, as these losses increase so too does the width of the

fringes.

The cavity losses can be quantified by the cavity finesse, F , which is defined as:

F =
π
√
r1r2

1− r1r2

The finesse directly relates the cavity losses to the full width half maximums (FWHM) of the

resonance peaks. From Eq.(2.2), the circulating cavity intensity falls to half its maximum value

when:
4r1r2

(1− r1r2)
=
(

2F
π

)2

=
1

(sin kd)2

This occurs at wavenumbers:

k = ±1
d

sin−1
(
π

2F

)
≈ ±1

d

π

2F
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Re-writing this in terms of frequency units, this implies that the FWHM occurs at a distance,

∆ν, from the maxima of:

∆ν =
c

2d
1
F

=
νFSR

F

Thus, F is the ratio of the fringe width to the fringe separation. In the limit of high reflectivity

one can isolate a single mode, which is well approximated by a Lorenztian of HWHM κ. In

this limit, F ' π/(1− r1r2) and one finds that:

2κ ≡ νFSR

F
=

1− r1r2

π

c

2d
=

%

τrt

The latter ratio expresses κ, in angular frequency units, in terms of the cavity field loss per

round trip, % = 1 − r1r2 and the round trip duration, τrt = 2d/c. This is an important

experimental parameter, as 2κ is the lifetime of a photon inside the cavity and thus measures

the rate at which photons are lost from the cavity field. In this limit we find that κ can be

measured directly by measuring the width of the cavity fringe, enabling us to infer the value

of F , using κ = πc/2dF .

The depth of the fringes, normalised to the maximum reflected intensity, is known as the

‘fringe contrast’, θ, and is set by the internal losses of the cavity:

θ = 1− Imin
Imax

(2.4)

As will shown, this parameter sets the dynamic range of the reflection signals we expect to

measure. This expression also allows us to write the reflected intensity as a function of frequency

detuning, ∆C = ω − ωC from a particular cavity resonance at ωC , in a full, Lorentzian form:

Ir
Imax

= 1− θ

1 +
(

∆C
κ

)2

From this, we know that an optical cavity is frequency selective, supporting a narrow band

of longitudinal modes of width ∼ 2κ which satisfy the resonance condition of Eq.(2.1). At

these allowed frequencies, the intra-cavity field ‘builds up’, with the input field amplified by a

factor ∼ F/π.

The Fabry-Perot cavity discussed here is a useful pedagogical tool for understanding the

properties of the internal and reflected fields from a cavity. In reality, however, such cavities

are plagued by diffraction losses, to the extent that a stable internal mode cannot form. For

this reason, the cavity used in this experiment has one spherical mirror, providing sufficient

re-focusing to counteract the effect of diffraction. The stable mode inside the cavity has spatial

structure set by the cavity dimensions, as discussed in the following section.
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2.1.2 Mode structure of an optical cavity

The internal cavity field must satisfy Maxwell’s equations at the mirror boundaries. From

Maxwell’s equations, one can derive the Helmhotz wave equation describing the propagation of

the wave, E(r) = ψ(r)eikz, in the forward z direction. This equation can be simplified to the

paraxial Helmholtz equation by making the paraxial approximation, where one neglects the

divergence of the light as it propagates, valid when the divergence angle of the wave is small1.

The equation is given by: (
∂2

∂x2
+

∂2

∂y2
+ i2k

∂

∂z

)
ψ(r) = 0

One complete set of solutions to this equation are known as Hermite-Gaussian modes, given

in cylindrical coordinates, (r, z), where z is directed along the longitudinal cavity axis and r is

the radial coordinate, r2 = x2 + y2, as:

El,m(r) = E0
w0

w(z)
exp

[
−r2

w(z)2

]
×
√

1
2l+ml!m!

Hl

[√
2x

w(z)

]
Hm

[√
2y

w(z)

]
×

exp
[
ikz − i(1 + l +m) arctan

(
z

z0

)]
exp

[
ik

r2

2R(z)

]
(2.5)

The solution is formed of several factors, the first of which describes the electric field

envelope, where E0 is the peak field amplitude at origin:

E0
w0

w(z)
exp

[
−r2

w(z)2

]
(2.6)

The beam amplitude is maximised on axis and reduces with increasing |r|, following a

Gaussian profile. From this, the radius of the beam, w(z), is defined as the radial distance

over which the electric field amplitude falls to 1/e of its original value. w(z) is specified by two

parameters specific to the beam; the beam waist, w0 and the Rayleigh length, z0:

w(z) = w0

√
1 +

(
z

z0

)2

where z0 =
πw2

0

λ
(2.7)

This indicates that w(z) is minimised when w(z) = w0, which occurs when z = 0. w(z) is a

hyperbolic function of z with distinct regimes of behaviour demarcated by z0. When |z| � z0,

the beam is collimated. In the opposite limit, when |z| � z0, the beam diverges from the axis

at a divergence angle of w0/z0. This sets the limits for when it is reasonable to neglect the
1Here, ‘small’ means that it is valid to make the approximation sin θ ' tan θ ' θ, where θ is the divergence

angle of the beam. Roughly speaking, this is equivalent to w0k � 1.
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increase in the transverse mode size with increasing z. For our cavity, which has a length,

d = 139µm, comparable to the Rayleigh range, with z0 = 85µm, this should be accounted for.

The second factor in Eq.(2.5) describes the radial mode structure that lies within the field

envelope. The factor contains Hermite polynomials, Hl(x) and Hm(y), of order l,m. When

the beam entering the cavity is mode-matched and carefully aligned to the l = m = 0 mode,

as for our cavity, one can simplify to the case when Hl(x) = Hm(y) = 1, referred to as the

fundamental mode, or TEM00 mode.

The third term in Eq.(2.5) describes how the phase of the beam propagates:

exp
[
ikz − i arctan

(
z

z0

)]
× exp

[
−ik k(r2)

2R(z)

]

The first exponential describes the longitudinal phase factor, for (l,m = 0). This includes a

sum of the phase for a plane wave propagating along the z axis and the Gouy phase shift, which

is the phase retardation associated with the discrepancy from true planarity; over all z this

will retard the phase by π. The second exponential describes how the phase varies transversely

across the beam, resulting in a spherical wavefront with a radius of curvature, R(z) given by:

R(z) = z +
z2

0

z

Again, the Rayleigh length defines two regimes for the wavefront curvature: for |z| � z0,

R(z) ∼ z2
0/z, whilst for |z| � z0, R(z) ∼ z, so that a Gaussian beam approaches a spherical

beam as |z| → ∞. The maximum in the curvature occurs when dR(z)/dz = 0, at z = ±z0.

These expressions can be used to find the spatial intensity distribution inside the cavity.

For a Gaussian beam in free space, Il,m(r) ∝ |El,m(r)|2. In addition to this, a resonant mode

in the cavity will form a standing wave with an intensity ∝ sin2(kz). Combining these factors

gives the total cavity intensity distribution:

I00(r) = I0

[
w0

w(z)

]2

e
−2r2

w(z)2 sin2(kz) (2.8)

One can integrate this distribution over the cavity length to find the cavity mode volume.

When d equals an integer number of wavelengths, this yields:

V =
∫
I00(r) d3r = πw2

0

d

4
(2.9)

As previously mentioned, the stability of the mode inside the cavity is determined by the

need to limit diffraction losses. The incoming beam will make multiple round trips of the cavity

and will be repeatedly re-focused at each cavity mirror. This re-focusing must be sufficient to
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counteract the effect of beam divergence, which would otherwise result in increasing amounts

of energy being lost. In order for there to be a stable beam mode inside the cavity, there must

be sufficient re-focusing for the beam to be identical after one round trip. This condition and

applying the ABCD ray transfer matrices to describe a round trip through the cavity, see for

example [89], leads to the stability condition:

0 ≤
(

1− d

R1

)(
1− d

R2

)
≤ 1 (2.10)

In the above, R1 and R2 are the radii of curvature for mirrors 1 and 2, respectively. The

optical cavity used in our system is plano-concave, so that R1 =∞. This leads to the reduced

stability condition that 0 ≤ d ≤ R2 and sets the range of stability for the cavity length.

These optical properties have been in understood by treating the electromagnetic field as a

continuous, classical variable. At very low intensities however, it is more appropriate to treat

a quantised field.

2.2 The quantum electric field

The majority of the experiments discussed here will involve very low amplitude fields, cor-

responding to a only a few photons. In this situation a quantum mechanical treatment is

necessary. We begin by quantising the field.

2.2.1 Quantising the electric field

To quantise the electromagnetic field, one can first consider the field inside a box of volume,

V . The electric and magnetic fields, E and H, inside the box can be written in terms of an

expansion of plane waves, oscillating at frequencies ωk = |k|c and with polarisation vectors

εk, ε
′
k:

E =

√
1
ε0V

∑
k

εkωkEke
i(k.r−ωkt) + c.c

H =

√
1
ε0V

∑
k

ε′kωkHke
i(k.r−ωkt) + c.c (2.11)

These fields must satisfy the Maxwell equations for all r and t and, in addition, each Fourier

component must satisfy the reciprocal space Maxwell equations:

(k× εk)Ek = εk
′µ0ωkHk

(k× εk′)Hk = −εkε0ωkEk
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k.εk = 0

k.εk′ = 0

The last two equalities show that εk, εk′ are perpendicular to k. The first two equalities are

satisfied when2:

Hk =
Ek

cµ0
;

εk
′ = k̂× εk,

In the above, k̂ is a unit vector. These expressions can be used to re-write Eq.(2.11):

E =

√
1
ε0V

∑
ks

εksωkEks(t)eik.r + c.c

H =

√
1
ε0V

1
cµ0

∑
ks

(k̂× εks)ωkEks(t)eik.r + c.c

The expansions now contain a sum over the two orthogonal polarisation modes, s, and the field

amplitude has absorbed the explicit time dependence; Eks(t) = Ekse
−iωkt. These equations

can be used to find the energy of the field, U integrated over the volume of the box, written

classically as:

U =
1
2

∫
V

(
ε0|E|2 + µ0|H|2

)
dV = 2

∑
ks

ω2
k|Eks(t)|2

The latter evaluation assumes that the Fourier modes are orthonormal3. One can now introduce

the variables, qks and pks, written in terms of the electric field amplitude:

qks(t) = Eks(t) + E∗ks(t) and pks(t) = −iωkEks(t)− E∗ks(t)

The field energy can be expressed in terms of qks and pks as:

H = U = 2
∑
ks

[
p2
ks(t) + ω2

kq
2
ks(t)

]
This expression for the field energy has the same form as the Hamiltonian of a harmonic

oscillator with unit mass, see for example [3], implying that the electromagnetic field can be

treated as a sum over independent harmonic oscillators. The quantisation of the field now

follows by switching to a new basis, formed by the non-Hermitian operators âks and â†ks:

âks(t) =

√
1

2h̄ωk
[ωkq̂ks(t) + ip̂ks(t)]

2Using the fact that k× (k× εk) = −k2εk.
3Using the fact that

∫
V
ei(k−k′).r = V δ3

kk′ and that (k̂× εks).(k̂× εks′) = δss′ .
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=
√

2ωk
h̄
Êks(t)

â†ks(t) =

√
1

2h̄ωk
[ωkq̂ks(t)− ip̂ks(t)]

=
√

2ωk
h̄
Ê†ks(t)

These operators satisfy the commutation relations:

[
âks, â

†
ks

]
= δ3

kk′δss′

The Hamiltonian for the field is expressed in terms of these operators as:

Ĥ =
∑
ks

Ĥks =
1
2

∑
ks

h̄ωk

(
âksâ

†
ks +

1
2

)

Ĥks is the Hamiltonian for a single electromagnetic mode and the h̄ω/2 term represents the

energy of the vacuum. A single electromagnetic mode has the energy eigenstate, |nks〉, with

energy En:

Ĥks|nks〉 = h̄ωk

(
nks +

1
2

)
|nks〉 = En

From this, nks can be treated as the number of excitations, or photons, in a given field mode,

with each photon contributing energy h̄ωk to the field. States of different photon number are

equally spaced in energy, forming a ladder of energy eigenstates for a given wavenumber, k and

polarisation, s.

Concentrating now on a single eigenstate, |n〉, one can define a number operator, N̂ = â†â,

so that the Hamiltonian is re-written as:

Ĥ = h̄ω

(
N̂ +

1
2

)
This implies that:

N̂ |n〉 =
(
En
h̄ω
− 1

2

)
|n〉 = n|n〉

The eigenvalue of N̂ is n, so that |n〉 is therefore referred to as a number state or Fock state.

This operator also enables us to derive the following equations4:

N̂(â|n′〉) = (n′ − 1)(â|n′〉)

N̂(â†|n′〉) = (n′ + 1)(â†|n′〉)

Thus, the eigenvalue of the state (â|n′〉) is (n′ − 1) and the eigenvalue of the state (â†|n′〉) is

(n′+1), implying that applying â and â† to the state |n′〉 decreases and increases the excitation

4Using the fact that N̂ â = â(N̂ − 1) and N̂ â† = â†(N̂ + 1)



CHAPTER 2. ATOMS AND CAVITIES 51

number of the state by one, respectively. For this reason, â and â† are referred to as annihilation

and creation operators of the field. More formally, the normalised action of â and â† is given

by:

â†|n〉 =
√
n+ 1|n+ 1〉 and â|n〉 =

√
n|n− 1〉

The electric and magnetic field operators for a single electromagnetic mode can also be

expressed in terms of â and â† as:

Ê =

√
h̄ω

2ε0V
εks(âei(k.r−ωt) + â†e−i(k.r−ωt))

Ĥ =

√
h̄ω

2ε0V

1
cµ0

(k̂× εks)(âei(k.r−ωt) + â†e−i(k.r−ωt)) (2.12)

This gives the ‘electric field per photon’ as [h̄ω/2ε0V ]
1
2 . This quantised description of the field

can now be used to understand the quantised intra-cavity field. Whilst this derivation assumes

a box of volume V , in principle this box can be expanded to have an infinite volume, so as to

describe the field in free space. As it happens, however, in our experiment the electric field is

‘confined’ inside our cavity.

2.2.2 The driven, damped quantised cavity field

For a cavity containing n photons at frequency ωC , the Hamiltonian describing the quantised

cavity field is given by:

HC = h̄ωC(â†â+
1
2

)

This Hamiltonian describes an isolated cavity system, but in reality this is never the case.

Typically, the cavity mode will be pumped by an external light source impinging on one of the

cavity mirrors, with frequency ωL. This can be represented in the Hamiltonian by a pumping

term, −ih̄η(â− â†), where η is the pumping rate amplitude. The Hamiltonian in the interaction

picture (i.e. a frame of reference rotating at frequency ωC) then becomes:

H int
C = −h̄∆C â

†â− ih̄η(â− â†) (2.13)

Here, ∆C = ωL−ωC and is the detuning between the cavity mode and the pumping beam.

In addition, losses have thus far been ignored which, in reality, would cause the cavity field

to decay until the vacuum state, |0〉, is reached. We know that the field amplitude decays at

a rate κ and the effect can be taken into account using the master equation, which gives the
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equation of motion of the reduced density operator of the cavity interacting with a reservoir of

field modes in thermal equilibrium, see for example [90]. The master equation for the cavity

field is given by:

ρ̇ = −i[H int
C , ρ] + κ(2aρa† − a†aρ− ρa†a) (2.14)

A steady state solution to this equation is ρ = |α〉〈α|, where |α〉 is a coherent state.

These states are defined by satisfying the factorisation condition 〈α|â†|α〉〈α|â|α〉 = 〈α|â†â|α〉,

a corollary of which is that they are eigenstates of â†. Given this, they can be written as a

superposition of number states, see for example [3], written in a normalised form as:

|α〉 = e−|α|
2/2
∑
n

αn√
n!
|n〉

As an aside, this description of the field state demonstrates one of its statistical features, which

is that the probability, Pn for finding n photons is given by the Poission distribution:

Pn = |〈n|α〉|2 = e−|α|
2 |α|2n

n!

From this, we would expect fluctuations of the number of photons in the field to be char-

acterised by having a variance equal to the mean.

Given that α = 〈a〉, we can find a steady-state solution for α by multiplying Eq.(2.14) by

â and taking the trace, knowing that5:

〈a〉 = Tr[ρâ] and Tr[ρ] = 1 (2.15)

This gives:

α =
η

κ− i∆C

From this, on resonance the cavity photon number, 〈n〉 = |α|2, is given by η2/κ2. The field

will change when an atom is present inside the cavity, the effect of which is discussed in the

following section.

2.3 The interaction between atoms and a quantised cavity field

This section outlines the key features of the interaction between an atom and a quantised field,

with and without decoherence. We begin by considering the term in the Hamiltonian which

results from this interaction.
5This procedure also makes use of the cyclical properties of the trace, i.e. Tr[ABC] = Tr[CAB] = Tr[BCA].
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2.3.1 The two-level atom interacting with an electric field

For the purposes of this section, the atom is treated as a simple, closed two-level system with

ground state |g〉 and excited state |e〉. These states are separated in energy by h̄ωA. The

Hamiltonian describing this free atom is given by:

HA = h̄ωA|e〉〈e| or h̄ωAσ
+σ− (2.16)

The latter expression uses the atomic raising and lowering operators, σ+ = |e〉〈g|, σ− = |g〉〈e|.6

The free atom has an electric dipole moment, d, although when the atom is in an energy

eigenstate d = 0, as it is non-polar. This means that d can be expressed as:

d = degσ+ + dgeσ− where deg = 〈e|d|g〉 (2.17)

If this atom is now placed in an electric field, the interaction energy is described by the

dipole interaction Hamiltonian:

HI = −d.E(t)

This expression makes the Dipole Approximation, see for example [3], for which it is assumed

that the physical extent of the atom is sufficiently small compared to the wavelength of the field

that the field phase can be treated as constant (i.e. k.r � 1). Substituting in the expression

for the electric field operator from Eq.(2.12)7 and the dipole operator from Eq.(2.17) gives:

HI = −
√

h̄ω

2ε0V
(degσ+ + dgeσ−).ε̂ks(âe−iωt + â†eiωt)

Multiplying out gives:

HI = −
√

h̄ω

2ε0V

[
〈e|d.ε̂ks|g〉

(
σ+âe−iωt + σ+â†eiωt

)
+ 〈g|d.ε̂ks|e〉

(
σ−âe−iωt + σ−â†eiωt

)]
(2.18)

If Eq.(2.18) is now transformed into the interaction picture using the unitary transformation

U †HIU , where U = eiHAt/h̄, two pairs of terms are evident; the pair evolving at frequencies

ω + ωA and another pair evolving at ω − ωA. These pairs of terms are evolving on starkly

different timescales, with the former taking place, in this case, at optical frequencies whilst

the latter is evolving slowly near resonance. Given this, one can make the Rotating Wave

Approximation (RWA), see for example [3], where it is assumed that on the time scale of the
6Here, σ± are defined in terms of the Pauli spin matrices as σ± = 1

2
(σx ± iσy), where σx = |e〉〈g| + |g〉〈e|

and σy = −i|e〉〈g|+ i|g〉〈e|.
7The Dipole Approximation is made again in neglecting the k.r phase terms in the field operator.
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Figure 2.3: A schematic showing the ladder of states of doublet states formed as a result of the

atom-cavity interaction. The LHS ladder is for g = 0, whilst the RHS ladder shows the same

but now g > 0. On the LHS, the atom and cavity are detuned by δAC , which produces the

small splitting to what would otherwise be degenerate states.

near-resonant interaction between the atom and the light, the fast-evolving pair average to zero

and can be neglected. Having done this one finds a simplified interaction Hamiltonian:

HI = −
√

h̄ω

2ε0V

[
〈e|d.ε̂ks|g〉σ+âe−i(ω−ωA)t + 〈g|d.ε̂ks|e〉σ−â†ei(ω−ωA)t

]
(2.19)

From this, one can define the maximum atom-cavity coupling rate, g:

g =

√
ω|µeg|2
2ε0V

where µeg = 〈e|d.ε̂ks|g〉 (2.20)

Thus, g gives the interaction energy between the electric field of a single photon interacting

with a single atom, in units of h̄. Substituting this into Eq.(2.19) and making another unitary

transformation to eliminate the time dependence gives the final Hamiltonian:

HI = −h̄
(
gσ+â+ g∗â†σ−

)
(2.21)

This term is one of the constituents of the Jaynes-Cummings Hamiltonian.

2.3.2 The Jaynes-Cummings Hamiltonian

Having derived Hamiltonians describing the cavity field, the atom and the atom-cavity field

interaction it is now appropriate to combine them in the famous Jaynes-Cummings Hamilto-

nian [1]. For now, we treat only the coherent interaction between the atom and cavity field,

neglecting the effect of the finite cavity decay rate, κ.
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For a stationary atom, using the Dipole and RW approximations and choosing an atomic

quantisation axis so that g is real, one has:

HJC = h̄ωAσ
+σ− + h̄ωCa

†a− h̄g(σ+a+ a†σ−) (2.22)

As mentioned, this Hamiltonian consists of three parts. The first term gives the internal

energy of the free atom. The second term gives the energy of the cavity field excitation. The

third term gives the energy associated with the interaction between the atom and the field and

is proportional to the atom-field coupling rate, g. This rate is proportional to the electric field

inside the cavity and, as such, it should be modified by a spatial factor to take into account

the mode structure of the Gaussian standing wave formed inside the cavity. Using Eq.(2.8),

one finds that:

g = g0ψ(r) where ψ(r) =
[
w0

w(z)

]
sin(kz)e

− r2

w2
0 (2.23)

The above expression for g assumes the simplified case of a two-level atom with no internal

structure and corresponds to the maximum achievable coupling rate. In reality the rubidium

atoms used in this experiment have magnetic hyperfine structure, so that each possible transi-

tion has a g weighted by a Clebsch-Gorden coefficient. This also means that the atoms exhibit

polarisation effects, a topic which is considered in more detail in Chapter 4.

Returning to the JC Hamiltonian, the basis vectors for the coupled atom-cavity states can be

written as tensor products of the uncoupled atomic and Fock states, i.e. {|g, 0〉, |e, 0〉, |g, 1〉, |e, 1〉 . . .}.

In this closed atom-cavity system, energy conservation requires that an emission or absorption

process by the atom must be reflected by a change in the cavity field state, which should in-

crease or decrease respectively by one8. This creates a ladder of independent doublet states

describing the coupled atom-cavity system, shown schematically in Figure 2.3. The LHS of this

figure shows the situation where g = 0, with a finite atom-cavity detuning, δAC = ωC − ωA,

between the atom and the cavity which produces a splitting between otherwise degenerate

eigenstates. The RHS shows the situation with g 6= 0, where now the eigenstates are split by

a frequency 2
√
ng.

The Hamiltonian for the doublet states, |g, n〉, |e, n−1〉, can be written in a general matrix

format as:
8This restriction was actually made by the RWA, where terms which would have connected states such as

|g, 0〉 and |e, 1〉 were neglected.
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Figure 2.4: The system eigenvalues as a function of atom-cavity detuning, δAC , plotted for

n = 1. The ‘bare’ eigenvalues for the composite atom-cavity system, for which there is no

interaction between the atom and the cavity field, are represented and labelled by the dotted

lines. The ‘dressed state’ eigenvalues include an interaction term and are represented by the

solid line. In the latter case, the interaction causes the eigenvalues to repel one another close

to δAC = 0, causing an avoided crossing.

HJC = h̄

 ωCn+ δAC g
√
n

−g
√
n ωA + ωC(n− 1) + δAC


Diagonalising this Hamiltonian gives two non-degenerate eigenvalues:

E±n =
h̄

2

(
2nωC + δAC ±

√
4g2n+ δ2

AC

)
The interaction between the atom and the cavity has split the cavity photon states into

two non-degenerate ‘dressed states’. These eigenvalues are plotted in Figure 2.4. The dashed

lines indicate the ‘bare’ atom-cavity eigenvalues, with no interaction, whilst the solid lines

indicate the new dressed state eigenvalues. The interaction causes these eigenvalues to ‘repel’

one another, producing an ‘avoided crossing’ close to resonance. The energy difference between

the states is minimised at 2g when δAC = 0. The avoided crossing can be measured directly

by measuring the excitation spectrum of the cavity — which is later shown to be proportional

to the transmission spectrum.

In analogy to an atom interacting with a classical field, the atom undergoes coherent Rabi

oscillations between the dressed states with an effective Rabi frequency, Ωeff =
√

4ng2 + δ2
AC ,

with the excitation being transferred between the atom and the cavity field. In this ideal, closed

quantum system, these oscillations would continue indefinitely. In reality, however, dissipation
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due to atomic spontaneous emission and cavity decay, hitherto ignored in this model, will

cause these oscillations to decay. As before, these effects can be accounted for using the master

equation.

2.3.3 The Master equation for a driven atom-cavity system

There are two sources of dissipation in the coupled atom-cavity system: the atom causes loss

through spontaneous emission at a rate 2γ and the cavity can cause loss through the mirrors at

a rate 2κ. These can be included using the master equation, which describes the non-unitary

evolution of the joint atom-cavity density matrix, ρ:

d

dt
ρ = −i[H, ρ] + γ(2σ−ρσ+ − σ+σ−ρ− ρσ+σ−) + κ(2aρa† − a†aρ− ρa†a) (2.24)

The Hamiltonian, H included here refers to the Jaynes-Cummings Hamiltonian of Eq.(2.22),

with the inclusion of a cavity pumping term, −ih̄(â − â†). In the interaction picture this

Hamiltonian is:

H = −∆C â
†â−∆Aσ

+σ− − g
(
âσ+ + â†σ−

)
− iη(â− a†) (2.25)

The cavity and atomic detunings are defined with respect to the frequency of the pump

light, so that:

∆C = ωL − ωC and ∆A = ωL − ωA

The evolution of the system described by Eq.(2.24) cannot, in general, be solved analytically.

One can reach an approximate solution, however, by treating the cavity field semiclassically

and again assuming it is in a coherent state, α, where α = 〈â〉. In this approximation, one also

assumes that the joint expectation values can be factored out, i.e. 〈âσ̂−〉 → 〈â〉〈σ̂−〉9. Using

this approach, the master equation can be used to derive the Heisenberg equations of motion

for the expectation values of the cavity field operator, 〈â〉 and the atomic raising and lowering

operators, 〈σ̂+〉 and 〈σ̂−〉, following Eq.(2.15):

d

dt
α = −(κ+ i∆C)α+ η + ig〈σ−〉 (2.26)

d

dt
〈σ−〉 = −(γ + i∆A)〈σ−〉+ igα

[
1− 2〈σ+σ−〉

]
(2.27)

d

dt
〈σ−σ+〉 = −2γ〈σ+σ−〉+ ig

[
α〈σ+〉 − α∗〈σ−〉

]
(2.28)

9This approximation is only valid when the cavity is weakly excited.
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Figure 2.5: The cavity transmission as a function of detuning, ∆ where ∆ = ∆C −∆A. The

solid line represents an empty cavity which shows one peak centred on ∆ = 0. The dashed

line represents a cavity with one atom present, with (g, γ, κ) = 2π × (80, 3, 50) MHz, so that

C = 21.3 and the system is in the strong coupling regime, to be defined later. The normal

mode splitting of the cavity resonance symmetrically about ∆ = 0 is clearly visible.

These equations have the steady state solutions:

α =
1
κ̃

[
η + ig〈σ−〉

]
(2.29)

〈σ−〉 =
igα

γ̃

[
1− 2〈σ+σ−〉

]
(2.30)

〈σ+σ−〉 =
g2|α|2/|γ̃|2

1 + 2g2|α|2/|γ̃|2
(2.31)

Here, the atom and cavity detunings have been absorbed into the new variables, κ̃ = κ+ i∆C

and γ̃ = γ + i∆A. This set of equations does not form a closed system, so that further

approximations must be made to find analytical solutions.

2.3.4 The coherent cavity field in the limit of weak excitation

A reasonable approximation for the majority of experiments discussed here is to assume that

the cavity is only weakly excited, so that 〈σ+σ−〉 � 1. In this case, the steady state solution

for the intra-cavity field can be found from Eq.(2.29), giving:

α =
η

κ̃

1
1 + 2C̃

where C̃ =
g2

2κ̃γ̃
(2.32)

On resonance, C̃ is known as the single atom cooperativity and parameterises how strongly

the atom couples to the cavity. When C ∼ 1, the coherent atom-cavity interaction is compa-

rable to the dissipation rates of the system.
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The steady-state cavity photon number, 〈n〉, is given by 〈n〉 = |α|2, so that the cavity

transmission becomes:

T (∆) ∝ 〈n〉 = |α|2 =

(
η2

|κ̃|2

) ∣∣∣∣ 1
1 + 2C̃

∣∣∣∣2
For suitable values of (g, γ, κ), the cavity transmission (and reflection) show a ‘normal mode

splitting’, where the cavity resonance is split by ±h̄g, arising from the splitting of the system

eigenstates into the two dressed states, an example of which is shown in Figure 2.5.

The damped system can be described by the non-Hermitian hamiltonian [91]:

H = HJC − ih̄γσ+σ− − ih̄κâ†â

This Hamiltonian has the modified eigenvalues:

E± = ωC(n+
1
2

) +
1
2

√
4ng2 − (γ − κ)2 − i(γ + κ(2n− 1))

2

From this, the relative sizes of κ and γ with respect to g define different regimes of cavity

QED. For the normal mode splitting to be resolved, =
[
Ẽ±
]
< <

[
Ẽ±
]
, which occurs when

g2 > (γ2 + κ2)/2. This is satisfied in the ‘strong coupling’ regime, characterised by g � κ, γ.

The strong coupling regime is not necessary however for quantum effects to be visible. The

saturation photon number, nsat and the critical atom number, Ncrit, already introduced, are

given by:

Ncrit =
κγ

g2
=

1
2C

and nsat =
γ2

2g2

As discussed in Chapter 1, having (Ncrit, nsat) < 1 means that individual quanta, be it

atoms or photons, will have a pronounced effect. With nsat < 1 a single photon will saturate

the atom, giving rise to nonlinear optical effects. With Ncrit ∼ 1 a single atom will have a

pronounced effect on the cavity field, enabling its detection. Both of these conditions can be

met with a ‘fast cavity’, for which g � γ and κ� g. This is the case in our system, which has:

g = 2π × 98 MHz

κ = 2π × 5200 MHz

γ = 2π × 3 MHz

These quantities lead to an nsat = 4.5 × 10−4 and Ncrit = 1.6. In Chapter 4 it will be shown

we can detect a single atom with a fidelity of 99% in 16µs. In Chapter 5 it is shown that we

are able to measure the dispersive effect of the atom-cavity interaction for one atom on average

inside the cavity mode. In addition, the fast cavity limit also has an impact on the atom’s

spectral qualities, as discussed in the following section.
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2.3.5 Enhanced spontaneous emission: the Purcell effect

Up to now we have primarily been interested in the effect that the atom has on the cavity

field (e.g. its impact on the transmission spectrum). Conversely, the atom’s spectral qualities

can be modified by the presence of the cavity. More specifically, the composite effect of the

atom-cavity coupling and cavity loss rate can be such that cavity provides an additional loss

channel for the atom, enhancing its spontaneous emission rate. This is known as the Purcell

effect [4]. Following the method outlined in [91], the time evolution of the system’s state vector

can be used to find the emission properties of the atom when coupled to the cavity. Assuming

no cavity pumping and, as a consequence, weak excitation, the Hilbert space is truncated to

allow up to a maximum of one excitation between the cavity and the field. The state vector is

then given by:

|ψ〉 = cg|g, 1〉+ ce|e, 0〉+ cg0|g, 0〉

Given no cavity pumping, there is a high probability for there to be no excitation and cg0 ∼ 1.

The Schrodinger equation for the state coefficients is then given by:

d

dt

 ce

cg

 =

 −γ −g

g −κ


 ce

cg


In the ‘fast cavity’ limit, where κ � g, Rabi oscillations are inhibited by the quick loss of

photons before they can re-excite the atom. In these conditions, the transient population in

the |g, 1〉 state is negligible, allowing the approximation ċg ∼ 0, giving:

ċe = −
(
g2

κ
+ γ

)
ce leading to ce = e

−
(
γ+ g2

κ

)
t

(2.33)

The presence of the cavity has modified the atomic emission rate, which now consists of two

parts — one part describing the ‘bare atom’ decay rate, γ and another describing the decay

rate into the cavity, γcav:

γtot = γ + γcav = γ

(
1 +

g2

κγ

)
= γ (1 + 2C)

The cavity dominates as a decay channel for the atom if g2/κγ = 2C � 1 and this effect has

been demonstrated with atoms inside resonators at optical and microwave frequencies [69, 92].

In our system, the decay rate into the cavity mode is of a similar order of magnitude as the

free space decay rate.

The effect of detuning the cavity from the atom (and therefore reducing the mode density

available to it) can be taken into account by including a factor 1/(1 + ∆2
C), giving:
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γtot = γ

(
1 +

2C
(1 + ∆2

C)

)

This indicates that the cavity decay channel can be ‘switched off’ by sufficiently increas-

ing ∆C . In addition, spontaneous emission can be inhibited by the cavity if the solid angle

subtended by the cavity mode is non-negligible and the cavity dimensions are on the order of

the emission wavelength of the atom [93, 94, 95]10. In this case, the cavity can be sufficiently

detuned from atomic resonance to eliminate decay via the cavity channel, but the atomic de-

cay rate is smaller than a free space atom because the cavity mode has reduced the available

density of states.

2.3.6 Extending to multiple atoms

Thus far only a single atom interacting with the cavity field has been considered. The treatment

can, however, be readily extended to N identical atoms, by re-writing the Hamiltonian of

Eq.(2.25) as:

H = −∆C â
†â−∆A

N∑
j=1

σ+
j σ
−
j −

N∑
j=1

gj
(
âσ+

j + â†σ−j

)
− iη(â− â†) (2.34)

The subscripts j for the raising and lowering operators indicate raising and lowering op-

erations for the jth atom and gj indicates the local coupling rate for the jth atom, arising

from the spatial variation of the atom-cavity coupling gj = g0ψ(xj , yj , zj), causing atoms at

different positions in the cavity to ‘feel’ different couplings strengths. Solving as before we find

a modified expression for α in the weak driving limit:

α =
(
η

κ̃

)
1

1 + 2CN
where CN = C

N∑
j=1

∣∣∣∣ gig0

∣∣∣∣2 (2.35)

Here, the effect of multiple atoms has now been absorbed into a collective cooperativity,

CN , which contains a sum over all the individual atomic contributions [40, 96]. This is possible

because the atoms are driven in phase by the cavity pump beam, ensuring that their contribu-

tions add ‘coherently’. This leads to the concept of the effective number of atoms in the cavity,

Neff , which gives the total contribution from N atoms in terms of the equivalent number of

maximally coupled atoms; i.e. Neff = CN/C. This is an important concept for our experiment

because, as will be discussed later, our method for loading atoms into the cavity means that
10By using the free space atomic decay rate, γ throughout this section, it has implicitly been assumed that

the solid angle subtended by the cavity is sufficiently small as to be negligible.
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Figure 2.6: The effect of increasing pumping powers on the intra-cavity field. |αres|2 plotted as

a function of cavity pumping rate, η for (g, γ, κ) = 2π × (98, 3, 5200) MHz. The lighter green,

solid line is calculated for N = 1, corresponding to CN = 0.3. In this case, |αres|2 increases

monotonically with increasing η. The darker green, dashed line is calculated for N = 13,

corresponding to CN = 4. For this case, |αres|2 is multi-valued as the system becomes bistable.

there are always multiple atoms contributing to the signal. This indicates another point of in-

terest; the cooperativity of the atom-cavity system can be increased by increasing the number

of interacting atoms. This fact will be exploited in experiments presented in Chapter 5.

2.3.7 High intensity limit and optical bistability

Up to now, the limit of weak driving has been assumed, enabling the derivation of an analytical

expression for intra-cavity field. Outside of this limit, Eq.(2.29) can be rearranged to find an

expression for α in terms of |α|2:

α =
(
η

κ̃

)
1 + 2g2|α|2/|γ̃|2

1 + 2C̃N + 2g2|α|2/|γ̃|2
(2.36)

In general, this equation must be evaluated numerically. One exception occurs for the all-

resonant case, when ∆A = ∆C = 0. For this situation, α is real and Eq.(2.36) can be rearranged

to find the cubic equation:

α3
res − α2

res

(
η

κ

)
+ αres(2CN + 1)

γ2

2g2
− η

κ

γ2

2g2
= 0 (2.37)

Figure 2.6 shows |αres|2 as a function of pumping rate, η, plotted for (g, γ, κ) = 2π ×

(98, 3, 5200) MHz. The lighter green, solid line is calculated for a single atom, corresponding

to CN = 0.3. This function is single-valued for all η, with |αres|2 increasing monotonically

with increasing η. The darker green, dashed line is calculated for 13 maximally coupled atoms,
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corresponding to CN = 4. In contrast, at η ≈ 1000 photons/sec, |αres|2 becomes multi-valued,

with multiple stable solutions, indicating bistability. It can be shown that the onset of optical

bistability occurs when C ≥ 4 [97] and the effect has been seen experimentally [28, 84, 98].

As is will be shown in Chapter 4, atomic saturation has an adverse effect on the atom

signal reflected from the cavity — for very high pumping rates, it ultimately leads to the

complete extinction of the signal. The theoretical form for the reflection signal is presented in

the following section.

2.4 Cavity signals

In our experiment there are two types of signals which are caused by the presence of atoms

inside the cavity; referred to throughout as the ‘reflection’ signal and the ‘fluorescence’ signal.

Here, the analytical form for each signal is presented.

2.4.1 Cavity reflection signals

A cavity reflection signal is produced when the cavity is pumped at a rate η and the signal

we measure is the light reflected back. As shown in Eq.(2.3), the reflected field, ER has two

contributions; one from the light reflected from the first cavity mirror and the other from the

light transmitted through the first mirror from inside the cavity:

ER = −r1Ein + Ecircr2t1ζ (2.38)

The first term on the RHS describes the light reflected back from the first cavity mirror. This

is just the product of the incoming field, Ein and the reflection coefficient of mirror 1. Here,

Ein is the time-averaged field of the incoming beam, where Ein =
√
Jin and Jin is the incoming

rate of photons impinging on cavity mirror 1. For these purposes, the units of Ein are thus√
photons/sec.

The second term describes the light transmitted through the first mirror from inside the

cavity. This is a product of the time-averaged field circulating inside the cavity, Ecirc and terms

denoting the efficiency with which light is coupled from the cavity: the reflection coefficient of

mirror 2 describing its reflection at the second mirror inside the cavity, r2; the transmission

coefficient describing the transmission out of the cavity through mirror 1, t1; and the factor ζ

which quantifies the mode overlap between the mirror and the optical fibre.

The time-averaged cavity field is given in terms of the field amplitude, α, as Ecirc =

α/
√
τrt. From §3.4 we have an expression for α, given by Eq.(2.36). For simplicity, the reduced
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expression in the limit of weak pumping given by Eq.(2.32) will be used here, although in

principle the full expression could be used to describe the field in all regimes. Making these

substitutions and assuming the case of high reflectivity of mirror 1, so that r1 ≈ 1, yields:

ER = −
√
Jin +

r2t1ζ√
τrt
×
(
η

κ̃

)
1

1 + 2C̃N
(2.39)

This can be written in a more meaningful way by finding an expression for η in terms of

Jin. We know that for an empty cavity, the steady state photon number, n = η2/κ2. The

rate at which photons enter the cavity is given by the incoming rate, Jin, multiplied by the

efficiency of photon transfer into the cavity from outside, given by (t1ζ)2. In the steady state,

this equals the rate at which photons are lost from the cavity, given by n%2/τ2
rt, leading to:

n =
η2

κ2
=
Jint

2
1ζ

2τrt
%

Rearranging and remembering from §1.1 that κ = %/τrt gives an expression for η:

η =

√
Jint21ζ

2

τrt
(2.40)

Including this in Eq.(2.39) leads to an expression for the outcoming reflected photon rate,

JR in terms of Jin:

JR ∝ |ER|2 = Jin

∣∣∣∣∣−1 +
r2t

2
1ζ

2

%

1
1 + 2C̃N

∣∣∣∣∣
2

or
JR
Jin

=

∣∣∣∣∣−1 +
r2t

2
1ζ

2

%

1
1 + 2C̃N

∣∣∣∣∣
2

(2.41)

On resonance, Eq.(2.4) from earlier in this chapter gives an expression for the ratio of the

incoming and reflected intensities in terms of the fringe contrast, θ:

θ = 1− Iresr

Iin
= 1− Jresr

Jin

We can therefore simplify Eq.(2.41) by defining the fringe visibility, v, where θ = 1 − v2, so

that:

−1 +
r2T1ζ

2

%
= −v giving 1− v =

r2t
2
1ζ

2

%
(2.42)

Generally v could be positive or negative, depending on whether the cavity is over- or

under-coupled, respectively. For our cavity, v is non-zero and is undercoupled so that we use

−v. This choice means that the reflected signal increases with increasing cooperativity. This

allows us to reach a final, simplified form for the reflected photon rate:

JR = Jin

(
−1 +

1− v
2C̃N + 1

)2

= Jin

(
2C̃N + v

2C̃N + 1

)2

(2.43)
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Figure 2.7: The impact of different fringe visibilities, v, on the reflection signal. LHS: The

normalised reflection signal, JR/Jin as a function of cooperativity, plotted for three different

values of v. From darker to lighter green, v2 = 0.01, 0.25, 0.5. The reflection signal saturates

with increasing CN , saturating more quickly for smaller values of v. The grey dots indicate how

an increase in cooperativity has an equivalent effect to a reduction in fringe contrast. RHS:

The differential of JR/Jin as a function of atom number, N for three different cavity contrasts.

From darker to lighter green correspond to v = 0.1, 0.2 and 0.3. As v increases (and thus the

fringe contrast decreases), the change in signal caused by a single atom decreases, making it

harder to discriminate between atom numbers.
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When no atom is present, CN = 0, so that JR/Jin = v2. An atom inside the cavity will lead

to a positive value for CN , producing an increase in the signal which ‘looks’ like an increase in

v. The presence of an atom in the cavity is therefore manifest as a reduction in cavity contrast.

Physical, the reasoning behind this is that an atom in the cavity scatters light which would

otherwise destructively interfere with the field reflected from the cavity mirror.11

The LHS of Figure 2.7 shows JR/Jin as a function of CN (treating the resonant case),

plotted for three different values of v; from darker to lighter green, v2 = 0.01, 0.25, 0.5. This

shows that increasing CN results in change to the signal which is equivalent to an increase v,

as indicated schematically by the example shown in grey. Also evident is the saturation of the

signal with higher CN , tending towards 1 as CN → ∞. How quickly this saturation occurs

is determined by the size of v; for higher fringe contrasts, leading to smaller values of v, the

saturation of the reflection signal occurs more slowly.

The value of the fringe contrast and saturation of the reflection signal also impacts our

ability to discriminate between different atom numbers. This can be seen in the RHS of Figure

2.7, which shows d(JR/Jin)/dN as a function of atom number, N , for three different values of

v; from lighter to darker green, v = 0.1 , 0.2 and 0.3. It is clear that the differential increases

with decreasing v, so that it is easier to discriminate between different atom numbers as v

decreases. With all values of v, however, saturation is evident. In certain circumstances, the

fluorescence signal will also saturate with increasing cooperativity, as discussed in the following

section.

2.4.2 Cavity fluorescence signals

The cavity fluorescence signal is the result of atoms emitting photons into the cavity mode,

enhanced by means of the Purcell effect. Their emission is triggered by a pump beam of Rabi

frequency Ω, which drives the atom-cavity system from the side, transverse to the longitudinal

cavity axis. The cavity mode is therefore not being pumped directly, so η = 0. This situation

is shown schematically in Figure 2.8.

The addition of the transverse pump beam can be included in the Hamiltonian of Eq.(2.25)

by making the replacement gâ→ (gâ+ Ω/2). For a single atom this yields:

H = −∆C â
†â−∆Aσ

+σ− − g
(
âσ+ + â†σ−

)
− 1

2
(
Ωσ+ + Ω∗σ−

)
11Were the light pumping the cavity far-detuned, the scattering rate of the atom would be substantially

reduced and the dominant effect of the atom is to shift the resonance frequency of the cavity [65], inducing a

phase shift in the transmitted and reflected light.



CHAPTER 2. ATOMS AND CAVITIES 67

Figure 2.8: Schematic of fluorescence experiment. An atom inside the cavity is pumped into

an excited state by transverse pump beams, passing vertically through the cavity from the top

and/or the bottom. The atom’s decay rate has two components: γ into free space and γcav

into the cavity mode. Here, the cavity is formed between an optical fibre and a silicon wafer,

as will be described in Chapter 3.

Following the method of §3.3 and assuming low excitation, the intra-cavity field in the case

of transverse driving, αF , is given by:

αF = − 2C̃
1 + 2C̃

Ω
2g

(2.44)

The resulting fluorescence signal, Jfl, is then:

Jfl = 2|αF |2κ̃ giving Jfl =
κ̃χ

2

(
Ω
g

)2
∣∣∣∣∣ 2C̃
2C̃ + 1

∣∣∣∣∣
2

(2.45)

The effect of imperfect signal collection between the cavity mode and the detector, the case

for any real experiment, is taken into account by including the factor χ, which gives the total

collection efficiency.

We can use the optical Bloch Equations, see for example [99], to derive this expression in

another way. The steady excited state population, ρee, of an atom driven by a laser field with

coupling, Ω, detuned by ∆a is given by:

ρee =
Ω2

4∆2
a + 2γ′2 + 2Ω2

Here, 2γ′ is the excited state spontaneous decay rate. We know that this is modified by the

presence of the cavity, becoming:

γ′ = γ

(
1 +

2C
(1 + ∆2

c)

)
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Of this total scattering rate, the partial rate 4γC/(1 + ∆2
c) goes into the cavity. The rate

of photons scattered by the atom into the cavity is therefore:

Jfl =
4γC

(1 + ∆2
c)
ρee =

4γC
(1 + ∆2

c)
Ω2

4∆2
a +

[
γ
(
1 + 2C

(1+∆2
c)

)]2
+ 2Ω2

This can be rewritten in terms of the saturation parameter, s = Ω2/2γ2 and, for the all-

resonant case when ∆c = ∆a = 0, Jfl becomes:

Rscatt = 2Cγ
s

(1 + 2C)2 + s

In the limit of small s this equation is equal to Eq.(2.45).

As with the reflection signal, this treatment can be extended to include multiple atoms.

Following the procedure of §3.6. gives:

αF = − 2C
1 + 2NeffC

N∑
j

gj
g0

Ωj

2g0
so that Jfl = 2κχ

∣∣∣∣∣∣ 2C
1 + 2NeffC

N∑
j

gj
g0

Ωj

2g0

∣∣∣∣∣∣
2

(2.46)

Unlike the equivalent case in the reflection, the total contribution from multiple atoms

cannot simply be absorbed into an effective atom number as individual atoms are not necessarily

pumped in phase. Instead, we can separate the summation in the expression of Jfl into two

parts:

Jfl = 2κχ
∣∣∣∣ 2C
1 + 2NeffC

∣∣∣∣2
∑
i 6=j

gig
∗
j

2g0

ΩiΩ∗j
2g0

+
∑
j

|gj |2

2g0

|Ωj |2

2g0


We can identify the first summed term as being the result of individual, uncorrelated

scattering by different atoms inside the cavity, whilst the second term represents ‘ordered’

scattering. This ‘ordered limit’ occurs if we imagined N atoms inside the cavity mode, spatially

ordered so that they scattered in phase, or, equivalently, with a uniform pump beam, Ω. In

this case Eq.(2.46) becomes:

Jfl =
κ̃χΩ2

2g2
0

∣∣∣∣∣ 2C̃Neff

1 + 2C̃Neff

∣∣∣∣∣
2

In this special case atoms are scattering cooperatively and this effect leads to Dicke superra-

diance [100]. However, we have no reason to believe that in our experiment there should be any

spatial ordering, as atoms fall through the cavity taking random positions. In this case, we’d

expect the uncorrelated scattering to be the dominant effect and the fluorescence described by

the ‘disordered limit’, when the atoms scatter with random phases relative to one another. In

this limit, the summation over coupling rates has an average value of
√
Neff , so that Eq.(2.46)

becomes:

Jfl =
κ̃χΩ2

2g2
0

∣∣∣∣∣ 2C̃
√
Neff

1 + 2C̃Neff

∣∣∣∣∣
2

(2.47)
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Figure 2.9: The fluorescence signal as a function of Neff , in the ‘ordered’ and ‘disordered’ limits.

This is plotted for the system parameters (g, κ, γ, Ω) = 2π × (100, 5200, 3, 10) MHz. In the

‘ordered limit’, shown in dark red, Jfl initially increases quadratically with atom number,

but for higher atom numbers the signal saturates. In contrast, the ‘disordered limit’, shown

in light red, initially increases linearly with atom number and then rolls over, peaking when

Neff = 1/2C. As Neff →∞, Jfl → 0.

Figure 2.9 shows the qualitative differences between the fluorescence signals in the two

scattering limits as they scale with Neff . In the ‘ordered limit’, shown in dark red, Jfl initially

increases quadratically with atom number and then saturates. In contrast, the ‘disordered

limit’, shown in light red, initially increases linearly with atom number and then rolls over,

peaking when Neff = 1/2C. In this case, as Neff → ∞, Jfl → 0, so that eventually the cavity

goes dark.

Whilst these limits provide helpful insight into the behaviour of the fluorescence signal,

in general the equation must be solved numerically. Appendix 1 presents some Monte Carlo

simulations of the fluorescence signal, although for most situations, Eq.(2.47) is sufficient to

understand our experiment.

Having given a theoretical treatment of our experiment, we now turn to practical issues.

The following chapter describes our experimental apparatus.



Chapter 3

Experiment set up

The optical microcavities used throughout this thesis had already been used in a successful

‘proof of principle’ experiment [43]. This setup did, however, involve sharing an optical table

and laser system with another experiment and it was decided that the only viable means to

continue was to become independent. Thus, for the purposes of the work undertaken during

this thesis, the cavities were installed on a new optical table and the laser system and computer

control system completely re-designed. This chapter describes the new experimental apparatus.

3.1 High level description of experiment procedure and layout

The cavity experiment and supporting laser system is located on a 3 × 1.2 m floating optical

table. The cavity is held inside a vacuum chamber (Kimble spherical square), at a pressure of

< 10−9 Torr. This pressure is continuously maintained with an ion pump (Varian Vacion 20

Diode).

Inside this vacuum chamber is the optical cavity and a mirror and two magnetic field coils

used to make a magneto-optical trap (MOT). These are all rigidly held using two metal posts

attached to a vacuum flange. This flange also contains feed-throughs for the MOT coils and

the optical fibres which form our cavities. Two rubidium dispensers are fixed on a separate

vacuum flange, to allow ease of access and reduce thermal contact with the cavities.

Using this system, we load 87Rb into a MOT and then allow them to expand in a optical

molasses, cooling them to < 40µK. Hereafter, the atoms are either pushed using a resonant

beam or fall freely under gravity, passing through the cavity positioned 5.1 mm below. Using

this procedure we can demonstrate the single atom sensitivity of our cavity system, using either

reflection or fluorescence measurements. Figure 3.1 shows a photograph of the experiment

70
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Figure 3.1: The optical microcavity experiment, showing all the major components. The typical

position of the MOT is indicated by a red dot.

inside the vacuum chamber, with all the key components labelled.

3.2 The cavities

Central to our experiment is the optical microcavity, which is unique in its design. The cavity

is formed between a dielectric mirror glued onto the front facet of a single-mode optical fibre

and a micromirror etched into a silicon wafer. This arrangement allows direct optical access

to the cavity mode via the optical fibre, which also automatically mode-matches the incoming

beam. In addition, the etched micromirror is one of an array microfabricated onto the silicon

surface, naturally lending itself to scalability. Figure.3.2 shows a schematic of the cavity.

The cavity design and fabrication, characterisation and testing for the purposes of atom

detection was the subject of [97] and is also presented in [43, 86]. Whilst the essentials of the

design and fabrication procedure remained the same, the cavity was re-built during the course

of this thesis. This section provides a brief overview of the design and characterisation of the

cavity. It also includes the scheme used for measuring cavity signals and frequency-locking the

cavity.

3.2.1 Design and fabrication

Our initial plan when building the experiment was to use the optical microcavities built as part

of [97]. Unfortunately, however, these cavities were mis-aligned whilst being installed in the

new setup. For this reason, the cavities were re-built following the procedure outlined in detail
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in [97], although the supporting structure which holds the cavity inside the vacuum chamber

was altered to reduce thermal contact between the cavities and the MOT coils, for reasons

which will be discussed later.

As described, one end of the cavity is a plane, dielectric mirror fixed with index-matching

glue onto the front facet of a single-mode, optical fibre. This dielectric coating is custom-made

by OIB and was specified to have a reflectivity of 98.5%. The coating received had a reflectivity

of 98 ±0.5 %, although subsequent measurements indicate that it is closer to 98%. This was an

intended departure from the earlier design, which used a coating with 99.2% reflectivity and

was done to improve the collection efficiency between the cavity mode and the fibre.

The optical fibre sits inside a groove which has been machined into a piece of Macor. The

fibre is manually aligned to a micromirror on the silicon wafer and then permanently fixed in

position with Epoxy (Bylapox, Byla 87251). The Macor piece is glued onto a glass block which

is held by in aluminium stand, as shown schematically in Figure.3.2.

The other end of the cavity is formed by a micromirror which has been etched onto a silicon

wafer. This micromirror is wet-etched using a mixture of HF, HN3 and acetic acid and is then

coated with a dielectric, found to have a reflectivity of 99.9%, contingent on finding a smooth

micromirror and using a small beam spot size so that only the bottom of the mirror surface is

sampled. The radius of curvature of the micromirrors, R, was measured in [97] and found to

be 185 ± 3µm.

The silicon wafer is glued onto a piece of Macor and held on a piezo stack, allowing the

length of the cavity to be adjusted. The piezo is held in place by two pieces of Macor screwed

together.

The use of the silicon wafer in the design means all measurements from this cavity are done

in reflection, measuring light reflected back from the cavity through the fibre. This is distinct

from most other cQED experiments and has implications for the layout of the detection optics,

which are discussed in more detail later in this section.

An important factor for the experiment is the contrast of the cavity fringes, θ. The new

cavity, once built and installed inside the vacuum chamber, had a measured fringe contrast of

100 +0−1%, representing a significant improvement on the previous cavity, for which θ ∼ 50%.

However, the fibre and silicon wafer are extremely sensitive to misalignment, particularly as a

result of heating. Inside the vacuum chamber there are two main sources of heat; the MOT

coils and the dispenser used as rubidium source.
1This Epoxy is no longer in production
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Figure 3.2: Schematic of the optical microcavity, showing the key features. The optical fibre is

glued onto a piece of Macor, which itself is glued onto a glass block held underneath the gold

mirror used to form the MOT, as discussed later in this section. A dielectric mirror is glued

onto the front facet of the fibre to form one end of the cavity. The other end of the cavity

is formed by one of an array of micromirrors etched onto the surface of a Silicon wafer. The

wafer is glued onto a piece of Macor held on top of a piezo stack, which allows the length of the

cavity to be adjusted. The white arrow indicates the direction travel of the piezo. The piezo

stack is held in place using Macor pieces screwed together.

As previously mentioned, the structure supporting the cavities was altered to minimise the

effects from heating from the MOT coils. Previously, both the cavities and the coils had been

held on the same supporting metal post, so that they were ‘good’ thermal contact. This post,

∼ 10 cm long and ∼ 5 cm thick, was screwed onto a vacuum flange and pointed diagonally

so that the cavities and coils were centred in the chamber. In an attempt to reduce heating

via conduction through the post, the design used in this experiment has the cavities and the

coils held on separate posts, but arranged to fit together identically as before. Both posts are

screwed into the same vacuum flange, allowing the chamber to act as a heat sink. This flange

also contains feed-throughs to supply current to the MOT coils and optical feed-throughs for

the cavity fibres. Despite this alteration, running current through the MOT coils still has an

appreciable effect on the cavities, which is manifest as a slow frequency drift of the fringes.

This appears to be caused by radiative heating from the coils and, for this reason, the currents

run through them during the experiment are kept quite low, at < 1.5 A, leading to a maximum

axial magnetic field gradient at the MOT location of 1.6 G/cm.

It also appears that using the dispensers has a similar thermal effect. To minimise this

effect, a copper shield was added to the dispenser flange which blocks the line of sight between

the dispenser and cavities whilst still allowing Rb to enter the chamber from the sides.
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Figure 3.3: The reflected cavity fringes. LHS: The reflected cavity fringes for the 804 nm

light used for locking and trapping (shown in light green) and the 780 nm light used for atom

detection (shown in dark green), taken whilst the cavity length is being scanned. The relative

amplitudes should not to be directly compared; the 780 nm is measured using a low pass filter

to convert APD counts into an analogue voltage for the purposes of locking whilst the 804 nm

is measured using a photodiode. RHS: A ‘zoomed’ scan of just one cavity fringe. The dashed

line indicates an inverted Lorentzian lineshape, which is a good approximation for the cavity

fringes.

With these alterations made the loss of contrast has appeared to stabilise at 75 ± 1%. It

should also be noted that the misalignment caused by heating has also caused a reduction by

a factor of ∼ 2 to the cavity finesse.

3.2.2 Characterisation of properties

For us to fully understand the signals from our cavity several properties must be measured.

The length, d, of the cavity was measured following the method outlined in [97]. The cavity

was pumped with light of two colours; 780 nm and ∼ 804 nm. The wavelength of the 780 nm

was kept constant, locked on resonance with the |F = 2〉 → |F ′ = 3〉 transition of the D2

manifold of 87Rb, whilst the wavelength of the other colour was changed. Pumping the cavity

in this way produces two sets of reflection fringes, as shown in Figure 3.3. In this scan the

lighter green corresponds to the ∼ 804 nm light and the darker green to the 780 nm light. The

wavelength of the ∼ 804 nm was varied by changing the current to and temperature of the laser

diode producing it. This changes the position of its fringes relative to those from the 780 nm

light. The separation between the lowest order fringes of two colours, λ0 and λi, is given (in
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terms of cavity length) as2:

∆d =
miλi −m0λ0

2

Here, m0 and mi signify the longitudinal mode indices. Throughout the measurement,

d ∼ m0λ0
2 , so that:

∆d =
miλi

2
− d (3.1)

The changes in λi for the ∼ 804 nm light were kept small to ensure that the same fringe

moved between the m0 and (m0 + 1) fringe of the 780 nm light, allowing d and mi to be found

from a least squares fit to Eq.(3.1). This method produced an estimate of d = 139 ± 1µm,

which is in line with the stability condition for a plano-concave cavity.

The cavity mode waist is determined by d and the radius of curvature, R, of the silicon

micromirror, using the expression from [97]:

w0 =

√
λ

π
4

√
Rd

(
1− d

R

)
From the same text, R was found to be 185 ±3µm, making w0 = 4.5 ±0.1µm. Combined,

these values give a cavity mode volume, V = πw2
0d/4 = 2.17× 10−15 m3, which in turn allows

us to estimate the maximum atom-cavity coupling rate using Eq.(2.20). This gives g = 2π ×

97.5±2.3 MHz. Comparing this estimate of g to the atomic transition lifetime, γ = 2π×3 MHz,

indicates that we fulfil one criterion of cQED, namely that nsat � 1.

Another factor determining the nature of the interactions inside the cavity is the cavity

linewidth, κ. The best way to measure this is to reference a cavity fringe to a known frequency

separation, in this case the 6.8 GHz frequency difference between the ‘trapping’ and ‘repumping’

light used to produce a MOT (discussed later). To ensure accuracy, the measurement is done

at a slow piezo scan rate, well under the bandwidth of the peizo. The scans are shown on the

LHS of Figure.3.4; one with only trapping light circulating inside the cavity (the lower right

scan); one with only repumping light circulating inside the cavity (the lower left scan); and one

where both trapping and repumping light are circulating inside the cavity (the upper scan).

To make an estimate of κ, two types of Lorenztian fit are made to these scans. The first type

involves individually fitting the separate scans to single Lorenztians, with κ as a free parameter.

This method produces an estimate of κ = 5.27 ± 0.05 GHz. The second type involves making

a double Lorenztian fit to the upper scan, but constraining the amplitudes, fringe visibilities

and lineshape centres to be those found from the individual fits, so that κ for each lineshape
2This assumes that m0,mi � 1 and that λ0 ∼ λi.



CHAPTER 3. EXPERIMENT SET UP 76

Figure 3.4: Measuring cavity parameters. LHS: Three scans taken to measure the cavity

linewidth, κ. The bottom scans show cavity fringes for only trapping light (RHS) and only

repumping light (LHS) circulating inside the cavity. The top scan is for both trapping and

repumping light, where the slight notch in the bottom of the fringe and increased width indicates

that this fringe is the sum of two fringes of different frequency. RHS: The fringe contrast

measured as a function of cavity length before gluing.

is the only a free parameter. This produces an estimate of 5.12 ± 0.08 GHz. These fits are

shown alongside the scans in the darker green. Taking the mean of these two estimates gives

us a final estimate of κ = 5.20 ± 0.1 GHz.

The final cavity parameter to characterise is the fringe contrast. This was initially measured

as a function of cavity length whilst the cavity was being made — data from this measurement

are shown on the RHS of Figure.3.4. This data was used to choose the position at which the

fibre was glued, with the aim of maximising the contrast. This is important, as from the figure

one can see variations in the contrast by ∼ 15% between 40−180µm. From this, the cavity was

glued with a length of 130µm, although the recent measurement discussed earlier indicates that

this has since changed. As discussed, at this length we were able to achieve ≈ 100 % contrast

once installed inside the chamber, although this has since fallen as a result of heating.

3.2.3 Cavity pumping and stabilisation

Our cavity design is such that coupling light into the cavity mode requires only that light is

coupled into the single mode optical fibre. During reflection measurements, the cavity mode is

pumped by light which is resonant or near-resonant with the |F = 2〉 → |F ′ = 3〉. Before being

coupled into the fibre, the light used for this purpose is double-passed through an acousto-optic

modulator (AOM), allowing the frequency and intensity of the light to be controlled. There is
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also a shutter placed in the beam path, allowing the light to be blocked when necessary (for

example, when collecting atomic fluorescence emitted into the cavity mode).

The cavity signals, which consist either of the pumping light reflected back from the cavity

or fluorescence emitted into the cavity mode, exit the fibre and are measured at an avalanche

photodiode, or APD (Perkin Elmer SPCM AQR15). This detector counts single photons with

a quantum efficiency, ηQE = 60%, producing a 5 V, TTL signal for each photon counted. The

APD is specified to have a dark count rate, Ndark = 200s−1 and a dead time, τd = 46.5 ns,

although this latter value was found empirically to be 44 ns [97]. The effect of efficiency,

dark counts and saturation can be taken into account by correcting the measured counts per

integration time, τint, according to3:

Ncorrected =
1
ηQE

(
Nmeas ×

1
1− τdNmeas

τint

−Ndark

)
(3.2)

In addition to near-resonant light at 780 nm, far-detuned light at 804 nm is also coupled into

the mode for the dual use of frequency-locking and atom trapping. The light reflected back

from the cavity at this wavelength is detected at a separate photodiode (Femto LCA-S-400K)

with transimpedance gain of 1× 107V/A and bandwidth DC-400 kHz.

The cavity is actively stabilised during the experiment by frequency-locking to the side of

one of the fringes produced by the 804 nm light and providing feedback to the piezo actuator

controlling the cavity length. When locking, the location of the 804 nm fringes relative to the

780 nm fringes can be altered by making fine adjustments to the current and temperature of

the 804 nm diode laser. To lock the cavity on resonance with the 780 nm light, fine adjustments

are made until the bottom of a 780 nm fringe is coincident with the HWHM point of a 804 nm

fringe.

The 804 nm diode laser is not actively stabilised, which means that the cavity length is

actually being locked to an error signal whose frequency could drift. However, the required

performance of the cavity lock is determined by the cavity linewidth; i.e. a narrower linewidth

cavity requires a tighter lock. In our case, the cavity linewidth is 5.2 GHz and small changes in

the frequency output of the laser have a negligible effect on the cavity. Generally, once settled

and without large disturbances, the cavity will remain on resonance for several hours.

In the scheme described thus far, both 804 nm and 780 nm light are circulating inside the

cavity and both exit the fibre in the same mode. However, for the purposes of measurement,

these two wavelengths need to be separated as stray 804 nm light measured at the APD increases

the noise floor of any signals and makes it difficult to lock the cavity at the correct frequency.
3Specified by the manufacturer when Nmeasτd/τint � 1



CHAPTER 3. EXPERIMENT SET UP 78

Figure 3.5: A schematic showing the arrangement of optics prior to the cavity fibre. This setup

is designed to filter 804 nm light from the 780 nm which is detected at the APD. Four dichroic

filters are used; three in reflection, labelled R1, R2 and R3 and one in transmission, T1.

This need is compounded by the fact that the 804 nm light will also be used to produce an

intra-cavity dipole trap, discussed in Chapter 6, so that there is substantially more of it than

780 nm light (with typically ∼ 500µW compared to ∼ 500 fW). Given this, the layout of the

optics prior to the fibre is designed to allow large amounts of 804 nm light into the cavity, whilst

filtering the APD from its backward reflection.

A schematic of the optical layout is shown in Figure 3.5. All the optics, the cavity fibre

input, Femto and APD are housed inside the black cardboard box to minimise stray light

reaching the APD. The 804 nm and 780 nm light are initially combined outside the box at a

polarising beam splitter (PBS) and then coupled into the same polarisation-maintaining fibre.

The output of this fibre is inside the box. The two colours are immediately separated by

polarisation at a PBS 1.

The 780 nm light follows path 1 in Figure 3.5. It is reflected from a 90:10 beam splitter,

followed by three dichroic filters, labelled R1, R2 and R3 (Semrock Razor Edge LP02-785 RU-

25), which are designed to reflect 780 nm light and transmit 804 nm light. The 780 nm light then

passes through a λ/4 plate which allows small adjustments to the incoming light’s polarisation,

and is then coupled into the cavity fibre using two mirrors. Ideally, this polarisation optic

would be placed earlier in the path, so that only the 780 nm light passed through it (as it is,
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Figure 3.6: The transmission (solid line) and reflection (dashed line) through the dichroic as a

function of angle. The same units are used for transmission and reflection amplitudes, so that

the scales are one-to-one. This indicates that a loss in transmission was accompanied by an

equivalent gain in reflection.

804 nm light passes through it as well). It was placed here because of space limitations.

The 780 nm light reflected back from the cavity follows the reverse of path 1. At the 90:10

beam splitter, 90% of the light is transmitted and then focussed onto the APD with a lens.

Between the beam splitter and the APD there is also a transmission notch filter, labelled as T1

in Figure.3.5 (Semrock MaxLine LL01-780-12.5) designed to pass only 780 nm. Each optical

element, particularly the dichroics, result in some losses — although this must be tolerated as

the result of separating the wavelengths. The final transmission from the cavity fibre to the

APD for 780 nm was measured to be 69%.

Consider now the path of the 804 nm light, after the first PBS this light follows path 2.

It is reflected at PBS 2 and then passes through a λ/4 plate. It is then transmitted through

the dichroic filter closest to the cavity fibre (which is designed to transmit 804 nm light) and

is coupled into the cavity with the same two mirrors as the 780 nm light.

The 804 nm reflected back from the cavity reverses this path, but having double-passed the

λ/4 it gets transmitted at PBS 2 and is detected at the Femto detector. The signal measured

here is used for locking the cavity. Inevitably, the reversal of this path isn’t perfect and some

804 nm light leaks into path 1. This justifies the use of three consecutive reflection dichroic

filters, followed by a transmission dichroic filter.

The reflection dichroics are extremely sensitive to angle and polarisation. The sensitivity to

angle was measured and is shown in Figure 3.6. The ‘Dichroic angle’ shown on the horizontal

axis is just that measured on the rotation stage and has an arbitrary relation to the actual
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angle of the dichroic to the incoming beam — but it is shown here to give a sense of the size

of the features. In addition, the same units are used for the transmission and reflection on the

y axis, so that the changes are one-to-one. It is clear that a loss in transmission translates to

an equivalent gain in reflection. The reflection efficiency shows a clear edge at 162 ◦, where

the filter begins to reflect 780 nm light. However, beyond this edge there is still substantial

structure scanning a range of 61−97%. Once this angle was optimised for each filter, however,

the combined affect is to attenuate the locking/trapping light by a factor of 1011.

3.3 Atom preparation

This section describes the main features of our atom of choice, 87Rb and our methods for

cooling and moving these atoms into the cavity.

3.3.1 Rubidium

The atom used for the experiments discussed here is rubidum. This element has only one

stable isotope, 85Rb, although the half-life of a second isotope, 87Rb is sufficiently long for it

to be treated as stable for our purposes [101]. The atomic structure of rubidium makes it a

common choice of element for atomic physics experiments, as the presence of a single, free,

outer electron allows it to be approximated to a ‘hydrogen-like’ atom, simplifying the level

scheme. In addition, the relevant atomic transitions can be addressed by relatively cheap and

readily available commercial laser diodes.

The relative natural abundances of the 85Rb and 87Rb isotopes are 72.17% and 27.17% re-

spectively, favouring the use of 85Rb in experiments, as was the case in the previous incarnation

of the experiment. In this experiment, however, 87Rb is used. The experiment is, however, in

the progress of being adapted to allow it to switch between isotopes.

The level scheme for the D2 manifold (representing the 52S1/2 → 52P3/2 transitions) for
87Rb is shown in Figure 3.7. Each hyperfine, F , level is shown with the relative frequency

separation between them, although the relative separations are not drawn to scale. On the

right of the schematic are two arrows indicating the |F = 2〉 → |F ′ = 3〉 cycling transition and

the so-called repumping transition using |F = 1〉 → |F ′ = 2〉. The cycling transition is used

to trap, cool and probe the atoms. The name derives from the weak coupling the atom has to

other states once in the |F = 2〉 state; when scattering a photon the probability of exciting the

atom to the |F ′ = 3〉 state is 70%. Despite this, 25% of the time the atom will de-excite to the

|F = 1〉 state and the repumping light is used to ensure atoms in this level aren’t lost from the
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Figure 3.7: A schematic of the D2 manifold of 87Rb. The upper and lower level hyperfine

states are shown with the splitting between consecutive levels. The relative splitting is not to

scale. To the right are arrows indicating the |F = 2〉 → |F ′ = 3〉 cycling transition and the

|F = 1〉 → |F ′ = 2〉 repumping transition.

cooling process.

As mentioned, the |F = 2〉 → |F ′ = 3〉 cycling transition is used to probe atoms inside

the cavity. As an additional complication, the rate at which atoms couple to the cavity is

proportional to the dipole matrix element, µge which describes the transitions for different

magnetic hyperfine, mF , states. This value varies across the mF states, given by the Clebsch-

Gorden coefficients [101]. Assuming an average distribution of atoms across the 5 states (i.e.

mF = −2,−1, 0, 1, 2), the mean value of g2 ∼ 0.45g2
0, although in principle this could be

increased by optically pumping atoms into a maximally coupled state.

3.3.2 The MOT

Rubidium atoms are initially trapped and cooled using a MOT. MOTs exploit a spatially-

dependent scattering force to confine atoms in a small region in space. The force is the result

of atoms scattering photons from laser beams and its spatial dependence comes from the

inclusion of a magnetic quadrupole field, which causes a Zeeman-shift to the relevant atomic

transition and makes the scattering rate a function of position. The standard configuration

uses three orthogonal pairs of counter-propagating beams, confining atoms in the region where

they intersect. In this experiment, however, the construction of the cavity restricts our optical

access and so a mirror MOT is used instead [102]. This uses a chip surface as a mirror to

reflect two mutually orthogonal, co-planar beams, incoming at 45 ◦ to the chip surface. These
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Figure 3.8: A schematic for the arrangement for the mirror MOT. A pair of beams diagonal to

the mirror surface are reflected to form counter-propagating pairs. Two further beams directed

in/out of the page, indicated by the dashed circle, are used to form a MOT. The MOT coils

are aligned diagonally either side of the mirror.

two reflected beams have their polarisations flipped from σ± to σ∓ on reflection at the mirror

surface, producing two pairs of oppositely-directed and orthogonally-polarised beams. Two

beams orthogonal to the reflected beam plane and parallel to the mirror surface provide a

third dimension of optical confinement. The final arrangement is shown in Figure 3.8. This

arrangement is in common use on atom chips as it allows a MOT to form close to the surface

of a chip and, for practical purposes, reduces the number of beams needed from the usual six

to four.

To form a mirror MOT requires four correctly polarised beams, frequency-locked to be res-

onant or near-resonant with the cycling transition, the so-called ‘trapping light’. As previously

noted, repumping light is also used to avoid loss of atoms via de-excitation to other states.

In our system, the trapping is frequency-locked ∼ 260 MHz red-detuned from the cycling

transition and is brought into/close to resonance using a double-passed AOM. The trapping

light and re-pumping light are then combined and coupled into a tapered amplifier, where

they are amplified to a combined power of ∼ 250 mW. The two-colour output beam is then

coupled into a Schafter Kirchoff Fibre-Port. This commercially-available part has four fibre

output ports, each of which have output couplers producing collimated 2 cm diameter beams

with the appropriate polarisations for a mirror MOT. This is an extremely quick, convenient

and space-saving method for producing the MOT beams, but does have the detrimental result
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of a substantial power loss, as the Schiefter Kirchoff system is relatively lossy. Approximately

∼ 50% of the light is lost coupling into the Fibre-Port and a further ∼ 50% in the Fibre-Port

part itself.

To form an atom trap, light must be used in combination with a magnetic quadrupole

field. In this case it is produced by a pair of near-identical coils arranged in an anti-Helmholtz

configuration. These MOT coils are held on a rigid, custom-made mount inside the vacuum

chamber, aligned along the 45 ◦ angle of the laser beams, as was shown in Figure 3.8. The coils

are wound from kepton-coated copper wire to ensure vacuum compatibility and each consist of

approximately 60 turns. To make a MOT, 1.4 A is run in series through the coils, generating

a magnetic field gradient of approximately 1.5 G/cm. This is a relatively small field gradient

and does restrict the degree of confinement available but, as was discussed earlier, a restriction

to low currents is made to minimise the known heating effect and outgassing in the chamber.

There are also three bias field coils of varying diameters and number of turns held outside the

chamber. These coils are aligned with their centres along three orthogonal directions, allowing

some fine tuning of the MOT position. The MOT position is critical to us, as once released,

atoms fall through a 1 mm diameter hole in the mirror to get to the cavity. The bias coils

are also used to optimise the expansion of the cloud once the MOT coils are switched off (i.e.

during the ‘molasses stage’, discussed below). The currents used in these coils have changed

during the course of the experiment, but are generally < 1A, corresponding to < 0.1G/cm.

We can make an estimate of the number of atoms trapped in the MOT using fluorescence

imaging. The camera used for this purpose (Allied Vision Technologies Marlin) is outside the

chamber, 20 cm away from the MOT. The collection optics in front of the camera use a 50 mm

diameter lens with a focal length of 60 mm, so that the image spans a fraction of solid angle,

dΩ = π25mm2/4π200mm2. By measuring the intensity, I, and detuning, ∆, of the trapping

beams, the atomic scattering rate can be estimated. This can be used to convert between

measured camera counts, Ncounts and the number of atoms, Natoms, if the image exposure

time, texp and camera efficiency, ηcount are known, using [101]:

Natoms =
8π
[
1 + 4

(
∆
Γ

)2
+ 4

(
I0
Isat

)]
4
(
I0
Isat

)
ΓtexpηcountdΩ

Ncounts (3.3)

In the above, Isat is the isotropic saturation intensity for 87Rb [101]. This gives an estimate

of the atom number to be 19.4 ±2.0 million, the large error being dominated by the uncertainty

in the distance from the MOT to the image plane. The LHS of Figure 3.9 shows an image of
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Figure 3.9: CCD images of the MOT (LHS) after 3 s of loading and the atom cloud after 30 ms

of molasses (RHS). The bright disk at the bottom of each image is scattered light from the

1 mm diameter hole in the mirror through which the atoms fall. The LHS and RHS pictures

have spatial dimensions 6.5× 6.2 mm and 5.5× 5.2 mm, respectively, found by calibrating the

distance per pixel to the known size of the hole.
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the MOT after 3 s of loading.

3.3.3 The molasses

After trapping the atoms in a MOT, we use a further stage of cooling via optical molasses. Dur-

ing this stage, the magnetic quadrupole field is switched off and the frequency of the trapping

beams further red-detuned by ∼ 50 MHz using the AOM. This results in additional ‘polar-

isation gradient cooling’, caused by converting the kinetic energy of the atoms into angular

momentum. When the atom scatters a photon, transitions between magnetic hyperfine states

occur with differing probabilities. Because the atom’s polarisation vector has a spatial depen-

dence (due to the spatial variation of the beams) this can result in a transitions which favour

a net loss of kinetic energy, effectively cooling the cloud, see for example [2].

The optimal duration, beam detuning and beam power for the molasses stage were found

empirically. To select the duration for the molasses stage, the ratio of the cloud width after

5 ms of free expansion to the cloud width after varying durations of molasses plus 5 ms of free

expansion was measured using fluorescence imaging. After the molasses stage, all the trapping

light was switched off to allow the cloud to freely expand and, after 5 ms it was turned back

on, whilst simultaneously a fluorescence image was taken of the cloud. The respective widths

were found by fitting Gaussian profiles to a pixel slice from each image. Ratios < 1 indicate

net cooling of the cloud from the original MOT temperature. The results are shown on the

LHS of Figure 3.10, where cooling is evident after only 3 ms of molasses, when the first image

was taken. The ratio appears to stabilise quickly, with no apparent benefit gained by using

durations > 15 ms. Alongside the data is an exponential fit which is constrained to be one

for zero duration of molasses stage. The fit indicates a 1/e lifetime of 1.7 ms — although this

dependence would only be confirmed by further data at sub-3 ms molasses durations. From

this, the molasses duration was always kept between 15 − 30 ms. A CCD image of the cloud

after 30 ms of molasses is shown on the RHS of Figure 3.9.

The detuning of the trapping beams used for optical molasses was optimised by maximising

the amplitude of the normalised reflection signal producing when dropping atoms through the

cavity. This changed during the course of the experiment, but was always between 40−65 MHz.

For the majority of experiments discussed here, the molasses beams were detuned by 62 MHz.

Another factor impacting the effectiveness of the molasses stage was the power in the

molasses beams. Again, the optimal power was chosen by maximising the amplitude of the

normalised reflection signal, discussed in more detail in the following chapter, the results of
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Figure 3.10: Optimising the molasses stage. LHS: The ratio of cloud width with and without a

molasses stage, measured as a function of molasses stage duration. The ratio appears to stabilise

∼ 0.88, with no apparent benefit from long durations. An exponential fit is shown alongside

the data, with a 1/e lifetime of 1.7 ms. RHS: The normalised reflection signal amplitude,

measured as a function of molasses beam power for two different frequencies; 47 MHz red-

detuned (dark green); and 62 MHz red-detuned (light green). The maximum achievable power,

set by the efficiency of the AOM at that frequency, is indicated by the dashed lines. The power

is measured using a photodiode located inside the fibre port, which measures the pick-off from

a 99:1 beam splitter, the output of which is measured with a voltmeter. In the case of the

smaller detuning a peak of ∼ 1.85 in the drop signal is visible for powers corresponding to

∼ 10 mV. Higher drop signals can be achieved with the larger detuning, although no maximum

was measured due to the inability to test higher powers.
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which are shown on the RHS of Figure 3.10. The darker green shows the results for molasses

beam detuning of 47 MHz, whilst the lighter green shows the results for a detuning of 62 MHz.

In both cases, the dashed lines indicate the maximum achievable powers, set by the efficiency

of the AOM used to frequency shift the beam. The dark green data shows a peak in the drop

signal of ≈ 1.85 for a power (as measured from a photodiode) corresponding to ≈ 10 mV. The

light green data indicates that detuning further to the red improves the effectiveness of the

molasses stage, with a highest signal of ≈ 2.1. Showing a maximum at this frequency appears

to require more power than was available, the result of the AOM being less efficient at the

outer edges of its operating range.

Fluorescence imaging can also be used to measure the temperature of the atoms, again by

monitoring the free expansion of the cloud. The MOT is loaded for 3 s, followed by 30 ms of

molasses and then the atoms are released and allowed to freely expand. At a time, t, later the

trapping beams are switched back on and, simultaneously, an image of the cloud is taken with

the camera. By taking images at different times, the expansion of the cloud can be monitored

by fitting a pixel slice from the fluorescence image to a Gaussian profile and assuming that the

width, σ of the cloud expands according to:

σ =

√
σ2

0 +
kBT

m
t2 (3.4)

Here, m, is the mass of an 87Rb atom, T is the cloud temperature, σ0 the initial width

of the cloud and kB the Boltzmann constant. The fitted widths are shown in Figure 3.11.

The maximum duration of the expansion which can be monitored is limited by the time it

takes for atoms to fall onto the gold mirror, which is approximately 20 ms. Fitting to Eq.(3.4)

gives a temperature of the cloud of T = 38.7 ± 2.4µK. A separate measurement of the cloud

temperature was made after optimising the beam power during molasses. This was done by

fitting a Gaussian function to the ‘atom drop signal’, a method which will be outlined in the

following chapter. The method estimated T = 16± 0.5µK — although here the fit uncertainty

doesn’t provide an accurate measure of the true error limits of this measurement, as it relies

on the assumption that the cloud is truly Gaussian. That this measurement is over a factor of

two lower can be attributed to a further optimised molasses, but is also caused by the nature of

the measurement. By using the cavity signal, it is only looking at the portion of atoms which

arrive at the cavity — these atoms are likely to be colder as they are not part of the cloud

which expands enough, when released from the molasses, that it does not fit through the hole

on the mirror which separates the MOT from the cavities.
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Figure 3.11: The width of the atom cloud with time. Each point is found by fitting a Gaussian

profile to the fluorescence image taken by the camera. Shown alongside the widths is a fit to

Eq.(3.4), which estimates T = 38.7± 2.4µK.

3.3.4 Transport and driving beams

Later in this thesis experiments are presented which involve driving the atoms to emit fluores-

cence using beams transverse to the cavity (in Chapters 4 and 5) and pushing atoms from the

MOT to the cavity using a resonant beam (Chapter 5). These processes use beams located

vertically above and below the MOT, shown schematically in Figure 3.12.

These beams are delivered to the chamber using polarisation-maintaining, single-mode opti-

cal fibres. The output beams are focussed into the chamber using a lens of focal length 150 mm

and designed to achieve a 60µm waist at the cavities. The beams are aligned to each other,

although this process is awkward due to various obstacles inside the chamber limiting optical

access. There are also λ/2 plates immediately after the fibre outputs to allow control over the

polarisation.

Repumping light and tunable, near-resonant light are both coupled into the fibres. The

near-resonant light for each fibre is double-passed through an AOM, allowing control of their

frequency and amplitude. The AOMs are both driven using RF between 80−150 MHz, at pow-

ers of up to 1 W. One RF source is a 4-channel digital signal generator (Novatech Instruments

409A) which is capable of providing 4 independent phase synchronous RF outputs at frequen-

cies of up to 150 MHz with powers of up to 4 dBm. A second RF source is from a Versatile

Function Generator (Toptica VFG-150). These sources are synchronised to each other using

an external quartz oscillator from RS. To drive the AOMs, both RF signals are amplified and

pass through RF switches (Mini Circuits ZAS WA-2-50DR+), the latter part allowing them to

be switched on and off using TTLs signals.
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Figure 3.12: Schematic of the setup for the beams used for pushing atoms and driving fluo-

rescence. The beams are located vertically above and below the MOT and cavities and are

delivered to the chamber using single mode, polarisation maintaining fibres.

3.4 Computer control

Control of the experiment and data collection is automated using a data acquisition card

(National Instruments PCI 6221) in tandem with a computer control program written in the

LabView package from National Instruments. The data acquisition card has 10 digital in-

put/output lines and 2 correlated counters with a specified maximum clock rate of 1 MHz.

The program is structured to contain ‘good’ and ‘bad’ timing sections. During the ‘good’

timing section, one of the on-card counters is used as a clock to synchronise the output of eight

digital waveforms which control the experiment with up to 500 kHz precision. For a typical

experiment, the good timing section will include the final 10 ms of MOT loading, ∼ 30 ms of

optical molasses and then 100 ms for the atoms to fall through the cavity. Throughout the

good timing section, the second counter is used to count TTLs produced by the APD, which

are counted in time bins with a duration set by the integration time, τint. The minimum

τint available is 2µs, set by the maximum clock rate used to synchronise the digital waveform

output. The length of cabling between the APD and the computer was minimised, as long

distances (> 2 m) appeared to result in signal reflections which cause the counter to duplicate

the number of counts.

The ‘bad’ timing sections occur at the beginning and end of the experiment sequence,
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during which the program runs on computer hardware timing. This section is used for all

non-time-sensitive actions, such as initialising equipment, downloading the digital waveforms

onto the data acquisition card, loading the MOT and collecting images from the camera and

data from the APD.

As mentioned, the active part of the experiment was controlled by digital waveforms out-

putted by the data acquisition card. Eight parallel waveforms describe high/low TTL sequences

for different parts of the experiment. One such waveform controlled the MOT B-field, which

was switched on and off using a TTL to a solid-state relay switch on the power supply driving

the coils. TTLs also trigger the camera, the shutter to block and unblock the light driving the

cavity mode and the AOM controlling the MOT trapping light. For the latter, the TTL was fed

into a multiplexer, triggering pre-set analogue voltage levels to control the AOM’s frequency

and intensity (i.e. allowing the frequency to be red-detuned for the molasses stage). In the case

of the top and bottom beams just discussed, RF switches were triggered by TTLs to switch

these beams on and off.

3.5 Laser sources

The experiment needs light of controllable frequency and amplitude for a multitude of different

functions already described; trapping and cooling atoms in the MOT and optical molasses;

pumping the cavity mode and driving fluorescence; and for frequency-locking the cavity and

dipole trapping. During the course of this thesis, the laser system providing this light was been

completely rebuilt to provide more optical power, improved frequency stability and greater

functionality (e.g. more flexibility to detune and switch beams on/off). This section provides

an overview of the system and discusses each laser and its respective locking system.

3.5.1 Overview of laser sources

Of the four lasers currently in regular use on our experiment only one, referred to here as

the ‘Repump’ laser, remains from the earlier incarnation of the experiment. One of the new

lasers, the Toptica DL100, an extended-cavity diode laser (ECDL), was bought ‘off-the-shelf’

and is used alongside a new tapered amplifier, the Toptica BoosTA, with the aim of ensuring

sufficient optical power. Of the remaining two new lasers, one, the ‘Cavity’ laser, is a free-

running laser made from laser module parts bought from Thorlabs. The other, referred to here

as the ‘Reference’ laser, is an ECDL and was built in-house.

To improve the frequency stability of the experiment, the DL100 is frequency-locked to the
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Purpose: Transition: Detuning: Functionality: Source:

Reference F = 2→ F ′ = 3 ∆ = 0 None Reference laser

MOT, molasses F = 2→ F ′ = 3 ∆ ≤ ±100 MHz Switchable DL100,

double-passed AOM

Repump F = 1→ F ′ = 2 ∆ = 0 CW, phase locked Repump laser

to DL100

Top/bottom F = 2→ F ′ = 3 ∆ ≤ ±30 MHz Switchable, DL100,

beams phase coherent double-passed AOM

Cavity pump F = 2→ F ′ = 3 ∆ ≤ ±30 MHz Switchable DL100,

double-passed AOM

Cavity lock λ = 804 nm Tunable Switchable Cavity laser

Table 3.1: A summary of the light needs on the experiment.

purpose-built Reference laser, whilst the Repump laser is phase-locked to the DL100. All three

lasers are ECDLs in the Littrow configuration [103], where optical feedback is provided to a free-

running laser diode by reflecting back the first order reflection of the diode from a diffraction

grating. This provides an external cavity in which the diode can lase and results in a reduced

linewidth by virtue of the increased length of the external cavity. Overall, the linewidth can

be reduced from a free-running value of several tens of MHz to < 5MHz. Our lasers include

the addition of an extra plane mirror [104] which fixes the direction of the output-coupled

beam, making it independent of the grating angle. Further linewidth reduction is achieved by

actively stabilising the laser frequency, either by controlling the diode current or the length of

the external cavity using a control voltage to a piezo actuator.

These lasers are used alongside several double-passed AOMs, which have been introduced in

key positions in the experiment to allow individual light paths to be frequency and amplitude

controlled. Table 3.1 provides an overview of the different light needs and how they are met in

our system.

3.5.2 Reference laser

As its name suggests, the Reference laser is used to provide an accurate frequency reference

for locking the DL100. The laser was built in-house and substantial design effort was made to

ensure its overall frequency and mechanical stability.

The design of Reference laser uses a mixture of commercially available optics and mounts,
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Figure 3.13: TOP: A photograph of the Reference laser in situ. BOTTOM: A photograph of

the same laser, but with the aluminium box open to show the internal parts.

all housed inside a machined aluminium box. The laser uses a solid-state laser diode (Sharp

GH0781JA2C) with a free-running wavelength of ∼ 784 nm at room temperature. This diode

is rigidly held inside collimating lens tube (Thorlabs LT110P-B), which in turn is held inside a

fine adjustment mirror mount (Newport Ultima). To form the extended cavity for the diode,

a diffraction grating (Newport 53-*-33OH) and prism mirror are arranged in the Littrow con-

figuration in front of the laser diode by gluing them to an aluminium block screwed onto the

front of the mirror mount.

The mirror mount holding the laser diode has two fine-adjustment tuning screws for ad-

justing the horizontal and vertical position of the diode relative to the grating. Adjusting the

horizontal position changes the wavelength supported by the cavity. A peizo actuator (Thor-

labs AE0203D04F) is also placed inside one of the horizontal screw holes of the mirror mount,

allowing the cavity length to be adjusted by applying a voltage across it. Adjusting the vertical

position of the diode tunes of the feedback from the first grating order to the diode.

The mount sits on a flat peltier cooler (Thorlabs TEC3-6) which is connected to a temper-
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ature controller (Wavelength Electronics MPT2500), stabilising the temperature of the diode.

The peltier is glued onto an aluminium block inside the laser box and measurements of the

temperatures are fed back to the controller from a thermistor located in a small hole inside

it. All of the homebuilt lasers are kept at below room temperature to lower their free-running

wavelengths and reduce their tendency to run multi-mode. In the case of the Reference laser,

the temperature is controlled at 13.5± 0.1 ◦C.

Current for the diode, the temperature control and voltage for the peizo control are fed into

the aluminium box housing the mirror mount. This box stands on a thick aluminium plate

with four solid steel legs. To reduce the impact of vibrations, the steel legs and aluminium

plate are separated by Sorbothane washers around the screws. Figure 3.13 shows photographs

of the reference laser in-situ, with the key parts indicated.

The electronics for the piezo and current drivers were built in-house. The design for the

current driver is based on [105], modified so that is powered from a single supply. To reduce

circuit noise, the circuit is powered by a car battery which is continuously charged from an

external power supply. With this system, a stable power output of ∼ 20 mW at currents of

∼ 80 mA is achieved.

To provide a stable and precise frequency reference we use servo-electronics on the current

control to the laser diode and the voltage control to the peizo actuator controlling the laser

cavity length. The laser is locked on the |F = 2〉 → |F ′ = 3〉 cycling transition. The controlling

error signal is produced by polarization spectroscopy [106, 107], which results in a sub-Doppler,

high-gradient dispersive feature with a zero-crossing near resonance with this transition.

Sub-Doppler polarisation spectroscopy uses two counter-propagating beams, a ‘pump’ and

a ‘probe’, passing through a rubidium cell, using the optical setup shown in Figure 3.14. The

‘pump’ beam is circularly polarised and, as such, when passing through the rubidium vapour

cell it drives σ+ transitions between mF states. This produces an anisotropy in the distribution

of atomic population across mF states, making the vapour birefringent. The probe beam, which

is linearly polarised, samples this birefringence, which has the effect of rotating its polarisation.

The extent of the rotation is analysed at a polarising beam splitter (PBS) located after the

cell, which separates the beam into two polarisation components. Their relative intensities are

measured at two subtracting photodiodes (PD 1 and PD 2). The plane of polarisation of the

probe beam is initially aligned by a λ/2 plate before the cell with no pump beam present, so

that the net signal from the photodiodes is zero.

The degree of rotation of the polarisation is frequency-dependent and, close to resonance,
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Figure 3.14: Schematic of the optical layout for polarisation spectroscopy, with all the relevant

parts labelled. λ
2 and λ

4 refer to a half-wave and quarter-wave plate respectively. ‘PBS’ and

‘NPBS’ refer to polarising beam splitters and non-polarising beam splitters. ‘PD 1’ and ‘PD

2’ are the two photodiodes. The difference signal from these is used as an error signal.

relatively large rotations in the polarisation are caused as the counter-propagating pump and

probe beams are interacting with the same atoms. As the frequency of the beams is scanned

across the atomic transition, the net signal from the subtracting photodiodes maps out a dis-

persive feature, with a zero-crossing on resonance. A typical polarisation spectroscopy feature

is shown on the LHS of Figure 3.15.

The zero-crossing on resonance is caused by equal and opposite signals at each photodiode

and, as such, is particularly robust to intensity fluctuations in the probing light. In contrast,

however, the error signal is extremely sensitive to external magnetic fields, as this can change

the transitions driven by light of a given polarization. To reduce the impact of any magnetic

field fluctuations, the rubidium cell is held inside two nested shields; a hollow µ-metal tube

inside a thick steel box with small slits for the beams to pass through. Following the work

of [108], the cell is also placed inside a solenoid, which provides an extremely small ‘aligning’

magnetic field of < 0.1 mT, acting to cancel the Earth’s magnetic field. The RHS of Figure

3.15 shows the impact that small changes to this field can have on the error signal. Here,

the signal for three values of the current running through the solenoid is shown, from top to

bottom: I = 0 mA, I = 10 mA and I = 20 mA. The middle graph, corresponding to I = 10 mA,

produces the flattest spectroscopy away from the atomic features and is the current used in

the experiment.

As previously discussed, this spectroscopy results in a large-gradient dispersive feature on

resonance with the |F = 2〉 → |F ′ = 3〉 transition. To achieve a fast-response, ‘tight’ frequency

lock requires high gain on the original error signal. In any electronic feedback loop, however, an

optimum must be reached between the gain and the bandwidth, with an increase in electronic
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Figure 3.15: Polarisation spectroscopy, showing the dispersive features across the |F = 2〉 →

|F ′ = 1, 2, 3〉 of 87Rb and |F = 3〉 → |F ′ = 2, 3, 4〉 of 85Rb. LHS: A typical polarisation spec-

trum, with the lock point is indicated. RHS: Polarisation spectroscopy for three different values

of the current through the solenoid surrounding the cell; I = 0 mA (TOP); I = 10 mA (MID-

DLE); and I = 20 mA (BOTTOM). The top and bottom graphs have been shifted vertically

on the graph for clarity.

gain necessarily resulting in a loss of lock bandwidth. This explains the benefit of a large-

gradient error signal; an increase in gradient acts like an increase in gain without compromising

on lock bandwidth. It has been previously demonstrated [109] that the amplitude of the feature

is dependent on the angle of overlap between the pump and probe beams, with smaller angles

resulting in larger signals. As shown in Figure 3.14 this setup uses a non-polarising beam

splitter to retro-reflect the pump beam through the cell, allowing the beam overlap to be fine-

tuned until the overlap angle is effectively zero. In addition, the ratio of the pump-probe beam

powers was varied to optimise the gradient. For our locking system this lead to the using a

total power of 2 mW, split equally between pump and probe.

This error signal is used as an input for the locking electronics which servoes the laser

current and cavity piezo. These electronics were designed and built in-house. The error signal

is fed into an error signal circuit which provides some buffering and allows an external offset

voltage to be added. The output of this circuit is fed separately to a current servo circuit

and a piezo servo circuit, both containing feedback loops with proportional and integral gain.

The servo outputs are fed to the respective current and piezo drivers which are then fed into

the aluminium box housing the diode and piezo. This system achieves a servo bandwidth of

approximately 1 MHz.

The Reference laser has successfully provided a stable frequency reference on our experi-
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Figure 3.16: LHS: Saturated absorption spectroscopy for the |F = 2〉 → |F ′ = 2, 3〉 transitions

using the DL100. RHS: The error signal used to frequency lock the DL100 to the Reference

laser. The lock point is indicated and corresponds to the |F = 2〉 → |F ′ = 2〉 transition,

266 MHz red-detuned from the Reference laser.

ment. One point of interest which was noticed towards the end of the project (and with the

installation of the phase lock on the repumping laser, which will be discussed later in this

section) was a systematic offset of 3 MHz between the position of the polarisation spectroscopy

zero-crossing and transition resonance. Unfortunately we cannot comment on the long term

stability of this offset and, at this point, haven’t identified whether it is an intrinsic shift or an

artefact of our apparatus.

3.5.3 DL100

Laser light for trapping, cavity pumping and fluorescence is derived from the Toptica DL100.

This laser is accompanied by a Toptica electronics rack, which includes a temperature controller

module, a current controller module, a peizo controller module and peizo servo loop module.

Additional control of the current is achieved via the modulation input on the laser head, where

a FET shunts current away from the diode. This laser is typically run at a current of 190 mA,

producing ∼ 135 mW.

The DL100 is frequency locked to the Reference laser, offset by ∼ 260 MHz, putting it close

to the |F = 2〉 → |F ′ = 2〉 transition. The error signal used for locking the laser is shown on the

RHS of Figure 3.16, alongside the saturated spectroscopy for the 87Rb |F = 2〉 → |F ′ = 2, 3〉

on the LHS. Choosing to lock on this transition, ∼ 260 MHz red-detuned from the cycling

transition allows us to use double-passed AOMs to independently shift the frequency of certain

beams, enabling the necessary flexibility for different functions in the experiment.
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The error signal shown above is produced using a frequency offset lock based on [110]. The

principle for operating the lock is to stabilise an input signal to the 3 dB point of a steep high

pass filter. The lock uses a locking circuit whose first action is to split the input signal, of

frequency ωin, equally to travel on two separate branches. The first branch contains one 1 dB

attenuator and one 3 dB attenuator in series (MiniCircuits VAT-1+ and VAT-3+ respectively),

attenuating the signal by a total of 4 dB. This is followed by a rectifying diode, which produces

a positive DC signal.

The second branch contains a 1 dB attenuator and the high pass filter (MiniCircuits SHP-

100+) in series. The high pass filter has 3 dB frequency point at ω3db. This is followed by

an oppositely-poled rectifying diode, producing a negative DC signal. The two branches are

combined and this summed output is used as the error signal. To understand the nature of this

signal, it is instructive to consider the output in different frequency limits. When ωin < ω3db,

the signal will be most heavily attenuated on the second branch by the high pass filter, such

that when the branches are recombined the positive DC signal from the first branch will be

larger than the negative DC signal on the second branch and the net result will be a positive

signal. When ωin > ω3db will be most heavily attenuated on the first branch, as the high pass

filter on the second branch will be passing these frequencies. Thus, the combined signal will be

negative. When ωin = ω3db the two branches will exactly balance and produce a zero-crossing.

A schematic of the locking circuit and other components is shown in Figure 3.17. As the

DL100 is being frequency locked to the Reference laser, the input signal is the mixed-down

optical beatnote between the two. To create a beatnote, beams from both lasers are coupled

into a single mode optical fibre. The lower frequency component (the difference between the

Reference and DL100 laser frequencies) is detected on an AC-coupled fast photodiode (Newport

818-BB-21A). Because the frequency at which the 3 dB point of the filter occurs is fixed by the

choice of commercial filter used (in this case at 100 MHz) the input signal is mixed down to

∼ 80 MHz by mixing with a tunable voltage controlled oscillator (VCO) (MiniCircuits ZOS-

300) at a mixer (MiniCircuits ZX05-1LHW-S). This mixed-down signal is then divided into

two branches at a splitter (MiniCircuits ZFSC-2-1-S+) and enters the locking circuit.

As is shown in Figure 3.17, additional components are required for useful operation of the

lock. Immediately after the photodiode detecting the beatnote is a power limiter (MiniCir-

cuits VLM-52-S+). This component has a maximum constant output power of 10 dBm when

saturated. The optical power in the beatnote and additional amplification before this part

is sufficient to ensure it is saturated, to minimise the variations in the power of the signal
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Figure 3.17: A schematic of the locking system used to frequency lock the DL100 to the

Reference laser. The Reference and DL100 beatnote at ∼ 260MHz is detected at an amplified

fast photodiode. This signal has an amplitude sufficient to saturate the limiter, which then

provides a constant beatnote signal at 10dBm. The signal gets split, with one branch used as

a monitor. The other branch is amplified and then mixed down to ∼ 80MHz at a mixer by

mixing with a ∼ 180MHz signal from the VCO. The mixer output is amplified and then split

into two branches, producing an error signal which is sent to the piezo driver for the DL100.

entering the locking system. This is important, as any changes in the input signal power are

immediately translated to the frequency position of the zero-crossing. This is also shown in

Figure 3.18. The LHS shows the full error signal for 8 different input powers; the darkest green

corresponding to −9 dBm and the lightest green corresponding to −30 dBm, in steps of 3 dBm.

The shape and the frequency of the zero crossing vary with power, with a larger gradient at

the zero crossing for larger input powers. The RHS shows the frequency position of the zero

crossing, taken from the traces on the LHS, with power. As the power increases the position

appears to stabilise at ∼ 81 MHz, but there is still a variation of ∼ 1.5 MHz around this level,

which would add directly to the laser linewidth.

To minimise the impact of the power variations, a further experiment was conducted to

find the input frequency at which the zero crossing was least sensitive to changes in signal

power. The amplitude of the input signal was modulated and the amplitude of the resulting

modulations on the error signal were measured as a function of input signal frequency. The

results are shown in Figure 3.19; where the darker green data correspond to the measured

peak-to-peak amplitude of the error signal modulations and the lighter green data correspond

to the average error signal offset. As the input signal frequency is swept, the offset goes through
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Figure 3.18: The DL100 error signal as a function of input signal power. LHS: Oscilloscope

traces of the error signal shown for 8 different input powers. From dark to light green corre-

sponds to −9→ −30 dBm in 3 dBm steps. As the power increases the shape of the error signal

and position of the zero crossing change, with the gradient around the zero crossing increasing

with increasing power. RHS: The frequency position of the error signal as a function of power,

for the data shown on the LHS.

zero at 80.6 MHz, as expected. The initial assumption might be to lock at this zero-crossing

frequency. However, a minimum in amplitude variations occurs at a slightly higher frequency

of 81.2 MHz and locking here minimises the impact of power variations. The offset can be

counteracted by adding a DC voltage to the error signal to shift the zero-crossing.

Returning to the lock schematic, after the power limiter the beatnote signal is split; one

part is used as a monitor, the second is mixed down by mixing with the signal from a VCO.

A low-pass filter (MiniCircuits VLFX-300) is installed immediately after the VCO to reduce

the amplitude of higher harmonics from it. The mixed-down signal is amplified (MiniCircuits

ZHL-3A) and then split into the two branches for the locking circuit. The output of the locking

circuit is the final error signal used as an input to the piezo driver.

This locking system uses high frequencies and can be sensitive to signal reflections and

resonances along the length of the cables between components. To reduce stray cabling, where

possible direct connections between components are used and, where this wasn’t feasible, there

are tailor-made SMA cables for the length needed. The entire system is located inside one

shielded box.

This system has proved highly robust to disturbances and drift. Standard operating per-

formance means the laser remaining locked and on target throughout the course of a day of

experiments. When locked, the beatnote between the Reference laser and DL100 has a FWHM

of 1.5± 0.1 MHz.
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Figure 3.19: The modulation amplitude (dark green) and offset (light green) of the error signal

as a function of input frequency. Whilst the zero crossing (i.e. position when the error signal

equals zero) occurs at 80.6 MHz, the minimum in the modulation amplitude occurs at the

higher frequency of 81.2 MHz, implying that this is where the error signal is least sensitive to

power variations.

Figure 3.20: Schematic of the optical layout for the DAVLL, with all the relevant parts labelled.
λ
2 and λ

4 refer to a half-wave and quarter-wave plate respectively. ‘PD 1’ and ‘PD 2’ are the

two photodiodes. The difference signal from these is used as an error signal.

3.5.4 Repump laser

The Repump laser was also built in-house and was inherited from the previous incarnation of

the experiment. The mechanical and electronic design are similar to the Reference laser, with

the latter being an ‘improved’ version. Its temperature stabilisation system is the same and

the laser also uses the same brand of laser diode. The standard operating power achieved with

this system is ∼ 20 mW at a current of ∼ 70 mA.

The Repump is frequency-locked to the |F = 1〉 → |F ′ = 2〉 repumping transition. For

much of the early work undertaken on this experiment, this was achieved using a dichroic

atomic vapour laser lock (DAVLL) [111]. An illustration of the optical set-up for this is shown

in Figure 3.20. The principle behind the DAVLL is to magnetically induced dichroism in
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Figure 3.21: LHS: Saturated absorption spectroscopy for the |F = 1〉 → |F ′ = 0, 1, 2〉 transi-

tions. The dashed line indicates the repumping transition on |F = 1〉 → |F ′ = 2〉. RHS: The

DAVLL error signal, with the lock point indicated.

an atomic vapour. In this experiment, a Rb cell is subject to a magnetic field produced

by permanent magnets held directly around the cell. This B-field lifts the degeneracy of

the magnetic sublevels of the hyperfine levels, shifting each symmetrically about the centre

frequency. Linearly polarized light, which can be decomposed into σ+ and σ− polarizations,

is passed through the vapour. If this light is on resonance, each circular polarization will be

equally off resonant with the magnetic sublevel it excites and the net absorption of the two

combined polarizations is zero. If the light is off resonance, the relative absorption of each

polarization will be different. The result is a dispersion curve with a zero crossing at the

centre frequency where the laser is locked, as shown on the RHS of Figure 3.21, alongside the

saturated absorption on the LHS for the |F = 1〉 → F = |0, 1, 2〉 transitions. The dashed lines

indicate the lock point.

To increase the gradient of the dispersion signal’s slope, the vapour cell is heated with a foil

heater (MINCO), which is controlled by a bench top temperature controller (Thorlabs TC200).

Increasing the temperature of the vapour cell increases the amount of absorption, which in turn

increases the size of the DAVLL feature. This can be seen in Figure 3.22, where the gradient of

the DAVLL dispersion feature at the zero-crossing is shown for different temperatures, ranging

from 20 ◦C to 60 ◦C.

One disadvantage of the DAVLL is the need for large magnetic fields; chosen so that the

splitting of the magnetic sublevels is of the order of their Doppler widths, thus requiring rel-

atively large magnetic field (∼ 150G). Because other parts of the experiment are extremely

sensitive to magnetic fields (such as the polarization spectroscopy), the rubidium cell and
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Figure 3.22: The gradient of the DAVLL error signal about the zero-crossing for different

vapour cell temperatures.

permanent magnets are housed in a nested shield, identical to that used for polarization spec-

troscopy. In addition, the position of the zero crossing is sensitive to the input polarisation

and, as such, we use a high quality polariser (Thorlabs GTH 10N).

In contrast to polarization spectroscopy, the DAVLL spectroscopy produces a Doppler-

broadening feature which has a lower gradient (and hence a lower optical gain) around the zero

crossing where the laser is locked. The result is a broader frequency profile, although with the

compensating feature of increasing the lock’s capture range, improving its general robustness

to perturbations. This feature and its relative simplicity (it does not, for example, require any

modulation) were the reasons for choosing this locking scheme.

Despite these benefits, we found the frequency drift in the repump frequency had a detri-

mental impact on the experiment, particularly during long data runs. For this reason the lock

was replaced by an optical phase locked-loop (PLL) which phase locks the Repump laser to the

DL100. This change not only substantially improved the frequency stability of the repumping

light, but it also enables us to coherently address the lambda system formed by the |F = 1〉,

|F ′ = 2〉, |F = 2〉 states. Potential applications which exploit this technology are discussed

further in Chapter 6.

A schematic of the phase lock is shown in Figure 3.23. At its heart is an evaluation

board which contains a PLL chip (Analog Devices EVAL-ADF4007EB1). This chip includes

a phase-frequency detector (PFD) and charge pump which, combined, produce current pulses

proportional to the phase difference between two input signals. Also located on the board

is a configurable loop filter, which integrates these current pulses. The two signal inputs on

the evaluation board come from the ‘VCO’ and the ‘Reference clock’. In this case, the VCO
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Figure 3.23: Schematic of the components used in the phase lock. The top left hand side shows

the set up for a phase-locked voltage controlled oscillator, whose signal, at 6.035 GHz, is used

to mix down the optical beatnote signal to ∼ 800 MHz. The top right hand side shows the

set up for detecting the optical beatnote, at 6.835 GHz. The mixed down signal is the ‘VCO’

input to the Evaluation Board, where it is compared to a ‘Reference clock’ signal, which is

provided by the Meguro Signal Generator. The Evaluation Board contains a phase-frequency

detector and charge pump, which outputs current pulses at a frequency proportional to the

phase difference between the two input signals. The loop filter integrates these currents pulses,

providing a voltage signal used for the peizo and current servo loops.

corresponds to the optical beatnote signal between the Repump and DL100.

The beatnote, which has a frequency of ∼ 6.8 GHz, is produced by coupling a beam from

each laser into an optical fibre and measuring the mixed output at a high bandwidth photodiode

(Thorlabs PDA8GS). This signal passes through a Bias-T (ZX85-12G-S+), which allows the DC

power level to be monitored. The AC component is amplified and enters a mixer (ZMX-8GH),

where it is mixed down to ∼ 800 MHz.

The beatnote is mixed down by mixing with the signal from a phase and frequency locked

voltage controlled oscillator (VolCon). The VolCon (Hittite HMC-C028) is locked to a fre-

quency of 6.035 GHz (800 MHz less that the frequency of the |F = 1〉 → |F ′ = 2〉 transition)

using a source-locking microwave counter (EIP 575), which has course and fine modulation

outputs. These outputs are summed and are inputted to the voltage control of the VolCon.

The output of the VolCon passes through a Directional Coupler (TGD-A1203-20), which taps
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off a 20 dB attenuated portion of the signal and feeds back to the EIP 575, thus closing the

feedback loop and locking the VolCon.

The mixed down beatnote is one input to the Evaluation Board (AD4007). The second,

a Reference clock input, is produced by a Signal Generator (Meguro MSG-2580) frequency

generator. This frequency generator produces a signal at ∼ 100 MHz which is scaled up by x8

by a prescaler on the Evaluation Board, producing a 800 MHz signal to compare with the VCO

input.

The PFD and charge pump use a comparator to convert the VCO and Reference clock

signals into digital signals. The edges of the two signals are compared to measure the relative

phase between the signals — the output of this measurement is a series of current pulses which

are produced at a frequency proportional to the phase difference between the two signals. The

on-board loop filter is used to integrate these signals, producing error signals which are fed

back to the current and piezo drivers. The loop filter is formed by an op-amp in the standard

inverting transimpedance configuration, with R × C1 and C2 in parallel in the feedback path

where C1 > C2. The R1 branch forms the integrator, and C2 smoothes ripple. This loop filter

has R = 580 Ω, C1 = 200 pF and C2 = 20 pF.

This system provides extremely high gain and requires attenuation of the output error signal

by 20 dB to avoid oscillations on the piezo branch. This is evidenced by the error signal, shown

in Figure 3.24 alongside the corresponding spectroscopy, which is essentially a step function

with an extremely high gradient at the lock point. The lack of structure aside from the lock

point is the result of this being a digital lock. The corollary of this is a tight lock, with the

beatnote frequency of 799, 999, 025 ± 10 Hz over a one second integration time, measured with

an independent microwave counter. It is not known whether this ±10 Hz limit is set by the

stability of the beatnote or the measuring counter but, from this, when locked the beatnote

is more stable than the AOM drivers used in our experiment. In addition, the measurement

indicates a 75 Hz discrepancy between intended ‘set’ frequency of the mixed-down beatnote

and the measured value, although a potential explanation could be that the internal clocks of

the source and measuring counter are unsynchronised.

3.5.5 The Cavity laser

The Cavity laser was also a new addition to the experiment and is distinct from the other

lasers in not having an automated servo loop to stabilise its frequency. The purpose of this

laser is to provide light far off-resonance from the 87Rb D1,2 transitions, to be used for locking
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Figure 3.24: LHS: Saturated absorption spectroscopy for the |F = 1〉 → |F ′ = 0, 1, 2〉 transi-

tions. The dashed line indicates the repumping transition on |F = 1〉 → |F ′ = 2〉. RHS: The

phase lock error signal.

the cavity and, at some later point, for trapping atoms inside the cavity. The wavelength

chosen was λ = 804 nm, as a balance between being far enough away in wavelength to be

effectively filtered from 780nm light, whilst still being close enough to produce a relatively

deep trap. Calculations following [25] indicate that a far off-resonance trap inside the cavity

at this wavelength using 400µW of power (and taking into account the optical build-up inside

the cavity) would produce a trap with a depth of ∼ 1mK.

The Cavity locking laser consists of a solid-state laser diode mounted inside a laser cooled

diode mount (Thorlabs LDM21). Temperature and current control are provided by commer-

cially available bench top controllers (Thorlabs LDC205C and Thorlabs TED200C, respec-

tively). The outcoming beam is coupled through a Faraday isolator to protect the diode from

back reflections, followed by a polariser. With this system, measured after the polariser, the

power achieved is ∼ 25 mW at a current of ∼ 120 mA.

After the polariser, the beam passes through an AOM which is used to actively stabilise

the intensity of the beam. This is done using only a single pass of the AOM, to reduce any

power loss. The frequency shift of several tens of Megahertz caused by the AOM has, for these

purposes, a negligible effect and any ‘noticeable’ frequency adjustments are made, as previously

mentioned, by controlling the laser diode’s current and temperature. The first shifted beam

order exiting the AOM is split at a PBS, where one output is measured by a photodiode and

the resulting signal used as an error signal for a locking circuit. The locking signal is applied to

the RF amplitude driving the AOM. This system has a bandwidth of ∼ 1 MHz and it appears

to be limited by the speed of sound through the crystal inside the AOM. For this reason, the
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Figure 3.25: The performance of the BoosTA. LHS: Measured output power versus current,

for a constant injection power of 2 mW. At this injection power a maximum output power of

210 mW can be produced. RHS: Measured output power versus injection power, for a constant

current of 1500 mA. This indicates that the saturated output power for this current is 375 mW.

beam is focussed and located as closely as possible to the AOM’s RF electrodes.

3.5.6 Tapered amplifier system (Toptica BoosTA)

Our final laser is the BoosTA, from Toptica, a commercially available tapered amplifier. It is

not, by itself, a standalone laser as it requires injection — however, it is an integral part of the

laser system, justifying its inclusion in this section. The BoosTA is used to ensure adequate

power for the MOT and is injected with by a Master Oscillator beam, providing an amplified

output of identical frequency. The 6 dB gain profile for the BoosTA is ±10nm, allowing it to

be used to amplify both the trapping and repumping beams used in the MOT.

The BoosTA is specified to operate at a current of up to 2000 mA, with a maximum injection

power of 40mW. With these parameters, a maximum specified output power of 1 W can be

achieved. To preserve the lifetime of the diode for this experiment, however, the BoosTA is run

well below this range; at a current of 1500 mA and injection powers of < 25 mW. Measurements

of the BoosTA’s response to current and injection power are shown in Figure 3.25.

The BoosTA used in this experiment is fitted with the Toptica FibreDock component which

couples the output beam into a single mode fibre, with an efficiency of ∼ 70%. Trap and repump

light are coupled into the BoosTA and the output coupled into a Shafter-Kirchoff fibre port

which is used for produce a MOT.

This completes the discussion of our laser system and other experimental apparatus. Having

discussed this, we now progress to the signals that we measure and their potential for atom



CHAPTER 3. EXPERIMENT SET UP 107

detection.



Chapter 4

Atom detection

There are two types of signals that we can measure from our cavity: ‘reflection’ or ‘fluores-

cence’ signals. Reflection signals are produced by pumping the cavity mode with resonant or

near-resonant light and monitoring the light reflected back. In contrast, fluorescence signals

are produced without the cavity being directly pumped and, instead, the coupled atom-cavity

system interacts with a pump beam transverse to the cavity axis, triggering the emission of

photons. The first part of this chapter describes how these signals are produced and charac-

terises them with respect to pump beam intensity, detuning and polarisation. The second part

of this chapter focuses on using these signals for atom detection. To begin with, the ability

of our system to measure Neff = 1 is tested; calculating the detection confidence, fidelity and

dynamic range of our signals. This is followed by a discussion of the prospects for detecting in-

dividual atoms falling through the cavity mode and stationary atoms trapped inside the cavity

mode. Initially, however, we return to understanding these signals.

4.1 Producing cavity signals

We begin by presenting the experimental procedure. The initial stages of our method for

producing the two types of signals are identical. 87Rb atoms are trapped in a MOT, located

approximately 5 mm vertically above the cavity. The MOT loads for up to 4 seconds, trapping

approximately 107 atoms. Once loaded, the magnetic fields confining the atoms are switched off

and, simultaneously, the cooling beams are further red-detuned, allowing the atoms to expand

in an optical molasses for sub-Doppler cooling to < 40µK. After 30 ms the cooling beams

are switched off and the atoms fall freely under gravity towards the cavity mode, arriving

there approximately 30 ms later. At this point, the method for producing the reflection and

108
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Figure 4.1: The recorded counts from the APD for a single shot of a reflection experiment,

taken with τint = 50µs. At time t = 0 on the graph the MOT has already loaded for 3 seconds

and the dashed lines indicate other key points in the experiment. At t = 10 ms, the MOT field

is switched off and the cooling light is red-detuned for the optical molasses. At t = 40 ms the

trapping light is switched off, allowing the atoms to fall. The signal produced by the atom

cloud as it falls through the cavity mode is centred at t ∼ 75 ms, reaching a peak count level of

25 counts in 50µs (or 540 kCounts/sec) compared to a background level of 12 counts in 50µs

(or 240 kCounts/sec).

fluorescence signals diverge and the final results are quite different. The reflection signal is

considered first.

4.1.1 Cavity reflection signals

Reflection signals are produced by pumping the cavity, typically at a rate of ≈ 107 photons/sec.

The light reflected back is monitored at an APD. As discussed in Chapter 2, when the cavity

and the pumping light are both on resonance with the free-space atomic transition, atoms

inside the cavity absorb light which, for our cavity mirror parameters, leads to an increase in

the reflected light level.

We refer to one cycle of loading the MOT, optical molasses and dropping the atoms through

the cavity as a single ‘shot’ of the experiment. Figure 4.1 shows an APD trace for a single

shot, taken at with an APD integration time, τint = 50µs. The ‘atom drop signal’ is visible as

an increase in APD counts and lasts ≈ 10 ms. This signal is approximately Gaussian, following

the density profile of the dropped atom cloud. Typically, the results of between 10 and 100

shots are averaged to improve the signal-to-noise ratio.

From Eq.(2.43) in Chapter 2 we know that the reflection signal depends on cooperativity,
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CN , which in turn is proportional to the effective number of atoms in the cavity, Neff , with

CN = NeffC. Estimating Neff as a function of time is thus a starting point for understanding

these signals. In this experiment, a cloud of atoms of varying density, D(t), falls through

a cavity whose field extends to infinity in the radial direction and, under these conditions,

neither the number of atoms in the cavity or the volume over which they interact is well

defined. Instead, Neff is approximately the product of D(t) and the integrated volume of the

cavity mode:

Neff(t) = D(t)× d

4
πw2

0 so that CN = C × D(t)× d

4
πw2

0

D(t) is calculated by assuming a Gaussian cloud of fixed atom number, NA and temperature,

T , with a width, σ(T, t) which expands with time1. At the point of its release, referred to now

as t = 0, the cloud is a distance y0 above the cavity. The cloud then accelerates towards the

cavity at ggrav. Given this, Neff becomes:

Neff =
d

4
πw2

0

NA

[πσ(T, t)]
3
2

e
−
(
y0−

1
2 ggravt

2

σ(T,t)

)2

(4.1)

The LHS of Figure 4.2 shows a plot of Neff inside the cavity mode as a function of time,

calculated using Eq.(4.1). In this plot, NA = 19.7× 106 and T = 38.7µK — values measured

previously in Chapter 3 — and y0 = 5.1 mm, using the kinematic argument that y0 = 1
2ggravt

2

and knowing t from the arrival time of the peak signal from the APD trace. As expected, Neff

has an approximately Gaussian form, with a slight asymmetry (looking closely, the RHS of the

Gaussian has a slightly slower slope) caused by the clouds’ continued expansion as it traverses

the mode. The peak of Neff in the cavity is ∼ 1 and represents an upper limit using these

initial conditions, as it assumes no atom loss between the MOT and the cavity. This is unlikely

to be the case, as the structure supporting the cavity is likely to block the direct path to the

cavity for some atom trajectories.

The reflection signal shown in Figure 4.1 thus follows the Gaussian form set by Neff . From

Eq.(2.43) in Chapter 2 we know that, in the limit of weak pumping and ignoring detection

losses and detection efficiency, the reflection signal, Jsig is given by:

Jsig = Jinput

(
2CN + v

2CN + 1

)2

(4.2)

When the pumping light is resonant with the cavity and no atoms are present there is

a minimum in the reflected light, the level of which is determined by the fringe visibility;
1This follows the same reasoning as that used to estimate the temperature of the cloud in Chapter 3.
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Figure 4.2: Understanding the reflection signal. LHS: Neff as a function of time, calculated

using Eq.(4.1) and assuming NA = 19.7×106, T = 38.7µK and y0 = 5.1 mm. This implies that

at the peak in atom density, we would expect there to be ∼ 1 atom averaged across the cavity

mode. RHS: The APD counts averaged over ten shots of the experiment. The Gaussian-like

signal caused by the falling atoms is visible, centred at ∼ 30 ms. Shown alongside the data

is a fit, described in the main text, which produces estimates of NA = 1.89 ± 0.08 × 107,

y0 = 5.12± 0.02 mm and T = 29.7± 0.8µK.

Jres = Jinputv
2. Unless stated, these experiments use resonant light2 and, given this, it can

be more convenient to use a normalised version of Eq.(4.2), where Jsig is expressed in terms

of units of the reflected cavity signal on resonance. This is referred to throughout as the

‘normalised reflection signal’, given in ‘lab units’ as:

Jsig
Jres

=
1
v2

(
2CN + v

2CN + 1

)2

(4.3)

This expression can be used alongside the function for Neff given by Eq.(4.1) to fit the

reflection drop signal, with y0, T and Cnn as free parameters, where Cnn = NA/C. One such

fit is shown on the RHS of Figure 4.2, alongside the average over ten APD traces of atom drop

experiments. The fit gives a peak cooperativity of CN = 0.37 ± 0.02. Using the measured

value of C = 0.30± 0.01 from Chapter 3, this implies that Neff = 1.2 at the peak of the drop

signal. This is slightly higher than expected, although it can perhaps be explained by the lower

temperature estimate of the cloud from the fit. A lower cloud temperature would reduce the

rate of expansion, thereby increasing the atom density.
2Actually, throughout these experiments the reference used to lock the cavity was the cavity pump beam.

Thus, when the pump beam was detuned from the atomic resonance, the cavity was detuned by the same

amount. However, for our system κ� γ and the effect of detuning the cavity by 2−3γ is negligible. In Chapter

5 the full impact of detuning the cavity is considered.
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We can use the value for Cnn found from the fit to estimate the initial number of atoms

in the cloud, finding NA = 1.89 ± 0.08 × 107. This value falls within the range of the MOT

number estimates made in Chapter 3 using fluorescence imaging. The fit produces an estimate

for the cloud temperature of 29.7± 0.8µK, which lies within the temperature range set by two

separate measurements of the cloud temperature discussed in Chapter 3. The distance between

the MOT and the cavity mode centre is found to be y0 = 5.12± 0.02 mm.

From this, given that 1.2 atoms, when averaged across the cavity mode, lead to ∼ 100%

difference between the signal floor and signal peak, this indicates the experiment is sensitive

to single atoms. The general agreement between the fit, the free parameters and the various

independent measurements indicates that we understand the form of the reflection signal. We

now turn to the fluorescence signal.

4.1.2 Cavity fluorescence signals

Unlike reflection, fluorescence signals are measured without pumping the cavity. Instead, top

and bottom drive beams (the source of which are located vertically above and below the cavity

respectively) pump the atoms from the side, transiently exciting them into the |F ′ = 3〉 excited

state. From here, atoms decay to the |F = 2〉 ground state, emitting atomic fluorescence into

the cavity mode at a maximum rate of 2CNγ.

The top and bottom pump beams can be used together or separately and the frequency

and intensity of each are independently controlled. The fluorescence into the cavity is collected

by the fibre and counted at the APD, with a total collection efficiency χ. The cavity pump

beam used in reflection measurements is used here before and after the atom transit to ensure

that the cavity is on resonance, but is switched off for the duration of the atoms’ flight using

a shutter or AOM, which is applied 10 ms after the atoms are released from the MOT.

The results of a single shot of a fluorescence experiment using only one beam are shown in

the LHS of Figure 4.3. Here, the cavity is initially pumped at a mean rate (measured at the

APD) of 28 counts per 50µs. When t = 20 ms, a shutter blocks the pump beam, so that the

count rate falls to ∼ 1 count per 50µs within 2 ms. This background level is higher than the

APD dark count of 200 counts s−1 and has multiple sources, such as scatter from the room lights

and equipment screens. The dominant source however, appears to be from the MOT beams as

whilst the cooling beams are switched off to release the atoms, the repumping beams are on

continuously. In addition, the background scatter increases in the vicinity of the fluorescence

signal, this extra contribution arising from the pump beam itself. Careful alignment of the MOT
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beams and pump beams and masking the lower portions of the MOT beam lenses enabled us

to reduce the background scatter substantially, to a level of ∼ 0.004 counts per 2µs, or, for

comparison, 0.1 counts per 50µs, as is the case in the RHS figure to be discussed in more detail

later.

Returning to the LHS figure, after the shutter is blocked the counts inside the cavity remain

at the background level until ∼ 73 ms, when a narrow spike in the signal is visible — this is

fluorescence. Its amplitude is sufficiently small that the cavity pump beam used in reflection

experiments must be switched off in order to see it. The count rate quickly falls back to the

background level, however, and at t = 125 ms the probe shutter is opened, with the light level

returning to that at the beginning of the experiment, indicating that the cavity remained on

resonance throughout.

The RHS of Figure 4.3 shows the same experiment, but taken at a higher resolution of τint =

2µs and averaged across 250 shots. The figure is ‘zoomed’ in, showing only the fluorescence

signal itself. The shape of the signal is well approximated by an exponential decay, a fit to

which is shown alongside the data and which gives a 1/e lifetime for the signal of 114.0 ±0.4µs.

This figure highlights the key benefit of the fluorescence signal, as it produces a signal with a

high signal-to-noise ratio when Neff ≈ 1. For this plot, the ratio of the peak signal amplitude

to the background noise is 135:1.

The fluorescence signal is clearly quite different than the reflection signal. From §4.2 of

Chapter 2, we know that the expected fluorescence signal rate measured at the APD, in the

limit of weak excitation, is given by:

Jfl = 2κχ|αF |2 = 2κχ

∣∣∣∣∣∣ 2C
1 + 2CN

∑
j

gj
g0

Ωj

2g0

∣∣∣∣∣∣
2

(4.4)

This indicates that we should expect the signal to last as long as atoms are present in the

cavity. Looking again at the RHS of Figure 4.3, we see that when the pump beam is switched

on, at t = 73 ms, this quickly translates into a peak in the photon counts at the APD. Within

500µs, however, the peak has decayed to the mean background count level. The timescale for

the duration of this signal is much shorter than the free transit of the cloud. There are two

potential causes; the push felt by the cloud when scattering photons from the pump beam,

accelerating them out of the cavity mode; or heating.

An estimate of the timescale on which the effect of pushing the cloud will be manifest can be

made by estimating how long it takes an atom on the edge of the cloud when the beam is turned

on to be pushed through the cavity mode. When centred on the cavity, the Gaussian width



CHAPTER 4. ATOM DETECTION 114

Figure 4.3: Understanding the fluorescence signal. LHS: The counts recorded by the APD for

a single shot of the experiment. At t = 0 the MOT has been loading for 3 seconds. Dashed

lines indicate key points in the experimental; at t = 10 ms the MOT field is turned off and

the atoms are released into the optical molasses; at t = 20 ms the shutter for the cavity pump

light is closed and, following a ∼ 2 ms delay, the cavity count rate falls to a low background

level of ∼ 1 count per 50µs; at t = 40 ms the cooling light is switched off and the atoms fall

towards the cavity. At t ∼ 73 ms a narrow peak is visible, corresponding to the collected

fluorescence produced by the atoms as they fall through the cavity. At t = 125 ms the pump

light is turned on to check that the cavity remained on resonance. RHS: A section of a recorded

trace averaged across 250 fluorescence experiments. This data was taken using τint = 2µs (as

opposed to τint = 50µs shown on the LHS), allowing the structure of the fluorescence signal

to be visible. Shown alongside the data is an exponential fit, which gives an estimate of the

1/e lifetime of 114.0 ± 0.4µs. The background counts have also been reduced to 0.004 counts

in 2µs, the result of improved beam alignment.
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of the cloud is approximately 5mm. Thus, a late fluorescence signal might be expected from

an atom ∼ 2.5 mm away from the cavity mode being pushed back in. With the fluorescence

beam on resonance, atoms feel a force from the beam equal to h̄kRscatt, where Rscatt is the

atomic scattering rate. For a beam power of 200µW focussed to a waist of 60µm at the

cavities, this produces an instantaneous acceleration of over 100 km/s−2. Assuming constant

acceleration at this rate3, it takes an atom approximately 210µs to travel across the cavity

mode. Despite these simplifications, this order of magnitude estimate corresponds well to the

actual duration of the signal, which has a FWHM of 170µs and has a fitted half-life of 114µs.

In this model, however, one would expect the density profile of the cloud to be mapped out in

the fluorescence signal, albeit in a shorter time frame. The effect of heating may explain why

this is not observed.

One can estimate the timescale on which heating will be an important effect by calculating

how long it takes for the density of the portion of the cloud addressed by the pump beam to

fall substantially, say, to one half of its original value. For an atom performing a random walk

caused by repeated photon emissions in random directions, the expectation value of its position

obeys:

d2

dt2
〈x2〉 =

2
3
v2
rRscattt

In the above, vr is the atomic recoil velocity, in this case equal to 5.88 mm/sec. If one

assumes no correlation between the position, x and the velocity, dx/dt, of the atom, one finds

that 〈x2〉 ∝ 1
9v

2
rRscattt

3. The time taken for the density to fall by one half will be the time

taken for the area to double. If we only treat the atoms inside the area addressed by the pump

beam, equal to π × (60µm)2, the time taken for this area to double is approximately 540µs.

This is a similar order of magnitude as the 1/e duration of the signal, indicating that heating

of the cloud is another important factor.

Thus far, only the case for one beam has been considered. In the case for two resonant,

power-matched and counter-propagating beams, one would expect there to be no net pushing

force on the atom and that, as a consequence, the signals would last longer. One would also

expect heating to be the limiting factor, so that the signal would be expected to decay in a

few hundred microseconds. In addition, because the atoms are not accelerated as quickly, they

may be expected to stay on resonance with the fluorescence beams for longer, leading to an

overall increase in the amplitude of the signal. These qualitative differences are both evident
3This assumption substantially simplifies the calculation. In reality the atoms’ accelerations are a function

of their detunings, which, due to the Doppler shift, will change with their velocities.
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Figure 4.4: Fluorescence signal produced using one beam (shown in the darker red) and two

counter-propagating beams (shown in the lighter red). The y-axis corresponds to the number

of counts at the APD per 100µs time bin, summed for five experimental shots. The two-beam

signal has an amplitude of nearly three times that of the one-beam case. In addition, the

two-beam signal decays more slowly, having a FWHM of 500µs compared to 300µs in the

one-beam case.

in Figure 4.4, where fluorescence signals for one beam (darker red) and two beams (lighter red)

are shown. The two-beam signal has a peak amplitude nearly three times larger than that of

the one-beam signal. For these shots, both beams have a power of 315µW which, from data

discussed in the following section, implies that the atoms should already be saturated by one

beam. This implies that the amplitude increase is caused by atoms spending longer in the

cavity mode, rather than having a higher scattering rate. This is corroborated by an increase

in FWHM of the signal, going from 300µs for the one-beam case to 500µs for the two-beam

case.

The discussion so far indicates that the basic features of the fluorescence signal can be

understood in terms of the dynamic response of the atoms to the pump beam. The next

section goes a step further, characterising the fluorescence and reflection signal’s response to

changing experimental conditions.

4.2 Characterising the cavity signals

This section characterises the reflection and fluorescence signal under a variety of experimental

conditions. The parameters tested here are the intensity, detuning and polarisation of the

pumping beams and the size of Neff .
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4.2.1 Intensity

The first measurement treated is how the reflection and fluorescence signals vary with pump

beam intensity. One might expect differences to be caused by the onset of atomic saturation,

which occurs as the pump beam Rabi frequency, Ω, becomes comparable to the spontaneous

decay rate. In the case of the reflection signal, when the cavity is directly pumped, Ω =
√

2gα,

so that the number of photons required to saturate the atom is given by:

nsat = |αsat|2 =
γ2

2g2

Thus far in reflection we have always been in the limit of weak pumping, so that the intra-

cavity photon number, n � γ2/2g2. This allows us to assume weak atomic excitation and to

use the simplified expression for α given by Eq.(2.32). When this isn’t the case, α is given by

Eq.(2.36), which must be evaluated numerically. The normalised reflection signal becomes:

Jsig
Jres

=
1
v2

(
[1− v]

1 + 2ng2/γ2

(2C + 1) + 2ng2/γ2
− 1

)2

with n =

[(
η

κ

)
1 + 2g2n/γ2

1 + 2CN + 2g2n/γ2

]2

(4.5)

This solution leads to the reflection signal decreasing as the atom saturates. Data demon-

strating this effect can be seen in the LHS of Figure 4.5, which show the normalised reflection

signal measured as a function of input pump count rate. For this experiment, a neutral density

filter with a measured power attenuation of 113:1 was used to shield the APD from the high

count rates. Ten shots were taken at each input count rate and the final normalised signal

found by averaging. The data in light blue show the case with no repumping light circulating

inside the cavity, whilst the data in dark blue show the case with repumping light. Intuitively,

one might expect that the onset of saturation would be slower with repump present, although

this effect isn’t obvious from the data and the fits confirm this. The confidence intervals for

the free parameters overlap, indicating that the presence of repumping light does not appear

to affect the onset of saturation.

The fits shown are to Eq.(4.5), with the free parameters being g and a parameter quantifying

the pumping efficiency, converting input pump rate to cavity pump rate from Eq.(2.40). The

fit estimates g = 2π × (82.4 ± 1.6) MHz. Assuming (γ, κ) = 2π × (3, 5200) MHz, this makes

CN = 0.22 ±0.01. This is smaller than the value found earlier, but can be accounted for by two

possible factors; a change in fringe contrast, θ, or a change in the initial MOT number. The

former definitely has some impact here, as the slow thermal drift of the cavity alignment did

cause θ to change over time — for these experiments θ = 0.3, compared to later measurements
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of θ = 0.24 shown earlier. Additionally, changes in the overall MOT number would affect this

by changing Neff — this is also possible, as the MOT shape and size varied substantially over

the course of the experiments and a change of Neff = 1.2→ 0.8 would account for this. This is

corroborated by unsaturated drop signals taken on the same day which have a smaller overall

peak level, reduced by ∼ 25% to ∼ 1.6 lab units. Assuming θ = 0.3, this implies a cooperativity

of 0.24, reasonably consistent with that found from the fit.

The RHS of Figure 4.5 shows a plot of the normalised reflection signal in lab units plotted

for cavity input count rates spanning 0.1 − 500 MCounts/sec, using the fit parameters found

above. The light blue data from the LHS are shown alongside and map out the regime where

atomic saturation effects begin to take place. It shows that when pumping at rates, Jin ∼

1 MCounts/sec, we are safely out of the saturation zone. This is important for detection, as

the largest signal amplitude will be achieved when the atom isn’t saturated. This will also

lead to a necessary balance in the appropriate input powers to use, as in the absence of effects

such as saturation, signal-to-noise generally increases with increasing signal power. This issue

is discussed in a later section.

Turning now to fluorescence signals, Eq.(4.4) assumes that the atoms are weakly pumped.

As the intensity of the pumping beam increases however, this is no longer true and the expres-

sion for the fluorescence signal (on resonance) becomes:

αF = −2C
∑
j

(∣∣∣∣gjg0

∣∣∣∣2 αF +
Ωj

2g0

)
1

1 + |2gjαF + Ωj |2/γ2
(4.6)

Again, this must be solved numerically, with the additional complication that each atom

‘feels’ a different gj and a different pump beam Rabi frequency, Ωj , so that their contributions

will not necessarily add in phase. Numerical simulations of this behaviour are presented in

Appendix A, the results of which indicate that we should expect the signal to increase and

saturate at intensities I/Isat ∼ 100.

To measure the effect of saturation, the number of fluorescence counts, Nfl, per integration

bin at the APD were measured as a function of pump beam power, P . The beam was kept

on resonance and was switched on when the atom density in the cavity peaked, corresponding

to Neff ≈ 1. The pump beam power was varied by changing the amplitude of the RF power

to the AOM controlling the beam. Ten shots were taken for each power and the peak counts

calculated by averaging the counts in the first time bin after the beam was switched on for

each shot. The counts were corrected for APD saturation and efficiency using Eq.(3.2).

Figure 4.6 shows the corrected fluorescence counts, Nfl as a function of pump beam power,
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Figure 4.5: The effect of atomic saturation on the reflection signal. LHS: The normalised

reflection signal measured for increasing cavity pump rates, taken with (in dark blue) and

without (in light blue) repumping light circulating inside the cavity. There appears to be no

significant difference between the two and fits to Eq.(4.5) confirm this. Shown alongside the

data are fits to Eq.(4.5), where the atom-cavity coupling rate, g and a factor parameterising the

pumping efficiency are free parameters. The fit to the case without repump estimates g = 2π×

(82.4±1.6) MHz. RHS: The normalised reflection signal calculated for pump rates between 0.1−

500 MCounts/sec using the fit parameters found from the LHS data. The effect of saturation

is clear, with the reflection signal reducing substantially for pump rates > 10 MCounts/sec.

The vertical, dashed line indicates the typical upper pumping rate limit used for reflection

experiments.
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Figure 4.6: Peak fluorescence counts, Nfl, measured as a function of pump beam power, P .

The measured data is shown alongside a fit to Eq.(4.7) which gives Nsat = 34.8 ± 1.9 and

Psat = 50.4 ± 10.6µW.

P . From this, there appears to be two regimes of operation; for low pump beam powers

(P ≤ 50µW) Nfl appears to linearly increase with increasing P , whilst at higher powers

(P ≥ 200µW) Nfl appears to saturate. This behaviour can be described by the empirical

saturation formula:

Nfl = Nsat
P/Psat

1 + P/Psat
(4.7)

The equation above characterises the dependence of Nfl with P in terms of two parameters;

the saturated count level, Nsat, and the power, Psat, at which Nfl = Nsat/2. Shown alongside

the data in Figure 4.6 is a fit to Eq.(4.7), from which we find that Nsat = 34.8 ± 1.9 and

Psat = 50.4 ± 10.6µW.

The value of Psat corresponds to a peak intensity of 890 mWcm−2, or 270 Isat and is over

two orders of magnitude larger than that expected for an atom in free space. This is, however,

of a similar order of magnitude to the results from Appendix 1. The difference of a factor of

∼ 2.5 between our measured saturation intensity and the value found from simulations could be

accounted for by systematic errors in the experiment. One significant effect is the error in the

focussing of the pumping beam with respect to the cavity. The lens used to focus the pumping

beam into the cavity is positioned to produce a waist of 60µm at the cavity and all the intensity

calculations have assumed this value. The exact position of the lens with respect to the cavity

is, however, unknown and could be incorrect by as much as 1 cm, as the position of the lens

against the vacuum chamber is awkward and difficult to access for accurate measurement. A

1 cm error in the distance between lens and cavity would increase the pumping beam waist to

72µm, reducing the estimated saturation intensity from 250 Isat to 170 Isat. The mis-alignment
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of the beam would also lead to an error in the estimated saturation intensity due to power loss.

The optical path through to the cavities is restrictive and misalignment would lead to power

loss from beam clipping and scattering from other surfaces by as much as 50%. Combined,

these errors could easily account for the difference.

This saturation experiment can also be used to characterise our collection efficiency, χ.

Assuming that when saturated the atom emits fluorescence into the cavity mode at a full

Purcell-enhanced rate of 2CNγ, the saturated count rate, Nsat, measured at the APD should

be Nsat = 2Cγχ. Taking C = 0.3, the total scattering rate into the cavity mode is 11.4 ×

106 photons/sec. This can be compared to the estimated count rate collected at the APD when

saturated of Nsat/τint, equal to 696 × 103 photons/sec, implying a total collection efficiency,

χtot = 6 %.

At first sight this appears quite low. However, by comparing the measured count rate to

2Cγ, we have implicitly assumed that the pump beam is optimally conditioned to achieve this

full scattering rate. In reality, the effect of pumping with light of the wrong polarisation can

have a negative effect on the scattering rate; firstly by not driving the atoms with the optimal

polarisation; but with a secondary effect that the atoms are driven into states where they don’t

optimally couple to the cavity. This effect is discussed in more detail in a later section, but

from simulations it is expected that the combined effect of these two factors4 is to reduce the

expected scattering to ∼ 80% of its peak value, with this latter factor being dependent on the

value of I/Isat:

Reduction factor = 0.78× 1
2

0.55I/Isat
1 + 0.55I/Isat

Assuming this worst case, comparing the measured and expected scattering rates leads to

an estimate of χ of 8%. Conversely, were the atoms optimally pumped, we might expect our

measured count rate to increase to 870 × 103 photons/sec.

This experiment indicates that, for powers readily available to us, increasing the pumping

rate will lead to an increase in fluorescence signal. This is in contrast to the reflection signal,

where saturation results in a monotonically decreasing signal, as measured in lab units. These

differences will have to be considered when exploring the optimum conditions for detection.

Next, the impact of detuning the pumping beams on the reflection and fluorescence signals will

be discussed.
4The first factor of 0.78 describes the reduction from the optimal signal (= 1) as a result of polarisation

effects. The second factor describes how much harder it is to saturate as a result of polarisation effects.
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4.2.2 Detuning

In this section we return to the limit of weak pumping and test the effect of detuning the pump

beams. Here, the normalised beam detuning, ∆a, is given in units of γ as:

∆a =
1
γ

(ωL − ωatom)

In the above, ωL is the angular frequency of the pumping beam and ωatom is the angular

frequency of the |F = 2〉 → |F ′ = 3〉 transition. Scanning ∆a effectively maps out the lineshape

of the atom whilst in the presence of the cavity. For an atom in free space (and neglecting any

broadening mechanisms other than natural broadening) this lineshape is a Lorentzian with a

FWHM of Γ = 2γ = 2π × 6.06 MHz. From Chapter 2, however, we expect the presence of the

cavity to increase the decay rate of the atom by a factor (2CN + 1). This Purcell enhancement

should be manifest in a Purcell-broadened atomic lineshape.

In reflection, the effect of detuning can be taken into account through a modified version

of Eq.(4.3):

Jsig
Jres

=
1
v2

v2 +
1

1 +
(

∆a
(2CN+1)

)2

[(
2CN + v

2CN + 1

)2

− v2

] (4.8)

This function maps out a Lorenztian of width (2CN + 1) and peak height given by Eq.(4.3)

when ∆a = 0. The detuning of the cavity is ∆c/κ � 1, so that we can treat the cavity as

being on resonance. The Purcell broadening of the lineshape is visible in the plots on the

LHS of Figure 4.7, which show the normalised reflection signal in lab units as a function of

∆a, for three different values of κ and calculated using Eq.(4.8). (g, γ) are kept constant at

2π × (98, 3) MHz respectively. The darkest blue shows the case of κ = 2π × 5200 MHz or

κ � g, which is the regime we work in; the medium-toned blue shows κ = 2π × 141 MHz,

or κ =
√

2g2 − γ2 and is the threshold for the strong coupling regime; the light blue shows

κ = 2π × 50 MHz or κ < g, well into the strong coupling regime. It is clear that the lineshape

gets taller and wider as κ decreases and thus CN increases. This effect is corroborated by

the data shown on the RHS of Figure 4.7, measured by detuning the pump beam by various

amounts between −6γ ≤ ∆a ≤ +7γ using an AOM. At each detuning, ten drop signals were

taken and the average signal height calculated using Eq.(4.3). The cavity contrast was measured

to be 76%. The data are plotted alongside a fit to Eq.(4.8), with free parameters being CN

and the frequency position of ∆a = 0. This estimates CN = 0.39 ± 0.01, in agreement with

our measurement at the beginning of the chapter. The plot also contains two sets of dashed
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Figure 4.7: The reflection signal as a function of pump beam detuning. LHS: The reflection

signal, calculated using Eq.(4.8), shown for three different coupling regimes. (g, γ) are kept

constant at 2π×(98, 3) MHz respectively, whilst the value of κ is changed. The dark blue shows

κ = 2π × 5200 MHz or κ � g, which is the regime we work in; the medium-toned blue shows

κ = 2π × 141 MHz, or κ =
√

2g2 − γ2 and is the threshold for the strong coupling regime; the

light blue shows κ = 2π×50 MHz or κ < g, well into the strong coupling regime. The increased

height and width of the lineshape as κ reduces (and thus CN increases) is visible. RHS: The

normalised reflection signal measured as a function of pump beam detuning (shown in units

of γ). A fit to Eq.(4.8) is shown alongside the data, which estimates CN = 0.39 ± 0.01. The

inner pair of dashed lines indicate the bare-atom linewidth of γ. The outer pair of dashed lines

indicate the Purcell-enhanced linewidth of 2CNγ.

lines to emphasise the broadening; the inner pair indicate the bare-atom FWHM, located at

±γ and the outer pair indicate the cavity-enhanced FWHM, located at ±1.78γ.

Before firmly attributing this broadening to Purcell enhancement, however, other mecha-

nisms should be eliminated. Collisional broadening can quickly be dismissed as the atom cloud

is dilute, with a collision rate < 1 mHz5. From the previous section we know that power broad-

ening can also be eliminated, as these experiments were taken in the weak pumping regime,

with an intra-cavity photon number typically two orders of magnitude below nsat. Transit

time broadening, caused by the finite interaction time between the atom and cavity, would

have a broadening effect of ≈ 35 kHz — assuming the cavity mode waist of ±4.5µm to be the

interaction region and an atom velocity of 32 cm s−1. This is clearly too small to account for
5The collision rate equals 1/τcoll, where τcoll is the mean time between collisions. 1/τcoll = nσv̄, where

n is the atom number density, σ is the collision cross section and v̄ is the mean relative velocity. Taking

n = 1.3× 1013 atoms/m3, measured using fluorescence imaging; σ = 8πa2, where a = 100a0 and a0 is the Bohr

radius; and v̄ = 4
√
kBT/πm; a cloud with temperature 30µK will have a collision rate of 0.27 mHz.
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the broadening seen in Figure 4.7. Another potential source might be magnetic field variations,

which would cause differential Zeeman shifts of the atoms’ magnetic hyperfine levels. Typically

Zeeman shift energies are ∼ µBB, where B is the magnetic field and µB the Bohr magneton.

This amount of broadening would require a B-field of ∼ 8 Gauss, which is too large to be

caused by a stray field or our MOT coils, particularly as our MOT field gradients are small,

at 1.5 G/cm. The broadening is also larger than the laser linewidths used in the experiment,

which typically have linewidths < 1 MHz.

We therefore interpret the broadening evidenced in Figure 4.7 as the result of a modified

decay rate of the atom, caused by the presence of the cavity. It is demonstrated in the fol-

lowing section that the reflection signal linewidth is also proportional to Neff , confirming this

conclusion.

We can test for the equivalent effect in fluorescence by conducting a similar experiment

and where now ∆a refers to the detuning of the transverse pump beam. A modified version of

Eq.(4.4) takes into account the effect of detuning:

Jfl =
Ω2

4g2

(
2CN

2CN + 1

)2 1

1 +
(

∆a
(2CN+1)

)2 2κχ (4.9)

As with the reflection signal, the expected fluorescence signal is a Lorentzian with width

(2CN +1)γ. This is plotted on the LHS of Figure 4.8, for the same three regimes shown earlier.

Light to dark red corresponds to the transition from strong coupling to the case when κ � g

and Ω = 2π× 10 MHz for each. From the plot it is clear that the fluorescence follows the same

pattern as in reflection, showing a taller and wider Lorentzian as CN increases.

Measurements of the fluorescence signal as a function of pump beam detuning are shown on

the RHS of Figure 4.8. The frequency of the pump beam was changed by varying the frequency

of the RF power to the AOM controlling the beam. The beam power was 10µW. Ten shots

were taken for each detuning and Nfl is the average of the first ten bins after the beam is

switched on, averaged across the ten shots, after having been corrected for APD dead time and

quantum efficiency using Eq.(3.2). From the figure it is clear that the data are consistent with

a Lorentzian lineshape.

Shown alongside the data is a fit to Eq.(4.9), where the lineshape width and a factor

quantifying the pump rate and total collection efficiency are free parameters. Assuming (κ, γ) =

2π × (5200, 3) MHz, this estimates CN = 1.01 ± 0.16, equivalent to a lineshape broadening of

2π × 3.02 MHz. This is substantially larger than values of CN found through other methods,

suggesting that there are other broadening mechanisms contributing to the spectral width.
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Figure 4.8: The fluorescence signal as a function of pump beam detuning. LHS: The calculated

fluorescence signal plotted for three coupling regimes, using Eq.(4.9). (g, γ,Ω) are kept constant

at 2π × (98, 3, 10) MHz respectively, whilst the value of κ is changed. The dark red shows

κ = 5200 MHz or κ � g, which is the regime we work in; the medium-toned red shows

κ = 141 MHz, or κ =
√

2g2 − γ2 and is the threshold for the strong coupling regime; the light

red shows κ = 50 MHz or κ < g, well into the strong coupling regime. The increased height

and width of the lineshape as κ reduces (and thus CN increases) is visible. RHS: The average

peak fluorescence counts, Nfl, collected at the APD in a 50µs time bin versus detuning, ∆a of

the pumping beam. The fit shown is to Eq.(4.9), which estimates CN = 1.01 ± 0.16 .
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Broadening mechanisms such as laser linewidth and fluctuating B-fields have already been

discussed and ruled out as affecting the reflection scan and there is no reason to suspect them

to have a greater effect here. In this case, the transit time broadening is expected to be larger,

as the atoms are being pushed out of the cavity mode by the pump beam. Despite this, their

expected transit time is ∼ 10µs, leading to a potential broadening of ∼ 100 kHz, which isn’t

large enough to account for this discrepancy. Another potential broadening mechanism is power

broadening. For this data, the pump beam power was 10µW, which should be compared to

saturation intensity empirically found for fluorescence in the earlier section of 50.4 ± 10.6µW.

Given that the lineshape broadening effect goes as Γ
√

(1 + I/Isat), this would have a broadening

effect of 10 % to the bare atom lineshape, which again appears to be insufficient in this case.

We might also expect Doppler broadening caused by the acceleration of the atoms by

the pump beam. The magnitude of this effect can be estimated by estimating the maximum

expected Doppler shift. The first ten bins after the beam is averaged to find the average counts,

so that the data shows evidence of the atoms being subject to the beam for up to 500µs. From

the previous section, for the beam power used here of 10µW, we’d expect a total scattering rate

of 2π × 800 kHz, so that we’d see the average Doppler shift from 400 scatters. If each scatter

leads to a shift of 2π× 7.54 kHz [101], we’d expect the largest Doppler shift to be 2π× 3 MHz,

which is sufficient to explain our data.

These experiments have confirmed that, at least in reflection, we see Purcell enhancement

of the atomic lineshape caused by the presence of the cavity. As an aside, the reflection

and fluorescence spectra appear qualitatively similar — the following Chapter will explore

conditions when this isn’t the case.

Considering how this will impact detection, in both cases detuning the atom leads to a

monotonically decreasing signal, which would necessarily result in a decrease in signal to noise.

From this, assuming that we’re detecting atoms by only monitoring changes in signal ampli-

tude (as opposed to a measuring a dispersion), detuning clearly does nothing to improve our

sensitivity.

Thus far, however, we’ve assumed that CN increases linearly with Neff — this is tested in

the following section.

4.2.3 Effective atom number

We have assumed throughout that CN is linearly proportional to Neff . This can be tested in

reflection by measuring the spectral width, ∝ (2CN + 1), for different values of Neff . This
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Figure 4.9: The reflection and fluorescence signals as a function of Neff . LHS: The reflection

spectral width as a function of atom number density at the cavity. There appears to be a

linear dependence and a linear fit shown alongside the data gives a y-intercept of 1.09 ± 0.04

and a gradient of (0.06 ± 0.01) × 108 cm3. RHS: The fluorescence counts measured in 5µs as

a function of Neff , calibrated using reflection signals. A fit to the function y = axb, shown

alongside the data, gives an estimate of b = 1.05 ± 0.06, confirming the linear dependence of

fluorescence signal with Neff in the regime of low atom number.

should result in a linear dependence with a y-intercept of one.

For this experiment, Neff was varied by changing the number of atoms loaded into the MOT

using different MOT fill times. This changes the value of NA in Eq.(4.1), thereby changing the

atom density at the cavity mode and consequently Neff . The fill times ranged between 100 ms

and 6 s and, for each one, a pump beam lineshape was taken to calculate the spectral width.

The atom density is estimated in two steps: firstly, fluorescence imaging of the MOT is used

to ascertain NA and, secondly, drop signal traces taken on resonance are used to estimate the

size of the cloud at the cavity. The calculated atom densities are quite rough, due to large

systematic uncertainties in the fluorescence imaging, the assumption that there is no atom loss

during the molasses stage or when falling and the assumption of a simple Gaussian density

profile. We suspect, however, that these effects depend only weakly on the MOT number and

should not affect any functional dependence on the lineshape width.

The data are shown in the LHS of Figure 4.9, alongside a linear fit which gives a y-intercept

of 1.09 ± 0.04 and a gradient of (0.06 ± 0.01) × 108 cm3. We can relate the gradient directly

to the cooperativity using the cavity mode volume, V :

Gradient =
δ(1 + 2CN )
δ(Natoms)

= 2C
δ(Neff)
δ(Natoms)

= 2CV
δ(Natoms)
δ(Natoms)

= 2CV

Given our measured cavity volume from Chapter 3, this gives C = 0.14 ± 0.03, which is in
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reasonable agreement with other previous measurements.

As discussed, in the absence of other affects we would expect a vertical offset on the y-

intercept of one. The discrepancy in this case is equivalent to lineshape broadening of 270 ±

60 kHz and, from earlier discussions, potential sources of broadening of this scale include transit

time broadening, fluctuations in the magnetic field and laser linewidth. In addition, this

calculation has implicitly assumed that all the MOTs were the same temperature. This is

unlikely to be the case as smaller number clouds are colder and larger MOTs are known to have

areas of leakage into diffuse outer shells. This could lead to a systematically overestimating the

atom density for larger MOTs, which would lead to a larger gradient and smaller y-intercept.

Knowing that we have a linear dependence, we can now use the reflection signal to investi-

gate the relation between the fluorescence signal and Neff . Because Neff is a function of time,

switching on the pump beam at different times allows different values of Neff to be sampled.

The pump beam switch-on times are varied between 71.5 ms and 80 ms, corresponding to a

range of 1 ≥ Neff ≥ 0. At each switch-on time, ten shots were taken with τint = 5µs and the

peak counts found by averaging the first bin after the beam was switched on for each shot. To

minimise the impact of atoms being pushed by the beam back into the cavity, the tail end of

the profile is sampled. The results are shown in the RHS of Figure 4.9, alongside a fit to the

function y = axb. This gives an estimate of b = 1.05 ± 0.06, indicating that in the regime of

low atom number there is a linear relationship between Neff and the fluorescence signal. From

Chapter 2, this confirms our hypothesis that we are in the limit of ‘disordered’ scattering — the

equivalent dependence in the ‘ordered’ limit would be quadratic. In addition, the fit indicates

that we would expect to measure approximately 2.6 fluorescence counts per atom.

4.2.4 Polarisation

We can also characterise the effect of changing the polarisation of the pump beams. As discussed

earlier, this is expected to have a substantial impact on the signals. For these experiments,

the polarisation of the pump light is linear, but the angle of orientation with respect to the

cavity is varied; rotating between being linearly polarised along the cavity axis, (corresponding

to π-polarised light) and linearly polarised transverse to it (corresponding to superpositions of

σ±-polarised light).

The experiment was only conducted for the fluorescence signal, as our setup makes the

equivalent reflection experiment awkward. In reflection, the plane of polarisation of the light

pumping the cavity mode is uncertain due to the presence of the optical fibre forming part
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Figure 4.10: The fluorescence counts as a function of pump beam polarisation. LHS: The

peak fluorescence counts recorded at the APD in 50µs, measured as a function of waveplate

angle. The data show a sinusoidal variation. Fitting to a sinusoidal function of fixed period

180 ◦ estimates a peak/trough contrast of 1.81 ±0.14 , which compares well to master equation

simulations discussed in the main text. It should be noted that the zero in degrees is arbi-

trary and just corresponds to 2× the waveplate angle. RHS: Fluorescence lineshapes taken at

polarisation angles corresponding to the maximum (lighter red) and minimum (darker red) in

fluorescence counts (290 ◦ and 200 ◦ respectively). Shown alongside the data are the respective

fits to Eq.(4.9). For the ‘max’ data, this fit estimates CN = 1.01± 0.16. For the ‘min data’ the

fit estimates CN = 0.77 ± 0.24. Dashed lines indicate the FWHM for each dataset; the outer

pair show the FWHM for the ‘max’ data, the middle pair the FWHM for the ‘min’ data and

the inner pair for the atom in free space.

of the cavity; this fibre is not polarisation-maintaining and causes an unknown and variable

amount of polarisation rotation. This problem does not occur in fluorescence, as the waveplate

used to adjust the orientation of the plane of polarisation sat after the beam’s output from a

polarisation-maintaining fibre and all other elements in the optical path between the waveplate

and the cavity (such as the vacuum chamber window) would produce a fixed amount of rotation.

One complicating factor in performing this experiment was that rotating this waveplate

leads to small changes in the beam direction which, as a result of the relatively long optical

path of ∼ 50 cm between the waveplate and the cavity, causes mis-alignment. To mitigate this

effect, the beam was manually re-aligned between each run, although re-producing the exact

alignment between waveplate angles was impossible. This is perhaps one explanation for the

high degree of fluctuations evident in the data presented here.

As mentioned, the polarisation of the pump beam is varied by rotating a half-wave plate
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placed before the beam enters the vacuum chamber. At each waveplate angle ten shots were

taken and the average peak count used to measure the fluorescence counts, Nfl. This is shown

on the LHS of Figure 4.10. As before, these counts are corrected for APD efficiency and

saturation using Eq.(3.2). The power in the pump beam was kept constant throughout. It

should be noted that the zero in degrees is arbitrary and just corresponds to 2× the waveplate

angle, although afterwards we checked the angles with respect to the cavity axis to confirm

that the angles at which the signal was minimised corresponded to π-polarised light.

The data shown on the LHS of Figure 4.10 corresponds to one full rotation of the waveplate,

equivalent to a 2× 360 ◦ rotation in the polarisation angle of the beam. Evident in the data is

a sinusoidal variation, with a period of 180 ◦; every 90 ◦ the count level moves from a peak to a

trough, as the light rotates from having its plane of polarisation transverse to the cavity axis

to having it parallel to the cavity axis. Fitting this data to a sinusoid with a period of 180 ◦

estimates a peak/trough contrast of 1.81 ± 0.14.

It is interesting to consider the physical explanation for this. For an atom with no internal

degrees of freedom, conservation of momentum requires that the atom re-emit light with the

same polarisation as it absorbed. The cavity does not support a π-polarised mode and so a

spinless atom cannot scatter light into the cavity from a π-polarised pump beam. In this case,

as the plane of polarisation of the pumping light is rotated, the fluorescence collected by the

cavity will vary from a minimum of zero to some maximum value, with a period of 180◦.

A rubidium atom has more freedom owing to its internal structure; quantising its orbital,

spin and nuclear angular momenta result in discrete magnetic hyperfine levels, |mF | states.

Transitions between these levels can involve a change in angular momentum, ∆, of ∆ = 0,±1,

with probabilities given by Clebsch-Gordan coefficients for each transition. Pumping with π-

polarised light favours transitions involving no net change in angular momentum, resulting in

the atomic population congregating in the central, low |mF | states. Pumping with σ±-polarised

light favours transitions with a net angular momentum change of ±1, which optically pumps

the atom into the high |mF | states.

The emission of fluorescence into the cavity by the atom is still restricted to being σ±,

but the presence of internal structure means that there is no longer complete extinction of the

fluorescence when the atom is pumped with π-polarised light. Some variation in the collected

fluorescence, again with the period of 180 ◦, would still be expected.

To further corroborate the physical explanation for this variation, a master equation simu-
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Figure 4.11: The excited state populations as a fraction of total population for the magnetic

hyperfine levels mF = −3,−2,−1, 0, 1, 2, 3, calculated from the master equation simulation

discussed in the main text. LHS: Fractional populations in the case of pumping by σ±-polarised

light. The atomic population builds up in the higher magnitude mF levels as transitions with

a net angular momentum change of ±1 are favoured. RHS: Fractional populations in the case

of pumping by π-polarised light. Population builds up in the lower magnitude mF states as

transitions with no net angular momentum change are favoured.

lation was performed6 which treated atoms in free space and follows these steps:

1. The excited state fractions, ρe,m′F ,e,m′F , for each of the F ′ = 3 hyperfine levels are calcu-

lated for an atom in free space,

2. The scattering rate produced from radiation of a given polarisation of light, −q, is cal-

culated, using:

Rscatt,−q =
∑

mFm
′
F

|〈F ′m′F |F 1mF q〉|2ρe,m′F ,e,m′F (4.10)

where 〈F ′m′F |F 1mF q〉 gives the Clebsch-Gordan coefficient for the transition |F,mF 〉 →

|F ′,m′F 〉,

3. The relative scattering rate into the cavity is calculated by assuming the cavity will only

‘accept’ σ± polarisations.

This simple model of the experiment predicts a contrast between minimum and maximum

scattering rates of 1.75, which corresponds well with the value found experimentally. The

excited state populations for the magnetic hyperfine levels calculated in Step 1 are shown in

Figure 4.11. Both the LHS and RHS show the excited state populations as a fraction of total
6This simulation was performed by J. Goldwin, then a post-doctoral researcher at CCM.
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population across the magnetic hyperfine levels mF = −3,−2,−1, 0, 1, 2, 3. On the LHS, the

populations are calculated for the case of σ±-polarised light and it is clear that the population

tends towards the higher magnitude mF levels, as transitions with a net angular momentum

change of ±1 are favoured. The RHS shows the populations for the case of π-polarised light,

where the population congregates at lower magnitude values of mF , as transitions with no net

angular momentum change are favoured.

These polarisation effects should also be manifest in fluorescence lineshapes taken with

pumping light of different polarisations, as each mF state will couple to the cavity at a different

rate. Two fluorescence lineshapes are shown in the RHS of Figure 4.10; the data in darker red

taken using a polarisation corresponding to a minimum in the fluorescence counts (200 ◦), the

‘min data’; and the data in lighter red taken at a polarisation corresponding to a maximum in

the fluorescence counts (290 ◦), the ‘max’ data. Alongside both datasets are their respective

fits to Eq.(4.9), used to compare their relative widths.

The larger amplitude evident in the max data appears to confirm that there is a larger

cooperativity in this case. This does not, however, extend to comparisons of the lineshape

widths, which both cover a large range consistent with being equal. The max data, presented

earlier in §2.2., was found from the fit to have CN,max = 1.01 ± 0.16. A fit to the min

data gives an estimate for CN,min = 0.77 ± 0.24. These give atom-cavity coupling rates

of gmax = 2π × (178 ± 28) MHz and gmin = 2π × (155 ± 48) MHz. Both are substantially

larger than other measurements of C and g, indicating, as discussed earlier, that an additional

broadening mechanism is it work. From that discussion, Doppler broadening was found to be

the most likely candidate and it is possible that this is masking any differences in cooperativity

between the polarisations.

What is demonstrated by these experiments is the importance of polarisation to ensure a

maximum signal. Throughout the discussions of part two of this chapter, it will be assumed

that the optimal polarisation (in this case that which corresponds to the ‘max’ data) is being

used.

4.3 Single atom detection

From the data and discussion presented thus far, it is clear that this experiment is sensitive

to single atoms; when Neff = 1 there is a substantial impact on the reflection signal and a

clearly detectable fluorescence signal. One application for this single-atom sensitivity is as a

chip-based atom detector. The next stage is to attempt to quantify the single atom detection
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confidence, in varying detection conditions.

4.3.1 Signal to noise ratio and Poissonian statistics

A standard method for quantifying the confidence with which a signal can be detected is via the

signal-to-noise-ratio (SNR), which is a measure of the size of the signal compared to fluctuations

in the signal. Both the signal and noise are assumed to have Poissonian fluctuations about

some mean level and, to take this into account, a ‘pooled’ version of the SNR is used here,

defined as:

SNR =
Nsig −Nbg√
Nsig +Nbg

(4.11)

Here, Nsig refers to the number of signal counts; in our case this is the number of counts

measured at the APD as a result of atoms being in the cavity. Nbg is the number of noise counts

measured at the APD and is a sum of all sources of background noise. For our experiment,

this latter quantity will include scattered photons from the light pumping the atoms, from

repumping light used for trapping and from other miscellaneous sources such as equipment

screens and room lights. There will also be a contribution from the off-resonant light circulating

inside the cavity, used for producing an error signal for locking the cavity.

As mentioned, this expression for SNR is only valid when the signal and noise follow Pois-

sonian statistics, one characteristic of which is that the signal variance is equal to the signal

mean, or the equivalent for the background noise. We can test how reasonable this assumption

is by comparing the fluctuations of reflection and fluorescence signals across a large number of

experiments. The LHS of Figure 4.12 shows the variance/mean as a function of time, calculated

per integration bin for 300 reflection measurements, with τint = 2µs. These 300 consecutive

shots were chosen from a selection of 500 taken on the same day as having the least change

in cavity pumping rate across them. Generally, this data shows fluctuations about the line of

variance/mean equal to one, although at t ∼ 70 ms, which corresponds to atoms being in the

cavity, there does appear to be a slight dip. However, the white line shows the variance/mean

calculated for groups of summed counts, 200 integration time-bins long (i.e. of 400µs duration)

and shows small fluctuations about the line of variance/mean equal to one, but no dip. In addi-

tion, a linear fit comparing the variance and mean gives a gradient of 1.002 ± 0.004, indicating

that our reflection signal is consistent with a Poissonian and shot-noise-limited signal.

The equivalent dataset for the fluorescence signal is shown on the RHS of Figure 4.12. Here,

the variance versus the mean for each 2µs time bin is calculated across 250 shots. A linear
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Figure 4.12: Comparison of the signal variance and mean. LHS: The variance/mean as a

function of time for the reflection signal, calculated for 300 shots. The white line shows the

variance/mean calculated for groups of integration time-bins, 200 long. RHS: The variance

versus the mean for the fluorescence signal, calculated for 250 shots. The linear fit with zero

intercept shown alongside the data produces a gradient of 1.04 ± 0.01.

fit to this data, with zero intercept, gives a gradient of 1.04 ± 0.01, again indicating that the

fluorescence signal is nearly photon shot-noise-limited.

One factor determining the size of Nsig is τint, which defines how long we measure counts

at the APD before binning the signal. The size of τint relative to the duration of the signal,

τsig, is also relevant; for a signal of finite duration, increasing τint will naturally lead to a SNR

optimum as Nbg, which is generally independent of the signal, will continue to increase whilst

Nsig will not. This also implies that the optimum SNR will occur when τint ∼ τsig.

The following sections test the functionality of our system for measuring Neff = 1. This

discussion is then extended to consider the prospects for detecting individual atoms falling

through the cavity and individual atoms trapped inside the cavity. The limit for confident

detection of an atom will be taken as when the SNR = 1.

4.3.2 Detecting Neff = 1

We already know that we are sensitive to single atoms. The LHS of Figure 4.13 shows the mean

signal from the 300 drops discussed earlier, alongside a Gaussian fit to the signal indicated

by the white line. The peak in the signal corresponds to a normalised reflection signal of

2.00 ± 0.01 lab units, which assuming C = 0.3, gives Neff = 1.1. This signal thus corresponds,

approximately, to the signal one would obtain from a single atom optimally coupled to the

cavity. We now use this data to calculate the SNR for different values of τint.
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The RHS of Figure 4.13 shows the SNR as a function of τint, where in each case the period

of integration begins at the centre of the drop signal and expands symmetrically with increasing

time. The blue data points are discrete calculations of the SNR made from the averaged data

by summing over increasing numbers of time bins. The solid line shows a theoretical calculation

of the expected behaviour of SNR with τint, assuming the fit parameters found for the average

signal shown on the LHS of the same figure and Poissonian photon statistics. It matches

the data points well; both show a clear rise in SNR with τint, peaking at SNR = 10 when

τint = 6.65 ms. The Gaussian fit from the LHS estimates a FWHM of 8.6 ms. This means that

the optimum value of τint is approximately 1.5× the FWHM of the signal, broadly in line with

our earlier expectation.

Much faster detection can be achieved, however, when setting a minimum threshold of

SNR = 1. From the figure, this occurs at τint = 37µs, meaning that we can confidently detect

Neff = 1 in 37µs, or, equivalently, at a rate of 27 kHz.

The dashed line in the RHS Figure 4.13 is also a theoretical calculation of the expected

SNR, but now calculated for the peak signal, assuming no Gaussian time dependence (i.e. for

a stationary atom). This line follows the data and solid line for small integration times, but

once t ∼ 4 ms, they diverge as a larger portion of the Gaussian profile is sampled.

We can make an alternative measure of the detection confidence by using a threshold count

level, u, to distinguish between signal counts, Nsig, and background counts, Nbg and then

comparing the relative probabilities for detecting both at once. The probability of detecting

both Nsig ≥ u AND Nbg < u can be calculated analytically by knowing that our background

and signal are well approximated by Poissonian distributions.

The mean signal and background count levels are calculated by fitting a Poisson distribution

to histograms of the relevant sections of data. For the signal counts, the appropriate section is

the time segment of 8.6 ms corresponding to the FWHM region of the averaged Gaussian signal.

The number of counts per 2µs time bin are counted in this time segment for all 300 drops, giving

a distribution of signal counts, shown in the lighter blue on the LHS of Figure 4.14. The data

are plotted with statistical error bars, assuming a Poisson distribution of counts — although

on the scale of the graph these aren’t possible to resolve.7 Fitting a Poisson distribution to

this dataset gives the signal count mean, x̄fitsig = 0.3008 ± 0.0002, which completely describes

the distribution. This compares well to the actual mean, x̄actsig = 0.3011 — providing further

7The random errors are presented in this plot because we are trying to characterise the distribution of detected

counts. The primary contribution to any systematic error would be the APD dead time, which is essentially a

problem of how accurately we can count photons leaving the cavity.
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Figure 4.13: The average drop signal in reflection and calculated SNR. LHS: The average of

300 reflection experiments. The white line shows a Gaussian fit to the average, from which the

peak normalised reflection signal is 2.00 ± 0.01 lab units, equivalent to an Neff = 1.1, and the

FWHM is 8.6 ms. RHS: The SNR as a function of integration time, calculated for the average

drop signal shown on the LHS. The blue data points show calculations of the SNR from the

data and using Eq.(4.11). The solid and dashed lines are theoretical calculations of the SNR

as a function of τint. The solid line takes into account the Gaussian time dependence of the

signal, whilst the dashed line does not. From this, the SNR rises quickly, equalling 1 after 37µs

and peaking at 10 after 6.65 ms. This latter roll-over occurs when τint equals 1.5× the FWHM

of the Gaussian signal.
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evidence that our signal has Poissonian fluctuations.

The background count mean, x̄fitbg = 0.1621±0.0003, is calculated in a similar fashion. The

number of counts per integration time bin are counted for the final 30 ms segment of each of

the 300 drops (when no atoms are present), resulting in the count distribution shown in darker

blue on the LHS of Figure 4.14. As with the signal counts, statistical error bars are included.

The actual mean is x̄actbg = 0.1625, again showing good agreement.

Both sets of means (signal and background) are calculated for one time bin, corresponding

to 2µs, although the equivalent for larger integration times can be made by multiplying by

a factor τint/2 as this doesn’t alter the statistics. Using these means, the joint probability of

counting Nsig ≥ u and Nbg < u is given by:

P≥u, sig × P<u, bg

where

P≥u, sig = 1−
j=u−1∑
j=0

e−x̄sig
x̄jsig
j!

and P<u, bg =
j=u−1∑
j=0

e−x̄bg
x̄jbg
j!

(4.12)

This joint probability is shown as a function of τint on the RHS of Figure 4.14. Three values

of the threshold count level, u are shown; u = 3 is shown in the darkest blue; u = 2 is shown

in the medium-toned blue; and u = 1 in the lightest blue. From this, as u increases, the peak

detection fidelity decreases and occurs at longer values of τint. As will be seen later in this

section, this is contrast to the fluorescence signal. The best achievable fidelity is 37 %, which

occurs for τint = 7µs, using u = 1. Practically, this implies that one can be most confident

that an atom was detected when the background signal count is < 1 and the signal count level

is ≥ 1. That the fidelity is so low is, again, not surprising; the count distributions for the signal

and the background are quite similar, which makes it difficult to discriminate between them.

Another detection parameter of interest is the dynamic range of our signals; i.e. the range of

Neff over which we can confidently distinguish between different atom numbers. From Chapter

2, we know that the reflection signal saturates with higher Neff . One would therefore expect

the detector to fail to discriminate between different values of Neff when the change in signal

caused by an increase/decrease of one equals the fluctuations in the signal. This is shown in

Figure 4.15, where the solid lines show the differentiated signal (i.e. the differential of Eq.(4.2)

with respect to Neff) as a function of Neff , for two different pumping rates; the lighter blue

corresponds to a pumping rate of 810 kCounts/sec and the darker blue to 81 kCounts/sec. The

Poissonian fluctuations about the mean are indicated by the dashed lines, as a function of Neff .

The value of Neff at which the solid and dashed lines of each colour meet (as shown in the
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Figure 4.14: Using Poisson statistics to calculate the detection fidelity. LHS: The distribution

of counts per 2µs integration time bin for the signal counts (lighter blue) and the background

counts (darker blue). Fitting these distributions to a Poisson distribution gives estimates of

the respective means as x̄fitsig = 0.3008 ± 0.0002 and x̄fitbg = 0.1621 ± 0.0003. RHS: The joint

probability for detecting a signal count level ≥ u and a background count level < u as a function

of integration time. Three values of u are shown; u = 3 is shown in the darkest blue; u = 2

is shown in the medium-toned blue; and u = 1 in the lightest blue. As u increases the peak

fidelity decreases and occurs for larger τint.

figure with solid points in each colour) indicate the upper limit to the detection range. It is

clear that using higher pumping rates enables one to discriminate between higher values of

Neff : the upper limit for the higher pumping rate occurs at Neff = 26.2, whilst for the lower

pumping rate it occurs at Neff = 14.1. This makes sense, as whilst the atoms aren’t saturated,

we would expect the SNR to increase with increasing pumping rate.

Thus far we characterised the quality of our system using the reflection signal as an atom

detector by calculating the achievable SNR, detection speed, detection fidelity and dynamic

range. These findings are summarised in Table 4.1. We can use a similar rationale to calculate

the equivalent parameters for the fluorescence signal, allowing us to directly compare the two

methods. For all the following calculations, we use the set of 250 shot-noise-limited fluorescence

drops discussed earlier.

As before, the first parameter to be considered is the SNR as a function of τint. This is

shown in Figure 4.16. The dark red data points are discrete calculations of the SNR made from

the averaged fluorescence signal, calculated as a function of τint by summing over increasing

numbers of time bins. In each case, τint begins at the first time bin after the fluorescence pump

beam is switched on.
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Figure 4.15: The range of Neff which can be discriminated by our atom detector. The solid

lines show the differentiated signal with respect to Neff as a function of Neff , for two different

pumping rates: 810 kCounts/sec (in lighter blue) and 81 kCounts/sec (in darker blue). The

dashed lines show the signal fluctuations as a function of Neff . Where the solid and dashed

line of each colour meet, shown by the solid points, indicates the upper limit of the detection

range. For the higher pumping rate this occurs at Neff = 26.2 and for the lower pumping rate

this occurs at Neff = 14.1.

Figure 4.16: The SNR as a function of integration time, calculated for a fluorescence signal

averaged over 250 drops. The period of τint always begins for the time bin after the pump

beam is switched on. The dark red data points are discrete calculations of the SNR from the

averaged data, calculated by summing over increasing numbers of time bins. The solid line

is the SNR, calculated assuming an exponential signal, with parameters found by fitting to

the average signal. It shows good agreement to the data points. The dashed line is the SNR

calculated assuming a constant, peak signal — this diverges from the solid line and data points

once τint ≥ 20µs. SNRs > 1 are easily achievable, with the SNR equalling 1 after only 4µs.
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The solid and dashed lines shown in Figure 4.16 are calculations of the expected SNR. The

solid line shows the case of a signal which exponentially decays with increasing time — this

was shown earlier to be a good approximation of the actual fluorescence signal and fits the

data points well. The dashed line shows the case for a stationary Neff ; i.e. the SNR which

would be achieved were the mean peak fluorescence signal to be constant. This matches both

the solid line and the data points well whilst τint < 20µs, but they diverge as more of the

exponentially decreasing signal is sampled. This does however indicate that for the first few

tens of microseconds, the signal can be well approximated as a constant signal — a point which

will be used later when calculating the fidelity of atom detection using this method.

From this we know that, as with the reflection signal, high SNRs are easily achievable. The

SNR peaks at 5.4 when τint = 560µs and one can achieve a SNR = 1 after only 3.9µs. This

is an order of magnitude faster than the equivalent case in reflection, enabling faster detection

rates of up to 250 kHz. From the figure it is also clear that integrating for significantly longer

times does not substantially reduce the SNR, despite the short duration of the signal. This

is because the background noise is more than two orders of magnitude smaller than the peak

amplitude of the signal. In fact, using τint = 5 ms only reduces the SNR to 5.0.

We can also calculate the detection fidelity when using the fluorescence signal, following

the same method of calculating the joint probability for detecting Nsig ≥ u AND Nbg < u.

As before, the distribution of the signal counts and background counts are used to define

Poisson distributions with means, x̄fitsig and x̄fitbg . The signal counts used here are from the

first 2µs time bin across the 250 shots. The background counts are from the final 15 ms of

each of the 250 drops. The LHS of Figure 4.17 shows the signal (lighter red) and background

(darker red) count distributions. Unlike the case in reflection, these distributions are quite

different, particularly for count levels ≥ 1, suggesting that it will be possible to discriminate

between them with a high degree of accuracy, which in turn should lead to a high detection

fidelity. As with the reflection signal and background count distributions analysed previously,

the statistical error bars are shown here. The much larger uncertainty in the signal counts

arises from the substantially smaller sample tested (i.e. only 250 samples compared to nearly

2 million background samples). The calculated means of these two count distributions are

x̄fitsig = 0.4410± 0.0867 and x̄fitbg = 0.0039± 0.0001, which can be compared to the actual means

of x̄actsig = 0.5 and x̄actbg = 0.0040. Again, that these two estimates of the means are well matched

is further confirmation that it is reasonable to use Poisson distributions to approximate our

signal and background.



CHAPTER 4. ATOM DETECTION 141

Figure 4.17: Calculating the detection fidelity using the fluorescence signal. LHS: The distri-

bution of signal counts, shown in the lighter red, and background counts, shown in the darker

red. Unlike reflection, the count distributions are quite different. RHS: The joint probability

to detect Nsig ≥ u AND Nbg < u as a function of τint. Three threshold values are shown; u = 1

is shown in the darkest red; u = 2 is shown in the medium-toned red; and u = 3 in the lightest

red. As u increases so too does the fidelity of the measurement, although a corollary of this is

having to wait longer. A fidelity of 95 % can be achieved after 10.3µs if we use u = 1 counts

as the counting threshold. This can be increased to 99 % after 15.6µs using u = 2 and even

further increased to 99.7 % after 22.6µs using u = 3.
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As before, we can extend to larger values of τint by multiplying by τint/2. In the case of Nbg,

this approximation is valid for τint of several milliseconds, as the background counts fluctuate

about this constant level over this time period. For Nsig, this approximation is only valid for

τint ∼ 20µs, where the signal is approximately equal to its peak level.

The joint probabilities, found using Eq.(4.12), are plotted as a function of τint on the RHS

of Figure 4.17. Three values of u are shown; u = 1 is shown in the darkest red; u = 2 is shown

in the medium-toned red; and u = 3 in the lightest red. From this we see that choosing a

larger discriminator value for u means having to wait longer to maximise the detection fidelity,

but the resulting fidelity is improved. If we use the lowest discriminator of u = 1, we can

detect an atom with 95 % fidelity after 10.3µs. The fidelity can be increased by waiting longer

and using u = 2 count as a discriminator, whereby a 99 % fidelity is achieved after 15.6µs.

Evenmore, setting a discriminator of u = 3 counts enables a fidelity of 99.7 % to be achieved

after 22.6µs, although this is at the upper limit of our constant signal level approximation.

This demonstrates that we can achieve detection fidelities > 99% whilst also reaching detection

rates of up to 50 kHz.

Whilst the fluorescence signal compares favourably with the reflection signal with regards

to the detection speed and fidelity, the dynamic range available is smaller. From Chapter 2

we expect the average fluorescence signal from atoms scattering in the disordered limit to be

∝ C
√
Neff/(1 + 2CNeff), whilst the atoms aren’t saturated, although for high saturation, the

signal ∝ 2CNγ. This function peaks when Neff = 1/2C, rolling over and tending to zero with

increasing Neff . This feature implies a fundamental difficulty for atom counting, as one could

never be absolutely certain which side of the maximum one is on. Despite this, were we to

assume low atom numbers (i.e. to the left of the signal maximum), the peak value of Neff which

could be measured, ignoring any uncertainty caused by fluctuations, would be 1/2C. In our

system this equals 1.6.

The following chapter presents simulations exploring the effect of detuning the fluorescence

pump beam for higher Neff . These indicate that using a detuned pump beam can shift the

roll-over to larger values of Neff , increasing the available dynamic range. This will, however,

have a concomitant effect of reducing the atomic scattering rate and resulting signal.

Table 4.1. presents the key results from this section, comparing the key detection parame-

ters for the reflection and fluorescence signal. These findings imply that, whilst the reflection

signal has a larger dynamic range and can ultimately achieve higher SNRs, the fluorescence

signal is more suited to fast detection and has a higher fidelity. Whilst this appears to make
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Detection parameter: Reflection: Fluorescence:

Peak SNR 10 5.4

Required τint 6.65 ms 400µs

τint required for SNR= 1 37µs 3.9µs

Peak fidelity 37 % 99 %

Required τint 7µs 15.6µs

Dynamic range 0 ≤ Neff ≤ 15− 25 0 ≤ Neff ≤ 1.6

Table 4.1: Summary of the key detection parameters for when Neff = 1 for the reflection and

fluorescence signals.

the fluorescence signal more suitable for single atom detection, another point to consider is how

destructive each measurement is. This is the main negative aspect of the fluorescence signal,

which can be quite destructive; in the process of measuring the atoms can be pushed out the

cavity, whilst in reflection the only limiting factor is the atoms’ transit-time.

From this, however, we know that we can confidently detect Neff = 1. The following section

considers the case of detecting individual atoms, either as they fall through the mode or when

they are trapped.

4.3.3 Detecting individual atoms falling through the cavity mode

It is interesting to consider how efficient our system is at detecting an individual atom as it

falls through the cavity mode. There are two factors to consider here; how large a signal do

we expect from one atom and how long should this signal be integrated for to maximise the

signal to noise. The question of optimal τint is addressed first.

We expect the optimal τint to equal the signal duration, although in these circumstances

this isn’t well-defined. After falling from the MOT, the atom will be travelling at ∼ 32 cm/sec,

taking approximately 28µs to cross from −w0 → w0 of the cavity mode. If we assume that

the atom follows a straight line trajectory, this will equal the HWHM of the atom’s signal and,

from previous analysis, we might expect the best choice of τint to be similar.

A more rigorous method for determining the best τint to use can be made by simulating

the reflection counts measured at the APD as an atom falls through the cavity and re-binning

the data with different τint to find the maximum SNR. Initially, this is done for an atom which

passes through the centre of the cavity mode, so that it has a peak coupling rate of g = 98 MHz.

First, a ‘no-atom’ trace is simulated by producing a fake APD trace which has a Poissonian
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distribution of counts spanning 250µs in 5 ns time bins, with a mean of 0.0025 counts/bin,

equivalent to 500 kCounts/sec. This is the input count trace. The effect of the atom is taken

into account for each time bin using Eq.(4.3), with C = 0.3 and an atom number, NA(t) which

is a Gaussian centred at t = 95µs, with HWHM = 28µs and a peak = 1, mimicking the atom

falling through the mode. This produces an output count trace. For an individual time bin,

the input counts, Nin are related to the output counts, Nout by:

Nout =
Ninput

v2

[
2CNA(t) + v

2CNA(t) + 1

]2

where NA(t) = e
− velocity

2t2

w2
0 (4.13)

An example simulated trace, with and without an atom and before re-binning, is shown on

the LHS of Figure 4.18. The ‘with atom’ case, shown on top, can now be used to determine

the optimum τint by performing box-car sums across the trace for different box car lengths

between 0.5 − 50µs. Examples of the traces which result from this are shown on the RHS of

Figure 4.18, for τint = 500 ns (on the top) and τint = 10µs (on the bottom).

The SNR is found using Eq.(4.11), where Nsig is the mean peak count level found between

t = 75→ 125µs for each box-car trace and Nbg is the mean count level, taken across the whole

trace. This procedure is repeated 100 times with fresh input traces and the final SNRs at each

τint are found by averaging. The results are shown in Figure 4.19, where SNR is shown as a

function of τint. An optimum SNR of ≈ 2.1 occurs when τint = 20µs. This value of τint will

be used henceforth.

It should be noted that by virtue of only using the mean pumping rate across the ‘without

atoms’ trace to calculate Nbg, any other contributions to the background noise, such as the

far-detuned light used for locking the cavity, have been ignored. This is reasonable, as typically

these contribute < 10 kCounts/sec, compared to the pumping rate of 500 kCounts/sec.

This analysis already indicates that we’d expect to detect a maximally coupled atom with

an SNR≥ 1. In reality, however, most atoms will not fall through the centre of the mode

and will follow a random trajectory. One can estimate the distribution of coupling rates by

randomly assigning an atom coordinates inside the cavity multiple times and looking at the

average effect. To do this, an atom is randomly positioned on a plane centred in the cavity

one million times. For each ‘throw’ of an atom, the peak coupling, which occurs when the

atom is vertically centred on the mode, is calculated, using the atom’s x and z coordinates.

The longitudinal coordinate, z, can take any value between 0 ≤ z ≤ d, where d is the cavity

length, whilst the horizontal radial coordinate, x, is taken to have a range −2w0 ≤ x ≤ 2w0,

where w0 is the cavity waist. The distribution of coupling rates is shown on the LHS of Figure
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Figure 4.18: Box-car analysis of simulations of the signal from a single atom passing through

the cavity. LHS: An example input (bottom) and output (top) trace used to determine the

optimal τint. The input trace is 250µs long, in 50, 000× 5 ns time bins. The counts across the

trace have a Poissonian distribution, with a mean of 0.0025 counts/bin. The output trace is

calculated, per bin, using Eq.(4.13). RHS: The same output traces, but now re-binned with

τint = 500 ns (top) and τint = 10µs (bottom).

Figure 4.19: The SNR of the reflection signal as a function of τint, produced using simulations

of atom traces as detailed in the main text. A SNR optimum of ≈ 2.1 occurs at τint = 20µs,

indicating that this is the best value of τint to use.
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Figure 4.20: The probability of an atom having a given peak coupling rate, calculated by

randomly assigning coordinates inside the cavity mode to one atom, one million times. The

bounds for each coordinate are set by the cavity length and cavity waist. LHS: The probability

of occurrence of a given peak coupling rate, g. The coupling rates are grouped into 1 MHz wide

bins spanning a range −98→ 98 MHz. RHS: The probability of occurrence of a given peak C.

The peak cooperativities are grouped into 0.005 wide bins spanning a range 0→ 0.31.

4.20, where the one million coupling rates have been grouped into bins of width 1 MHz, from

−98→ 98 MHz. The y−axis shows the probability of finding an atom of a given peak coupling

rate. Integrating the distribution indicates that 28 % of atoms will have a peak coupling rate,

|g| < 10 MHz. The mean peak coupling rate is ḡ = 26.3 MHz and the median is 20.9 MHz.

The RHS of Figure 4.20 shows the same set of atoms, but instead the probability of an atom

having a peak C of a given value is shown, now grouped into bins of width 0.005, spanning

a range from 0 → 0.31. These values are calculated assuming (κ, γ) = 2π × (5200, 3) MHz.

From this one finds that the 89.1 % of atoms have a cooperativity, C < 0.1, whilst the average

cooperativity is C̄ = 0.037. Only 0.03 % of atoms have C = 0.3, as assumed in the earlier

analysis.

Whilst this calculation of the cooperativity distribution can be helpful, it is relatively

arbitrary as the cavity mode volume is not well defined. Thus, the final distribution ultimately

depends on how large a volume one ‘throws’ atoms into. Instead, one can calculate the number

of single atoms that would be detected by treating an atom density, multiplied by the volume

of space in which the cooperativity is large enough to produce a detectable signal.

We can use the earlier analysis to calculate the threshold cooperativity required to achieve

an SNR ≥ 1. Now, τint is fixed at τint = 20µs and the value of C used in Eq.(4.13) is varied.

The results of this are shown in Figure 4.21. This calculation indicates that a threshold peak
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Figure 4.21: The SNR of the reflection signal calculated as a function of peak atom cooper-

ativity, assuming τint = 20µs. This indicates that a threshold of C ≥ 0.13 produces an SNR

≥ 1.

value of C ≥ 0.13 results in a SNR ≥ 1. From our distribution, 6.8% of atoms, or equivalently,

6.8% of the cavity mode area fulfil this (we refer to the ‘mode area’, which is from the plane of

y = 0, as the above distribution calculates the peak C which assumes y = 0). The calculations

of SNR above assume an atom travelling across the mode from −w0 → w0, so the relevant area

becomes a volume by multiplying by 2w0. Thus, the actual volume with sufficient C for an

atom to be detected is 1.53× 10−15m3.

This volume can be multiplied by a atom density to calculate the number of single atom

events we would detect. From Eq.(4.1) we have an expression for the density at the cavity

as a function of time. At the peak in the atom drop signal, we have a density of 5.83 × 1014

atoms/m3. This implies that at the peak in the drop signal, we’d expect to be able to detect

0.89 atoms, i.e. less than one atom. This is corroborated by analysing experimental traces of

atom drops.

An initial response to this might be to increase the atom density, although this isn’t practical

for single atom detection. At this density, the number of atoms in the cavity mode volume

(i.e. πw2
0d/4) is 1.3, so increasing the density further would mean that there was more than

one atom in the cavity at once.

We can try to improve the situation by increasing the input pumping rate, although atomic

saturation means that this cannot be done indefinitely. How much the input pumping rate

can be increased before saturation starts to reduce the signal is shown in Figure 4.22 for three

different cooperativities; C = 0.1 in dark blue, C = 0.2 in the medium-toned blue and C = 0.3

in light blue. The onset of saturation occurs ∼ 50 MCounts/sec for all three cases, although
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Figure 4.22: The normalised reflection signal calculated as a function of input counting rate,

for three values of the cooperativity; C = 0.1 in dark blue, C = 0.2 in the medium-toned blue

and C = 0.3 in light blue. For all three cases it appears as though saturation begins to take

place at ∼ 50 MCounts/sec, but the larger the cooperativity the larger the rate of decrease in

the signal.

as C increases it is clear that the rate at which it impacts the signal increases. From this,

one might assume we could increase our rate to, say 20 MCounts/sec and increase our SNR. In

reality, however, we must also consider the health of our detector. Our APD has an absolute

damage threshold of 10 MCounts/sec, although we would want to keep below a count rate of

5 MCounts/sec for safety8.

In this situation, using an input counting rate of 2.6 MCounts/sec (chosen so that an atom

coupled with the maximum possible cooperativity of C = 0.3 produces a signal count rate of

5 MCounts/sec), does not reduce the threshold C required to detect an atom with SNR ≥ 1.

We can make similar estimates for the fluorescence signal and begin by defining the contri-

butions to Eq.(4.11). Nsig will be the number of fluorescence photons emitted by the atom into

the cavity mode and collected by the APD. This is the product of the atom’s mean duration

in the cavity, its scattering rate and the total collection efficiency, χ. In §3.1. χ was found to

be 0.06 and this is used here.

As soon as the pump beam is switched on, the atom will feel a force pushing it out of

the cavity. Our chances of detecting the atom are better it if it spends longer in the cavity,

so the beam should come on when the atom is one mode-waist, w0, past the cavity centre.
8In principle, we could replace our APD with a detector with a much higher damage threshold. Whilst this

might help the cause of single atom detection using the reflection signal, it isn’t a practical option for us as we

would lose the functionality of the APD which we need for other experiments; namely, the ability to count single

photons.
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The relevant time is then the time taken for the atom to cross 2w0. In this time, the mean

cooperativity is the average over the mode profile, from −w0 → w0, equalling 0.6× the peak

cooperativity. This mean value will be used to calculate the scattering rate.

The total atomic scattering rate, when saturated, is (2C + 1)γ(P ). γ(P ) is a function of

power and is adjusted using Eq.(4.7), assuming that the atom is half-saturated for a beam

power of 20µW. This is value is lower than that found in §2.1., but the beam was subsequently

re-aligned to optimise the fluorescence signal. Each scatter will lead to a momentum kick, h̄k

and, assuming the atom scatters at a constant rate, this leads to an acceleration, h̄k/m, so

that we can calculate how long the atom is in the cavity. With a pump beam power of 100µW

and assuming peak cooperativity of 0.3, it takes the atom 6.3µs to travel out of the cavity. In

this case, Nsig = 2Cγ(P )× 6.3µs× 0.06.9

The contributions toNbg should also be defined. These will have several sources; far-detuned

light used for frequency locking the cavity; stray light from the repumping beams, equipment

screens and laboratory room lights; and scattered light from the pump beam itself. We can

estimate the size of this background scatter using the average fluorescence trace from §3.1.

Excluding scattering from the pump beam, the total background count rate is 920 counts/sec.

With the pump beam switched on, the ratio of peak signal to background signal was 135:1, at

a power of 20µW. Assuming the pump beam contribution to Nbg scales linearly with power,

this ratio can be used to find the expected background noise for a given beam power.

Given these assumptions, the SNR is shown as a function of τint on the LHS of Figure 4.23,

calculated for a beam power of 170µW. Results for two cooperativities are shown; C = 0.3 in

light red and C = 0.1 in dark red. As expected, for both, the best SNRs occur when τint equals

the atom transit time, indicated by the dashed lines in each colour. The higher cooperativity

case yields a peak SNR = 1, indicating that only the most largely coupled atoms would be

detected. The sharp point on this curve is a manifestation of defining an exact boundary at

which the signal ends (i.e. within w0) — in reality this point would be ‘rounded off’ because

the point at which the atom leaves the cavity isn’t well defined.

We would expect that calculating SNR as a function of pump beam power will show a

maximum, caused when the added background noise from increasing the beam power negates

any increase in signal. This is evident on the RHS of Figure 4.23, which shows the peak SNR

(i.e. assuming τint equals the transit time), calculated as a function of pump beam power.

Again, the lighter (darker) red shows an atom with a peak cooperativity of 0.3 (0.1). The SNR
9This assumes the same polarisation conditions as found in §2.1.
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Figure 4.23: Detecting a single falling atom with the fluorescence signal (1). LHS: The signal

to noise ratio as a function of integration time, calculated for a beam power of 170µW. Two

peak cooperativities are shown; C = 0.3 in light red and C = 0.1 in dark red. The dashed

line indicates the average time the atom spends in the cavity before being pushed out by the

fluorescence beam. This is where the SNR peaks, at SNR = 1.01 and SNR = 0.57, respectively.

RHS: The peak signal to noise ratio as a function beam power. The same two cases as for the

LHS are shown here. For C = 0.3 shown in light red, a peak of SNR = 1.01 occurs for a beam

power of 180µW - although this value varies by only 1% between 80 − 350µW. For C = 0.1

shown in dark red, the peak is SNR = 0.57 and has a similarly large range over which it barely

changes.

peaks at a higher power of 180µW (compared to 100µW) for the higher cooperativity case,

although in both cases, there is large range of powers over which the SNR is within 1% of its

the peak value.

Given the small variation of the SNR for pump beam powers within ∼ 20% of the optimum

power, we can directly compare the SNR achieved at different cooperativities. This is shown

in Figure 4.24, where the peak SNR using a pump beam power of 200µW is calculated as a

function of cooperativity. From this, the threshold cooperativity required to have a SNR ≥ 1

is C ≥ 0.29, indicating that, as with the case in reflection, at our peak density we would not

expect to detect a single atom.

To summarise, it is unlikely that either the reflection or fluorescence signal would be able

to detect a single atom falling through the cavity. The main limiting factor is that the atom

isn’t localised in the cavity mode, so that its coupling is generally quite weak. This indicates

that perhaps our best option is to trap the atom. This is a future aim for the experiment and,

for this reason, it is interesting to extend the earlier analysis to treat this case.
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Figure 4.24: Peak fluorescence detection SNR as a function of cooperativity, calculated assum-

ing a pump beam power of 200µW. This indicates that atoms with C ≥ 0.29 will produce a

signal with SNR ≥ 1.

4.3.4 Detecting individual atoms trapped inside the cavity

A future aim of the experiment is to trap atoms inside the cavity with an optical dipole trap.

The findings for Neff = 1 when assuming a stationary atom already indicate that we’d confi-

dently detect a trapped atom. Here, the SNR should be improved as the atom spends longer

in the cavity and it will be localised at antinodes in the potential. In practice, ∼ 50 % of the

trapping light antinodes will overlap with the cavity mode antinodes, but a controllable loading

mechanism could be optimised to ensure atoms are loaded into positions which maximise their

coupling to the mode. We’ll assume that this is the case for this calculation.

As before, we begin by defining contributions to Eq.(4.11). Treating first the case of atoms

being detected in reflection, Nsig = Jsigτint, where Jsig is given by Eq.(4.2) and is proportional

to C. Whilst the trap substantially improves the atom’s coupling, the atom will not be static.

Typically, it will undergo oscillations across the cavity mode at a frequency ωtrap = k(2U
m )

1
2

where U is the depth of the trapping potential. This will result in a time variation of C,

although the oscillations will only sample the lower portion of the cavity antinode and so an

average coupling of 0.9gmax is assumed, or 0.8Cmax, where Cmax = 0.3.

A negative aspect of dipole trapping is that it involves far off-resonant light circulating

inside the cavity. Despite filtering by polarisation and dichroic filters, some proportion of this

light will leak through to the APD, contributing to the background noise. Given this, Nbg will

have two main contributions:

Nbg =
Jinτint
v2

+Ndipole

The first term is from the resonant light pumping the cavity. The second term represents
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Figure 4.25: Detecting a single trapped atom in reflection (1). LHS: The mean lifetime, τmean

for an atom inside a dipole trap in the cavity, calculated as a function of Jin. The primary cause

of atom loss out of the dipole trap is assumed to be from scattering cavity pumping light. Its

is evident that τmean is inversely proportional to Jin; for Jin = 1 MCounts/sec, τmean = 6.7 ms,

whereas for Jin = 0.5 MCounts/sec, τmean = 13.3 ms. RHS: The reflection measurement SNR

as a function of τint for Jin = 0.25 MCounts/sec, so that τmean = 26.6 ms. As expected, the

peak of SNR = 64 occurs when τint = τmean.

the scattered light from the dipole trap, taken to be 0.2 MCounts/sec when using an input

trapping power to the cavity of 500µW, which is typical for our experiment. At this input

power and including the effect of cavity build up, light of wavelength 804nm will produce a

trap depth of 920kB µK.

The timescale for detecting a trapped atom will be set by its mean lifetime inside the

trap, τmean. We can estimate this by assuming that the primary reason for atom loss is due

to heating as a result of scattering light from the cavity pump beam. We assume that an

atom leaves the trap having scattering sufficient photons that its additional energy is equal

to half the trap depth, with each scatter transferring 362 nK of energy. The mean lifetime is

shown as a function of Jin on the LHS of Figure 4.25. It is inversely proportional to Jin, so

that a typical pumping rate of Jin = 1 MCounts/sec results in τmean = 6.7 ms, whilst using

Jin = 0.5 MCounts/sec gives τmean = 13.3 ms.

Given these assumptions one can calculate the SNR for reflection detection of a single atom

trapped inside the cavity. The RHS of Figure 4.25 shows the SNR as a function τint, calculated

for Jin = 250 kCounts/sec. High SNRs are achievable, with a peak value of 64 occurring when

τint equals the mean trapping lifetime, in this case 26.6 ms. This is a step change improvement

on the case for detecting falling atoms in reflection. It should be noted that here, the sharp
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Figure 4.26: Detecting a single trapped atom in reflection (2). LHS: The highest achievable

SNR as a function of Jin. τmean is calculated for each value of Jin and it is assumed that the

highest achievable SNR occurs when τint = τmean. Higher Jin results in higher values of the

SNR, until Jin ∼ 1 MCounts/sec, when the SNR begins to saturate at ∼ 75. This is because

the constant dipole trap light contribution to Nbg becomes negligible in comparison to that

from the cavity pumping light and, once in this regime, any increase in Nsig is counteracted by

a corresponding increase in Nbg. RHS: The minimum value of τint required to achieve an SNR

≥ 1, calculated as a function of Jin. As Jin increases, this minimum time reduces, enabling

faster detection. A corollary of this is that the atom spends less time in the trap.
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point in the curve is the result of assuming that the atom has a fixed position (and thus a

fixed cooperativity) for the duration of its time in the trap. In reality, as the atom becomes

increasingly energetic it will sample a larger portion of the cavity mode and this would ‘round

off’ the sharp tip of the curve.

The LHS of Figure 4.26 shows the highest achievable SNR for different values of Jin, assum-

ing in each case that the peak occurs when τint = τmean, as confirmed by the previous figure.

The SNR rises quickly with Jin, but begins to saturate when Jin ∼ 1 MCounts/sec. This

saturation occurs as, increasingly, the contribution to the noise from the dipole trap becomes

less important, so that increasing Jin increases the signal, but it also equivalently increases the

background noise through the Jin/v2 term. Here, the maximum value of SNR ∼ 75, with this

value being entirely determined by the cooperativity.

In addition to the effect of saturation, we are again limited by the damage threshold of our

APD. The upper limit of safe operation corresponds to Nsig + Nbg = 5 MCounts/sec, which

occurs when Jin = 1.7 MCounts/sec, making our best possible SNR = 73.5. At these count

rates, one would also expect to see the affects of the finite dead time of the detector.

From this we know we can expect to achieve high SNRs, but it is also interesting to know

the speed with which we could detect a single trapped atom. As well as increasing the SNR,

increasing Jin reduces the τint required to confidently detect an atom with an SNR ≥ 1.

This is evident on the RHS of Figure 4.26, which shows the minimum value of τint needed

to achieve an SNR ≥ 1 as a function of Jin. From this, detection rates > 1 MHz can be

achieved using a Jin = 1.3 MCounts/sec, whilst still having a trapping lifetime of several

milliseconds. Alternatively, one might aim to trap an atom for ∼ 30 ms, setting an upper limit

of Jin ∼ 0.2 MCounts/sec. In this case, one could still achieve a high SNR (> 60) at a rate of

∼ 250 kHz.

Turning now to the case of fluorescence, Nsig is calculated following the same method as

for a falling atom, although now the increased localisation means that the atom is assumed to

have a cooperativity of 0.8Cmax, for the duration of its time in the trap. Nbg is also similar,

but with the additional contribution from the trapping light.

The timescale for detection is again limited by the time it takes an atom to be heated

out of the trap. This is determined by the scattering rate and, given the higher pump rates

used in fluorescence, the result is substantially shortened trap lifetimes compared to those in

reflection, as shown on the LHS of Figure 4.27. A pump beam power of 100µW will lead to a

mean trap lifetime of 56µs, with lower power beams leading to longer lifetimes; a 50µW pump
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Figure 4.27: Detecting a single trapped atom using the fluorescence signal (1). LHS: The mean

lifetime for an atom inside the dipole trap when being detected using the fluorescence signal.

The atom’s scattering rate increases for higher pump beam powers, so that the time taken to

scatter sufficient photons to be lost from the trap reduces. For a beam power of 100µW, the

mean lifetime is 56µs. The curvature is caused by saturation of the atomic scattering rate.

RHS: The SNR as a function of τint, calculated for a beam power of 100µW. The dashed line

indicates the average lifetime for an atom in the trap of 56µs. This is the point at which the

SNR peaks, at a value of 2.2.

Figure 4.28: Detecting a trapped atom using the fluorescence signal (2). LHS: The SNR as a

function of beam power, calculated assuming τint = τmean. As for the case in reflection, the

SNR increases with increasing pump beam power, but when the power ≥ 100µW the SNR

saturates. The saturated SNR is ∼ 2.3. RHS: The minimum τint required to achieve an SNR

≥ 1, calculated as a function of pump beam power. The minimum required τint decreases with

increasing beam power. However, the rate at which it reduces saturates quickly; only 7µW of

power are needed for a minimum τint of 10µs, but reducing this further to 1µs requires beam

powers of several watts.
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Detection parameter: Reflection: Fluorescence:

Peak possible SNR 73.5 2.3

Required τint 3.9µs 48µs

Table 4.2: Summary of the results from analysing the prospect for detecting a single, trapped

atom in our cavity using the reflection and fluorescence signals.

beam increases the mean trap lifetime to 66µs. In the absence of saturation, the lifetime will

fall inversely with increasing pump powers, but the effect of saturation is to produce the bend

in the curve visible in the figure for powers > 20µW.

The RHS of Figure 4.27 shows the SNR as a function of τint, calculated for a beam power of

100µW. The SNR peaks at a value of 2.2 when τint = τmean, as expected. This is substantially

smaller than the SNRs achieved using reflection detection, the primary cause being the short

amount of time that the atom spends inside the cavity, compared to mean durations on the

order of 10 ms in the case of reflection detection.

Increasing the beam power only produces small improvements in the SNR. The peak SNR

is shown as a function of beam power on the LHS of Figure 4.28. Again, the SNR saturates

with increasing beam powers, with no substantial improvement achieved beyond a beam power

of ∼ 100µW. One point to note, however, is that despite the atom being pumped at a high rate

(when compared to reflection), the total signal + background count rate at the APD is still

much smaller, as the cavity mode is not being directly pumped. Even with a beam power of

1 mW, the total rate is < 1 MCounts/sec, so we would be in no danger of damaging the APD.

We can also calculate the minimum τint required to achieve a SNR ≥ 1. This is shown on

the RHS of Figure 4.28 as a function of pump beam power, where, like reflection, higher pump

beam powers enable atom detection at faster rates. τint = 10µs is needed when using a beam

power of 7µW, implying a possible detection rate of 100 kHz. These possible rates saturate

quickly, however, so that increasing by an order of magnitude requires a beam power of several

watts, which isn’t experimentally practical. A summary of the findings of this section are given

in Table 4.2.

This discussion has highlighted some of the differences between the fluorescence and reflec-

tion signal for use in atom detection. It appears that whilst in our current mode of operation,

fluorescence signals offer the best route to detecting a single atom. Were an atom to be trapped

in the cavity however, reflection detection would be preferable as providing a potentially non-

destructive detection method. These calculations indicate that it would be possible to detect
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an atom with an SNR = 1 after 250µs, minimising the heating of the atom and the potential

for loss out of the trap. Other qualitative differences between reflection and fluorescence signals

are explored further in the following chapter, where a regime of higher Neff is accessed.



Chapter 5

Increasing the atom number

For the experiments discussed up to now it has generally been the case that Neff ∼ 1 and the

cavity is resonant with the atoms. This chapter begins by presenting a method for increasing

Neff , thereby enabling us to examine the impact of higher collective cooperativities on the

reflection and fluorescence signals. This is followed by experiments which explore the dispersive

nature of the atom-cavity interaction by measuring the excitation spectrum of the system in

reflection and fluorescence. In doing so, we demonstrate that, for weak coupling, these two

signals are manifestly different.

5.1 Motivation for increasing Neff

The atom-cavity cooperativity is a direct measure of how strongly the system is coupled and,

ideally, we’d like to increase the cooperativity as much as possible. Whilst remaining with
87Rb, there are two options for doing this; increasing g or decreasing κ. This latter option isn’t

practical without a structural change to the cavity, as one would need to reduce the internal

mirror roughnesses, thereby increasing the cavity finesse. There are also benefits to working

with a large κ; one can efficiently couple photons in and out of the system and the rate at

which this can be done sets an upper speed limit to the operation of any cavity QED-based

quantum logic gate.

Instead one can try to increase g. Reducing the mode volume would achieve this, but again

this would require a structural change. Instead, large increases can be gained by increasing Neff .

From Chapter 2 we know that for N atoms coupled identically to the cavity at a rate g, the

atom-cavity coupling rate becomes
√
Ng [40, 96]. This effect has been exploited experimentally

with cold atoms [39, 38] and ions [112] and leads naturally to the concept of a collective atom-

158
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cavity cooperativity, CN , given by:

CN =
Ng2

2κγ
= NC or CN = NeffC =

∑N
i=1 g

2
i

2κγ
(5.1)

This latter expression takes into account the variation in g’s across the atoms using the

spatially-dependent local coupling strength, gi. We can thus expect to increase CN by in-

creasing Neff . Our method for increasing Neff is discussed in the following section and with

it we achieve an increase of up to Neff ≈ 11 atoms, corresponding to increasing CN by ∼ 3.5.

This enables us to see substantially enhanced Purcell broadening of the atomic lineshape and

dispersive effects.

5.2 Increasing Neff

Our method for increasing Neff uses a resonant beam to push atoms out of the MOT. This

reduces the atom cloud’s travel-time between the MOT and the cavity, thereby reducing the

absolute expansion of the cloud and increasing the atom number density.

During this PhD project several alternatives were tried, all of which aimed either to reduce

the clouds’ expansion or increase the clouds’ initial density. To achieve the latter effect we tried

increasing the magnetic field gradient (thereby increasing the atom confinement) and switching

off the repumping light (to encourage atoms to stop radiating and therefore reduce outward

radiation pressure). Neither of these methods showed any notable increase in CN , indicating

that we were limited by the clouds’ expansion. Attempts to increase the magnetic field were

particularly thwarted by the need to ensure the coils didn’t outgas into the vacuum chamber,

so that any increase had to be transitory.

Alternatively, we tried including a far-detuned beam along the vertical axis to provide a

confining dipole potential to reduce expansion of the atom cloud as it fell. Again, there appeared

to be no increase in density, which was attributed to insufficient beam power. Finally, however,

the push beam was settled on. This section describes the experimental procedure for this

method and examines the resulting signals.

5.2.1 Experimental method

The dominant factor limiting the atom number density at the cavity is the ballistic expansion

of the cloud in the ∼ 30ms it takes for them to travel between the MOT and the cavity. During

this time, the radius of the cloud nearly doubles, so that the cloud density reduces by a factor
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of 8. Compared to the push beam case, where typical travel times are ≤ 0.5 ms, the cloud

radius changes by < 1%, resulting in a negligible reduction in density. This implies that we

should be able to increase Neff by at least a factor of 8, with an equivalent increase of
√

8 in

the coupling.

The ‘push’ beam reduces the cloud expansion by accelerating the atoms towards the cavity.

With the beam switched on, atoms feel a net force caused by scattering push-beam photons,

pushing them towards the cavity. The frequency and intensity of the push beam are controlled

by an AOM, whose drive signal can be switched on and off using an RF switch. The opti-

mal timing for the push beam was found empirically to be during the optical molasses stage,

although there isn’t a strong dependency on exactly when during this phase it occurred, as

the cloud number and size vary relatively slowly. For the majority of experiments discussed

here the beam was switched on 20 ms into the molasses, for a duration of a couple of hundred

microseconds.

A typical reflection signal which results from pushing can be seen in Figure 5.1, which shows

the mean counts recorded at the APD over 10 shots of the experiment. Clearly visible is a

tall, narrow signal at t = 35 ms, caused by the pushed atoms passing through. This beam is

narrowly focused, forming a waist of ∼ 60µm1 at the MOT. When on continuously it destroys

the MOT, but its transient effect is to punch a column of atoms out of the cloud, leaving the

rest intact. This explains the presence of the residual atom drop signal also visible in Figure

5.1, centred at t = 75 ms. Using Eq.(4.2) to compare the signal amplitudes we find that the

pushed signal is nearly 40% higher, at a normalised value of 2.70±0.09 (in lab units), compared

to 1.75 ± 0.02 achieved for dropped atoms. Using the signal height to estimate a value for the

CN (and assuming θ = 75%) gives 1.75 ± 0.39 for the pushed-atom signal and 0.31 ± 0.01 for

the dropped-atom signal. Given that in the dropped atom case, Neff = 1, this implies that Neff

increases to 5.5 atoms.

We would expect atoms pushed out of the MOT to be travelling much faster then those

falling freely under gravity and their respective arrival times at the cavity can be used to

estimate their speeds. In Figure 5.1, the push beam is switched on for 300µs from 33.0 ms.

The peak of the resulting reflection signal occurs at 33.4 ms, so the atoms take up to 400µs to

travel the 5.1 mm between the MOT and the cavity. This implies a minimum speed of 13.5m

s−1. In comparison, the falling atom signal is centred at 74 ms. Assuming the atoms were
1This is estimated assuming a Gaussian beam propagating from the output collimator of an optical fibre,

through a lens and through the chamber towards the MOT.
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Figure 5.1: The counts measured at the APD averaged over ten shots of a push beam exper-

iment. The reflection signal resulting from pushed atoms is clearly visible as the tall, narrow

feature, centred at approximately 35 ms. The residual reflection signal from falling atoms is

centred at approximately 75 ms. The relative signal heights are 2.70 ± 0.09 for the pushed

atoms and 1.75 ± 0.02 for the dropped atoms (both in lab units), corresponding to collective

cooperativities of 1.75 ± 0.39 and 0.31 ± 0.01 respectively. This implies that the pushed signal

corresponds to Neff = 5.5 atoms.

dropped at t = 40 ms (i.e. at the end of the molasses stage), this implies a speed of 0.15m s−1,

slower by two orders of magnitude.

Pushing atoms into the cavity also has an equivalently strong effect on the fluorescence

signal. Typically, Neff = 1 (from dropped atoms) would produce a signal of ∼ 10 photons/50µs,

compared to ∼ 100 photons/50µs when the atoms are pushed.2

In addition to individual pushes, an alternative timing sequence can be used to produce

multiple pulses of atoms in the cavity in a single experimental run. This ‘multi-push’ method

involves pushing directly out of the MOT with the push beam and allowing the MOT to re-

load in between beam pulses. This method can increase the rate at which data is gathered,

although the quality of pushed signals are dependent on the push beam power and repetition

rate, both of which set the extent to which the MOT can fully re-load. Generally, lower powers

and repetition rates produce a series of signals which decay slowly and/or reach a stable level,

making them suitable for gathering multiple shots for averaging. Conversely, using higher

powers and repetition rates quickly depletes the MOT, so that the signals decay as a function

of push number, allowing a range of Neff to be tested at once.

The plots shown in Figure 5.2 show example APD traces using this method. On the top
2These count rates are those measured at the APD.
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Figure 5.2: Example experiment traces using the multi-push method. TOP LHS: The reflection

signal, showing 30 pushes out of the MOT at a repetition rate of 2 kHz. Each pulse contains

two peaks; one is scattered light from the push beam itself and the other is the reflection

signal caused by atoms. This latter signal decays exponentially with time, as indicated by

the decreasing, dashed line. The horizontal, dashed line indicates the constant level of the

scattered light pulses. TOP RIGHT: Zoomed-in version of the trace on the left, from 32 ms to

54 ms. At this scale it is possible to clearly distinguish between the scattered light pulses and

the reflection signal pulses. BOTTOM: The normalised reflection signal in lab units for the

data shown on the LHS as a function of pulse number. This demonstrates the utility of this

method, which allows us to test amplitudes ranging from ∼ 2.5− 1 in one experimental run.
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Figure 5.3: Example trace of a multi-push experiment with a sequence alternating between

reflection and fluorescence measurements. The trace shows 40 pushes; 20 fluorescence pulses

interspersed with 20 reflection pulses. To collect fluorescence the cavity drive beam is shuttered

off from the cavity, explaining the alternating height of the background.

LHS is a multi-push reflection signal trace; in this case there are 30 pushes of the beam taken

at a repetition rate of 2 kHz. Each pulse shown in the data consists of two peaks. The first

peak is caused by scattered light from the push beam and stays constant throughout the trace,

as indicated by the level, dashed line. The second peak is the reflection signal from pushed

atoms. It begins substantially higher than the scattered light signal, but decays with time,

broadly following an exponential decay envelope as indicated by the decreasing, dashed line

in the figure. This is the result of the decay of the number of atoms being re-loaded into the

MOT. The individual peaks are evident in the zoomed-in version of the trace on the top RHS.

Alongside these graphs, shown on the bottom of Figure 5.2 is the normalised reflection signal

(or lab unit) as a function of pulse number, which is calculated for the previous data. This

shows the amplitude range of the reflection signals, between ≈ 2.5− 1.

Figure 5.3 shows a multi-push experiment, alternating between fluorescence and reflection,

with 20 pulses each. The fluorescence signals stand out with very high count rates, at ≈ 150

counts collected in 50µs at the beginning of the trace. These fluorescence shots are taken with

the cavity pumping light switched off; as evidenced by the drop in background level around

the peaks. Either side of the fluorescence peaks are reflection signals, which are only clearly

visible at the beginning due to the large scale. As will be discussed later, the reflection signals

either side of the fluorescence signal can be used to characterise Neff in the cavity at that point

in time. Both signals are subject to the same decaying envelope, again caused by the depletion

of the MOT.
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5.2.2 Characterisation

One of the first parameters to optimise was the duration of the push beam. Durations ranging

between 50−300µs were tested, the longest time being set by the arrival of atoms in the cavity.

For longer times, this occurred between 300µs and 350µs. The peak height at each duration

is the average of ten experiment runs and the results are shown on the LHS of Figure 5.4. It

appears that the reflection signal amplitude (shown here in lab units) saturates with increasing

push beam duration. Alongside the data is a saturation fit, the background level of which is

fixed at the reflection signal amplitude achieved with no push (i.e. for dropped atoms). This

fit estimates the fully saturated reflection signal amplitude to be 3.04 ± 0.33.

Physically, the effect of saturation appears sensible as the signal height should be limited

by at least two factors. Firstly, the reflection signal is expected to saturate with increasing

cooperativity (and thus increasing Neff), given by:

Normalised reflection signal =
1
v2

(
2CN + v

2CN + 1

)2

(5.2)

limCN→∞ (Normalised reflection signal) =
1
v2

As Neff increases the reflection signal is expected to tend towards a value set by the cavity

fringe visibility, v. Here, v2 = 0.25, implying that the signal’s saturated value is four lab units.

This is too high to be responsible for the saturation seemingly evident in the figure.

We found empirically that the push beam was sensitive to alignment and initial MOT

number. Sensitivity to the former seems sensible, as if the beam isn’t properly directed to

hit the MOT and pass through the cavity mode then the atoms won’t a) be pushed out of

the MOT by the beam and b) won’t pass through the cavities. Sensitivity to MOT number

also makes sense, as the push beam can only push out as many atoms as are in the column

of the MOT through which it passes. Later, after changing Rb dispensers and optimising the

MOT beam alignment and power — resulting in an increased MOT number, the push beam

was found to reach higher atom reflection signals of ≈ 3.5. Whilst this only corresponds to an

increase in lab units of < 20%, saturation means that this is actually a large change in Neff .

Infact, we’d need to reach an Neff > 650 to be within a quarter of a percent of the limiting

value of four, suggesting that it is MOT number which sets the limit on the highest reflection

signal we can achieve.

The push beam duration chosen for later experiments was 200µs, as here the reflection

signal is already close to its saturated value, but it allows a 100µs window between the push

beam being switched off and the atoms arriving in the cavity, reducing the possibility of stray
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Figure 5.4: Characterising the effect of the push beam. LHS: The normalised reflection sig-

nal for different durations of the push beam. Shown alongside the data is a saturation fit,

which estimates the fully saturated reflection signal to be 3.04 ± 0.33. RHS: Fluorescence line-

shapes taken for atoms pushed for 300µs (in lighter red) and 100µs (in darker red), alongside

Lorentzian fits to the datasets. Both lineshapes are red-shifted with respect to the fluores-

cence beam (which is located below the MOT and cavity), with their lineshapes shifted by

several MHz. As might be expected, the effect is more pronounced for longer durations. The

fits produce central frequencies which are red-shifted from resonance by −9.82 ± 0.86 MHz

and −30.79 ± 1.06 MHz for 100µs and 300µs, respectively. These correspond to velocities of

7.67 ± 0.67 m s−1 and 24.0 ± 0.83 m s−1, respectively.

light reaching the APD.

We already have evidence suggesting that the pushed atoms are travelling significantly

faster than their dropped counterparts, but we can make a separate estimate of their velocities

by measuring their fluorescence lineshapes. Assuming negligible heating, the lineshape would

still be expected to be Lorenztian, but now Doppler-shifted from resonance by a frequency,

∆f , related to their velocity, v, by:

∆f = −v
c
f0 (5.3)

In the above, c is the speed of light, f0 the frequency of the transition and the minus sign

indicates that the atoms are moving towards the beam driving fluorescence. The RHS of

Figure 5.4 shows two fluorescence lineshapes taken for atoms subject to the push beam for two

different durations; 300µs (in lighter red) and 100µs (in darker red). Lorentzian fits to these

datasets estimate the two velocities to be 7.67 ±0.67 m s−1 and 24.0 ±0.83 m s−1, respectively.

The earlier estimate of the speed based on atom arrival times sits within this range and was

calculated for a beam duration of 200µs.
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A corollary of this it that the interaction time between the atom and cavity is reduced. An

attempt to reduce the atom’s velocity was made by reducing the push beam power. The data

shown above was taken with push beam powers of > 200µW and it was found that using less

power did have some effect. The best result doubled the FWHM of the signal, but at the same

time the signal amplitude was reduced to the level of a regular drop, negating any positive

effect.

Returning to the lineshapes on the RHS of Figure 5.4, we can also use their width and

height to estimate the difference in Neff achieved using different push beam durations. We’d

expect a taller and wider lineshape for larger Neff , going as:

Height ∝

∣∣∣∣∣∣ 2C
1 + 2CNeff

∑
j

gj
g0

Ωj

2g0

∣∣∣∣∣∣
2

and Width ∝ (2CNeff + 1)γ

The Lorenztian fit gives a width of (4.37 ± 0.59)γ and (3.39 ± 0.38)γ for the lighter and

darker red lineshapes, respectively. This corresponds to CN = 1.67±0.30 and CN = 1.20±0.18

respectively and Neff = 5.67 ± 1.02 and Neff = 4.00 ± 0.61, so that the extra 200µs of push

increases the Neff by 40 %. The fluorescence lineshapes found when Neff ∼ 1 in the previous

chapter had a narrower width, indicating that we can attribute this increase to an increase in

Neff , as opposed to other broadening mechanisms.

Alternatively, we can corroborate the expected increase in CN by comparing the peak

amplitudes of the lineshapes. The fits estimate the lighter red peak to be 65.6 ± 4.3 and

the darker red to be 47.5 ± 2.3, equivalent to scattering rates of 949 ± 45 kCounts/sec and

1311 ± 87 kCounts/sec. The pump beam power used in each case was the same (at 37µW),

so the only differences in scattering rate would arise from different Neff and Doppler shifts, δ.

The atomic scattering rate is given by:

Rscatt = 2CNeffγ
I/Isat

(1 + 2C)2 + I/Isat + (δ/γ)2

As it happens, Rscatt is not particularly sensitive to δ and we can make the approxima-

tion that Rscatt = 2CNeffγ. Comparing the ratios of the scattering rates for each case gives

N light
eff /Ndark

eff = 1.4. Again, this implies that the longer push corresponds to an increase in Neff

of 40%, consistent with that found when comparing their widths.

We can perform the equivalent reflection lineshape to analyse the increase in Neff and

measure the enhanced Purcell broadening. The Lorentzian lineshape produced by scanning

the detuning of the cavity pump beam is described by Eq.(4.8), with a width and height given

by:
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Figure 5.5: The normalised reflection signal with cavity pump beam detuning. The lighter blue

dataset corresponds to a detuning scan across the first pulse in a multi-push experiment and

the darker blue dataset corresponds to the same scan for the seventeenth pulse. Lorenztian

fits to each dataset are shown alongside, producing estimates of CN = 3.55 ± 0.11 and CN =

0.40 ± 0.04, respectively.

Height ∝
(

2CN + v

2CN + 1

)2

and Width ∝ (2CN + 1)

Reflection lineshape data are shown in Figure 5.5. This scan was taken using the multi-push

method, with 100 pulses scanning a range of Neff so that different pulse numbers are associated

with different values of Neff . Twenty repetitions of each multi-push experiment were made, so

that each final pulse is an average of twenty pulses taken at the same time. This was repeated

for various pump beam detunings. The lighter blue data set corresponds to a detuning scan

across the first pulse, whilst the darker blue data set corresponds to the seventeenth pulse. Both

datasets broadly follow a Lorentzian lineshape and the earlier pulse, which should correspond

to a higher Neff , produces one that is both broader and taller. Shown alongside each dataset

are Lorenztian fits, which estimate CN = 0.40 ± 0.04 for the light blue dataset (pulse 17) and

CN = 3.55 ±0.11 (pulse 1) for the dark blue dataset. These give Neff = 11.10 ±0.35 atoms for

pulse 1 and Neff = 1.24 ± 0.14 atoms for pulse 17, indicating that the collective cooperativity

of the system has increased by a factor of ten3. We can use this large increase to explore how

the reflection and fluorescence signals vary as a function of Neff .
3These data were taken after replacing Rb dispensers and re-aligning the push beam, explaining the larger

increase in Neff achieved.



CHAPTER 5. INCREASING THE ATOM NUMBER 168

5.3 Reflection and fluorescence signals at higher Neff

The presence of multiple atoms in the cavity effects the reflection and fluorescence signals

differently. In the case of reflection (and when on resonance) one expects to see the signal

saturate with higher Neff . In fluorescence, the situation is complicated by the random phase

associated with the light scattered by different atoms, which initially results in an increase in

the signal, but ultimately leads to the cavity going dark as Neff increases further. This section

tests these effects.

5.3.1 Reflection signals and Neff

Given that we can increase Neff by an order of magnitude, we can also expect to see the effect

of the reflection signal saturating. Unfortunately, our only reliable way to calculate Neff is from

the reflection signal itself — so when plotting the reflection signal versus Neff it is important

that the latter is calculated correctly. To this end, we’ve tested two methods of calculating it:

1. ‘CN from height’ This method uses the reflection signal amplitude and the measured

cavity fringe contrast, θ = 1− v2, to calculate CN , using Eq.(5.2).

2. ‘CN from width’ This method calculates CN from the spectral width of a reflection signal

lineshape, taken using different detunings of the cavity pump beam.

The LHS of Figure 5.6 shows the results of calculating CN via the two methods. Ideally, one

would expect an exact one-to-one mapping between the them, as indicated by the dashed line

of unity gradient. The dark blue data show calculations made for dropped atoms and the light

blue data show the equivalent for pushed atoms. There is broadly a linear relationship between

the two, although with some clear discrepancies. Firstly, the vertical stratum of dropped and

pushed atom data are caused by the ‘CN from width’ method failing at low values of CN ,

even in some cases producing negative values. This is caused by the lower signal to noise

ratios at low CN , which makes it difficult to correctly identify a Lorenztian lineshape to fit

to. Conversely, at higher CN the ‘CN from height’ method begins to fail, causing substantial

deviations from the unity gradient line. This appears to be due to saturation, which makes it

difficult to discriminate between signal heights. This is further corroborated by looking only

at the dropped atom data, which samples a much lower CN regime and shows a much smaller

deviation about the line.

These characteristics are, to some extent, reproduced in the RHS of Figure 5.6, which

shows the equivalent procedure, but now calculated using ‘synthetic’ data. This is produced
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Figure 5.6: Comparison of the different methods for estimating CN . LHS: A graph of ‘CN from

width’ versus ‘CN from height’, where the dropped atom data is shown in dark blue and the

pushed atom data is shown in light blue. Ideally, these two methods should produce identical

results and all the data points would lie on a straight line of unity gradient, as indicated by

the dashed line. The data do broadly follow this pattern, with some clear exceptions caused by

failings in the fitting procedure, discussed in the main text. RHS: A graph of ‘CN from width’

versus ‘CN from height’, this time calculated using ‘synthetic’ data produced by randomly

distributing atoms inside the cavity mode. Some of the features of the real data are replicated

here, such as the scatter about the unity gradient line for higher CN and, to a lesser extent,

the stratum of data at very low CN .

Figure 5.7: A comparison of the ‘known CN ’ with the ‘measured CN ’ for the synthetic data, cal-

culated using the single-parameter fitting method. The stratum at low CN has been eliminated

and the scatter about the unity-gradient line is substantially reduced.
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by randomly positioning atoms throughout the cavity and making draws of atoms, aiming for

a particular value of CN , ‘known CN ’. This process is repeated to account for many ensembles

of atoms arriving and leaving in a single bin time that we take data and each draw of atoms

is used to simulate a reflection signal, from which the CN is ‘measured’ using the height and

the width. Comparing the two datasets, the real data show much worse stratum and appear

systematically above the unity-gradient line until CN > 4. Photon shot noise is already included

in the synthetic data, but this could be the effect of technical noise which would reduce the

signal to noise (i.e. effecting the Lorentzian fits at low CN ) and wouldn’t be reproduced in the

synthetic data. Potential sources could be oscillations in the cavity length or variations in the

cavity pump beam power.

Alternatively, a single-parameter fit can be used to reduce the impact of these failings in

calculating CN at either end of the cooperativity scale. This optimises the estimate of CN to

fit the height and width simultaneously. The results of using this method are shown in Figure

5.7, which plots the ‘known CN ’ of the synthetic data against the CN found using the single-

parameter fit. The data now follow the unity-gradient line well, with substantially reduced

scatter and no stratum at low CN , indicating that this method more accurately determines

CN .

We can now employ this method when analysing the reflection signal at high CN . Data to

this effect are shown Figure 5.8, where the normalised reflection signal is plotted as a function of

CN , with data shown for dropped atoms (the dark blue circles) and pushed atoms (the light blue

squares). Alongside this are fits to Eq.(5.2). The dashed line in the figure indicates C = 0.3,

the cooperativity regime accessible when the atoms are dropped and Neff = 1. The push beam

makes it possible to achieve higher cooperativities and the saturation of the reflection signal is

clearly visible.

There is a slight discrepancy between both the fits and the datasets. This can be accounted

by differences in the fringe visibility, v. The data sets are calculated using the measured values,

which were v = 0.27 for the pushed atoms and v = 0.26 for the dropped atoms. The fits also

produce slightly different estimates of v = 0.275 for the pushed atoms and v = 0.270 for the

dropped atoms.

We can now use the reflection signal as a way of calibrating the fluorescence signal as a

function of CN .
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Figure 5.8: The normalised reflection signal as a function of collective cooperativity, CN ,

calculated using the single parameter fitting method. The dropped atom data are shown in

dark blue circles, whilst the pushed atom data are shown in light blue squares. Fits to Eq.(5.2)

are shown alongside. The discrepancies between the data are caused by differences in fringe

visibility.

5.3.2 Fluorescence signals and Neff

At a given point in time, the Neff inside our cavity consists of atoms randomly distributed

across the mode. This had no tangible effect on the reflection signal, as the cavity mode

was being directly pumped, forming a standing wave inside the cavity which ensured that the

atoms scattered in phase and that their effects summed ‘coherently’. This is not the case in

fluorescence, as the coupled system is driven from the side. From Chapter 2, this results in the

fluorescence signal being given by:

Jflr = 2κχ

∣∣∣∣∣∣ 2C̃
1 + 2C̃Neff

N∑
j

gj
g0

Ωj

2g0

∣∣∣∣∣∣
2

(5.4)

This equation doesn’t have an analytical solution, although in Chapter 2 the average effect

was calculated, with all the atoms being identically pumped at a rate Ω. This showed that Jflr

initially increased with increasing Neff , but reached a maximum when Neff = 1/2C, whereupon

it decreased, tending towards zero as Neff → ∞. Effectively, with enough atoms randomly

scattering into the cavity, the cavity goes dark, an effect which has been observed experimentally

in [113].

To gain some insight into the expected behaviour in our system, we can use a Monte Carlo

simulation to randomly position atoms inside the cavity and treat them as scattering inde-

pendently, using their positions to determine their coupling rate, g(x, y, z) and their pumping

rate, Ω(x, y, z). Their total scattering rate can then be summed and the fluorescence signal
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Figure 5.9: Simulations of the behaviour of the fluorescence signal with increasing Neff . LHS:

Comparing the effects of having a uniform Ω for all atoms (in light red) to the real case, where

Ωj varies with the position of the jth atom (in dark red). The non-uniform case is simply

reduced by ∼ 1/2, equivalent to the ratio of mean-to-peak intensity, with the rollover position

unchanged. RHS: The effect of detuning the driving beam, with a position-dependent Ωj . Four

detunings are shown, with darker to lighter red corresponding to ∆a = 2π × (0, 3, 6, 9) MHz,

respectively. As the detuning increases, the rollover appears to shift to higher values of Neff .

calculated using Eq.(5.4). In the simulation, 100 throws of atoms into the cavity are made

for each value of Neff . Each simulation produces the total fluorescence count rate at the APD

and assumes a 10% collection efficiency and drive beam Rabi frequency of 2π × 10 MHz. The

results are shown in Figure 5.9, where two different effects are tested.

The LHS shows a comparison of the fluorescence signals for the case of a uniform beam (in

light red) with a position-dependent beam (in dark red), so that the atoms are either driven

at an identical rate Ω or at a position-dependent rate Ωj . The effect appears to shift down

the amplitude of the curve, but the general shape and, more specifically, the position of the

rollover of the signal, remains unchanged. As a point of interest, a similar curve to the position-

dependent case can be produced using a uniform beam with amplitude of Ω/2, equivalent to

the spatial average over the cavity mode.

The RHS of Figure 5.9 shows the results of simulations where a position-dependent drive

beam is detuned by an amount, ∆a. Four values of ∆a are shown; from ∆a = 0 to ∆a =

2π × 9 MHz in steps of 2π × 3 MHz. Increasingly lighter-red data points correspond to larger

values of ∆a. Detuning appears to reduce the amplitude of the curve, but also broadens and

shifts the rollover to higher values of Neff . This effect is of particular interest to us because in

our experiment the atoms are pushed by the pump beam as they fluoresce, so that we might



CHAPTER 5. INCREASING THE ATOM NUMBER 173

Figure 5.10: The fluorescence signal with increasing Neff . LHS: Experimental data showing the

fluorescence signal measured for different Neff (bottom horizontal axis) and CN (top horizontal

axis). The dashed line at Neff = 1/2C indicates where the rollover in fluorescence signal

amplitude would be expected to occur. The data appear to increase linearly with Neff at first,

consistent with the ‘disordered scattering’ limit - but no rollover is apparent. RHS: Comparison

of simulated data (the dark red line) and experimental data from the LHS (the light red points).

The simulated data assumes a drive beam Rabi frequency of 2π × 10 MHz and a detuning of

2π× 5.4 MHz. There is a good match between them, indicating that detuning may well be the

reason for the lack of rollover in the signal.

expect them to be detuned due to the Doppler effect.

These simulations can be compared to the LHS of Figure 5.10, which shows experimental

data of the fluorescence signal as a function of Neff (bottom axis) and CN (top axis), assuming

C = 0.3 to convert between them. These data are taken using the multi-push method, with

100 pulses alternating between reflection and fluorescence signals. In this way, the ‘equivalent’

reflection signal can be calculated for a given fluorescence signal by taking the mean of the

reflection signals either side of it. Multi-push shots were then taken at nine different pump

beam detunings, so that each fluorescence signal is associated with a reflection signal height

and lineshape, allowing CN to be calculated using the single-parameter fit. The fluorescence

signals are the summed counts for ten shots taken with τint = 50µs.

The data shown here at first appear to increase linearly with Neff , which is consistent with

the expected behaviour in the ‘disordered scattering’ limit. In the absence of other effects, we’d

expect this signal to peak at Neff = 1/2C = 1.6, but no rollover is evident and the signal still

appears to be increasing at Neff ∼ 3. This cannot be firmly tested unless higher values of Neff

are achieved, but we can gain more insight using our simulations. The RHS of the same figure
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compares these data (the light red circles) with a simulation (the dark red line), which includes

a detuned, position-dependent beam; Ω = 2π × 10 MHz and ∆a = 2π × 5.4 MHz. Different

combinations of Ω and ∆a were tested, but these values appear to show the best agreement.

This suggests a potential reason for our apparent lack of rollover, which might be caused by a

detuning between the pump light and the atoms4.

One potential source of detuning is Stark-shifting of the atoms caused by the presence of

locking light circulating inside the cavity. This topic is discussed in more detail in the following

chapter, but the degree of shifting seen here would require a minimum input power of 100µW,

which is much higher than that used in this experiment. More likely is that this is caused by

the Doppler shift as the atoms are being pushed and we know from earlier characterisation of

the push beam that Doppler shifts of several tens of MegaHertz are possible. To confirm this

hypothesis the experiment should be repeated, but with the resonance frequency of the atoms

found for each value of Neff beforehand.

These experiments have given us an insight into the behaviour of the reflection and fluores-

cence signals at higher Neff . In the following section higher values of Neff are used to enhance

the cavity interaction, measured using two-dimensional scans of reflection and fluorescence

signals.

5.4 The dispersive atom-cavity interaction: 2D scans of reflec-

tion and fluorescence signals

We can measure the excitation spectrum of the atom-cavity system by taking two-dimensional

scans of the reflection and fluorescence signals. Such scans involve detuning both the pumping

beam driving the atoms by an amount ∆a and the cavity by an amount ∆c, where these

detunings are defined as:

∆a =
1
γ

(ωL − ωA) and ∆c =
1
κ

(ωL − ωC)

Here ωL, ωA and ωC correspond to the angular frequencies of the drive beam, free-space

atom and cavity respectively. The signals are now given as a function of these detunings as:
4This detuning does not effect the estimate of Neff , which is made using the reflection signal and the ’single-

parameter’ fitting method. Because the reflection signal involves only weakly pumping the atoms, the light-force

effects on the atoms as they pass through the cavity is negligible. In contrast, the beam which produces

fluorescence signals drives the atoms relatively strongly and accelerates the atoms.
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Reflection signal =

∣∣∣∣∣∣1 +
1−
√
v

(1 + i∆c)(1 + 2CNeff
(1+i∆c)(1+i∆a))

∣∣∣∣∣∣
2

(5.5)

Fluorescence signal = 2κχ

[
Ω
√
Neff

2g

]2
∣∣∣∣∣∣

−2C
(1+i∆c)(1+i∆a)

1 + −2CNeff
(1+i∆c)(1+i∆a)

∣∣∣∣∣∣
2

(5.6)

From this, we know that a finite detuning between the atom and the cavity field will

result in both the fields corresponding to the signals having an imaginary part. This implies

that the interaction is dispersive, producing a phase-shift in the internal cavity field which

makes the frequency of the resonance change. When we take two-dimensional scans of the

reflection signal we are mapping out the excitation spectrum of the coupled atom-cavity system

[68], so that we can observe this dispersion and measure its change with increasing collective

cooperativity. Because measuring in reflection one automatically drives the coupled atom-

cavity system (because the cavity mode is being pumped), one expects to see evidence of the

coupling in the excitation spectrum for any finite cooperativity.

Interestingly, the same isn’t always true for the fluorescence signal. This can lead to a

qualitative difference between the signals which, up to now, hasn’t been evident. When the

coupling is sufficiently weak, the driven atom emits a photon which is almost immediately ‘lost’

by the cavity and measured at the APD. To this end, the atom and cavity are still behaving

as separate entities. We shouldn’t expect to see strong evidence of the dispersive interaction in

the two-dimensional scan of the excitation spectrum because essentially, we are just measuring

the excitation spectrum of the atom. As the interaction strength increases, however, one is

increasingly driving the coupled system, so that the spectrum should change.

This qualitative difference is shown in Figure 5.11, which shows both types of signal as

a function of detuning, ∆, where now ∆ = ∆a = ∆c, so that the pumping beam and the

cavity are detuned by the same amount (relative to their linewidths). The LHS (RHS) shows

the reflection (fluorescence) signal as a function of ∆. All three sets of graphs are calculated

assuming (g, γ, κ) = 2π × (98, 3, 5200) MHz, with Neff changing for each set.

The top graphs show the case of Neff = 1. On the LHS, the reflection signal shows the

Lorentzian profile of the cavity. Close to ∆ = 0, however, there is a small perturbation from

the lineshape, which is caused by the presence of a single atom. Thus, even one atom has a

noticeable effect on the cavity lineshape, which shows the emergence a small splitting. The

RHS shows the fluorescence signal. The presence of the cavity is, in this case, manifest in the

lineshape broadening, caused by the Purcell effect, but, in contrast to the reflection signal, the
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Figure 5.11: The reflection (LHS) and fluorescence (RHS) signals, calculated as functions

of detuning, ∆, where ∆ = ∆c = ∆a. These are shown for three different values of Neff ,

with the cavity parameters kept constant at (g, γ, κ) = 2π × (98, 3, 5200) MHz respectively.

TOP: Neff = 1. For the reflection signal, the Lorentzian cavity profile is visible, with a small

perturbing feature caused by the presence of an atom, centred at ∆ = 0. In contrast, the

fluorescence signal is a Purcell-broadened Lorenztian, but shows no other features caused by

being coupled to the cavity. MIDDLE: Neff = 1.6, which corresponds to Neffg
2/κγ = 1.

The perturbation at the centre of the reflection signal has increased, but now the fluorescence

signal is qualitatively different, with the lineshape flattened in the region of ∆ = 0 and the

second derivative of the signal equalling zero when ∆ = 0. BOTTOM: Neff = 80. The

coupling is now substantially larger, although it is not yet into the strong coupling regime,

where g
√
Neff � (κ, γ). The reflection and fluorescence signals now both show a clearly resolved

splitting.
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shape of the signal is identical to a free-space atom being driven by a beam of varying detuning.

The lineshape is a Lorentzian, centred at ∆ = 0.

The fluorescence signal shape noticeably changes, however, for the slightly larger value of

Neff = 1.6, shown in the middle graphs. This corresponds to Neffg
2/κγ = 1, so that the

coherent interaction rate is equal to the loss rates. Now, in the region of ∆ ∼ 0, the Lorentzian

profile of the fluorescence signal has been flattened at the peak, with the second derivative going

to zero when ∆ = 0. This coupling is now sufficient to change the shape of the fluorescence

signal. In reflection, the perturbation close to ∆ = 0 has increased, increasing the splitting of

the cavity lineshape.

Once more strongly coupled, both the reflection and fluorescence signals show a resolved

splitting, with each peak corresponding to the energy of an eigenvalue of one of the system’s

dressed states. This is clear from the bottom graphs, which are calculated for the case when

Neff = 80. This splitting is still well-resolved, despite not being in the strong coupling regime,

when g
√
Neff � (κ, γ).

As discussed in Chapter 2, the splitting evident in Figure 5.11 arises from the mixing of

the atom and cavity states into ‘dressed’ states. The splitting can only be resolved when the

atom and cavity are strongly coupled and is manifest as an ‘avoided crossing’. We cannot

expect to resolve this for our system parameters, but we can hope to observe the underlying

interaction through a splitting and shifting of the cavity resonance when probed in reflection.

In addition, we can take advantage of our relatively high fluorescence collection efficiency to

show the qualitative differences between the reflection and fluorescence signals.

5.4.1 2D scan in reflection

As mentioned, conducting a two-dimensional scan of the reflection signal should demonstrate

the underlying interaction between the atom and the cavity field. The structure we’d expect to

observe is shown in Figure 5.12. For simplicity, these plots are calculations of the transmission

spectrum with detuning, although the same features will be observed in reflection. The two

smaller plots on the LHS show the spectra for an empty cavity (top) and a single, free-space

atom (bottom). Since here they are treated as separate entities, they only show a frequency

dependence with ∆a (the horizontal axis) in the case of the atom and ∆c (the vertical axis)

in the case of the cavity. For the atom the spectrum has a band of frequencies where the

transmission is minimised, as a result of absorption. The cavity has a band of frequencies

which fulfil the resonance condition of the cavity, maximising its transmission.
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Figure 5.12: The two-dimensional transmission spectrum of our cavity, with and without an

atom. For each plot, ∆a is given by the horizontal axis and ∆c is given by the vertical axis.

LHS: The separate transmission spectra for the cavity (top) and the atom (bottom). Each

show a narrow band of frequencies when light is either transmitted (by the cavity) or absorbed

(by the atom). MIDDLE: The transmission spectrum of light passing consecutively through an

atom and a cavity. The cavity resonance is split where the atom absorbs strongly, but there is

no dispersive effect as the atom and cavity do not interact. RHS: The transmission spectrum

from a coupled atom-cavity system. The cavity resonance is still split, but now the dispersive

effect of their interaction causes the resonance to shift in frequency. The white, dashed line

indicates the value of ∆c corresponding to the maximum in transmission as one sweeps ∆a.

The middle plot shows the transmission spectrum which would result from the light passing

consecutively through the cavity and the atom, so that there is no interaction between them.

This is just the product of the separate atom and cavity spectra shown on the LHS. The cavity

transmission band is now split for the band of frequencies where the atom strongly absorbs.

The plot on the RHS shows the transmission spectrum which results from an atom and

cavity which are coupled. As in the uncoupled case, the cavity resonance is still split, but

now the dispersive nature of the interaction results in the cavity resonance either side of the

splitting being frequency-shifted. The white, dashed line shown alongside the spectrum plots

the value of the cavity detuning corresponding to the transmission maximum, as a function of

the atomic detuning and it maps out a dispersion as one sweeps through the atomic resonance.

This dispersion should increase with increasing coupling.

From a practical perspective, a two-dimensional scan requires the detuning of the cavity

and the pump beam driving the atoms to be varied independently. For these experiments
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the pump beam detuning was varied as before, using an AOM. To independently detune the

cavity, the wavelength of the cavity laser (used to produce an error signal for the cavity lock)

was varied by changing the current to the laser diode. This changes the lock point relative to

the pump beam resonance, detuning the cavity from the pump beam by a controllable amount.

For each pump beam detuning, the cavity itself was scanned through 21 detunings, from one

side of the cavity resonance to the other.

One such scan of cavity detunings for one frequency of the pump beam takes approximately

20 minutes to complete and, during this time, the cavity can drift. In addition, the change

in the current to the laser diode does not produce a linear change in the cavity lock point.

Both of these effects mean that the cavity detunings for each data point had to be empirically

determined afterwards. To this end, a record was made of the pump beam level inside the

‘empty’ cavity each time the laser current was changed. Having scanned the cavity across 21

detunings, this produced a set of 21 different ‘empty’ cavity pump beam count levels, effectively

mapping out a cavity lineshape. Fitting a Lorenztian of fixed FWHM, 2κ to this lineshape

allows the cavity detuning for each point to be determined.

One such set of cavity detunings were produced for each pump beam detuning, resulting in

14 cavity detuning scans. These were then ‘lined up’ by lining up the centres of each Lorentzian.

In addition, the multi-pushing technique was used for each run, so that each data point is an

average over 30 reflection pulses. The final datasets consisted of 294 three-dimensional data

points: (pump beam detuning, cavity detuning, normalised reflection signal averaged over 30

pushes). These datasets can then be presented in contour plots by extrapolating the signal

level between each discrete point. Contour plots for different values of Neff are shown on the

LHS of Figure 5.13. For each, the value of Neff is found by fitting each dataset to Eq.(5.5).

The top plot is for Neff = 0; the middle plot is for Neff = 1.1; and the bottom plot is Neff = 7.1.

For comparison, the RHS of Figure 5.13 show Eq.(5.5) plotted for the same cavity contrast

of θ = 76%, fixed cavity parameters (g, γ, κ) = 2π × (98, 3, 5200) MHz, using the values of

Neff found from fitting to the LHS data.

The first set of contour plots are displayed on the top of Figure 5.13. They correspond to

an empty cavity, with Neff = 0. Both the theory and the data plots show a dark, horizontal

stripe along the line of ∆c = 0, showing the empty cavity profile.

The middle plots shown in Figure 5.13 show a later time when there are atoms inside

the cavity. Fitting to Eq.(5.5) estimates CN = 0.34 ± 0.04, which assuming a single atom

cooperativity of 0.3 means that Neff = 1.1 ± 0.1. The equivalent theory plot of the RHS shows
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Figure 5.13: Two dimensional scans of the cavity reflection signal with respect to the cavity

and pump beam detuning. The LHS of each plot shows real data, the RHS shows theory plots

to Eq.(5.5). Three different values of Neff are shown. TOP: Neff = 0. MIDDLE: Neff = 1.1.

BOTTOM: Neff = 7.1.
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Figure 5.14: The value of ∆c at which the reflection signal is minimised, plotted as a function

of ∆a. Each plot corresponds to a contour plot shown above; darker to lighter blue gives of

Neff = 0, 1 and 7. The dispersion clearly increases with larger coupling.

the case of Neff = 1.1. In both plots the cavity resonance is still evident as a dark horizontal

stripe along the line of ∆c = 0, but the cavity resonance is clearly split close to ∆a = 0.

Looking closely, there is already evidence of the resonance being shifted, even for Neff ∼ 1.

The bottom plots shown in Figure 5.13 show an even later time in the experiment. Fitting

to Eq.(5.5) estimates CN = 2.1 ± 0.1, corresponding to a Neff = 7.1 ± 0.5. The theory plot

for this value of Neff is shown on the RHS. The splitting and shifting of the cavity resonance

now dominates both plots, with the unperturbed resonance only being recovered for detunings

> 10γ. The resonance is now obviously shifted, with strong evidence of the dispersive effect of

the atom-cavity interaction.

One feature which is common to all the data plots is that the cavity fringe appears narrower

than their theory counterparts. This is a feature of the data presentation — the contour plots

extrapolate between points and, because of the limited resolution of the data scans, only a few

points sample the deep sections of the cavity fringes, making them appear narrower.

As discussed, for a coupled atom-cavity system, the minimum in the reflection signal maps

out a dispersion as one sweeps through the atomic resonance. This is evident in Figure 5.14,

which shows the value of ∆c at which the reflection signal is minimised as a function of ∆a.

Darker to lighter blue correspond to increased values of Neff ; 0, 1 and 7, as calculated from

the contour plots already shown. The dispersion increases as the ratio of coupling to losses

increases, so that in the limit of zero losses there is a discontinuity at ∆a = 0.

From this, we know that even with one atom in the cavity there is a clear dispersive effect

which is readily apparent in the reflection spectrum. The equivalent experiment in fluorescence
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is the topic of the following section.

5.4.2 2D scan in fluorescence

We expect that measuring the excitation spectrum of the atom-cavity system with the fluo-

rescence signal will result in spectra qualitatively different from the reflection signal. We use

a similar method for taking the two-dimensional fluorescence scan as was used before in the

equivalent experiment in reflection, but now the cavity probe is turned off and the atoms are

pumped from the side. The cavity lineshape is scanned in the same way, with measurements

taken at 20 different cavity detunings for 11 detunings of the pump beam. At each cavity and

pump beam detuning point, 10 shots of the experiment were taken and averaged to give a final

signal. In the experiment, the pump beam came vertically, from above the cavity, with a beam

power of 40µW, chosen to strike a balance between producing a relatively large fluorescence

signal whilst not saturating the atoms.

For the beginning of the experiment and whilst the atoms were falling through the mode,

the cavity pump beam was blocked by a shutter so as to not saturate the APD and make the

fluorescence emitted by the photons impossible to detect. It was then unblocked for the final

50 ms of each experiment run, to allow us to back-calculate the cavity detuning, following the

method described earlier.

The counts recorded at the APD are shown in the two contour plots at the top of Figure

5.15, taken for dropped atoms with Neff ≈ 1. Each plot shows the counts averaged over different

time durations, all starting at the time when the pump beam is switched on. The top left plot

shows the counts averaged over 10µs, corresponding to one integration bin. The top right plot

shows the counts averaged over 100µs, or ten integration time bins. Comparing the two plots,

whilst the main features of the data remain the same, the second is smoother as more time bins

are averaged. Much of the original ‘spikyness’ of the data comes from the limited resolution

of the scans; were another such scan to be taken the step-size between detunings should be

reduced. To ensure that summing over multiple integration bins maintained the integrity of

the data, however, the atomic and cavity linewidths at ∆a = 0 and ∆c = 0 were compared for

summed and non-summed data. It was found that, within the bounds of statistical uncertainty,

the results were equivalent.

In addition, the process of centering each drive beam detuning scan means that the range

of ∆c tested are different. This makes the data appear patchy towards the edges of the scan.

To present a fuller picture for ready comparison, each corner has been set to have zero counts.



CHAPTER 5. INCREASING THE ATOM NUMBER 183

Figure 5.15: Two-dimensional scans of the fluorescence signal. TOP LEFT: The counts

recorded at the APD as a function of pump beam detuning, ∆a, and cavity detuning, ∆c,

integrated over 10µs, or one time bin. TOP RIGHT: The same as on the LHS, but now

integrated over 100µs, or ten integration time bins. BOTTOM: A theory plot of the same

two-dimensional scan, calculated for our cavity parameters and Neff = 1.1 and using Eq.(5.5).
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We don’t expect to be able to see any splitting in the fluorescence signal at this value of

Neff . This is confirmed by the data plots, which show only a single peak. Fitting the 100µs

binned data to Eq.(5.5) estimates Neff = 1.09 and Ω = 2π×46 MHz, assuming a total collection

efficiency of 10 %. The value of Ω is particularly sensitive to the value of the total collection

efficiency used in the fit, however the estimate for Neff is not.

These plots can be compared to the bottom plot in the same figure, which shows a theory

plot of the expected fluorescence signal as a function of detuning, calculated using Eq.(5.5),

assuming cavity parameters (g, γ, κ) = 2π × (98, 3, 5200) MHz and Neff = 1.1. The main

feature of the real data are replicated here; with a single peak close to ∆a = 0, in contrast to

the equivalent two-dimensional reflection scan. The theory plot in two-dimensions does show

evidence of the dispersive interaction which couldn’t be seen in the plots of Figure 5.11; the

Lorentzian is clearly distorted along the line of ∆a = ∆c. Unfortunately, this is not clearly

evident in the real data, although this could be caused by noise. Despite this, however, these

data do demonstrate a clear distinction between reflection and fluorescence signals which can

only be viewed for weak coupling.

We do expect, however, that this will change as Neff increases. The contour plots shown

in Figure 5.16 show the expected fluorescence signal as a function of ∆a and ∆c for the cases

of Neff = 1.6 (LHS) and Neff = 7 (RHS). For Neff = 1.6, the distortion of the central peak

is enough to produce the flat-topped function, shown in Figure 5.11. By, Neff = 7 however,

two distinct peaks are quite clear and the signal becomes qualitatively similar to the reflection

signal. Unfortunately, technical limitations at the time meant that we were unable to reproduce

this result experimentally.

One question arising from this experiment is the role of dynamics. We know from earlier

measurements that the fluorescence beam can cause the atoms’ resonance frequency to shift.

Looking at the RHS plot of Figure 5.15, a slight shift of the location of zero detuning on the ∆a

axis is already discernable. This effect becomes increasingly apparent as more integration bins

are averaged over. Figure 5.17 shows the same 2D scan, but now after averaging over 500µs.

It is now readily apparent that the atomic resonance frequency has been shifted by ∼ 2.9γ.

This effect can be quantified by analysing the frequency shift as a function of integration

time. To do this we sum the data for varying integration times and then fit a Lorentzian

lineshape to the data corresponding to ∆c = 0. The results are shown in Figure 5.18. For

averaging times < 100µs the shift is relatively constant at γ/2. That this does not appear to

vary significantly with averaging time indicates that it is not a result of dynamics, but perhaps
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Figure 5.16: Theory plots showing two-dimensional scans of fluorescence signal, calculated for

our cavity parameters and using Eq.(5.5). LHS: For Neff = 1.6. The atom-cavity interaction

has sufficiently distorted the Lorentzian peak along the line of ∆a = ∆c to produce the flat-

topped function shown earlier. RHS: For Neff = 7. The atom-cavity interaction is now sufficient

to split the resonance, becoming qualitatively similar to the reflection signal.

an offset caused by a mis-estimate of the zero in atomic detuning, or the result of some time-

independent frequency shift, such as a Stark shift from the far-detuned light inside the cavity

used for locking. For longer timescales, however, the shift increases quickly, tending towards a

limiting shift of ∼ 2.9γ on timescales of the order of 400µs. Physically, this appears to indicate

that dynamics only play a role for longer timescales and further corroborates the decision to

sum over integration bins for times of < 100µs.

The discussions of this chapter have highlighted at least two areas for further experiments;

in the near future we should work towards experimentally re-producing the roll-over in the

fluorescence signal with higher Neff and measuring two-dimensional scans at higher Neff so as

to witness the resolved splitting of the resonance peak. The following chapter discusses other

immediate goals for our experiment.
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Figure 5.17: The recorded APD counts measured as a function of detuning. The counts are

averaged over 50 integration bins, equal to 500µs. The shift of the atomic resonance with

respect to the pump beam frequency is equal to ∼ 2.5γ.

Figure 5.18: The shift of the atomic resonance from ∆a = 0 as a function of averaging time.

The value for each shift was produced by a making a Lorentzian fit along the line of ∆c = 0 for

each averaging time. On timescales of 100µs or less, the shift remains constant at γ/2, likely

due to a mis-estimate of where zero detuning actually was. For timescales longer than 100µs,

the shift increases and quickly tends towards a limiting value of 2.9γ.



Chapter 6

Future directions

There are currently two areas of immediate focus for our experiment. The first area of work

involves the installation of an intra-cavity optical dipole trap and the provision of controllable

transport to load atoms from the MOT into said trap. The beginning of this Chapter briefly

reviews optical dipole traps, discusses the progress made thus far on the installation of such a

trap in our system and presents evidence of the trap inside the cavity in the form of a Stark

shift on passing atoms. This is followed by a discussion of the optical ‘conveyor’ planned and

being built as the transport mechanism. The second area of work is to coherently control

an atom whilst in the cavity — preparing the way to use our system as a means to store

and transfer quantum information, or as a deterministic source of single photons. One such

coherent effect resulting from the interaction between a ‘three level atom’ and two coherent

light fields is electromagnetically induced transparency (EIT). The second part of this Chapter

will provide a brief review of EIT and will discuss the progress thus far towards viewing the

effect.

6.1 Conveying and trapping atoms inside the cavity

In this section the progress towards controllably loading and trapping an atom inside the cavity

is presented. The use of an optical dipole trap is discussed first.

6.1.1 An intra-cavity dipole trap

In the near future goal we want to trap and store an atom inside the cavity. A standard way

of doing this uses an optical dipole trap, see for example, [25]. The force used when optical

trapping can be either attractive or repulsive, depending on the relative detuning between the

187
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dipole trapping light and the relevant atomic transition. One can either implement an intra-

cavity dipole trap [26, 27], where the dipole trap has a standing wave along the longitudinal

axis of the cavity, or a trap aligned transverse to the longitudinal axis, allowing the trap to

also be used for transport in and out of the cavity [28, 31].

Optical dipole traps exploit the interaction between the induced atomic dipole moment

caused by the presence of a light field and the intensity gradient of that light field. The

trapping light will have a spatial intensity distribution I(r) and a detuning, ∆trap, from the

atomic resonance at ωA such that ∆trap = ω−ωA. In the limit of large detuning1, the interaction

results in the atom feeling a pseudo-conservative potential, Udip and scattering photons from

the field at a rate, Γscatt given by:

Udip(r) =
3πc2

2ω3
A

Γ
∆trap

I(r) and Γscatt(r) =
3πc2

2h̄ω3
A

(
Γ

∆trap

)2

I(r) (6.1)

Udip becomes a truly conservative potential in the limit when Γscatt → 0. These equations

demonstrate some generic features about dipole traps. For red-detuned light (i.e. ∆trap < 0),

atoms feel an attractive potential, leading them to regions of high intensity. In this case, the

potential minima occur at the intensity maxima of the trapping light. The reverse is true for

blue-detuned light (i.e. ∆trap > 0), when atoms are attracted to regions of low intensity. From

Eq.(6.1) we know that Γscatt ∝ I(r)/∆2
trap, whereas Udip ∝ I(r)/∆trap, leading to a natural

balance, when using red-detuned light, between achieving high trap depths whilst also having

low scattering rates, which result in atom loss through heating. Given this, it is generally

better to operate far-detuned with high intensities.

This balance can be avoided by using a blue-detuned trap, as atoms are trapped at regions

of low intensity and thus naturally have a lower scattering rate. This has already successfully

implemented in a cavity QED experiment [114]. This cannot be used in our system, however,

as it requires a trapping beam configuration which provides full three dimensional confinement.

In our experiment, the output mode of the single mode fibre forming one end of our cavity

limits the spatial distribution of light inside the cavity, so that we only excite the TEM00 mode.

Eqs.(6.1) are valid for a two level atom with no internal structure. This isn’t the case for

a 87Rb, which has fine and hyperfine structure which should be taken account using state-

dependent ground-state potentials [115]. This approach can be simplified for the case of large

trap detunings, when the hyperfine splitting, ∆HFS, is not resolved. This is justified for the
1By ‘large’ we mean large enough that the atom can be treated as having no internal structure, i.e. ∆trap �

the fine and hyperfine structure splitting.
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Figure 6.1: The dipole trap depth and atomic scattering rate as a function of trap wavelength,

calculated using Eq.(6.2) and assuming an input power of 500µW. The trap depth, shown

in the lighter green, is given by Udip/kB and for red-detuned light gives a negative potential,

attracting the atoms to regions of high intensity. The scattering rate, Γscatt, shown in the

darker green shows two poles in Γscatt, corresponding to the D2 and D1 transitions.

case of a dipole trap with λtrap = 804 nm, which is detuned by ∆trap ∼ 4, and 11 THz from

the D2 and D1 lines, respectively. This should be compared to a largest hyperfine splitting of

∆HFS ∼ 7 GHz. In contrast, ∆trap is of a similar size to the fine structure splitting, ∆FS ∼

7 THz, so that it is appropriate for this level of internal structure to be taken into account, via

a modified form of Eq.(6.1):

Udip(r) =
πc2Γ
2ω3

A

(
2

∆2,F
+

1
∆1,F

)
I(r) and Γscatt(r) =

πc2Γ2

2h̄ω3
A

(
2

∆2
2,F

+
1

∆2
1,F

)
I(r)

(6.2)

These equations are valid for linearly polarised light.

As discussed, the choice of λtrap requires balancing the desire for a deep trap with that for

a low scattering rate. Figure 6.1 shows the dipole trap depth, Udip/kB in milliKelvin (lighter

green) and Γscatt in kHz (darker green), calculated as a function of λtrap using Eq.(6.2). Clearly

visible are the two poles of Γscatt at λ = 780 nm and λ = 795 , corresponding to the D2 and D1

transitions respectively. For a red-detuned dipole trap we need a negative value of Udip and

from the figure it appears that the best balance occurs for 800 ≤ λtrap ≤ 820 nm. As discussed

in Chapter 3, the cavity laser, which is also used for dipole trapping, has λ = 804 nm, chosen

to sit within this region.

The cavity laser providing the dipole trapping light can supply up to 500µW of input

power to the cavity. Including the effects of optical build-up, this leads to trap depths of
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up to 920µK. At this power, the scattering rate is 130 photons/sec. Assuming each atomic

scattering event leads to an energy increase of 362 nK [101] and that an atom is lost when the

total additional energy from scattering equals Udip/2, one would expect trap lifetimes of ∼ 10 s.

This is optimistic however, as it ignores other heating effects, such as stochastic heating caused

by intensity fluctuations in the trapping light.

A large scattering rate is not the only reason, however, to compromise on trap depth.

One technical limitation is that our signals are small amounts of resonant or near-resonant

light leaving the cavity and measured at an APD. Large amounts of trapping light, which

co-circulates inside the cavity, can obscure these signals. This is mitigated to some extent by

using several dichroic reflection and transmission filters in the optical path between the cavity

and the APD, as discussed in Chapter 3. The combined attenuation factor is ∼ 1011, which

means high powers still result in a visible signal at the APD. For example, 500µW of trapping

light entering the filtering system would result in 0.1 counts per 5µs at the APD. Given that

our peak fluorescence signal is ∼ 1 counts per 5µs, we would not want to use an input power

substantially larger than this.

Another negative effect resulting from high trapping powers inside the cavity is optome-

chanical. Input powers of only several hundred microwatts can result in a sizeable radiation

force on the cavity mirrors, given by:

Frad =
IA

c
where A = πw2

0

For our cavity parameters and with a circulating power of 15 mW (assuming an input power

of 250µW and a cavity buildup factor of ∼ F/π), this results in a force of ∼ 210 pN. Whilst

onsight this appears small, only a small change in cavity length is needed to have an effect

— in our case, the effect of input powers at this level are clearly visible in scans of the cavity

fringes, which become sharply asymmetric. Considering the cavity design, it seems most likely

that the fibre-tip mirror is moving, as this is glued onto a fibre which overhangs the supporting

macor structure. In contrast, the other end of the cavity is glued to the peizo and held by

a large macor block. In addition, from observing the fringes it seems unlikely that this is a

thermal effect, as they do not slowly drift in frequency. This does indicate a potential area for

improvement in the cavity design for future evolutions of the experiment; ideally the cavity

stiffness should be increases to reduce any length changes to sub-picometre scales.

The presence of the trapping light also has an affect on the ground and excited atomic

states, which are shifted by an equal and opposite amount ∆E = Udip as a result of their

dipole interaction with the light. This is known as the AC Stark shift. This effect results in
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Figure 6.2: The Stark shift caused by increased trapping light circulating inside the cavity.

LHS: Atomic lineshapes measured for different intra-cavity trap powers. The detuning of the

pump beam is varied with respect to the cavity resonance. Lighter to darker blue correspond

to lower to higher trap powers. The shift of the resonance is visible, but is accompanied by a

reduction in the amplitude and an increase of the width as a result of different atoms being

Stark-shifted by different amounts. RHS: A comparison of the increase in measured Stark shift

as a function of the increase in power, taken from the lineshapes centres on the LHS. The

increase in power in the dark blue dataset is estimated by measuring the reflected trap power

and using this to estimate a cavity pumping rate. The increase in power in the light blue

dataset is estimated from the counts at the APD when the cavity is only pumped with trap

light. For both, the Stark shift increases with increasing power, as would be expected.

a combined frequency shift of 2∆E, detuning the atom from the pump beam and the cavity.

Using Eq.(6.2), a circulating power of 15 mW is expected to produce a maximum light shift of

19.2 MHz for our atom-cavity parameters, assuming that the atom is static and positioned at

an antinode of the trapping light. This is inconvenient, but not impossible to overcome as the

cavity and pumping light can be detuned relative to the atom to accommodate this change2.

Other experiments have noted the affect of the light shift. One complicating factor is

the dependence of the shift on the atom’s magnetic hyperfine internal state. This could be

overcome by using a dipole trap at a ‘magic wavelength’ [116], whereby the trapping light is

chosen to have a wavelength at which the excited and ground state Stark shifts are equal and

are relatively constant across mF states.

The affect of the light shift is already visible on atoms falling through the cavity. The LHS

of Figure 6.2 shows reflection lineshapes taken for dropped atoms, at four different levels of
2As a point of interest, it should be noted that other cQED experiments use the Stark shift as a way of

controllably detuning the atom from the cavity/pumping light.
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intra-cavity power, where low to high powers go from dark to light blue. As the power increases,

the lineshapes are shifted further blue (evident by comparing the centres of each lineshape) and

the overall amplitude of the lineshape is reduced. This latter effect wouldn’t be anticipated for

a single atom trapped in a dipole trap, however here there are several atoms contributing to

the signal, each Stark-shifted by different amounts. This effect reduces Neff , as at any given

frequency some proportion of the contributing atoms are Stark-shifted. This effect also leads to

‘smearing’ of the lineshape, as each atom’s contribution is centred at a different frequency. The

net result is a reduction in amplitude, but accompanied by an increase in width. This effect

complicates the data analysis as it becomes difficult to use the measured shift from resonance

to back-calculate the total power in the dipole trap.

The RHS of Figure 6.2 shows the relative increase in measured by a Stark shift for the data

shown on the LHS of the same figure, as a function of the relative increase in power. Two

datasets are shown. The first dataset, in the dark blue, shows the measured increase in Stark

shift as a function of the increase in power. The increase in power is estimated by measuring

the trapping power reflected back from the cavity (remembering to record the power at the

lock point rather than the fringe minimum or maximum) and using this to estimate the cavity

pumping rate. As expected, the shift increases linearly with increasing power.

The second dataset, in the light blue, shows the measured increase in Stark shift as a

function of the increase in power, but now the increase in power is measured directly from the

APD traces of the atom drops (when no atoms are present) — this is just the trap beam count

rate measured at the APD during each drop experiment. As with the other dataset, the Stark

shift does increase with increasing power, but there isn’t a clear linear dependence. This could

be due to fluctuating background counts from another source included in the trapping light

count level, or that the filtering optics have a nonlinear attenuation with power.

The data shown in Figure 6.2 does indicate that the Dipole trap is present and having an

effect. Up to now, however, it has not been possible to load the trap directly with atoms whilst

they fall past. This is because, on the timescale of an atom falling through the cavity, the

dipole force is conservative, so that there is no net energy loss for atoms crossing the trap. An

atom travelling at 30 cms−1 has a mean temperature of ∼ 1 mK, which is above the maximum

trap depth we can achieve. A solution to this is to ensure that atoms reach the cavity with

negligible velocities. To do this, we plan to introduce a soft-loading mechanism, which will

controllably transport atoms between the MOT and the cavity.
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6.1.2 Conveying atoms to the trap

We are currently adapting the experiment setup to introduce a second optical dipole trap

which will act as an atom conveyor, allowing us to controllably transfer atoms between the

MOT and the cavity. Such conveyors have already been successfully implemented in cavity

QED experiments [28, 31].

The conveyor will be formed by two counter-propagating and overlapping beams, located

vertically above and below the cavity (in the positions currently taken by the ‘top’ and ‘bottom’

beams used for pushing and transverse pumping). Two counter-propagating, mode-matched

beams derived from the same source will form a standing wave as long as their path difference

is less than their coherence length. Given this, a laser with linewidth, ∆ν = 1 GHz will have

a coherence length of 300 mm, so that we could reasonably produce a standing wave over a

range of several millimetres with free-running cavity-extended diode lasers. In addition, their

maxima will constructively interfere such that the peak intensity will be 4× the peak from one

beam, having obvious benefits for optical trapping. If one beam is detuned by an amount δν ,

or angular frequency δ = 2πδν , then the lattice will move at a velocity:

v =
δ

2k
=

1
2
δνλ

From this, two beams with λ = 800 nm and δν = 10 MHz will result in a lattice velocity of

4 mm/ms. Assuming a MOT-cavity distance of 5.1 mm, it would take 1.3 ms for an atom in

the lattice to move between them, assuming a constant transport velocity. A more accurate

scenario, however, would not involve transporting at a constant velocity but, instead acceler-

ating the atoms from v ∼ 0 at the MOT and then decelerating them so that they returned to

v ∼ 0 for loading into the cavities.

During their transport, a major source of atom loss from the trap will be from scattering

the trapping light. For the two 800 nm beams with a Rayleigh range of 10 mm and power of

250 mW, the achievable trap depth at the MOT is∼ 540µK, assuming the beam waist is located

at the cavities. This is an adequate trapping potential, being > 10× the measured temperature

of the MOT. In this trap, atoms will scatter photons at a rate of ≈ 140 photons/sec and, using

the same assumptions as earlier, one can expect trapping lifetimes ∼ 10 s. This indicates that

travel times of a few milliseconds would not result in significant losses.

Atoms will, however, be lost from the trap if they are accelerated too quickly. We can

quantify this affect by treating an ideal atom, with zero thermal energy located at the maximum

potential in the trap. The atom’s potential, V (y) is then given by:
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V (y) = may −A0 sin(2ky)

Here, a is the atom’s acceleration, m is the atom’s mass, y is the distance and A0 is set to

be the half the maximum achievable trap depth. Taking A0 = 270µK and conveyor beams of

800 nm, solving for dV (x)/dx = 0 gives amax = 405 mm/ms2. This is the maximum possible

acceleration allowed, but assuming an acceleration and deceleration of a = amax/10, this gives

us a total MOT-cavity journey time of 0.7 ms, well within the bounds set to limit scattering

losses and, unsurprisingly, quicker than that calculated using a constant velocity.

The conveyor beams will be derived from a single 800 nm laser and their relative detunings

and intensities will be controlled by passing both beams through AOMs. The outputs from the

two AOMs will pass through two tapered amplifiers (Toptica TA800s) to increase the beam

power to 500 mW. Both beams exiting the TAs will be separately coupled into fibres to achieve

identical mode matching and deliver them to the chamber. The result, assuming 50% fibre

coupling efficiency, will be 250 mW of power per beam, producing a maximum trap depth of

540µK. From considerations such as those above, the expected transfer time will be ∼ 1 ms.

The AOM driver sources will be those currently in use for the top and bottom beams. As

discussed in Chapter 3, these are digitally synthesized and synchronised to one another, so

there should be no drift in their relative frequency.

This set up is in the process of being built, but once completed should allow controllable

loading of atoms into the intra-cavity dipole trap, allowing us to trap single atoms, or small

clouds of atoms, inside the cavity mode. Trapping clouds of N atoms will allow us to further

increase our cooperativity and there are two obvious bounds of interest; for N > 13, we would

move into a regime where we might expect effects such as optical bistability; and for N > 2800,

we would move into a regime of strong coupling. Alternatively we could explore the opportunity

for coherent control.

6.2 Coherent control of atoms inside the cavity

One application of cavity QED is to use the atom-cavity interaction to coherently control the

internal state of an atom. In this way, the cavity provides an interface which can be used to

map information onto the atom and then store and retrieve it via emission of a photon into

the cavity mode. Several experiments have demonstrated this effectively [76, 78]. A generic

atomic system used in such processes is a three-level ‘lambda’ system, as shown in Figure 6.3.
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Figure 6.3: The three-level ‘lambda’ system, consisting of levels |1〉, |2〉 and |3〉. The transitions

are addressed by two coherent laser fields; Ωc and Ωp, with respective detunings ∆p = ω31 = ωp

and ∆c = ω32 − ωc.

The lambda system contains three atomic states; |1〉, |2〉 and |3〉, which can be addressed by

two fields; Ωp connecting the |1〉 → |3〉 states and Ωc connecting the |2〉 → |3〉 states. In 87Rb,

the |F = 1〉, |F = 2〉 and |F ′ = 2〉 hyperfine states form such a system.

Typically, when using such an atom in conjunction with a cavity, the atom-cavity inter-

action, with Ω = 2g
√
n, can take the place of one of the addressing fields. Crucial then, to

coherently controlling the atom is the ability to address only one of the transitions. We can

already demonstrate this, via the state selectivity of our detection process.

6.2.1 Incoherent control: state selectivity of atom detection in the cavity

Thus far, we have demonstrated ‘incoherent’ control of the atomic state; atoms can be triggered

into emitting a photon into the cavity mode by transiently exciting them into the |F ′ = 3〉 state,

producing a fluorescence signal. This emission, however, is probabilistic. In addition, using the

repumping light we can optically pump atoms between the |F = 1〉 and |F ′ = 2〉 states and,

by probing on a particular transition, demonstrate the state selectivity of our atom detection.

Figure 6.4 shows the results of such an experiment. The cavity and pumping light are resonant

with the |F = 2〉 → |F ′ = 3〉 transition. Atoms in the |F = 2〉 state can therefore be detected

through their resonant interaction with the pump light inside the cavity. Conversely, atoms in

the |F = 1〉 state will not interact with the pump and will therefore not be detected.

Atoms can be collected in the |F = 1〉 state by switching off the repumping light during

the optical molasses stage of the experiment. Entering the cavity in this state, they won’t

interact with the pumping light and there will be no change in the light level. This can be

seen from Figure 6.4, where the profile of the atom cloud would normally be evident from
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Figure 6.4: The normalised reflection signal in lab units, averaged for ten shots. Initially, atoms

entering the cavity are in the |F = 1〉 state, caused by switching off the repumping light during

the optical molasses phase of the experiment. In this state they will not interact with the light

pumping the cavity. At t = 69ms, indicated by the vertical dashed line, the repumping light is

switched back on. This pumps the atoms into the |F = 2〉 state, where they can be detected

through their interaction with the pumping light. This is evidenced by the sudden retrieval of

the drop signal.

t ' 60 ms onwards. At t = 69 ms, indicated by the dashed line, the repumping light is switched

back on. This pumps atoms into the |F ′ = 2〉 state, from which they can decay to |F = 2〉

state and interact with the light pumping the cavity. This process is evidenced by the sudden

reappearance of the drop signal for t > 69 ms. From this, it is clear that the cavity detection

is state selective. This is, however, an incoherent process, relying on the probabilistic nature

of the interaction between atoms and light. The next stage for the experiment would be to

coherently control the atom, an example of which is electromagnetically induced transparency

(EIT), see for example [117].

6.2.2 Coherent control: EIT

To describe EIT we can consider the dressed states of the lambda system already shown in

Figure 6.3. Typically, one refers to the Ωp field as the ‘probe’ laser and the Ωc field as the

‘coupling’ laser, where each laser has a detuning, ∆p = ω31 = ωp and ∆c = ω32 − ωc. Here,

the transition |1〉 → |2〉 is forbidden by dipole selection rules. Diagonalising the interaction

Hamiltonian describing the dipole interaction between the fields and atomic states gives three

eigenstates [117] for the case of a ‘two-photon resonance’, when ∆p = ∆c:
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|a+〉 = sin θ sinφ|1〉+ cosφ|3〉+ cos θ sinφ|2〉

|a−〉 = sin θ cosφ|1〉 − sinφ|3〉+ cos θ cosφ|2〉

|a0〉 = cos θ|1〉 − sin θ|2〉

These eigenstates are given in terms of the single photon detuning, ∆ = ∆p and the mixing

angles θ and φ given by:

tan θ =
Ωp

Ωc
and tan 2φ =

√
Ω2
p + Ω2

c

∆

It is clear that one eigenstate, |a0〉, has no contribution from the bare atomic state, |3〉.

Atoms in this state are effectively decoupled from the light fields, as there is no possibility for

excitation to |3〉 and subsequent spontaneous emission. For this reason, |a0〉 is known as a

‘dark state’.

Treating the case of a weak probe field, Ωp � Ωc, in this limit, sin θ → 0 and cos θ → 1, so

that the application of these fields transforms an atom in the ground state |1〉 → |a0〉. Once in

the dark state, the atom can be rendered transparent to the probe field, as no absorption can

take place. This leads to a ‘transparency window’ in the absorption profile, which is visible

whilst the atomic dephasing is small.3 An additional technical limitation is set by the necessity

to minimise fluctuations in amplitude and phase of the probe and coupling fields, which can

reduce the visibility of EIT by causing additional decoherence.

We have observed EIT in a room temperature vapour cell of Rubidium, using phase-locked

repumping and trapping light, as discussed in Chapter 3. The trapping light acts as the

coupling field, tuned to the |F = 2〉 → |F ′ = 2〉 transition, whilst the repumping light is the

probe field, tuned to the |F = 1〉 → |F ′ = 2〉 transition. The experiment uses a modified

saturated absorption spectroscopy set up, with the beams co-propagating through the vapour

cell and the transmission of the probe field measured at a photodiode. The transmission profile

of the probe beam as ∆p is tuned across the 87Rb |F = 0〉 → |F = 0, 1, 2〉 manifold is shown

in the LHS of Figure 6.5. The darkest green shows the Doppler-broadened absorption profile.

The medium-toned green shows the saturated absorption spectrum of the same transitions,

where now the probe beam is retro-reflected through the cell. The lightest green shows the

same saturated absorption spectrum, but now with the coupling laser present. The narrow

EIT feature is clearly visible at zero detuning. A ‘zoomed in’ version of this feature is shown
3This is satisfied when the lifetime of |2〉 is substantially longer than |3〉, so that γ21 � γ31 from |2〉.
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Figure 6.5: Electromagnetically induced transparency in an Rb vapour cell. LHS: The transmis-

sion profile of the probe beam is shown as ∆p is tuned across the 87Rb |F = 0〉 → |F = 0, 1, 2〉

manifold. The darkest green shows the Doppler-broadened absorption profile. The medium-

toned green shows the saturated absorption spectrum of the same transitions, where now the

probe beam is retro-reflected through the cell. The lightest green shows the same saturated

absorption spectrum, but now with the co-propagating coupling laser present. The narrow

EIT feature is clearly visible at zero detuning. RHS: A ‘zoomed in’ version of the EIT feature.

Shown alongside the scan is the fitted Lorenztian lineshape, which estimates the HWHM to be

357 ± 4 kHz.
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on the RHS of Figure 6.5, where its is fitted to a Lorenztian lineshape. This gives a sub-

natural HWHM of 357 ± 4 kHz. This linewidth is likely to be limited by the transit time for

atoms travelling across the beams; the expected broadening for a room temperature vapour of

rubidium atoms interacting with a 1 mm wide beam is 300 kHz.

This demonstrates the ability to coherently control a room temperature sample of Rb atoms.

The next stage will be to demonstrate equivalent coherence for atoms inside the cavity mode.

The cavity mode will be driven by the probe laser, with the coupling laser driving the atoms

transversely from the side. The apparatus has been set up and used with atoms falling through

the cavity mode, but there were no conclusive signs of EIT, attributed to the short transit time

of atoms though the cavity mode and low atom signal level at the time. In the future, this can

be attempted with a single trapped atom in the cavity or being conveyed.

Successfully demonstrating EIT inside our cavity will put us a step closer to using our

cavity for quantum information processing (QIP) applications. Firstly, EIT and the closely

related technique of stimulated Raman scattering by adiabatic passage (STIRAP) [118] can be

used to produce single photons, as discussed in detail in [91]. In this application, the atom-

cavity interaction takes the place of the coupling field, so that Ωc = 2
√
ng. With STIRAP, the

procedure involves adiabatically transferring the atomic population from |1〉 → |2〉 by varying

the ratio of |Ωc|2/|ΩP |2 with time. At the end of one STIRAP cycle the cavity photon number

will have increased by one. One cycle of EIT, however, involves moving from |1〉 → |2〉 → |1〉,

so that the cavity photon number is only transiently increased before the atom re-absorbs the

photon towards the end of the cycle. This transient increase can, however, correspond to a

photon being emitted from the cavity if κ is faster than the timescale of the EIT pulse.

A second application of EIT is to use it to slow down or stop a photon inside an atomic

vapour [119], which could subsequently retrieved — offering the possibility of a storage mecha-

nism. All of these experiments are just one area for future exploration. The following chapter

concludes this thesis and presents some further ideas for the future of our experiment.



Chapter 7

Conclusions and outlook

7.1 Conclusions

This thesis has presented experiments conducted using an optical microcavity designed and

built within the Centre for Cold Matter. The cavity’s design, being formed between a single

mode fibre and a micromirror etched from a silicon wafer, is such that there is direct optical

access to the internal mode and aspects of the device are scalable and could be integrated

within other atom chip experiments. These factors make it well suited to applications within

quantum information processing and atom detection.

In Chapter 2, the theory underlying the optical cavity and the interaction between atoms

and the cavity field was discussed. From this, a theoretical description of the reflection and

fluorescence signals arising from our cavity was presented. This could be used to understand

later experiments.

Chapter 3 contained a detailed description of the apparatus used to perform our cavity

experiments. Nearly every aspect of the experiment was rebuilt during the course of this

thesis, the aim being to increase the overall stability and increase the range of experiments

which could be performed. Having re-built the experiment’s laser system, an optical dipole

trap is now ready to trap atoms inside the cavity and the technology is available for coherent

control. In addition, the optical system used to collect atom signals has been improved to

reduce scatter and thus increase the signal-to-noise.

The first part of Chapter 4 contained a comprehensive characterisation of the reflection and

fluorescence signals with respect to pump beam detuning, intensity and polarisation. Assuming

changes in the reflection signal are used to detect atoms, these experiments indicated that the

largest signals would be achieved using a resonant beam with an input pumping rate of up

200
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to 5 MCounts/sec. In fluorescence it was found that the largest signals involved a resonant,

linearly polarised beam, with the polarisation axis transverse to the cavity axis and pump beam

powers of several hundred microwatts.

The second part of Chapter 4 tested the functionality of our system as a chip-based atom

detector. It was shown that the fluorescence signal could be used to detect an effective single

atom in our cavity (i.e. Neff = 1) with a signal-to-noise ratio of 1 in 4µs and achieving a

99 % detection fidelity in 15.6µs. Using the reflection signal, signal-to-noise ratios of 1 can

be achieved in 37µs. We then explored the prospect for detecting individual atoms falling

through the cavity and trapped inside it. It appeared unlikely that we would be able to detect

individual atoms as they fell through the cavity, primarily due to their lack of localisation in

the mode. In contrast, it was found that a single trapped atom could be confidently detected

using both the reflection and fluorescence methods. The reflection signal would likely be the

method of choice, as the atom can be detected whilst also retained in the trap. In contrast,

fluorescence detection would lead to heating out of the trap in ∼ 50µs.

Chapter 5 began by presenting a procedure for increasing the number of atoms inside the

cavity. This method uses a resonant push beam to push atoms from the MOT to the cavity,

reducing the atom travel time and thereby increasing the atom density at the cavity. Using

this method we are able to increase Neff from ∼ 1 to ∼ 7, with a largest recorded Neff = 11.

This increases the collective cooperativity by an order of magnitude. Using the increase in

Neff , enhanced Purcell broadening is demonstrated, alongside saturation of the reflection and

fluorescence signal. In the latter case, the fluorescence signal was expected to reduce beyond

Neff ∼ 2, but later simulations indicated that the lack of reduction might be caused by the

pump beam being detuned.

The latter part of Chapter 5 explored the dispersive interaction between the atom and

the cavity. The reflection spectrum of the cavity was measured for different values of Neff ,

with clear evidence of dispersion apparent when Neff ∼ 1. We were able to exploit the high

collection efficiency to make a direct measurement of the equivalent spectrum in fluorescence,

previously only inferred in the strong coupling regime. In contrast with the strong coupling

case, no obvious splitting is apparent in the signal when Neff = 1, demonstrating a qualitative

difference between the types of signals.

Finally, Chapter 6 focussed on the immediate future for our experiment; optical dipole

trapping an atom inside the cavity and coherent control of an atom using electromagnetically

induced transparency. Progress towards the former goal was reported, including evidence of the
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Stark shift caused by the presence of the optical dipole trap inside the cavity. An experiment

showing electromagnetically induced transparency (EIT) of rubidium inside a vapour cell was

also presented, demonstrating that we have the technology to reproduce the experiment inside

the cavity. Such a technique could also be used to deterministically produce single photons.

7.2 Outlook

There is an exciting future for our optical microcavity experiment. In achieving the goals out-

lined in Chapter 6, a single atom will have been successfully inside the cavity and EIT/STIRAP

used to produce single photons, all with a system outside of the strong coupling regime. As a

next step, it will be important to demonstrate the statistical characteristics of our single-photon

source; showing photon antibunching and sub-Poissonian statistics. A second APD has already

been installed, thus enabling Hanbury-Brown-Twiss coincidence-counting experiments, see for

example [120]. As an intermediate step, it would be interesting to perform such an experiment

on the existing photon streams produced by falling atoms.

There are also several areas of future development. Firstly, a new cavity with increased

finesse could be built. Methods for reducing the mirror roughness via new etching methods

have already been discussed in [97]. In this way, we can hope to trap an atom and combine

with cavity cooling techniques to increase storage times for atoms inside the cavity.

Secondly, the scalability of our device could be exploited to build a multi-cavity experiment.

At present there are two cavities currently installed in our chamber, although only one can be

used as both cavities are tuned using the same piezo stack so that they cannot simultaneously

be resonant. Modifying the design of the cavity would overcome this limitation. With two

cavities, we could explore atom-light, atom-atom or light-light entanglement by, for example,

using the interaction in both cavities and mixing their outputs on a beam splitter.

Thirdly and finally, we could look to further integrate our cavity within atom chip experi-

ments already in use in CCM. Recent successes within the group include atom detection with

optical waveguides integrated on an atom chip and small atom number etched pyramid MOTs.

One could combine a waveguide and silicon mirror to form an all-chip optical cavity, or use a

pyramid MOT as a source of cold atoms, both moving a step closer towards the concept of a

‘lab on a chip’.
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[119] M. D. Eisaman, A. André, F. Massou, M. Fleischhauer, A. S. Zibrov, and M. D. Lukin.

Electromagnetically Induced Transparency with Tunable Single Photon Pulses. Nature,

438:837–841, 2005.

[120] C. C. Gerry and P. L. Knight. Introductory Quantum Optics. Cambridge University

Press, 2005.



Appendix A

The fluorescence signal and

increasing drive beam

Fluorescence experiments, where the atom-cavity system is driven by a transverse pump beam

from the side, are generally more complicated to describe theoretically than their reflection

counterparts. This is because we need to take into account both the spatial variation of their

coupling to the cavity, gj and the spatial variation of the Rabi frequency from the pump beam,

Ωj . Including both these factors leads to the general expression for the intra-cavity field, αF ,

in the limit of weak pumping:

αF = − 2C
1 + 2NeffC

N∑
j

gj
g0

Ωj

2g0
(A.1)

In this Appendix we consider the behaviour of αF as Ωj increases. For this situation, the

weak pumping limit is, obviously, not a reasonable approximation and we cannot use Eq.(A.1).

Instead, finding the equation of motion for 〈â〉 from the fluorescence Hamiltonian given in

Chapter 2 results in the implicit expression:

αF = −2C
∑
j

(∣∣∣∣gjg0

∣∣∣∣2 αF +
Ωj

2g0

)
1

1 + |2gjαF + Ωj |2/γ2
(A.2)

This must be solved numerically, with the additional complication that each atom ‘feels’ a

different gj and a different pump beam Rabi frequency, Ωj , so that their contributions will not

necessarily add in phase.

Our first approximation is to treat the resonant case (i.e. ∆a = ∆c = 0). For this case,

were the placement of the atoms in the cavity such that they ‘felt’ identical coupling factors

and pumping rates, we could take Ωj = Ω and gj/g0 = 1 and rearrange Eq.(A.2) to find:
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4g2
0

γ2
α3
F +

4g0Ω
γ2

α2
F +

(
1 + 2CNeff +

Ω2

γ2

)
αF + 2CNeff

Ω
2g0

= 0 (A.3)

This equation can be solved numerically and two solutions are shown in Figure.A.1. Here,

the fluorescence signal rate Jfl = 2κ|αF |2 is plotted as a function of the transverse pumping

rate, Ω for two values of Neff . The LHS shows the case of Neff = 1, which would be the case in

our cavity when the atoms are dropped. Here, Jfl increases linearly and then smoothly rolls

over when Ω =
√

2γ, which corresponds to the case of I = Isat for an atom in free space. Jfl

then monotonically decreases, with a fully saturated atom causing the cavity to go dark.

The RHS of the same figure shows the case for Neff = 13. This value corresponds to

CN = NeffC = 4, assuming our cavity parameters of (g, γ, κ) = 2π× (98, 3, 5200) MHz. When

pumping the cavity ‘directly’, this value of CN described the onset of optical bistability. The

figure indicates that this is replicated in fluorescence, with Jfl becoming multivalued close to

Ω =
√

2Neffγ. This seems reasonable, as the features of directly pumping the cavity are present

here; the atoms are being driven in phase with one another, the only difference is the source

of the pumping light.

There is no reason to believe, however, that this accurately represents our experiment;

atoms falling through the cavity will take random positions with respect to the pumping beam

and the cavity. A more reasonable starting assumption, therefore, is to assume the atoms have

different coupling and pumping rates and scatter randomly out of phase. In this case we return

to Eq.(A.2), which must now be evaluated numerically. Given this, it is interesting to ask

whether this leads to different behaviour.

The results of Master Equation simulations of this regime are shown in Figure.A.2. Ten

simulations are presented, for each of which the intra-cavity photon number, n = |αF |2, is

calculated as a function of the saturation parameter, I/Isat. In each simulation, three atoms

are assigned random positions throughout a cylinder of radius 2w0 and length d, centred on

the cavity mode, such that Neff = 0.21. Eq.(4.6) is then solved, given each atom’s coupling

rate, gj and beam intensity, Ij .

Whilst each ‘throw’ of atoms is different, corresponding to a different configuration of

atoms with respect to the pump beam and cavity mode, there do appear to be some generic

features. In every case, |αF |2 increases with increasing I/Isat, tending towards a limiting value
1A relatively small value for Neff was chosen for these simulations to reduce the dimensions of the Hilbert

space used. 3 atoms are used to produce a Neff = 0.2, corresponding to 16 basis states. To calculate for Neff = 1

requires 16 atoms, leading to over 130, 000 basis states



APPENDIX A. THE FLUORESCENCE SIGNAL AND INCREASING DRIVE BEAM 216

Figure A.1: The fluorescence signal, Jfl as a function of transverse pumping rate Ω, where

Jfl = 2κ|αF |2 and αF calculated using a numerical solution to Eq.(A.3). The cavity parameters

used were (g, γ, κ) = 2π × (98, 3, 5200) MHz and it is assumed that for all atoms, gj = g and

Ωj = Ω. LHS: Neff = 1. At this value, Jfl increases steadily and then smoothly rolls over when

Ω =
√

2γ, from whence it monotonically decreases - leading to a dark cavity when the atoms

are fully saturated. RHS: The case of Neff = 13, which corresponds to CN = 4. This shows

similar behaviour, with a smooth roll over in Jfl, then decreasing to a dark cavity for fully

saturated atoms. However, when Ω =
√

2Neffγ, Jfl is multi-valued, showing optical bistability

in the cavity.
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Figure A.2: The results of 10 simulations calculating the intra-cavity photon number as a func-

tion of the saturation parameter, I/Isat. For each simulation, three atoms are assigned random

positions throughout the cavity volume, such that Neff = 0.2. Eq.(A.2) is then solved, given

each atom’s coupling rate, gj and beam intensity, Ij . Whilst each ‘throw’ of atoms is different,

corresponding to a different configuration of atoms, the general features for each simulation

are the same; |αF |2 initially increases with increasing I/Isat; then reaches a maximum, which

covers several orders of magnitude in I/Isat; and then rolls over so that at as I/Isat → ∞,

|αF |2 → 0. This is qualitatively similar to the case of purely coherent scattering. The dashed

line represents the upper limit of |αF |2, which occurs at |αF |2 = NeffCγ/κ.

of NeffCγ/κ. The initial gradient of this slope appears to be accurately described by the

intuitive expression:

|αF |2 = 2CN
s′

1 + s′
where s′ =

s

(1 + 2CN )2

The spread in the slopes of increasing |αF |2 is caused by the beam profile of the pump beam,

which had no effect in the earlier calculation. Also unlike the earlier case, this limit extends

over several orders of magnitude and it isn’t until I/Isat ∼ 106 that |αF |2 rolls over begins to

decrease. From this point increasing I/Isat reduces |αF |2, so that |αF |2 → 0 as I/Isat → ∞

and the cavity goes dark. This behaviour appears to be qualitatively similar to the case of

purely coherent scattering.

For reasons already outlined, it is difficult to increase the numbers of atoms contributing

to the signal in this simulation.


