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Abstract

This thesis reports on the development of an array of plane-concave Fabry-Pérot mi-

crocavities containing atoms (or other quantum emitters), interconnected by UV-written

waveguides on a silica-on-silicon chip. The microcavities are formed by a mirror coated

on the end facet of the chip and an array of spherical micromirrors etched on silicon. This

is to our knowledge the first attempt at implementing the emerging coupled-cavities QED

paradigm. The device we propose possesses a degree of control, flexibility and tuning un-

matched in other suggested implementations: The atoms can be manipulated inside the

cavity by auxiliary lasers and the cavity-cavity coupling rate as well as the atom-cavity

coupling can be tuned. It is highly scalable.

Calculation of the complete (classical) optical spectrum of the device is presented. The

quantum dynamics that may eventually be observed has also been studied. Waveguide

chips containing couplers and phase shifter have been fabricated. We have successfully

demonstrated the operation of the elementary sub-systems: the strong optical coupling

between a microcavity and a waveguide resonator, and the tunable strong coupling be-

tween two evanescently coupled waveguide resonators.

No experiments with atoms or other quantum emitters were attempted, because the

waveguide propagation loss is so large that no quantum physics can be observed. There

is hope that this can be overcome in the future by using other waveguide technologies.
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Chapter 1

A new dawn for cavity QED

The interaction of a single dipole with a monochromatic radiation field presents an
important theoretical problem in electrodynamics. It is an unrealistic problem in the

sense that experiments are not done with single atoms and single-mode fields.

— L Allen and JH Eberly, Optical resonance and two-level atoms, 1975 (p. 157)

The Nobel Prize in Physics 2012 was awarded jointly to Serge Haroche and David J.
Wineland “for ground-breaking experimental methods that enable measuring and

manipulation of individual quantum systems”.

— The Royal Swedish Academy of Sciences, 9 October 2012

1.1 The problem with atomic physics

The two quotes above illustrate in a rather dramatic way the huge progress that has been

made in the field of light-matter interactions in the last decades. For Allen and Eberly,

and for all atomic physicists at the time, the semiclassical approximation was sufficient

for all practical purpose; quantum electrodynamics was merely an intellectual curiosity.

Yet shortly before the Nobel prize announcement Haroche demonstrated full quantum

feedback control, using single atoms to inject or remove – on demand – single photons

from the electromagnetic field inside a cavity (1).

The traditional difficulty with atomic physics is two-fold: the light-matter interaction

is weak, and the probability of detecting photons is very low. As a result, experiments

demanded that many photons scatter off many atoms, and the realm of interactions

between single quanta remained elusive.

It is not hard to see why this had to be. The collection efficiency of a standard optical

system, as a function of its numerical aperture NA and assuming isotropic emission, is

ηcoll =
1

2

(
1−

√
1− NA2

)
. (1.1)

7



The NA is defined as NA=n sin θ, where θ is the optics’ collection angle and n the refractive

index at the source. Thus a low-NA optics observing an atomic ensemble from outside

the vacuum chamber would only collect NA2/4 of all emitted photons — typically as low

as 10−4. Even a large NA system, say an NA=0.5 diffraction-limited asphere lens, placed

inside the vacuum, only boosts ηcoll to a 5%.

On the other hand, the absorption cross-section of a simple two-level atom

σabs =
3λ2

2π
(1.2)

is typically an order of magnitude or two smaller than the focussed spot size achievable

with such an optical system, and so the interaction probability is very small. For the

sake of concreteness, let’s consider a single rubidium atom and calculate, in a very crude

semiclassical way, the probability that a single 780 nm photon may excite it to the upper

state of the D2 transition. We assume that the photon wavepacket has a duration τ = 3 ns

(which is much shorther than the D2 spontaneous lifetime γ ∼MHz) with a top hat profile

and a 50µm waist. The Rabi frequency is then g
2π
∼ 0.2 MHz and the probability of

exciting the atom is only sin2(gτ/2) ∼ 3× 10−6.

The road to seeing single quanta interact is not necessarily closed however, for there are

two obvious ways of solving these problems of weak collection and interaction probability.

The first one is to match the optical and atomic cross-section, which is in principle possible

since the latter is of the same order as the diffraction limited spot size wdiff :

wdiff '
λ

2 sin θ
∼
√
σabs, (1.3)

λ being the wavelength in the medium. The second possibility is to confine a photon

between two mirrors so that it interacts with the same atom repeatedly. The next section

will briefly outline recent progress along the first path. We’ll then move on to cavity

QED, which is the focus of this work.

1.2 Strong light-matter interactions I:

Shrinking the photons

1.2.1 Solid immersion lenses

In order to achieve high efficiency interaction between an emitter and light, the spatio-

temporal overlap between the photonic mode and the dipole radiation pattern must be as

high as possible. It has been shown theoretically that a “dipole wave” could be perfectly

reflected by an oscillating dipole (2; 3). It is possible but difficult to produce such a

wave (4); however it is reasonably approximated by a strongly focused Gaussian beam,
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for which a reflection by a single dipole of up to 85% has been predicted (2). In order to

achieve the required focusing, Sandoghdar used “solid immersion lenses”, similar to high-

NA oil immersion objectives except that the index-matching oil has been replaced by a

solid hemispherical lens coated with an organic crystalline matrix. Dye molecules such as

DBATT or DBT are embedded in the matrix; at 1.5 K the zero-phonon line (ZPL) of these

molecules become lifetime-limited so that it behaves as a nearly perfect two-level-system.

A “single-molecule transistor” that could absorb up to 12% of an incoming weak CW

probe laser was demonstrated (5); population inversion could be achieved with a second

laser and amplification of the probe beam was demonstrated, albeit with a gain of less

than one per cent. In a similar experiment the phase shift induced on the probe beam

was tuned with a control laser (6).

The collection efficiency of photons emitted by a single molecule can be further boosted

by exploiting the modification of the dipole radiation pattern in the thin crystalline film.

The proximity of the crystal-air interface strongly redirects the emission away from that

interface, and a 96% collection efficiency into an underlying oil immersion objective has

been reported (7). The emission frequency of these dye molecules can be tuned by apply-

ing an electric field (Stark shift). In this way, two independent molecules could be tuned

to the same frequency and a Hong-Ou-Mandel experiment revealed that the emitted pho-

tons were indistinguishable (8). Thus these molecules could become a precious resource

for quantum information. Sandoghdar also performed a spectroscopy experiment where

Stark-shifted single photon emitted by a single molecule were used to probe a second

molecule (9).

Solid immersion lens-based systems as well as cryogenic dye molecules are very promis-

ing. Cavity enhancement of the molecules’ spontaneous emission has also been demon-

strated (10), and it may be possible to combine SILs with cavities to increase the non-

linearities as well as the collection efficiencies and, more generally, achieve a finer control

of the light-matter interaction. The dye molecules are only two-level systems however,

and for many QIP schemes we require three or four level.

1.2.2 High-index nanowaveguides

Nanowires provide an alternative approach to diffraction-limited focusing. These can be

thin (∼ 100 nm) ridge waveguides of a high-index material (for example silicon nitride or

tantalum oxide, n ' 2), or tapered optical fibres with a diameter around half a micron.

Either way, the high index contrast between the waveguide and its surroundings results

in a high degree of confinement; at the same time the waveguide is so small that the

field extends significantly outside, where it can interact with emitters. Experiments with

silicon nitride were pioneered by Lipson who used a nanowaveguide chip to probe a hot

rubidium vapour (11); work on silicon nitride and dye molecules is ongoing at the Centre
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for Cold Matter (CCM) (12).

Most of the work in this area has relied on nanofibres. They can be used to probe

a cold atomic ensemble (13), and as traps for neutral atom (14). The photonic mode

density is strongly altered in the vicinity of the nanofibre, so that the emission is strongly

(up to 25 per cent) redirected into the guided modes (15) (see also the calculation in

Appendix B). This can be boosted to 90% by defining a Bragg grating cavity directly on

the nanofibre (16) or in the non-tapered region (17).

In addition there are other systems with similar features. For example a diamond

sample containing nitrogen vacancy (NV) centres can be etched into a nanowaveguide

ring cavity to enhance the ZPL emission (18). Even tighter light confinement can be

achieved in plasmonic systems, but at the cost of large propagation losses.

Last but not least, we should mention that instead of tightly focusing the light mode to

achieve the highest possible value of the electric field, we can inflate the atomic absorption

cross-section and the atom dipolar moment by exciting atoms to a Rydberg state. Blocade

radii in excess of 10µm are possible, and we can use EIT-like schemes to generate strong

non-linearities as in Lukin’s recent experiment (19).

1.3 Strong light-matter interactions II:

Recycling the photons with cavities

Optical cavities enhance the interaction between atoms and photons through the interplay

of several effects. First, photons can be confined to a small volume defined by the mirrors

and the optical (Gaussian) modes they support; the mode volume can be several orders

of magnitude smaller than in free space (excluding ultra-short femtosecond pulses, which

we do not consider here since they usually contain a very large number of photons). The

Rabi frequency per photon is thus much larger, and in small cavities a single photon can

be sufficient to saturate the atomic transition. Second, photons can remain inside the

cavity for very long times (up to ∼ 100 ms) and have a long time to interact with the

atoms. Third, the cavity singles out a particular mode of the electromagnetic field into

which atoms decay preferentially, and this mode can be efficiently channelled to a detector

or to another experiment.

On the other hand, cavities are experimentally challenging, both to fabricate and to

operate. High-reflectivity mirrors are expensive to fabricate, requiring huge expertise and

state-of-the-art deposition facilities. High-finesse cavities suffer from a narrow bandwidth

and therefore need to be tunable and extremely stable (although only on relatively short

time scales, given that experiments rarely last more than a few milliseconds). This also

makes it difficult to integrate more than one type of emitters in the cavity.

In the following section we describe the main features of cavity quantum electrody-
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Figure 1.1: An atom in a cavity, showing the atom-cavity Rabi frequency gac, the atom
free space spontaneous emission γ0, the cavity decay rate (half-linewidth) κ and the cavity
pumping rate η.

namics in the Jaynes-Cumming model. We then review its historical development, with

a focus on the very early works of Purcell and Drexhage.

1.3.1 Fundamentals of cavity QED

The theoretical framework for cavity QED was laid out by Jaynes and Cummings in

1963 (20). They established the full quantum electrodynamic theory of a single emitter

(in this case, an ammonia molecule in a maser) interacting with a single mode of the

electromagnetic field. The paradigm has not changed much since, except for the inclusion

of damping.

The atom-cavity problem is closely related to cooperative phenomena in atomic en-

sembles, such as Dicke’s superradiance (21). Indeed, one can rewrite the atom-cavity

problem as a chain of atoms, each of which is a virtual image of the initial atom, formed

by the two cavity mirrors (22).

Hamiltonian

Consider the system depicted in Figure 1.1. A single two-level atom with ground and

excited states |g〉 and |e〉 and a transition energy ~ωa sits in a cavity, whose resonant

frequency is ωc. The cavity is taken to be a quantum harmonic oscillator, as depicted in

Figure 1.2. The atom emits spontaneously at a rate γ and the field intensity in the cavity

decays at a rate κ. η describe cavity pumping by an external laser, and gac is the coupling

between the atom and the cavity field.

The cavity field operator is

Ê(r) =

√
~ω

2ε0V

(
ψ(r)â+ ψ∗(r)â†

)
ε (1.4)

where V =
∫
|ψ(r)|2d3r is the mode volume and â, â† are the ladder operators for the

quantum cavity oscillator. ε describes the polarisation. This definition ensures that the

vacuum field energy
∫
ε0〈0|E(r)2|0〉d3r has the required value ~ω/2.
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For a Gaussian Fabry-Pérot mode (see Appendix A), we take

ψ(r) = e−(x2+y2)/w2
0 cos kz. (1.5)

k = 2πλ is the light k-vector in the cavity. On axis and at an antinode, ψ = 1.

The coupling g is defined by

~g = µ.|〈0|Ê|1〉| = µ.ε

√
~ω

2ε0V
|ψ(r)|, (1.6)

where µ is the dipole matrix element. The maximum coupling is therefore

gac =

√
µ2ω

2~ε0V
(1.7)

The Jaynes-Cummings (JC) Hamiltonian takes the form

H =

atom︷ ︸︸ ︷
~ωa|e〉〈e|+

cavity︷ ︸︸ ︷
~ωc(n̂+ 1/2) +

interaction HI︷ ︸︸ ︷
~gac

(
|e〉〈g|â+ â†|g〉〈a|

)
= HJC (1.8)

− i~κâ†â︸ ︷︷ ︸
cavity decay

− i~γ0|e〉〈e|︸ ︷︷ ︸
spont. emiss.

− i~η(â− â†)︸ ︷︷ ︸
cavity pumping

= Hdiss (1.9)

We have introduced the number operator n̂ = ââ†. The first part HJC contains

only Hermitian (energy-conserving) terms; we have dropped the fast-oscillating and non-

energy-conserving terms of the interaction under the usual rotating wave approximation.

This then describes the coherent exchange of excitation between the atom and the cavity,

and has a block-diagonal structure

HJC =


1
2
ωc 0 0 · · ·
0 H1 0 · · ·
0 0 H2 · · ·
...

...
... Hn

 with Hn =

(
(n+ 1/2)ωc g

√
n

g
√
n (n+ 1/2)ωc + ∆ac

)

(1.10)

Each block Hn describes a closed two-level subsystem with n excitations in the basis

{|g, n〉, |e, n − 1〉}. ∆ac = ωa − ωc is the atom-cavity detuning. Hn (and therefore HJC)

can be diagonalised, and the eigenmodes and eigenfrequencies are

|n,±〉 =
1√
2

(|g, n〉 ± |e, n− 1〉) (1.11)

Ω±n = (n+
1

2
)ωc +

1

2

(
∆ac ±

√
4ng2

ac + ∆2
ac

)
(1.12)

The Jaynes-Cummings energy spectrum is thus a ladder of doublets with increasing sep-
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Figure 1.2: Graphical representation of the Jaynes-Cummings Hamiltonian. The cavity
field is a harmonic oscillator (left) and the atom a two-level system (centre); the energy
spectrum of the coupled system is a ladder of doublets whose separation is the effective
Rabi frequency (right).

aration Ωeff,n = 2g
√
n (taking ∆ac = 0), as shown in Figure 1.2. Ωeff,n is known as the

effective Rabi frequency. The system oscillates between the states |g, n〉 and |e, n − 1〉
at a frequency Ωeff,n; that is, the atom periodically emits and reabsorbs a cavity photon.

This is Rabi flopping. Note that the quantum Rabi frequency is no different from its

semiclassical counterpart.

The second part Hdiss of the JC Hamiltonian consists of non-Hermitian terms describ-

ing respectively the loss of photons at a rate κ (including, but not limited too, leakage

through the cavity mirrors); the loss of the excitation via spontaneous emission outside of

the cavity mode, at a rate γ0; and the injection of coherent states at a rate η, correspond-

ing to laser pumping of the cavity through one of the mirrors1. A rigorous justification

of these terms would requires us to delve into the intricacies of the master equation for-

malism; for our purpose it is enough to empirically check that they produce the desired

behaviour when injected into the Schrödinger equation.

Consider the damped, non-driven Hamiltonian. When the cavity is resonant with the

atom, ∆ac = 0, the eigenfrequencies are (23)

ω±n = (n+
1

2
)ωc ±

1

2

√
4ng2

ac − (γ0 − κ)2 − i

2
[γ0 + κ(2n− 1)]. (1.13)

Thus the damping not only gives a finite width to the JC doublet resonances, it also

changes the Rabi splitting ω+
n − ω−n .

We can also calculate the full atom-cavity spectrum that would be observed if one

were to probe the cavity with a laser while monitoring the transmission. If the pumping

1η is related to the optical power in the input mode Pin by Pin = 2η2~ω/κ. This is straightforward to
prove, starting from the intracavity photon number nph = η2/κ2. The power leaking out from the cavity
is then nph~ω · 2κ, and in the steady-state regime this must be equal to Pin.
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is weak enough that n ≤ 1, we can restrict the state vector to

|Ψ(t)〉 = ce(t)|e, 0〉+ cg(t)|g, 1〉+ c0(t)|g, 0〉 (1.14)

with c0(t) ' 1. The steady-state solution to the Schrödinger equation i~Ψ̇(t) = HΨ(t)

then gives us the population of the cavity field as a function of the laser-cavity detuning

∆CL, assuming that the cavity is tuned to the atomic resonance (∆ac = 0)

〈n〉 = |cg|2 =
η2

κ2

∣∣∣∣ κ(γ − i∆CL)

(∆CL − ω+
1 )(∆CL − ω−1 )

∣∣∣∣2 . (1.15)

The cavity transmission is proportional to Eq. (1.15), and is plotted in Figure 1.3(a).

Strong coupling regime

From Eq. (1.13) it is clear that the “vacuum” Rabi splitting can only be resolved if 1) the

square root term is real (otherwise the system would be overdamped) and 2) it is larger

than the imaginary part, i.e. {
4g2

ac > (γ0 − κ)2

4g2
ac & 2(γ2

0 + κ2)
. (1.16)

In general we strive for the strong coupling regime gac � κ, γ0. The time evolution of the

atomic and photonic populations are then damped sinusoidal oscillations.

Collapse and revival of the Rabi oscillations So far we have assumed that cavity

was populated with a number state |n〉. In practice however, the cavity is pumped with a

laser and excitation are fed into the cavity not as Fock states, but as coherent states |α〉 =

e−|α|
2/2
∑∞

n=0
αn√
n!
|n〉 (a Poisson distribution of Fock states with mean photon number and

variance |α|2). Each of these coherent states will undergo Rabi oscillations with the atom,

with each Fock component having a different frequency Ωeff,n. The coherent superposition

of these oscillations will eventually kill the Rabi flopping as they dephase, but as long as

the coherence is not lost they will eventually rephase and the Rabi oscillations will revive,

as shown in Figure 1.3(b).

This collapse and revival effect is qualitatively similar to Newton fringes in white light

interferometry and other phenomena involving coherent dephasing, but it is nonetheless

a uniquely quantum feature since it is associated with the quantisation of the electromag-

netic field. In fact Jaynes and Cummings showed that a semiclassical treatment would

reproduce most of the features of cavity QED with reasonable accuracy, with the notable

exception of the collapse and revival.
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Figure 1.3: (a) Transmission spectrum of a weakly driven cavity containing a single atom
(solid line) as a function of the cavity-laser detuning ∆L = ωc − ωL, showing the normal-
mode splitting. The atom is assumed to resonant with the cavity. The average photon
number is 〈n〉 = 1 and the parameters are g, γ, κ = 2π× (4.5, 3, 1.25) MHz. The dashed line
is the empty cavity spectrum. (b) Collapse and revival of the Rabi oscillation with a mean
photon number 〈n〉 = |α|2 = 5.

Photon blockade The collapse and revival of the Rabi oscillation, while being a rather

spectacular effect, has a rather limited potential in terms of useful applications. A more

practical feature of the model is the anharmonicity of the Jaynes-Cummings ladder, since

Ωeff,n ∝
√
n. In the strong coupling regime, this gives rise to the so-called photon blockade

effect: if the cavity contains a resonant photon at ωc±gac, a second photon cannot enter the

cavity since it is not resonant with either of the two-photon lines ωc±
√

2gac. Obviously we

require gac(
√

2− 1)� κ, γ: the one- and two-photon transitions must be clearly resolved.

Thus, an incident laser beam at ωc±gac will be converted from a flux of coherent states into

a flux of single photons. Indeed, Kimble observed antibunching in the light transmitted

through a suitably prepared cavity (24). Conversely, a laser beam at ωc −
√

2gac would

exhibit bunching. The photon blockade effect is effectively a photon-photon interaction

mediated by the cavity-enhanced atom.

Fast cavity regime

Let us now turn to the fast cavity regime, κ � g. The photon leaks out of the cavity

immediately after being emitted so that the population in |g, 1〉 can be neglected. Starting

with an atom in the excited state |e, 0〉, we can evolve the damped Hamiltonian (1.9) in

time under Schrödinger’s equation with the state vector (1.14). The time dependence of

the excited state is

ce(t) = e
−

„
γ+ g2

κ

«
t

= exp [−γ(1 + 2C)t] with C =
g2

2κγ
. (1.17)

C is known as the cooperativity. This shows how the resonant cavity can enhance the

spontaneous emission rate. Interestingly, the extra factor 2C is emitted into the cavity
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mode, and therefore can be efficiently collected. This highlights the potential of cavity

QED as a source of single photon. Nonetheless we should keep in mind that photons

produced in this way are typically very long (∼ ns), since they cannot be shorter than

the cavity lifetime: we are far from producing “light bullets”.

Photons of controlled duration and temporal profile (although still limited by the

cavity lifetime) can be created if instead of a two level atom we use a three-level Λ-

system with two metastable ground states, |a〉 and |b〉 coupled to an excited state |e〉.
One of the transitions is coupled to the cavity field, with Rabi frequency Ωc = 2g

√
n:

|a, n〉 ↔ |e, n − 1〉 and the second one to a control laser field Ωp, with no effect on the

cavity photons: |b, n−1〉 ↔ |e, n−1〉. This is analogous to the familiar electromagnetically

induced transparency configuration (EIT) (25); in particular one of the three eigenstates

is a “dark” state

|u〉 = cos Θ|a, n〉 − sin Θ|b, n− 1〉, with the mixing angle tan Θ =
Ωp

Ωc

(1.18)

Thus, by adiabatically sweeping the mixing angle Θ by mean of the control laser Ωp, it is

possible to deterministically create (or destroy) a cavity photon, whose temporal profile

can be tailored via the control pulse (26).

1.3.2 Historical overview

NMR and Purcell’s seminal “paper”

What is now known as the Purcell effect initially arose in connection with early research

in nuclear magnetic resonance, discovered independently by Purcell (27) and Bloch (28)

in the winter 1945-46. The principle of NMR was quite well established at the time:

protons (hydrogen nuclei) have a spin, whose degeneracy can be lifted in a strong magnetic

field, leading to a radiofrequency transition around 30 MHz. The spins align themselves

with the magnetic field, initially with equal populations in the “up” and “down” states.

Interactions with the environment then bring the spins into thermal equilibrium where

the relative populations follow the Boltzmann distribution, which results in a small excess

of spin down, of the order of 10−5. Detecting the absorption (of a radiation resonant with

the spin transition) induced by this excess requires a large number of spins, which earlier

experiments with molecular beams could not provide. Instead Purcell placed a kilogram

of solid paraffin inside a metal cavity driven by an RF generator, and placed the apparatus

between the poles of a large magnet (the very same that had discovered the muon in 1937)

(29). By increasing the current into the magnet, Purcell was able to bring the nuclear

spin in resonance with the fixed-frequency RF field, and he observed a decrease of the

cavity Q-factor, caused by the absorption of photons by the proton spins.

The only real surprise in this work was the thermalisation time, which turned out
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much shorter than expected: seconds rather than hours. Purcell invested a significant

amount of time over the following years in trying to understand relaxation processes in

NMR. He quickly realised that spontaneous emission was a negligible factor since the

Einstein A coefficient associated with the proton magnetic moment in free space is of

the order of 1021 s. However, building on his experience with RF/microwave resonating

circuits and two-level atoms, which he acquired during the war while working on radars,

he also came to realise that this spontaneous lifetime would be reduced inside the resonant

cavity, because more modes are available to decay into. The enhancement factor is (30)

f =
3Qλ3

4π2V
, (1.19)

where Q and V are the cavity Q-factor and volume. f has since become known as the

Purcell factor. In the cavity used in the 1945 experiment, this enhancement is negligible.

But Purcell suggested that by using micrometer-scale metallic particles mixed with the

nuclear magnetic medium, the spontaneous lifetime could be decreased down to a few

minutes, and therefore observed.

As Table 1.1 shows, Purcell’s paper had very little impact for almost four decades. In

fact it was never published except as an abstract in the Proceedings of the April 1946

meeting of the American Physical Society (31), where it was eclipsed by Purcell and

Bloch’s papers on the discovery of NMR. It is very revealing that only in 1981 was it

pointed out by Kleppner (32) that the same mechanism would lead to the inhibition of

spontaneous emission.

Year Citations Notes

1946-1950 2 (all by the initial co-authors)

1951-1960 6 (mainly by the initial co-authors)

1961-1970 10 1970: Drexhage experiments

1971-1980 4

1981-1990 78 Kleppner’s paper published in 1981

1991-2000 445

2001-2010 1420

2011-... 367 ... and counting

Table 1.1: Citations history of Purcell’s original 1946 abstract (30) in the last 65 years.

Source: Google Scholars.

Drexhage’s monomolecular layers

Spontaneous emission lifetime modification was actually first observed simply by looking

at molecules close to a mirror, in a series a beautiful experiments performed by Drexhage

in the late 1960s (see (33) for a comprehensive review, or Drexhage’s neat SciAm article

for a more popular version (34)). Although he did not have a resonator per se, the
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presence of the mirror nonetheless resulted in constructive or destructive interferences in

the dipole emission pattern, which also changed the spontaneous lifetime.

In order to position quantum emitters at a small and well-controlled distance from the

mirror, Drexhage used fatty acid molecules floating at the surface of a water tank. He

would then dip a glass plate (on which a mirror had been previously deposited) vertically

into the tank; upon withdrawing the slide a uniform layer of molecules would stick to it via

their hydrophobic end. By repeating the dipping process, up to several hundreds, optically

flat molecular layers of identical thickness could be built up. A final layer of dye molecules

was deposited to probe the electromagnetic field. Having measured the thickness of a

single monomolecular layer (2.64 nm) by observing Fabry-Perot interferences between the

mirror and the air-molecule interface, Drexhage could now investigate the field from a few

nanometres up to a couple of microns from the mirror, with an unprecedented resolution

of about 5 nm (the thickness of molecular bilayer).

For example, by building a stair-like structure of monomolecular layers, he was able

to probe directly the standing wave pattern of a laser reflected off the mirror at normal

incidence, as well as the evanescent wave that arises from total internal reflection. He ob-

served the change in the emission pattern of dye molecules as they approach the mirror, for

both electric and magnetic dipole transitions. By adding a second dye whose absorption

frequency overlapped with the emission of the first, he demonstrated radiationless energy

transfer from one to the other and thus established the existence of the near field around

an excited dipole. Finally, he measured the dyes radiative lifetime (around a millisecond)

as a function of distance from the mirror and showed that it varied in accordance with

the theory. The quantum yield, which normally nearly impossible to access, can also be

determined straightforwardly through this measurement (35).

Beautiful as they are, these pioneering experiments do not quite mark the birth of

cavity QED. The lack of a proper cavity limited the lifetime modification to a few tens

of per cent, and there was no perspective for coherent manipulation of the dye molecules

or of the emitted radiation. In fact we had to wait another full decade for the first cavity

experiments to become possible.

The birth of cavity QED

For another decade after Drexhage’s work, throughout the 1970s, very little progress was

made. Cavity QED only kicked off in the early-mid 1980s, with progress in laser and

microwave technology. The first experiments were carried out with Rydberg atoms in

the microwave regime, chiefly because it is much easier to achieve a small mode volume,

comparable to the wavelength, when the latter is measured in centimetres rather than

micrometres. Thus Haroche (36) was the first to observe Purcell enhancement in 1983,

using a beam of low-lying Na Rydberg atoms (23S → 22P transition at 340 GHz) and a

niobium superconducting cavity. The atoms are prepared in the 23S state prior to entering
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the cavity; if the latter is off-resonant, only 23S atoms are detected after the transit. When

the cavity is tuned in resonance, 22P atoms are detected, showing that the radiative decay

23S → 22P has been enhanced by the cavity. A similar apparatus using cesium atoms

and a planar instead of a concave cavity allowed Kleppner to demonstrate inhibition of

spontaneous emission in 1985, with a Purcell factor of about 20 (37). Inhibition was

actually first observed by Gabrielse a year earlier, in a rather different setting. He showed

that he could suppress the microwave (164 GHz) cyclotron radiation of a single electron

in a Penning trap, whose electrodes also form a moderate-Q microwave cavity (38). A

maser with a single Rb Rydberg atom acting as the gain medium was demonstrated

shortly afterwards by Walther (39), who was also the first to observe the collapse and

revival of Rabi oscillations in 1987 (40).

The larger mode volumes and faster spontaneous atomic decay associated with optical

transitions made experiments in this regime much more challenging, and they lagged

behind for a few years. Suppression of spontaneous emission in the near-infrared was

demonstrated by Haroche in 1987 (41) on the caesium 5D5/2 → 6P3/2 line at 3.49µm,

in a planar geometry. Then Kimble pioneered the field throughout the 1990s, starting

with the observation of one-atom Rabi splitting in 1992 (42), using the caesium D2 line

at 852 nm. His cavity had a relatively large mode volume (1 mm long, 50µm waist),

although most bulk optics cavities would not get much smaller afterwards. Kimble also

demonstrated that a single-atom cavity could be used as a controlled phase gate for

quantum optics (43).

Trapping atoms inside the cavity by means of the dipole force (also known as a far off-

resonant trap, or FORT) was the next big step (44), followed by cooling of the atoms to the

motional ground state (45). Lasing with a single trapped caesium atom was achieved in the

same breath in 2003 (46). At the same time, improvements in trapping techniques made it

possible to load atoms deterministically into the cavity, for example with a standing-wave

conveyor belt (47).

With the new millennium, cavity QED entered a new age: that of coherent control.

Kuhn (a former student of Kimble) deterministically produced photons with a predeter-

mined temporal profile by adiabatic passage (26), while Rempe (also from the Kimble

school) went further and managed to entangle atoms sitting in two distant cavities. Last

but not least are Haroche’s latest experiments, in which he send Rydberg atoms flying

through a superconducting microwave cavity to add (if the atom was excited) or remove

(if in the ground state) a photon from the cavity (1). One can also take the opposite

approach and use the cavity field to control the internal state of several atoms (48).
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J

Figure 1.4: A theorist’s view of coupled cavities. The coupling J originates from the
overlap between the cavity modes (green lines), and an effective photon repulsion U can be
generated from one or other variant of the photon blockade effect.

1.4 Coupled-cavity QED

By the mid-2000s, cavity QED had come of age: all the effects discussed in the previous

section had been demonstrated and verified beyond the proof-of-principle stage. At the

same time much progress had been achieved toward the integration of optical cavities

on a microscopic scale with the development of pillar semiconductor microcavities with

quantum dots (49), photonic crystal cavities and whispering-gallery resonators. Many-

body quantum physics with Josephson junction and, more recently, in optical lattices

have also witnessed dramatic developments.

It is in this context that the concept of coupled-cavity QED arose in a seminal 2006

paper by Hartmann and Plenio (50). They proposed to build what is essentially an optical

lattice of interacting photons with an on-site non-linear interaction mediated by atoms

in cavities, as depicted in Figure 1.4. An array of resonators would be coupled to atomic

ensembles; the atoms are four-level N systems where an effective photon-photon non-

linear interaction is generated via an EIT-based scheme. The concept is formally similar

the Bose-Hubbard model, which has been a paradigm of many-body physics for several

decades.

Before we survey some of the many schemes that have been proposed since that paper,

let us briefly review the main features of the Bose-Hubbard (BH) model.

1.4.1 The Bose-Hubbard model

The BH model is a very general description of bosons interacting on a lattice. It was pro-

posed in 1989 as an extension of the Hubbard model that deals with fermions (electrons)

in semiconductors. The citation history of the original BH paper (51) shows a marked

increase in the rate of citations in the mid-2000s (from less than 50 to over 200 per year)

that coincides primarily with the advent of cold atoms experiments on optical lattices,

but is also related to the interest in coupled-cavity QED.

The BH model considers a periodic potential in which each site i is populated with

bosons (annihilation/creation operator Φ̂i, Φ̂
†
i , number operator N̂i = Φ̂†i Φ̂i, with the
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standard bosonic commutation relation, [Φ̂i, Φ̂
†
j] = δij). Bosons experience on on-site

repulsive potential U while being able to hop between neighbouring sites i and i± 1 at a

rate Ji. The on-site energy of a single particle is given in term of a chemical potential µ.

The BH Hamiltonian then reads

H = −
∑
i

µN̂i︸ ︷︷ ︸
on-site energy

+
1

2
V
∑
i

N̂i(N̂i − 1)︸ ︷︷ ︸
repulsive interaction

− 1

2

∑
i

Ji(Φ̂
†
i Φ̂i+1 + h.c.)︸ ︷︷ ︸

boson hopping

. (1.20)

The on-site interaction is proportional to N̂2
i , and is therefore akin to a Kerr non-linearity

in optics.

In the absence of disorder, the physics governed by such a Hamiltonian can be very

intuitively understood in the two limits U/J � 1 and U/J � 1.

� If U � J , the repulsive interaction U dominates and effectively prevents excitations

from tunnelling from one site to the next; they are strongly localised at each lattice

site. This quantum phase is the counterpart of a crystal in condensed matter, and

is called a Mott insulator.

� If U � J , the tunnelling dominates and the bosons, free to circulate, are delocalised

across the entire network, forming a superfluid phase.

Whether the system is in one or the other of these phases can be experimentally

determined by observing the fluctuations in the photon numbers inside each cavity, which

would be suppressed in the Mott insulator phase. Such a quantum phase transition was

first observed with a BEC held in an optical lattice (52), in which the tunnelling rate

J can be tuned by changing the depth of the lattice potential, i.e. the trapping laser

intensity. However optical lattices lack the ability to tune the coupling between two sites

independently of the others, and the sites are too close to each other to enable single-site

manipulation. In the presence of disorder (e.g. random variations of U or J between sites,

the existence of an exotic “glassy” phase has been predicted between the Mott insulator

and superfluid phases (53).

1.4.2 Theoretical proposals

The first important step in building a coupled-cavity QED system is to generate a strong

enough effective photon-photon interaction. The simple Jaynes-Cummings photon block-

ade effect is a candidate, but it suffers from decoherence via spontaneous emission from

the excited state. This can be alleviated to some extent by detuning the cavity from

the atom to work in the dispersive regime, but the non-linearity is then smaller, and de-

creases even further with increasing number of atoms (54). An alternative is to use 4-level

EIT-like schemes, in which the excited state population is small enough that spontaneous
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emission can be neglected. Such a scheme was initially proposed by Imamoḡlu (55; 56).

A slightly simpler concept was devised by Hartmann (54) using only a three-level atom,

in which the Stark shift induced by the cavity field on one transition generates the re-

quired non-linearity. Many variants of these basic schemes have been studied (57; 58). In

general, the strength of the non-linearity can be increased by adding more atoms in the

cavity.

The first coupled-cavity QED proposals were formulated in two back-to-back articles

in the same 2006 Nature issue, by Hartmann (50) and Greentree (59). The first one

was based on a traditional cavity design and 4-level atom EIT non-linearity, where the

coupling rate J is proportional to the intensity of an external driving laser. The second

one considered a two-dimensional network of diamond photonic crystal cavities with NV

centres as two-level atoms, with the ability to tune the interaction strength U by detuning

(Stark-shifting) the emitters from the cavity. In both cases, the bosonic excitations were

not purely photons but mixed atomic-photonic excitations referred to as polaritons. It

was subsequently demonstrated that the polaritons could, in the appropriate regime, be

almost pure photons and therefore a photonic Mott insulator was possible (60).

A three level atom in a cavity can be modelled as a spin, and therefore a system

of coupled cavities can implement an effective spin chain (61; 62). The high degree of

control over the parameters make it an attractive system for exploring spin dynamics;

for example Illuminati showed that by tailoring the coupling rates along a very long spin

chain, robust entanglement between the two ends could be created and teleported (63).

Specifically, he considered a so-called λ− µ chain in which the couplings are arranged as

λ − µ − 1 − 1 − 1 − ... − 1 − 1 − 1 − µ − λ, with λ < 1 < µ. In general, thanks to their

high degree of control and flexibility, arrays of coupled cavities have been primed as a

good candidate for quantum emulators and even as a cluster state generator for quantum

computing. For a comprehensive review, we refer the readers to (64).

In light of recent experimental efforts, including ours, it became clear that realistic

coupled-cavity QED implementations would have to accommodate relatively large losses.

Although still limited in scope, there has been a renewed interest in dissipative systems

indicating that non-trivial quantum physics may be observable even in the presence of

strong dissipation (65; 66; 67; 68; 69).

1.5 Practical implementation

1.5.1 CCM’s efforts toward integration

The work we undertook in this thesis is, to our knowledge, the first attempt to implement

the coupled-cavity QED proposals outlined in the previous section. It drew largely on

previous (and still ongoing) work at the Centre for Cold Matter (CCM) on microcavities
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Figure 1.5: The microcavity QED experiment at CCM. Left, the experimental set-up.
Micrographs of the fibred mirror and of the spherical micromirrors array are shown in inset.
Right: Experimental results. Ground state Rb atoms are dropped from a MOT and fall
freely through the cavity mode; the passage of a single atom disturbs the cavity, as seen in
the change in the reflection of a probe beam in the first half of trace (a). The maximum
mean atom number is 〈n〉 ' 1. At the time indicated by the vertical dashed line, the atoms
are excited by the pump laser shown in the diagram (left) into the excited state; a sharp
burst of cavity-enhanced photon is then observed through the fibre (b). About 50% of the
photons are emitted into the cavity mode, indicating a cooperativity C ∼ 1. Graphics
adapted from (71).

and waveguide atom chips, which we review first.

Fibre-coupled microcavities

Most of the cavity QED experiments we discussed in Section 1.3.2 were based on bulk

optics. Very high finesses were achieved at the expense of a relatively large mode volume

and very limited prospect for scalability. It is with this latter challenge in mind that in

the mid-2000s the CCM group started developing arrays of spherical micromirrors etched

on a silicon substrate and coated with a high-reflectivity multilayer dielectric mirror (70).

A cavity is formed between this mirror and another planar mirror glued on the tip of an

optical fibre. Finesses of up to 5000 have been measured. The spherical mirrors have a

typical radius of curvature in the range ∼ 100− 300µm, which allows the cavity mode to

be perfectly matched to the fibre. Such a cavity has a mode volume at least an order of

magnitude smaller than bulk optics designs, with a waist of about 5µm and a length of

order 100µm.

These cavities can be used as a fast, efficient single-atom detector (72) and as a single

photon source (71), as depicted in Figure 1.5. Cold rubidium atoms from a MOT are

dropped in free fall into the cavity, which is probed with a weak resonant laser. In this

case we operate in the fast cavity regime {κ = 13 � gac = 0.6 � γ = 0.02}GHz, giving

a theoretical cooperativity C ' 0.6. If the atoms are in their ground state, they act
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at resonance as scatterers/absorbers; we observe this as a reduction in the cavity fringe

contrast in the first half of the trace in Fig. 1.5(a). When the atoms are excited by a pump

laser (Fig. 1.5, left), the reflection signal vanishes because the recoil momentum pushes

the atoms out of the cavity. However if we repeat the experiment without the probe

beam, we detect a sharp burst of photons coming out of the fibre, as shown in Fig. 1.5(b).

These are spontaneously emitted by the atoms with some enhancement from the Purcell

effect: we can calculate that roughly 50% are coupled into the cavity mode and detected

out of the fibre; thus the cooperativity is about 1, as expected. Normal-mode splitting

has also been observed.

The micromirror array may contain several hundred mirrors. Fibres can also be inte-

grated in large, commercially available arrays of v-groove, or into a waveguide chip; thus

is should be possible to operate a large number of cavities simultaneously.

Array of integrated atom–photon junctions

In a second experiment, twelve waveguides were brought into close proximity in the middle

of a chip (10µm apart), and a 16µm-wide trench was cut perpendicular to the waveguides

(73). Atoms were loaded in the trench, and each waveguide could be used to probe

the atomic cloud at a different position. The atoms were used to measure the light

polarisation, and the waveguides could resolve the Gaussian profile of the atom cloud. In

the future it may be possible to do experiments with a BEC in which a wide range of

excitations could be induced via the waveguides. A periodic two-colour potential, with

light at two different frequencies in alternate waveguides, could be used as an atom mirror.

Based on the experience accumulated during these two project, we envision an array of

Fabry-Pérot microcavities coupled not to fibres, but to waveguides on a chip. But before

we describe it, let’s have a look at possible alternative.

1.5.2 Possible implementations of coupled-cavity QED

Photonic crystals

Photonic crystals (PC) (74) are a generalisation of multilayer dielectric (Bragg) mirrors,

which are just 1D PCs. They rely on Bragg reflection on periodic dielectric structures to

confine or guide light in a way that is very similar to electrons in semiconductors; hence

they are also often called photonic bandgap materials. In their most common form, PCs

are thin slabs (∼ 100 nm) of high-index dielectric patterned with a regular array of holes.

A missing row of holes defines a waveguide and a few missing holes a cavity, so that one

can conceive of an array of PC cavities close enough to be coupled via their evanescent

field. This is the setting for most of Greentree’s theoretical work.

Coupled photonic crystal cavities have already been experimentally demonstrated. In

2008, NTT Labs in Japan fabricated a waveguide along which they defined identical,
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closely spaced cavities by tweaking the spacing between holes (75). They showed normal

mode splitting between up to 200 co-resonant cavities with Q-factors in excess of a million

and a mode volume of 1.6(λ/n)3. The theoretical Purcell factor is then several tens of

thousands.

More recently, the Noda group also in Japan (pioneers of PCs) built a slightly different

system. They defined a long waveguide, closed by reflectors and evanescently coupled to a

cavity at each end. The length of the waveguide is such that it is exactly off-resonant with

the cavities, which are too far away to be directly coupled. But the waveguide nonethe-

less induces a coupling between the cavities, and because it is non-resonant it is only

weakly populated — such a configuration should be able to accommodate some propaga-

tion losses. They observed both normal mode splitting and “photonic Rabi oscillations”

between the two cavities at a rate of 18 GHz (76).

Photonic crystals are thus a very promising platform for integrating multiple cavities.

However, there is as yet no suitable quantum emitter. Quantum dots (QDs) are obvious

candidates, and they have been successfully integrated to single cavities (77), but for our

purpose we need to position them accurately within each cavity. Moreover the exciton

transition needs to be degenerate across many QDs. Currently the technology is lacking

on both counts. Moreover, the coupling rate between cavities is set by the geometry and is

difficult to tune. Nonetheless, given the continued interest in quantum dots and photonic

crystals, the situation may change in the future. In a promising recent experiment from the

Solomon group (78), a QD was coupled to the symmetric mode of a “photonic molecule”

made of two coupled PC cavities, while the antisymmetric mode was pumped to induce

a cavity-enhanced Stark shift large enough to tune the QD in and out of resonance with

the symmetric mode. This could be a mechanism to tune the QD-cavity coupling, and

consequently the photon-photon interaction strength U .

Toroidal microcavities

A very different kind of microcavity relying on whispering-gallery modes can be made,

either in a toroidal geometry (79) or in silica sphere fabricated by melting the tip of an

optical fibre (80). Although the mode volume is larger than in photonic crystals, this is

compensated by a very high quality factor thanks to the extreme surface smoothness and

high material purity that can be achieved.

Such resonators are coupled via a tapered nanofibre, and it is possible to couple several

of them to a single fibre (81). Quantum dots can be deposited on the surface and coupled

to the evanescent field, or a cold atomic ensemble can be brought in close proximity;

atoms could even be trapped in the same way as with nanofibres (82). The relatively

large distance between cavities allows individual addressing of the emitters.
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Superconducting microwave resonators

In the microwave regime, superconducting stripline resonators offer both large Purcell

factors (because of the long wavelength — see Eq. (1.19)) and very high Q-factors. Ex-

periments have been performed showing strong coupling between ensembles of diamonds

NV centres (83) with a stripline resonator. One can imagine that several of these systems

could be coupled together. It is also possible to use “artificial Q-bits”, such as Josephson

junction and Cooper-pair boxes (84).

1.5.3 Array of waveguide-coupled Fabry-Pérot microcavties

Our own original design was evolved in collaboration with Michael Hartmann and Martin

Plenio (now respectively at the Technische Universität München and at the University of

Ulm) as part of the European project HIP (Hybrid Information Processing). According

to the programme’s statement of purpose (85):

Scaling quantum information processors beyond the present small-scale devices

is challenging as communication between parts of the processor, single site

addressability and scaling are difficult to reconcile.

HIP addresses these issues with the experimental realization of elementary

hybrid atom-photon devices, and the theoretical development of schemes for

their integration on platforms capable of being miniaturized and scaled up in

functional networks. The main experimental platform on which this goal will

be pursued are atom chips structures on which optical micro-cavities will be

integrated. These devices will then be connected with optical fibres to form a

network.

Device description

Along these lines, we devised the coupled-cavity QED system sketched in Figure 1.6. The

emitters sit in microcavities formed between a spherical mirror Rc and a plane mirror

Rcw deposited on the end facet of a waveguide chip . The microcavities are open in the

transverse direction, giving access to lasers to trap and manipulate atoms at the position

of maximum interaction with the cavity modes. The concave mirrors are the same as

those currently used in the CCM microcavity experiment (86), and are fabricated on a

silicon substrate by wet isotropic etching (70) before being reflection-coated. Large arrays

of regularly spaced mirrors can be made. With additional polishing we expect the losses

due to surface roughness to be of order Ac ≈ 10−5 (87), while the plane mirror (subscript

cw) can have losses on the order of Acw ≈ 5×10−6 if the waveguide facet is super-polished

and a dielectric mirror formed by ion-assisted deposition is used.
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Figure 1.6: Realistic, although not to scale, representation of the proposed coupled cavity
array: a basic 2 × 2 unit showing mirror reflectivities, coupling rates (atom-cavity gac,
cavity-waveguide gcw, waveguide-waveguide gww), and side pumping ΩP . A V-groove array
of fibres is used to connect the device. The concept is highly scalable (inset).

The reflectivity of each mirror is given by Ri = 1− (Ti + Ai), where T represents the

power transmission and A the loss. Assuming that Ti, Ai � 1, the cavity field amplitude

decays at a rate (see also Eq. (3.11))

κc =
cξc

2Lc

with ξc ≈
Tc + Ac + Tcw + Acw

2
, (1.21)

which could be made as small as κc ≈ 2π × 0.01 GHz for a cavity of length 100µm. This

will give enough space for external optical access to the atoms. For the latter, we consider

the D2 line of rubidium-87 at 780 nm, whose amplitude decay rate is γ = 2π × 3 MHz.

The cavity waist could be as small as 2µm, and therefore the atom-photon coupling

rate or Rabi frequency is of order gac = 2π × (0.1 − 1) GHz. Thus the strong coupling

regime gac � γ, κc is in principle achievable. These questions are discussed more fully in

Chapter 3.

We then define waveguides on the chip, aligned with the microcavities. These waveg-

uides can be evanescently coupled to their neighbours, and in order to confine photons

within the system we add a mirror Rw on the second, external end facet of the waveguide

chip. Thus the waveguides themselves form a second set of (coupled) resonators, with

a hoping rate gww (see §4.2.1). The coupling between the microcavity and waveguide

resonators is described by another coupling rate gcw (see §4.1.2). For nearest-neighbour

coupling, we want to operate in a regime where

Rc � Rw > Rcw and gcw � gww. (1.22)
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Thus a photon emitted in a first microcavity will hop to the waveguide resonator rather

than get lost in the silicon substrate, then tunnel to the next waveguide – and into the

adjacent microcavity – instead of immediately leaking out of the system.

Finally, the waveguides can be interfaced with an array of optical fibres (arrays of up

to 64 fibres are commercially available (88)), so that photons can be efficiently collected

(much more so than with photonic crystals for example). Pump light can also be injected

in the system through this interface.

The device does not need to be entirely passive. In fact, it will be necessary to tune

the coupling rates in order to observe quantum phase transitions. With our design this is

very easy to achieve, provided two phase shifters can be integrated in each waveguide, one

on each side of the couplers (blue in Fig. 1.6). This allows us to tune gww, as demonstrated

in §4.2.3. The inset in Fig. 1.6 highlights the intrinsic scalability of the device.

Theoretical overview

A detailed classical optics analysis of the device is presented in Chapter 4. Its quantum

dynamics has been studied in collaboration with Michael Hartmann and Martin Plenio,

published in the New Journal of Physics (89). We refer the reader there for the details;

here we only summarise the main conclusions.

1. The combined microcavity-waveguide resonator system can be regarded as a basic

unit and the array of cavities can be described by coupling between single modes

of these units even though they have a complex spectrum (which is fully derived in

Chapter 4.1), provided that the coupling gww is much smaller than the waveguide

free spectral range. Thus, despite the additional waveguide resonator stage, this

structure can be described in exactly the same way as a simple 1D chain.

2. An elementary two-cavity Jaynes-Cummings-Bose-Hubbard model is considered,

where a single two-level atom resides in each of the two cavities. The driven steady-

state spectrum of such a system exhibits four peaks corresponding to four eigen-

modes. When properly tuned, the second-order correlation function reveals strong

antibunching, proving that the system can generate non-classical light. We also

show that photons in the two cavities become entangled. These effects are observ-

able with standard mirror reflectivities: Rc = 99.9%, Rcw = 98.0%, Rw = 99.8%.

3. We then consider an effective spin Hamiltonian with two cavities containing a single

three-level atom and study the spin dynamics. With the previous parameters, the

system is over-damped. However this can be rectified by increasing the reflectivities

to Rc = 99.99%, Rcw = 98.0%, Rw = 99.9%, which is not unreasonable. Coherent

spin oscillations between the cavities can then be observed, with a coherence time

limited by dissipation in the waveguide resonator.
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1.5.4 Thesis outline

In this introductory chapter, we have explained the deep motivation behind cavity QED,

reviewed its historical development as well as the latest advances, and motivated “coupled-

cavity QED” as its logical extension with potentially far-reaching application for quantum

information science. We have proposed an original and realistic implementation and

outlined its theoretical capabilities.

The following three chapters describe in details our efforts towards the practical reali-

sation of the proposed device. Chapter 2 covers the fabrication of the required waveguides,

couplers and phase shifters. Chapter 3 considers the waveguide resonators and the mi-

crocavities separately; they are brought together in Chapter 4. In Chapter 5 we present

our work on Bragg gratings which we had hoped to integrate to the waveguides.

The limitations of the current systems and prospects for the future are laid out in the

Conclusion.
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Chapter 2

Waveguide chips: theory, fabrication

and characterisation

2.1 Guided optics: An introduction

All the waveguides used in this work are, conceptually, optical fibres on a chip, with core

diameters around 5µm and an index contrast of the order of 10−3. Optical fibres exploiting

the low intrinsic loss of fused silica at wavelengths close to 1550 nm have become ubiquitous

in the modern world, enabling ultra-broadband, long-distance communications. Charles

Kao, who spent decades pushing forward what started as an outsider technology, was

rewarded in 2009 by a physics Nobel Prize for “groundbreaking achievements concerning

the transmission of light in fibres for optical communication”. It was a long road: in the

1950s guided millimetre waves were in favour for telecommunications, and none of the

major companies (with the exception of the British Post Office) would invest in optical

fibres, whose propagation losses were initially in the hundreds of dB per kilometre.

From 1966, when the potential for optical communication was established by Kao (his

estimate of the achievable bandwidth has now been exceeded by 5 orders of magnitudes,

and he envisioned that losses could be brought down to 20 dB/km), progress was rapid.

On the theoretical front, Snitzer solved Maxwell’s equation for a cylindrical dielectric

waveguide in 1961 (90); a decade later in 1971 Gloge devised the weak guiding approxi-

mation (91) while Goell developed the first numerical tools for non-cylindrical geometries

in 1968 (92). The first viable fibre communication link was set up in 1965, and commercial

links appeared a decade later. In 1977 NTT started using the “third transparency win-

dow”, at 1550 nm, where the propagation loss is only 0.2 dB/km. Erbium fibre amplifiers

were developed in the early 1990s, enabling transoceanic links.

Planar optical waveguide chips developed on a parallel road, initially as an integral

part of semiconductor laser technology (the gain region in a semiconductor laser often acts

as a light guide). The first solid-state laser was demonstrated in 1960, winning Townes
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the 1964 Nobel Prize; and the first semiconductor laser was build in 1962 (93), eventually

leading again to a Nobel prize in 2000, awarded to Alferov and Kroemer “for developing

semiconductor heterostructures used in high-speed- and opto-electronics”. Thus the de-

velopment of planar optical circuits was also closely linked to the telecom industry, and the

silica-on-silicon technology, largely derived from optical fibre fabrication, provided many

of the elements needed for switching (using the thermo-optic effect) and wavelength divi-

sion multiplexing with arrayed waveguide gratings (94). Where a high switching rate was

required, electroactive devices based on lithium niobate provided GHz bandwidth (95).

Total internal reflection

After this brief historical introduction, we turn our attention to the theoretical aspects of

wave guiding. The basic underlying mechanism is total internal reflection (TIR), which

was first studied back in 1842 when Colladon observed that sunlight was guided inside a

jet of water. Snell and Descartes in the seventeenth century, and before them the Persian

Ibn Sahl in the tenth century (96), had discovered that the deflection (refraction) of a

light ray at the boundary between two dielectrics of refractive index n1 and n2 is governed

by the law n1 sin i1 = n2 sin i2 (i1,2 are the angles of the incident and transmitted beams

relative to the normal). Thus a ray crossing an interface from the optically denser medium

(n1 > n2) will be deflected closer to the surface, and since i2 cannot be larger than π/2,

there is a critical incident angle ic = arcsin(n1/n2) beyond which all of the incident beam

will be reflected (Fig. 2.1(a)). The electromagnetic field in the second medium does not

vanish completely, but forms an evanescent wave that decays exponentially away from the

interface (its k-vector is imaginary). TIR is treated extensively in many electromagnetism

textbooks (97), and is an extremely convenient way of analysing massively multimode

waveguides in particular. If instead of a single plane interface we have a closed surface

delimiting a channel of an optically denser medium, it will act as a light guide. For

large multimode waveguide, such a ray analysis is sufficient. For smaller, single-mode

waveguide such as those we are interested in, we require a more detailed wave analysis

based on Maxwell’s equations.

In the following, we will briefly review the standard derivation of the guided modes of

an optical fibre.

Cylindrical waveguide

Consider a cylindrical waveguide of radius a (Fig. 2.1(b)) in cylindrical coordinates {r, θ, z},
with core and cladding indices nco and ncl. For TIR guiding we require nco > ncl. From

Maxwell’s curl equations it is possible to express Er, Eθ, Hr and Hθ as functions of Ez and

Hz only (98). Thus we only need to solve the wave equation (∇2 + k(r)2){E,H} = 0 for

these two components, which is relatively simple because the unit vector z is constant.

31



n1

n2<n1

i1

i2

ic

a

x

y

z

r

Θ

z

core

cladding

nco

a

nco

a

ncl

b

Figure 2.1: (a) Refraction and total internal reflection to an optically less dense medium.
Rays are deflected away from the normal, so for i1 > ic reflection will occur (the critical
angle ic is represented by the dotted line). (b) Cartesian and cylindrical coordinate system.
Cylindrical and square waveguides.

The problem is fully separable, so we can write Ez(r, t) = R(r)Θ(θ)ei(ωt−βz), and similarly

for Hz. The wave equation then reduces to a Bessel differential equation with solutions

of the form

Θ(θ) = sin(nθ + φ) (2.1)

R(r) =

{
AJn(ur/a) 0 < r < a (n ∈ N)

BKn(wr/a) r > a
(2.2)

with u = k0a
√
n2

co − n2
eff , w = k0a

√
n2

eff − n2
cl and neff = β/k0 such that nco > neff > ncl.

In the cladding these solutions correspond to evanescent waves, which behave asymptot-

ically as Kn(r � 1) ∼ e−r/r. neff is the modal index and c/neff the phase velocity of the

guided mode. The integer parameter n is the number of azimuthal field nodes.

At this stage there are four unknown coefficients, for Ez and Hz in the core and

in the cladding. To determine these, we first have to express the two other tangential

components Eθ and Hθ as functions of Ez and Hz. All of these must be continuous at the

core-cladding interface r = a, which results in a set of four continuity equations whose

determinant has to vanish to yield non-trivial solutions. This requirement is written as a

characteristic equation(
J ′n
uJn

+
K ′n
wKn

)(
n2

1

n2
2

J ′n
uJn

+
K ′n
wKn

)
= n2

(
1

u2
+

1

w2

)(
n2

1

n2
2

1

u2
+

1

w2

)
(2.3)

which can be solved for neff . It admits a small number of solutions defining the allowed

guided modes. Their number is determined by the normalised frequency v =
√
u2 + w2 =

k0a
√
n2

co − n2
cl. For v < 2.405, their is only one solution (for n = 1): this is the single

mode regime. For a given n, solutions with increasing neff (or, equivalently, v) correspond

to 0, 1, 2... field nodes in the radial direction.

For n = 0, there are two families of modes with Er = Ez = Hθ = 0 or Hr = Hz =
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Figure 2.2: Effective index of weakly guiding cylindrical waveguide as a function of nor-
malised frequency v, together with the LPmn mode numbers. Right, selected mode functions
of v = 4.3 (a = 5µm,∆n = 0.004) square (top) and cylindrical (bottom) waveguides.

Eθ = 0, known as transverse electric and magnetic modes (TE /TM, E or H being purely

transverse). For n ≥ 1 the fields are more complex, as all of the components are non-zero.

They are called EH or HE modes, depending on the relative weight of their Ez and Hz

components. However, in the weak guiding limit n2
co − n2

cl ' 2∆nnco � 1, many of these

EH/HE modes become degenerate, and the new modes that arise form their combinations

are very well approximated by so-called linearly polarised (LP) modes. They can be

conveniently expressed in a cartesian basis, and fall again in two orthogonal families with

either Ex = Hy = 0 or Ey = Hx = 0, while the z-component is very small (hence the

denomination).

The modal index in the weak guiding regime is plotted in Figure 2.2 as a function of

the normalised frequency, together with a few representative mode functions.

Other waveguide geometries

The derivation thus outlined is quite general, but only works when all the variables can

be separated. In general this is only possible for an infinite slab waveguide and cylindri-

cal/ellipsoidal fibres. Most other geometries do not admit analytical solutions, so we must

resort to numerical tools. Various methods have been developed over the years. Some are

semi-analytical: Goell’s expansion of the modes of a rectangular waveguide in terms of the

modes of a cylindrical one (92), Fourier expansion in sine waves (99), “modified” Fourier

expansion (which adds a mapping of the infinite plane to a unit square to avoid impos-

ing an arbitrary bounding box) (100). Today, with the large memory and computational

power that has become widely available, purely numerical finite-difference simulation have

become more common. We used MIT’s open-source packages, MEEP (time-domain) and
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MPB1 (frequency-domain) (101; 102). The mode profiles in Figure 2.2 have been calcu-

lated using MPB.

Optical fibres mode are very well approximated by Gaussian mode. In fact the mode

overlap η2 (which determines how much power can be converted from one mode to the

other; see Appendix A for more details) between the fundamental LP mode of a fibre

of radius a and a Gaussian mode of waist w0 can be as high as 99.8%; this optimum is

reached when (103)
w0

a
= 0.65 + 1.619v−3/2 + 2.879v−6. (2.4)

Note that even though the Gaussian approximation is extremely good and useful in and

around the core, it breaks down further away since the Kn(r) functions scale like e−r/r

and not like e−r
2
. Therefore it cannot be used to describe evanescent coupling.

2.2 Waveguide fabrication

After this brief introduction to the physics of waveguiding and optical fibres, we now de-

scribe the fabrication and characterisation of the waveguides used throughout this thesis.

Most of them were made in collaboration with Peter Smith’s group at the Optoelectronics

Research Centre of the University of Southampton, by direct UV-writing in a silica-on-

silicon platform (104). But we also used a femto-second-written chip graciously given

to us by the Ultrafast Optics group of the Ultra Optics Centre at the Friedrich Schiller

University in Jena, Germany (105), as well as a more traditional deposition-and-etching

silica-on-silicon chip (CIP Technologies) borrowed from CCM’s Waveguide experiment

(106).

2.2.1 Deposition and etching: CIP chip

To this day, the most common fabrication technology for silica-on-silicon waveguides is

the deposition-and-etching process. As its names indicates, it consists in depositing layers

of appropriate materials by one of many processes (CVD, PECVD, FHD, SolGel, thermal

oxidation...) followed by the removal of most of the material to define waveguides, and

finally – if needed – the deposition of a cover layer.

The CIP chip was fabricated as follows.

First, a 10µm thermal oxide layer was grown on the silicon substrate. Silicon has a

high affinity for oxygen and therefore will naturally form a thin SiO2 layer. Under high

pressure, high temperature (1000◦C, 25 atm) and in an wet, oxygen-rich atmosphere, this

silica layer can reach a thickness of 5 to 20µm. Thermal oxidation is a very common

1MEEP and MPB are Linux-only software. Some people have attempted running it on Cygwin. Now
they know better.
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way of producing the underclad layer; it has the additional advantage of helping releasing

strain, thanks to the smooth transition between the silicon and oxide layers.

The second step is to deposit doped, higher-index silica to form the core layer. At CIP

as well as in Southampton, this is done by Flame Hydrolysis Deposition (FHD), one of the

most common integrated circuits process, in part because it was already a mainstream

technology for the production of optical fibre preforms. A silicon tetrachloride (SiCl4)

vapour is injected in an oxygen-hydrogen flame to produce “soot”, tiny silica particles.

Other vapours can be simultaneously injected to incorporate dopants to the soot: GeCl4

and BBr3 will add germanium and boron, respectively. The concentration of these dopants

can be finely tuned to achieve the desired refractive index, with ∆n up to a few per cent.

The soot is deposited on a substrate located immediately beneath the flame, and is then

consolidated at high temperature to form a fully dense silica layer. Several layers with

different doping can be deposited consecutively.

After the doped FHD layer, a UV photoresist is deposited and exposed to define

waveguides. Most of the FHD layer is then etched away by reactive ion etching (RIE),

leaving only waveguide cores. Finally, a second FHD layer, index-matched to the thermal

oxide, is deposited to form the upper cladding. Losses as low as 0.05 dB/cm at 1550 nm

have been reported (107).

The CIP chip incorporated 14 waveguides, 250µm apart at the end facets and coming

together as close as 10µm in the centre. Many identical chips were made, and most of

them had a trench drilled in the middle, perpendicular to the waveguides; atoms were then

brought into the trench to make a compact “array of integrated atom-photon junctions”

(73). The chip we used however did not have the trench.

FHD is not the only technique available for making deposition and etching waveguide

devices, although it is one of the most common. There are many others (CVD, PECVD,

FHD, SolGel...), but they all required expensive and complicated equipment and many

different steps. The process is therefore only really suitable for industrial mass produc-

tion, but not for small-scale applications in a research environment where cheap and fast

prototyping is desirable.

Fortunately, there are alternative techniques that offer such advantages: directly writ-

ten waveguides, by continuous UV or pulsed IR radiation.

2.2.2 UV-written waveguides: ORC chips

It was discovered in the 1970s that the refractive index of germano-silicate glasses was

sensitive to UV radiation exposure. The process is still not very well understood due to

the complexity of the material: its amorphousness, the presence of many different dopants

with different relationships to the surrounding glass, and also the difficulty of performing

precise deep UV spectroscopy. Two classes of effects are usually considered. At the
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Figure 2.3: Schematics of direct UV-writing of waveguides in a silica-on-silicon chip. The
middle Si layer is photosensitive thanks to germanium doping. Drawing courtesy of James
Gates/ORC.

microscopic level, the germanium sites in silica have a strong transition near 242 nm,

and the energy absorbed from a UV laser is then transferred to other sites nearby where

defects are created, leading to an increase of the refractive index. At the macroscopic level,

UV exposure compactifies the glass, also increasing the index. The details of both the

micro- and macroscopic effects, as well as their relative contributions, are still a subject

of research and debate (108).

The first application of direct UV-written was the fabrication of Bragg gratings inside

germanium-doped optical fibres in 1989. Silica-on-silicon waveguides were written using

this technique in 1994 (109), although similar waveguides had been demonstrated much

earlier in polymer substrates. Basic devices such as directional couplers were demon-

strated a few years later, and work started at the ORC in the early 2000s (110). Evanes-

cent and cross-couplers and Bragg gratings were first demonstrated at 1550 nm (111; 112),

and the waveguides were integrated with microfluidic channels as chemical sensors (113).

From the start the new technology appeared very promising, with most reported losses

below 0.5 dB/cm (114) and some below 0.2 dB/cm (115); there are reasons to believe that

this can be much improved in the near future given the renewed interest in the technique

(104).

Until quite recently, these UV-written waveguides were designed for operation at

1550 nm, primarily for telecom applications (splitters, Bragg gratings filters, multiplexers,

add-drop etc.) With the explosion of interest for lab-on-a-chip devices and biochemical

sensing applications in recent years, the ORC started to work on waveguides operating

in the visible/near-infrared regime because the sensitivity of such devices at 1550 nm is

compromised by the strong absorption of OH bonds in water (in excess of 30 dB/cm

above 1400 nm (116)). It was in relation with the work presented in Chapter 5 that

the first experiments with 780 nm UV-written waveguides were reported. Moving from

1550 to 780 nm requires significant changes to the apparatus to focus the UV beam more

tightly (since a smaller core is required), which also reduces significantly the tolerance to

alignment errors. The propagation losses at 780 nm were virtually unknown.
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The writing process is illustrated in Fig. 2.3. First, the chip itself is made by standard

deposition methods (see previous section). A first layer of thermal oxide (16µm) is grown

on the silicon substrate. Then a germanium and boron-doped core silica layer (5.6µm),

followed by an overclad silica layer (17µm), are deposited by FHD. The germanium doping

of the core layer provides photosensitivity, while boron is used to match the refractive

index of the core layer to that of the adjacent layers. For the writing itself, a UV laser

beam (frequency-doubled ion-argon, λ = 244 nm) is tightly focused to a single spot on the

active layer, and any structure can be written by translating the substrate. The actual

apparatus uses a double-beam set-up that lets us write Bragg gratings as well, as detailed

in Chapter 5.

An interesting and novel device made possible by direct laser writing is the X-coupler,

fabricated simply by crossing two waveguides. These were previously difficult to make

because the standard deposition/etching technique does not allow one to make sharp

wedges and corners, especially with a shallow angle of a few degrees. Devices that allow

energy exchange between two waveguides were limited to directional couplers, where two

guides are brought in close proximity so that their mode fields overlap and the evanescent

field of one waveguide then resonantly excites a mode in the other. Although X-couplers

operate on a similar principle, as detailed in section 2.4.2, they can be much more compact

for a given coupling ratio. They can be tuned by varying parameters such as the crossing

angle or the relative fluence of the two crossing guides. Maximum and minimum coupling

ratios of 95% and 2% have been experimentally achieved with angles smaller than 5◦,

with relatively little wavelength or polarisation dependence (111).

Another very promising device is the so-called flat fibre (104). Starting with a preform

similar to classical optical fibres but with a modified drawing process, they have a flat

photosentitive core on which waveguides can be written. The essential advantage of

these devices is that they can potentially achieve very low losses, similar to optical fibres

(0.2 dB/km at 1550 nm and 3 dB/km at 780 nm). They are still, however, in the very

early stages of development.

2.2.3 Femtosecond laser writing: Jena chip

Femto-second writing in bulk silica (117) was invented a few years after the direct UV-

write method in silica-on-silicon chips. The two have been progressing in parallel since

then. A femtosecond pulsed infrared laser (usually Ti:Sapph, 800 nm, ∼ 50 fm) is focused

inside a piece of bulk glass. Absorption at this wavelength is normally negligible, but

the very high peak power allows non-linear, multiphoton absorption leading to melting

under the focal spot. The glass is denser after re-solidifying, leading to an increased

refractive index with a graded profile (118). Waveguides with arbitrary 3D geometries

can be written by translating the sample under the focus (105). The process does not
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Figure 2.4: Experimental set-up for coupling in and out of the waveguide.

depend on the intrinsic photosensitivity of the substrate, and it is not limited to fused

silica. It is even possible to write waveguides inside gain materials to create amplifiers

and lasers (119; 120) or in electroactive materials such as lithium niobate (121).

All the standard devices have been demonstrated using this technique (splitters, Mach-

Zehnder interferometers, directional couplers, Bragg gratings..., see references above).

Low-loss waveguides with high uniformity can be achieved by writing the device in mul-

tiple passes so that the defects of single passes cancel out; typical propagation losses are

around 0.2 dB/cm at 1550 nm, comparable to the the direct UV-writing technique. The

index contrast can be as high as 0.01. The use of adaptive optics can further improve the

resulting waveguide by getting rid of optical aberrations by compensating the spherical

aberration introduced by the air-glass interface. Femto-second written waveguides have

already been used in quantum optics experiments (122).

2.3 Waveguide characterisation

The most relevant properties of the waveguides are, for our purpose, the mode profile and

the propagation loss. The latter will be addressed mainly in the next chapter, so we focus

here on the waveguide’s mode profile, which we would like to match that of a standard

780 nm optical fibre (Nufern 780-HP). We assume that the waveguide and fibre modes

can be well approximated by Gaussian modes.

2.3.1 Methods

The measurement set-up is sketched in Figure 2.4. A 780 nm laser diode is coupled to

a PM fibre, and then into a standard 780 nm single mode fibre mounted on a three-axis

flexure stage to be aligned to the desired waveguide. On the other side of the chip, a

second fibre is aligned with the waveguide and fed to a photodiode. For transmission

measurements, an index-matching oil is added between the chip end facet and the fibres

to eliminate Fresnel losses. The reference cavity allows tracking of the laser frequency

and is not used here.

38



The field transmission η(∆x,∆z) between fibre and waveguide as a function of mis-

alignment is determined by the convolution of their respective modes, as detailed in

Appendix A, Eq. (A.6). This is maximum when they are aligned (∆x = ∆z = 0), re-

sulting in an intensity coupling efficiency η2 (Eq. (A.7)). The total transmission is then

T = η4 exp(−LdBl/10), with l the waveguide length in cm and LdB the propagation loss

in dB/cm.

According to Eq. (A.6), the mode size of the waveguide wx,z (defined as the 1/e2 half-

width) can easily be determined if the fibre waist wf is known. One can record transmitted

intensity while scanning the fibre in front of the waveguide, and then deconvolve the

measured width Wx,z to recover wx,z as wx,z =
√
W 2
x,z − w2

f . The fibre mode size can be

measured similarly by scanning two identical fibres across each other; then wf = Wf/
√

2.

This method is in principle direct, simple and convenient, but in practice the inter-

pretation of the results is fraught with problems. The first is the necessity to bring the

scanning fibre close enough to the waveguide output that the beam expansion can be

neglected. With a typical Rayleigh range of order 25µm, this requirement translates in

distances measured in microns, when the positioning accuracy under a microscope is no

better than 5− 10µm.

The second difficulty is the calibration of the fibre displacement. In the early stages

of this experiment, we only had at our disposal a three-axis flexure stage whose piezo

actuators did not include position sensors. Moreover the piezo displacement was highly

non-linear. To calibrate it, we imaged the output of a fibre mounted on the stage on

a CCD and measured its centroid with sub-pixel resolution. The same voltage driving

sequence was used for the calibration and the actual measurement.

The second method is a far-field measurement. The mode at the waveguide output

is left to expand freely for a centimetre or so before being imaged on camera at several

distances within a coupled of centimetres. We can then measure the beam divergence

θ = λ/πw0. This straightforward method has its own drawbacks: it requires a cleanly

polished output facet, which was not the case on all of our chips. Moreover the camera

had a protective glass window which introduced interference patterns, adding uncertainty

to the mode size measurement. This problem can be partially alleviated by operating the

laser below threshold: the large bandwidth of amplified spontaneous emission washes out

the interferences.

A third method is to image the mode with a high-power immersion microscope ob-

jective whose magnification can be accurately calibrated. It may be asked whether that

calibration, carried out on a geometric image, remains valid for a Gaussian beam. This

is not a trivial question, and we show that it is the case in Appendix A.3.

In the following experiments we used all of these methods in various measurement

carried out over several years.
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2.3.2 ORC chips

We wrote a UV-written chip (“ORC1”) containing 16 waveguides written with fluence F

varying between 4 and 19 J/cm2. The mode profiles were measured with the fibre scan

method and are diplayed in Figures 2.5 and 2.6(b). The vertical mode size wz is constant

whereas the transverse one wx has a clear minimum around 14 J/cm2 (see geometry in

Figure 2.6(a)). We interpret this behaviour as follows. In the vertical direction, the

index contrast is dominated by the mismatch between the core and lower/upper cladding

layers, so the mode size is relatively insensitive to the fluence and has an almost square

profile. Transversely, the index profile depends on the laser intensity profile and on the

index change vs fluence characteristic, which is linear at low fluence but saturates at high

power (see Fig. 5.5, page 101). At low fluence, i.e in the linear regime, the index profile

is Gaussian, following the UV laser intensity profile, and the weak index contrast results

in a large mode which gets smaller as the fluence and the index contrast increases. The

waveguide dimension however remains constant before the onset of saturation. At higher

fluence, the index change saturates, producing an index profile that is flattened out –

effectively resulting in a larger waveguide so that the mode size increases again.

On a second chip (“ORC2”), we wrote 5 sets of 10 waveguides, each set having a

fluence of 12, 13, ..., 16 J/cm2. We measured the mode profiles again and confirmed that

the mode is reasonably circular for a fluence around 14 J/cm2, with wx × wz = 4.3(5) ×
3.0(5)µm2, from which we estimate a maximum mode-matching efficiency η2

w = 90± 5%,

the fibre mode size being 2.6 ± 0.3µm. We also measured the transmission of all these

waveguides, which is close to 50% with a very large dispersion (±10%) due to differences in

coupling efficiencies from shot to shot. We can compare this to the transmission expected

from the mode profile by using Eq. (A.7) and taking into account a propagation loss of

about 0.8 dB/cm (this will be determined in the next chapter). This yields a theoretical

transmission of 60± 10%, quite compatible with the measured transmission.

We did not attempt to measure directly the index profile of the waveguides, and

therefore did not carry out precise simulations using MPB since we only care about the

mode itself. The effective index of the waveguides was measured at the ORC using Bragg

gratings: neff = 1.4590(5).

2.3.3 Jena chip

This femto-second written sample was the only one of its kind we were able to secure.

As depicted in Figure. 2.7, it contains 20 sets of 8 identical waveguides. Each set was

written with a different combination of laser power and writing speed. Higher power and

slower speed correspond to higher index contrast, although these two parameters are not

strictly equivalent and they cannot be characterised by a single parameter like the fluence

we used in relation to UV-written waveguides. Within a set, the waveguides are written
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Figure 2.5: Mode profiles on chip ORC1. The writing fluence (in J/cm2) is indicated on
each image. The scale is indicated by the 5µm long white line in the first image.
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Figure 2.6: Mode profiles on chip ORC2. (a) Writing geometry, showing the photosensitive
core layer, the UV laser beam and the typical index profiles. (b) Mode size as a function
of writing fluence (in J/cm2). The waist in the vertical direction wz is essentially constant,
being determined by the thickness of the Ge-dopped layer, which is not perfectly index-
matched to the lower and upper cladding layers. The horizontal waist wx is very large at
low fluence and decreases as the waveguide index contrast increases and the light is more
tightly confined. wx increases again at large fluence, where the waveguide becomes larger
due to fluence saturation. The four curves were obtained from the forward and backward
raster scan and for two different calibrations of the piezo displacement.
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Figure 2.7: Photograph of the output facet of femtosecond-written Jena chip. It consists of
4× 5 sets of 8 identical waveguides, each set written at a different fluence by changing both
the sample translation speed and the laser power. Unlike UV-writing, the two parameters
are not strictly equivalent. The inset shows a magnified detail, highlighting the waveguide’s
asymmetry. Image courtesy of Jena University.
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Figure 2.8: Microscope images of the output of one set of waveguides on the Jena chip,
as the in-coupling fibre is moved between the first 5 waveguides. The sketch on the right
clarifies the geometry. The green line is a guide for the eye indicating the position of the
waveguides.

at increasing depths in steps of 25µm. Figure. 2.8 shows the waveguide output as the

input fibre is moved between different waveguides.

We measured the mode profile and transmission as before. The results are summarised

in Figure. 2.9. The modes have a pronounced asymmetry which is already visible in the

microscope image in Figure. 2.7 (see inset). As expected, higher laser power and slower

writing speed results in smaller mode because the induced index contrast is larger. Smaller

modes then result in higher transmission by virtue of their better mode-matching to the

input and output coupling fibres. There is a reasonably good agreement between the

measured transmission and that expected from the mode size, even without including the

propagation loss. The latter was measured in the next chapter and found to be 0.3 dB/cm

or about 10%, which is indistinguishable from zero within the measurement error.

2.4 Couplers

We have already introduced these devices. In this section we first review the coupled-

mode theory for directional couplers, focussing on the derivation of the relevant parameters

(especially the coupling constant and coupling ratio); the theory is dealt with in more

detail in many textbooks (see for example (98)). We then describe ORC’s cross- and

evanescent couplers before presenting experimental measurements of the coupling ratios.

42



à
à

à
à

à

à
à

à
à

à

à

æ

æ
æ æ

æ

æ æ

æ æ

æ

æ

wx

wz

a

1 3 5 7 9 11
0

2

4

6

8

10

12

14

Waveguide number

W
ai

st
ra

di
us
HΜ

m
L

á

á

á

á

á

á

á

á

á

á

á

é

é

é

é

é

é

é

é

é

é

é

b

1 3 5 7 9 11
0

0.1

0.2

0.3

0.4

0.5

Waveguide number

T
ra

ns
m

is
si

on

Figure 2.9: Mode profiles on the Jena chip. (a) Measured spot size of the first 11 Jena
waveguides (note: this is the raw spot size, before deconvolution of the fibre mode). Notice
the pronounced ellipticity. (b) Circles: measured transmission of the same waveguides.
In the first 5, the laser power was 30 mW and the writing speed increases from 32 to
100 mm/min, resulting in weaker index contrast and increasingly larger modes, and so a
decrease in transmission. For the next five, the laser power was reduced to unit 28 mW,
resulting in slightly larger modes. The transmission calculated from the mode sizes via
Eq. A.7 is plotted as squares. They are consistent with the measurement given error bars
of ±5%.

2.4.1 Theory

We start by considering two identical waveguides, separated by a distance d, and we

denote the unperturbed mode field functions by E1,2. They are normalised according to∫∫∞
−∞ |E|

2dr2 = 1 and propagate with the same k-vector β0 = kneff . k = 2π/λ is the

vacuum wave vector and neff is the waveguide’s effective index. The second waveguide is

considered as a polarisation perturbation from the point of view of the first one, which

leads to a cross-coupling coefficient κl and a self-coupling coefficient Ml (98):{
κl = k2

2neff

∫∫∞
−∞∆εE1E2dr

2

Ml = k2

2neff

∫∫∞
−∞∆ε|E1|2dr2

(2.5)

and to the coupled equations{
dE1/dz = −i(β0 +Ml)E1 − iκlE2

dE2/dz = −iκlE1 − i(β0 +Ml)E2

. (2.6)

The self-coupling coefficient Ml expresses the modification of the modal propagation con-

stant due to the proximity of the other waveguide, and is often experimentally irrelevant.

κl is the cross-coupling coefficient, in units of m−1, and characterises the number of cou-

pling cycles per unit length.

Since Ml � β0 we neglect it, and Eq. 2.6 is easily solved under the initial condition

E2(0) = 0 (power incoming from the first waveguide only). We find that the intensity
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along the coupler evolves as: {
I1(z) = I1(0) cos2 κlz

I2(z) = I1(0) sin2 κlz
(2.7)

So the light is coupled back and forth between the two waveguides; the length required

for total coupling is

I2(Lc) = 1⇒ Lc = π/2κl (2.8)

We have assumed throughout that the two waveguides are identical, so they are phase

matched (∆β = β2−β1 = 0). If this were not the case the maximum coupling ratio would

be smaller than unity.

The system of equations (2.6) can be written in matrix form and it is then straight-

forward to generalise to linear systems of coupled waveguides, as illustrated for example

in Fig. 2.10. Under the assumption of nearest-neighbour coupling, we write the fields in

waveguides 1, ..., N as a column vector E(z) = {cn(z) exp(−iβ0z)}N , and it follows that:

dE

dz
= −iCE, C =



β0 +Ml κl 0 · · · · · ·
κl β0 +Ml κl 0 · · ·

0 κl
. . . . . . 0

... 0
. . . . . . κl

...
... 0 κl β0 +Ml


. (2.9)

The eigenvectors of this matrix define propagating normal modes, that is modes of the

coupled array that are invariant under propagation. C is easily diagonalised, and each

of its N eigenmodes (denoted by the subscript s = 1 . . . N) has a unique propagation

constant βs given by

βs = β0 +Ml + 2κl cos
sπ

N + 1
(2.10)

while the normal modes will consist of a superposition of the unperturbed modal field

with weights given by the eigenvectors

as,n = sin

[
snπ

N + 1

]
. (2.11)

The eigenmodes in the case N = 5 are plotted in Figure 2.10.

Calculating the coupling coefficients

The coupling coefficients can be computed directly from Eq. (2.5) and from the knowledge

of the waveguides index and mode profile. As an alternative to evaluating these overlap

integrals, we use MPB to compute directly, the propagation constants βs of the two normal
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Figure 2.10: An array of five coupled waveguides and the associated normal modes.

modes in the N = 2 case. Then from Eq. (2.10) we see that

κl =
β1 − β2

2
(2.12)

Ml =
β1 + β2

2
− β0 (2.13)

Since the overhead of calculating β1 and β2 is very small once we have set up the calculation

for a single waveguide, this method is very straightforward.

Analytical solution From the solutions to the cylindrical waveguide problem presented

earlier in section 2.1, we can derive an analytical expression (originally due to Snyder

(123)) for the cross-coupling coefficient κl, in the weak-guiding approximation:

κl =
1

a2ncok

u2

v2

K0(wd/a)

K2
1(w)

(2.14)

where as before a is the waveguide radius and d the distance between the centres.

Fig. 2.11 shows the evolution of κl as a function of the separation between two square

waveguides, using the three methods just discussed. We can see that the agreement is

very good, even though the analytical solution is actually for cylindrical fibres; this is

not so surprising since the modes of cylindrical as well as square waveguides are well

approximated by a Gaussian.

For example, for a mode of Gaussian waist w = 3µm, ∆n = 4 × 10−3, and d =

8µm (parameters typical for our waveguides) we get κl = 0.92 mm−1, and a 0.9 mm-long

evanescent coupler results in a coupling ratio of 54%.

2.4.2 ORC’s X-couplers

So far we have only talked about traditional evanescent couplers. While they are widespread

devices, they suffer from a typically low coupling strength κl, resulting in mm-scale cou-
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Figure 2.11: Coupling constant κl as a function of waveguide separation d, according to the
three methods outlined in the text. Green curve: integral overlap method for a 5µm square
waveguide, calculated with MPB. Red dots: direct MPB simulation (Eq. (2.12)), with the
same parameters. Blue curve: Snyder’s analytical formulae Eq. (2.14) for a cylindrical fibre
of diameter 5µm. The index contrast was ∆n = 0.004.

plers, to which the lengths of the bends required to bring the waveguides together must be

added. An alternative is to cross the two waveguides at a shallow angle of a few degrees

such that the crossing region supports at least the first two symmetric and antisymmet-

ric modes. The input TEM00 mode can be decomposed in terms of higher order modes

(normally only two) which propagate with a different k-vector, so that the relative am-

plitudes in the two single-mode outputs depends on the length of the device and on these

k-vectors, which are also functions of the crossing angle. The operation is then identical

to that of evanescent couplers. The main advantage over evanescent couplers is the lower

wavelength and polarisation dependence, as well as a higher reproducibility which result

from the much larger mode coupling and shorter device length.

Geometry

The X-couplers developed at ORC are an original compact design (111), as shown in

Figure 2.12(a). It involve four interrupted cosine bends (in the grey-shaded area), joined

by two straight lines intersecting at a full angle α. We define a cartesian coordinate system

{x, y} on the chip, with waveguides running along x. The basic cosine S-bend of length l

and height d/2 is parametrised as

yb(x) =
d

2

[
1− cos

(
π
x

l

)]
. (2.15)

This is the equation for the bottom left bend in Figure 2.12(a); the three others have very

similar expressions. The full angle α at any point along the bend is given by tanα/2 =
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Figure 2.12: Typical cross- and evanescent coupler. The vertical lines indicate the transi-
tion between cosine bends and straight sections. The angle of the X-coupler is 3◦.

dyb/dx, hence

α(x) = 2 arctan

[
dπ

2l
sin
(
π
x

l

)]
(2.16)

For typical bend parameters l = 4 mm and d = 0.125 mm, the maximum angle at the

centre of the bend is 5.6◦. To get the desired angle, one has to interrupt the S-bend after

a length l1 which is found by solving the previous equation for l:

l1(α) =
l

π

(
π − arcsin

[
2l tan(α/2)

dπ

])
(2.17)

The truncated S-bend has a height d1 = yb(l1(α)). It needs to be completed with a straight

line to maintain the total height d; this line must run for a distance l2 = (d−d1)/ sin(α/2).

We now can use these equations to draw a complete cross-coupler, as depicted in

Figure 2.12. The larger the angle, the shorter the total length of the coupler will be,

although even the steepest one will still require about 7mm. Given the need to integrate

heaters on both sides of the couplers, the minimum chip length will be about 10mm.

Operation and optimisation

There are two main sources of geometric losses in waveguides: bends, which have radiation

losses due to the curvature, and junctions between a bend and a straight section, which

have loss due to the curvature mismatch. The latter is essentially eliminated by the use of

cosine bends instead of the traditional circular arcs. Many bends were fabricated at the

ORC and their losses measured; it was found that for a bend height of 125µm, S-bends

could be made as short as 4 mm before the loss became measurable. The upper bound on

single bend loss is then 0.1 dB (111).

There is of course no reason why the index contrast resulting from writing twice,

with the same fluence, over the coupling region should result in waveguide with the

appropriate multimodal behaviour. Moreover we need to compensate for the “proximity

effect”, whereby the photosensitivity is altered in the vicinity of a waveguide that has
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already been written. The X-couplers were optimised at the ORC for minimum losses

and symmetric behaviour (i.e. the coupling ratio should be independent of which input

waveguide is used) by varying the fluence (the writing speed) of both passes. It was found

that, for a base fluence (in the horizontal sections and S-bends) of 17 kJ/cm2, the optimum

fluence for the first straight junction was 12 kJ/cm2, and 18 kJ/cm2 for the second one

(111). All X-couplers in this work were written with these known parameters, although

17 kJ/cm2 does not produce the most circular modes. A new round of optimisation would

be required for X-couplers based on 14 kJ/cm2 waveguides.

2.4.3 Evanescent couplers

We also produced at the ORC a series of evanescent couplers, based on the same optimised

S-bends. The geometry is shown in Figure 2.12. The main motivation for using evanescent

couplers is the expectation of lower loss compared to X-couplers. The latter indeed suffer

from scattering caused by the relatively sharp transition between the single waveguides

and the coupling region, which is a bit short of adiabaticity. The coupling ratio can in

principle be tuned by varying the distance between the waveguides and/or the length.

However earlier (unpublished) work at the ORC on evanescent couplers was inconclusive:

the coupling ratios exhibited large variations from the expected trends in addition to a

lack of reproducibility between nominally identical couplers. But since we intend to tune

the coupling with phase shifters, this isn’t a major problem.

2.4.4 Our devices: coupling ratios measurements

In this section we describe measurement of the coupling ratios, on different chips and

with a range of methods. The coupling ratio is defined as C× = I×/(I× + I=), where I=

is the power detected at the output of the input waveguide, and I× the power detected

at the output of the second waveguide (the notation is made clear by the inset sketches

in Figure 2.13). Although straightforward in principle, coupling ratio measurements are

fraught with difficulties in principle.

Methods and issues

Method 1: The first method consist in outcoupling light with a fibre and index-

matching oil. A single output fibre is used, which is moved between the two output as

required, and fed to a photodiode. This method suffers from large variations in waveguide-

fibre coupling efficiency from one waveguide to the next, and even between measurement

on a single waveguide. It was used on samples ORC4 and ORC6. The coupling problem

can be alleviated to some extent with the following consideration. Let us define the two

output voltages as {V1, V12} when the input fibre is coupled to the first waveguide, and
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{V21, c22} when it is coupled to the second waveguide. η1, η2 are the (unknown) coupling

efficiencies between the two output waveguides and the out-coupling fibre. Assuming that

the coupler is symmetrical, the ratio C ′ of the two outputs must be independent of the

input:

C ′ =
I×
I=

=
V11/η1

V12/η2

=
V22/η2

V21/η1

=⇒ C ′ =

√
V11V22

V12V21

(2.18)

The cross-coupling ratio C× = I×/(I× + I=) is C× = 1/(1 + C ′).

Method 2: A second method, used on sample ORC6 and ORC7, is to image the outputs

on a CCD using a microscope objective. With a low-power objective (10x), both outputs

can be imaged at the same time. It requires that the chip output facet be very well

polished: in addition to scattering, surface roughness imparts onto the beam waist a

phase profile which results, on the CCD, in complicated interference patterns overlaid

over the Gaussian mode. This makes estimating the beam radius difficult and inaccurate.

The intensity I is obtained by integrating over a square window centred on the mode,

whose size is chosen to avoid clipping the mode while minimising background. Because

the dynamic range of the camera is only 8 bits, we also change the exposure time texp

independently for each output so that the peak intensity in the integrating window is

safely below saturation, and we record the ratio I/texp as the optical intensity.

Method 3: The last method, which we used on the final samples (ORC8), is to use

an immersion high-power objective (100x). The index-matching oil almost cancels any

scattering and additional random phases, even on these unpolished samples. On the other

hand only one mode can be imaged at a time, which makes the measurement somewhat

slower. The same consideration about changing the exposure time apply. This was found

to be the most accurate method.

Other problems: The coupling ratio measurement was made more difficult by a few

other technical challenges. Most importantly, the second mode of these waveguides op-

erating at 780 nm is quite close to the cut-off frequency, and in fact quite a few of them

seem to be able to support it as their mode sometimes exhibits side lobes. This makes

the coupling ratio dependent on the input fibre alignment, which changes the relative

amount of input power between the different modes. Unfortunately, optimising the input

fibre position to maximise the output power does not select the first-order mode, but a

combination of both. This difficulty is the main cause of uncertainty.

Results

We wrote several generations of couplers on a number of chips. We only present here

results from the last generation (ORC8). Four nominally identical chips were written,
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Figure 2.13: Measured coupling ratios of 4 sets of nominally identical evanescent couplers
(a) and 2 sets of (also identical) cross-couplers (b). Markers colour/shape indicate different
sets. The coupling ratios were measured from both inputs and both are plotted, to give an
idea of the couplers’ symmetrical behaviour. The trend line in (b) is only a guide for the
eye.

two on a legacy wafer (W7) and two on a new wafer (W10), which was expected to

have lower losses. Each chip contained one set of five cross couplers and another set of

five evanescent couplers, although a programming error made two sets of cross-couplers

unusable (so we had 20 evanescent and 10 cross-couplers in total). The coupler lengths

or angles were chosen to obtain a range of coupling ratios around 50% (0.7 to 1.1 mm and

2.2 to 2.6◦). The measurements were performed according to Method 3 (100x immersion

objective).

Results for the evanescent couplers are plotted in Figure 2.13(a). There are eight data

points for each coupler lengths, since for each of the four identical couplers on the four

chips we measured C× for the two inputs. Two facts are immediately apparent. First

there is quite a large dispersion in the measured coupling ratios for a given coupler length,

spanning almost 40% in three out of five cases. This is in line with the poor reproducibility

of these devices previously observed at the ORC. On the other hand the coupling ratio is

relatively independent (within ∼ 5%) of the input waveguide, indicating good symmetry.

Secondly, we do not observe any clear trend, whereas we expected the coupling ratios to

increase with the coupler length from 40 to ∼ 60%. It is possible that the trend is simply

buried in the large dispersion of the data.

We now turn to the cross-couplers in Figure 2.13(b). For each angle, the four data

points correspond to two identical couplers on two different chips (red circles/blue squares),

measured from the two inputs. We notice a modest (∼ 10%) but consistent asymmetry

between the two inputs, together with a similar variation between identical couplers. The

coupling ratio decreases clearly from ∼ 65% for a crossing angle of 2.2◦ to ∼ 20% at 2.6◦,

in line with previous experiments as well as theoretically calculations performed at ORC

(111).
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2.5 Thermo-optic phase shifters

2.5.1 Introduction: electro- vs thermo-optics phase shifters

Phase shifters on integrated optics devices rely either on the thermo-optic or electro-optic

effects. The latter has become mainstream technology in telecom devices thanks to its

high bandwidth (40 GHz and beyond), whereas the former is much slower (kHz) but easier

to manufacture.

The electro-optic or Pockels effect is a second-order, χ(2) non-linear effect present only

in crystalline materials without inversion symmetry. As such, it does not exist in fused

silica unless some special treatment known as thermal poling is applied (124); even then

the achievable phase shift is too small for practical applications. A common material

for electro-active waveguides is lithium niobate (LiNbO3). Gigahertz bandwidth are now

common. However such waveguides are complex and expensive to manufacture, and since

we do not require a large bandwidth we settled for the thermo-optic alternative.

The thermo-optic effect relies on the fact that the refractive index of silica (and of other

optical materials) is a function of temperature. The thermo-optic coefficient of fused silica

is in the range dn/dT = (0.9 − 1.2)10−5 K−1 depending on the glass composition (125),

and the induced phase shift is given by

∆φ = k0l∆n = k0l

(
dn

dt

)
∆T. (2.19)

A phase shift of π over a length l = 1 mm then requires a temperature change of only 15 K.

The heat can be provided by small resistors glued to the chip, or by directly depositing

a strip of resistive material, both of which are comparatively simple. Thus thermo-optic

phase shifter seem ideally suited for our purpose. They have become increasingly popular

in relation to silicon photonics and are also being used in on-chip all-optical QIP (Bristol

group) (126).

2.5.2 Fabrication of thermo-optic phase shifters

We fabricated our own phase shifters in the CCM coating plant. A 400 nm layer of

20/80 nickel-chromium alloy (NiCr, or Nichrome), a common high-resistivity material,

was sputtered on glass slides for testing, and eventually on the waveguide chips. Gold

wires and mm-wide pads were subsequently deposited to connect the wire 2 , as in the

schematics of Figure 2.14, which shows the final NiCr mask design for 3 couplers (4 heaters

2The deposition recipe is as follows:
NiCr: DC plasma, strike at 10 W/15 SCCM, coating at 110 W/9 SCCM. Deposition rate 0.3-0.4 Å/s.
Gold: RF plasma, strike at 5 W/10 SCCM, coating at 130 W/6 SCCM. Deposition rate 0.5-0.6 Å/s.
The base pressure in the vacuum chamber is below 5 × 10−7 Torr. The initial thickness target was

200 nm, and resulted in 400 nm-thick layers, probably due to the monitor crystal calibration. We decided
to stick with 400 nm.

51



Figure 2.14: Left: Final NiCr mask design with two heaters positioned on top of a straight
waveguide, and three sets of four heaters on all four arms of three different couplers (waveg-
uides are indicated by the dashed red line). Right: Microscope image of the mask. The
width of the slit is 40µm.

Figure 2.15: Microscope images of sputtered wires. Left, NiCr layer only on a glass slide.
Right, NiCr and gold on a waveguide chips. The waveguides can be seen emerging from
underneath the heaters. The rugged area to the left is some residue from the mirror coating
that has spilled onto the chip top surface.

each) and a single straight waveguide (2 heaters). The gold mask (not shown here) would

look very similar, except that the narrowest sections are removed so as not cover the NiCr

with gold.

We initially attempted to fabricate the masks on the CCM workshop wire eroder, but

the smallest slit dimension was limited to about 180µm. We then subcontracted the mask

fabrication to Tecan Ltd, whose photo-chemical etching process offers resolution down to

10µm. A micrograph of the final stainless steel mask with 40µm slits is also shown in

Figure 2.14.

Microscope images of a NiCr layer deposited on a glass slide, and of NiCr and gold

layers on a waveguide chip, are shown in Figure 2.15. Figure 2.16(a) shows typical AFM

profiles for two wires made with 40 and 50µm masks. The actual width of the wire is

identical to that of the masks, and the thickness is consistently about 400 nm.
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Figure 2.16: (a) AFM profile of wires made with 40 and 50 microns masks. (b) resistance
of a number of 50 microns wires with different lengh on a single chip. The inferred resistivity
of 1.3± 0.3× 10−6 Ωm is close to the expected value.

We measured the resistance of nearly 30 50µm-wide wires with length 1, 1.1 and

1.4 mm, all on the same sample. The results are presented in Figure 2.16(b). We estimate

the resistance per unit length from a linear fit: Rl = 56± 11 Ω/mm. Then, based on the

wire cross-section inferred from the AFM measurements of Fig. 2.16(b), A = 50× 0.45 =

23± 2µm2, we obtain the material resistivity as ρ = Rl × A = 1.3± 0.3× 10−6 Ωm, well

within the typical resistivity range of NiCr, 1− 5× 10−6 Ωm.

The wires were connected to a PCB via springy gold pins (Coda Systems Ltd), as

illustrated in Fig. 2.17(b), which facilitates electric connections. We recorded the voltage-

current characteristic for a number of heaters; a typical example is shown in Figure 2.17(a).

The resistance remains constant even at high powers (several watts). Most wires can dis-

sipate up to five watts of power before breaking down. Temperature of close to 1000 K can

be achieved, as evidenced by the red glow we observed on several wires and in Fig. 2.17(b).

Note that we only require a few tens of Kelvins to operate the heaters as phase shifters.

On the glass substrates, we measured the temperature by placing a thermocouple

underneath the slide. A maximum temperature rise of 250◦C was measured, after which

the wires broke down. The pictures of broken wires shown on Figure 2.18 indicates

that the breakdown is caused mainly by cracks in the glass slide, but we also observe

a darkening of the wires that suggests oxidation. Much higher power/temperatures are

achievable on waveguide chips, because the Si substrate underneath the thin (∼ 50µm)

SiO2 layer acts as a heat sink by virtue of its much higher thermal conductivity. Together

with the aluminium heat sink on which the chip is mounted, this dissipates the heat very

effectively. No structural damage to the sample was observed even after the wires broke

down when fed 5 W of electrical power. Instead the wires turned completely black with

a rugged/chipped aspect, suggesting that breakdown results from a fast and thorough

oxidation. No noticeable change in the resistance is observed even at high power. This

oxidation process comes as a surprise as NiCr is known to be extremely resistant to

oxidation , thanks to the protective chromium oxide layer it naturally develops (127).
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Figure 2.17: Crash test of a NiCr wire on a waveguide chip: ramp up the applied voltage
until it blows up. (a): the U(I) characteristic. The wire resistance is dU/dI = 72 Ω. Also
shows is the dissipated power P = UI, which reaches 5 W before the current drops abruptly
to zero. (b): Photograph of a waveguide chip mounted on the aluminium heat sink and
connected to a PCB via springy gold pins. A wire can be seen glowing bright red, so the
temperature must have reached about 1000 K

.

Figure 2.18: Burnt-out heaters. Left, an early experiment on a glass slide. The breakdown
is a combination of oxidation and thermally induced strain and damage to the substrate
The maximum temperature, measured with a thermocouple immediately underneath the
glass slide, was 250◦C. Right: on the latest chip, ORC8. The silica-on-silicon structure is
much more efficient at dissipating temperature and substrate damage is not an issue, while
the oxidation is more complete. There is large variation in the breakdown power; the best
wires can dissipate close to 5 W.
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Before we can measure the heaters’ phase shift and bandwidth, we need to build

cavities into the waveguides. This is the subject of the next chapter.
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Chapter 3

Single cavities

In this short chapter we present the basic theory of lossy Fabry-Pérot resonators, a pre-

requisite for understanding the coupled cavity systems which will be the subject of the

next chapter.

The phenomenon of interference played a crucial role in the debate over the nature of

light that raged for several centuries. The observation of white light interferences (Newton

rings) by Boyle and Hook dates back to the 17th century, but it was not before the dawn

of the 19th century that the wave theory was put on a solid footing by Young’s double-slit

experiment. By 1820 the observation of Fresnel’s (or Arago’s) bright spot secured victory

for the wave theory. Multi-beam interferences were studied much later still, as Charles

Fabry and Alfred Pérot introduced their now ubiquitous apparatus in the last year of the

19th century. See Born & Wolf (128) for a concise yet comprehensive historical survey of

these developments.

First we review the theory of lossless Fabry-Pérot resonators, which we then extend to

include propagation loss. We limit our discussion to the case of on-axis plane waves. We

then apply this theory to waveguide cavities, which allows us to measure the propagation

loss, the fibre-waveguide mode-matching efficiency and the heaters’ phase shift. We then

move on to study, theoretically and experimentally, fibre- and waveguide-coupled plane-

concave microcavities.

3.1 Theory of lossless Fabry-Pérot cavities

Fabry-Pérot interferences are extensively covered in many textbooks. On resonance, the

confinement of light between two mirrors results in an increase of the intra-cavity field

intensity and in destructive interferences between the field leaking out of the cavity and

that being reflected at the input mirror, so that the cavity becomes transparent.

Consider plane waves with k-vector k = k0n = 2πn/λ of the form E(z) = e±ikz,

propagating perpendicularly to the cavity mirrors, separated by a distance L, whose

amplitude reflection coefficients are r1 and r2, as depicted in Figure 3.1. The refractive
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Figure 3.1: (a) Multiple reflections of a plane wave in a plane Fabry-Pérot resonator.
(a) Transmission of such a cavity for identical mirrors of increasing reflectivities R =
{20, 50, 90, 99%}.

index of the medium is n and λ is the vacuum wavelength. We assume that r1,2 are

real, which implies lossless mirrors of zero thickness. The penetration length of the field

inside the mirrors may be incorporated into the cavity length L. A wave of amplitude

1 impinging on the first mirror at z = 0 has an amplitude t1 =
√

1− r2
1 immediately

after the mirror. This wave will be reflected many times as it bounces back and forth

between the mirrors, and the addition of these many reflected partial waves, as depicted in

Figure 3.1(a), leads to the following expression for the forward- and backward-propagating

travelling waves at position z inside the cavity:

E→cav(z) = t1e
ikz

∞∑
n=0

(r1r2e
2ikL)n =

t1e
ikz

1− r1r2e2ikL
(3.1)

E←cav(z) = −E→cav(z)eik(2L−z)r2 = − t1r2e
ik(2L−z)

1− r1r2e2ikL
(3.2)

These expressions are useful inasmuch as they also provides information about the intra-

cavity standing wave. The reflected and transmitted fields are then given by

Et = E→cave
ik(L−z)t2 =

t1t2e
iφ/2

1− r1r2eiφ
(3.3)

Er = r1 + E←cave
ikzt1 =

r1 − r2e
iφ

1− r1r2eiφ
(3.4)

were we have introduced the round trip phase shift φ = 2kL. Finally, the transmitted

and reflected intensities are Ir,t = |Er,t|2 and

It =
t21t

2
2

1 + r2
1r

2
2 − 2r1r2 cosφ

(3.5)

Ir =
r2

1 + r2
2 − 2r1r2 cosφ

1 + r2
1r

2
2 − 2r1r2 cosφ

(3.6)
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and we naturally have conservation of energy: Er + Et = 1, as long as the mirrors are

lossless. It is convenient to introduce the finesse coefficient F by taking advantage of the

trigonometric relation sin2 φ/2 = (1− cosφ)/2 as follows:

F =
4r1r2

(1− r1r2)2
such that It =

t21t
2
2

(1− r1r2)2
· 1

1 + F sin2(φ/2)
(3.7)

This is the well known Airy function. It is plotted in Figure 3.1(b) for various reflectiv-

ities, and consists of equally spaced resonances which become sharper as the reflectivity

increases. The resonances are spaced by the free spectral range ∆φ = 2π, most commonly

expressed in the (physical) frequency domain as

FSR =
c

2nL
. (3.8)

The FSR is nothing but the inverse of the photon round trip time.

The finesse coefficient F must not be mistaken for the finesse F , which is the ratio

between the full cavity linewidth δφ and free spectral range ∆φ = 2π. The linewidth δφ

is defined as the full width at half-maximum (FWHM) of the intensity, ie

1 + F sin2(±δφ/4) = 2⇒ δφ = 4 arcsin(F−1/2). (3.9)

If the finesse coefficient is high enough (F & 10, which is almost always the case), the

arcsin can be linearised so that δφ = 4/
√
F . The finesse is then

F =
∆φ

δφ
=

π
√
r1r2

1− r1r2

. (3.10)

The half-linewidth in the frequency domain, ie the cavity decay rate κ, is another impor-

tant parameter. From δφ and φ we get

κ =
c(1− r1r2)

2nL
√
r1r2

' cξ

2nL
= FSR× ξ (3.11)

in angular frequency; we have introduced ξ = 1 − r1r2, the loss of field amplitude in

one cavity round trip due to leakage through the mirrors. In the last approximation the

nature of κ as the round trip field loss per round trip time — i.e. a decay rate — is

evident. It is also convenient to express κ as a function of the cavity finesse

κ =
πc

2nLF
(3.12)

The finesse is closely related to the mean number of round trips a photon would

make in the cavity before leaking out, which is simply FSR/κ = 1/ξ = (1 − r1r2)−1.

The resonant intra-cavity circulating intensity can become very large as a result of field
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Figure 3.2: Contrast ϑ of the reflection fringes of a Fabry-Pérot cavity as a function of
output mirror reflectivity R2 and mode mismatch η. Left: lossless input mirror. Right:
A1 = 0.25% input mirror loss. The input mirror reflectivity is R1 = 98.5%. Note how the
losses conspire to maintain a high contrast (ϑ > 0.5) over a large range of parameters, even
though the two mirror reflectivities are very different. The grey vertical line indicates the
expected reflectivity of our spherical micro-mirrors (R2 ' 99.97%).

build-up. It is given by

Icirc = Iin
T1

(1− r1r2)2
. (3.13)

Here T1 = |t1|2, which is not necessarily equal to t21. For example, with R1 = R2 = 0.99,

Icirc = 100Iin.

Another important parameter is the fringe contrast (or visibility) ϑ, which describes

the modulation depth of the reflection spectrum. It is defined as

ϑ = 1− Imin
r

Imax
r

= 1−
[

(r1 − r2)(1 + r1r2)

(r1 + r2)(1− r1r2)

]2

' 1−
(
r1 − r2

1− r1r2

)2

. (3.14)

Note that a somewhat more standard definition of the visibility would be ϑ = Imax
r −Imin

r

Imax
r +Imin

r
.

Our definition (which we choose partly to be in line with our predecessors (129) leads

to slightly simpler expressions. The last approximation in Eq. (3.14) is valid as soon as

the reflectivities are sufficiently large, typically R1, R2 > 0.9. The contrast is plotted in

Figure 3.2, where we have set R1 = r2
1 = 0.985 (A1 = 0, η = 1 curve) and r2 is the variable.

The visibility reaches unity only when r2 = r1 (this is essentially an impedance-matching

problem).

3.2 Theory of lossy Fabry-Pérot cavities

So far we have only considered a perfect resonator. However there are many sources of loss

that can adversely affect the performance of the cavities. Let us consider three categories:

� Mirror loss. Everything that is not reflected off a perfect mirror gets transmitted:

R + T = 1. But real mirror always suffer from a small loss A, such that R +
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T + A = 1. In general this loss can be as small as 10−5 or better, and is usually

negligible, especially for mirror of moderate reflectivities. We will neglect mirror

loss throughout this thesis.

� Propagation loss. That is, a loss that originates from inside the cavity, indepen-

dent from the mirrors. It can be caused by the natural absorption of the medium,

by scattering off impurities, by the wall roughness in the case of a waveguide cav-

ity, or even by the presence of ground state resonant atoms. We find that the most

straightforward way of including this type of loss is to introduce an imaginary round

trip phase Γ, so that in the previous equations φ is to be replaced by φ+ iΓ. Equiv-

alently, one could include the loss in a complex refractive index, n → n + iq. The

conversion rules between the two, as well as between these and the loss in dB/cm,

are given in Appendix C.

� Mode mismatch. This is not a cavity loss per se since it does not disturb the

cavity (at least under some approximations to be detailed below), but a loss induced

by the transverse mode mismatch between the cavity mode and the input fibre used

to coupled light into the cavity.

3.2.1 Propagation loss

We start with the propagation loss. Substituting φ→ φ+ iΓ in Er,t, we easily show that

the transmission spectrum takes the form of an Airy function similar to Eq. (3.7), but

where the finesse coefficient is now

F =
4r1r2e

−Γ

(1− r1r2e−Γ)2
(3.15)

while the reflection contrast becomes

ϑ = 1−
[

(r1 − r2e
−Γ)(1 + r1r2e

−Γ)

(r1 + r2e−Γ)(1− r1r2e−Γ)

]2

(3.16)

These are exactly identical to Eq. (3.7) and (3.14) if we replace r2 by r2e
−Γ. In other words,

the intra-cavity loss is equivalent to a reduction in the reflectivity of the output mirror.

Obviously we no longer have conservation of energy: Ir + It < 1. On the transmission

side, the amplitude of the resonances is reduced by a factor

D =
e−Γ(1− r1r2)2

(e−Γ − r1r2)2
(3.17)

The significance of the imaginary round trip phase Γ we have introduced becomes

clear if one consider the special case r1 = r2 = 0 (ie, by removing the mirrors to look
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at propagation through a simple slab of absorbing material): the transmitted intensity is

e−Γ. Therefore 1− e−Γ is the single-pass fractional power loss.

Depending on whether the cavity was initially over-coupled (r1 > r2) or under-coupled

(r1 < r2), the introduction of this propagation loss will improve or degrade the contrast, as

shown in Figure 3.2. In the under-coupled case, unity contrast is reached when r2e
−Γ = r1.

3.2.2 Mode mismatch

In this work we consider fibre-coupled waveguide resonators and waveguide-coupled plane-

concave microcavities. In both cases, light impinging on the input mirror will excite the

coherent superposition of resonant cavity modes {Ψn
cav} that it best matches. Similarly,

the cavity field that leaks through the mirror back to the input fibre/waveguide will

excite a coherent superposition of guided modes {Ψm
in}. For our purpose it is sufficient to

consider a single mode in the fibre, waveguide or microcavity so we drop the n,m indices.

In general they are not perfectly mode-matched; ie the mode overlap is smaller than unity:

η =

∫∫
Ψ∗inΨcavdxdy < 1 (3.18)

and only a fraction η2T1 of the intensity in the incoming mode will be coupled to the

outgoing mode through the mirror (whose transmitivity is T 2
1 ). What happens then to

the remaining fraction (1− η2)T1? It can either 1) be lost into cladding and leaky modes,

with amplitude probability ηt — this we call the transmission limit, or 2) be rejected and

reflected back to the original mode, with probability ηr (such that η2 + η2
t + η2

r = 1); this

is the reflection limit. Evaluating the relative contributions of ηt and ηr is an extremely

complex task that requires computing all the cladding and leaky (non-guided) modes of

the fibre/waveguide. However, the large number of these modes forms a quasi-continuum,

so that we may assume ηt � ηr and neglect case 2) altogether. This is different from the

possibly more familiar case of a junction between two metallic microwave guides, where

the field cannot leak out and therefore only the reflection limit is applicable.

The cavity reflection in the transmission limit is derived by simply substituting ηt1 in

lieu of t1 in Eq. (3.1) and (3.4) (in bold below):

E→cav(z) = ηt1e
ikz

∞∑
n=0

(r1r2e
2ikL)n =

ηt1e
ikz

1− r1r2e2ikL
(3.19)

⇒ Er = r1 + E←cave
ikzηt1 =

r1 − r2e
iφ[1− t21(1− η2)]

1− r1r2eiφ
(3.20)

This means that a fraction η2 of the intensity in the input mode goes into the cavity mode

after being transmitted through the mirror, and symmetrically a fraction η2 couples to

the input mode after leaking through the input mirror. The remaining is lost forever.
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The finesse is not affected, but the contrast will be reduced. It becomes

ϑ = 1−
[

(r1 − (1− l)r2)(1 + r1r2)

(r1 + (1− l)r2)(1− r1r2)

]2

(3.21)

with l = t21(1 − η2). The evolution of the contrast as a function of mode mismatch is

shown in Figure 3.2. An interesting consequence of mode mismatch is to increase the

visibility if the cavity is undercoupled (R1 < R2), which is the case of our microcavities

(since we want photons to exit preferentially into the coupling fibre).

3.2.3 Mirror transmission loss

So far we have assumed perfect mirrors, that is we have substituted
√

1− r2
1 for t1 when-

ever the transmission appeared (and similarly for t2). If the input mirror has a power loss

A1, this becomes
√

1− r2 − A1 and the contrast becomes

ϑ = 1−
[

(r1 − (1− A1)r2)(1 + r1r2)

(r1 + (1− A1)r2)(1− r1r2)

]2

(3.22)

We see that it is formally equivalent to the mode matching loss in Eq. (3.21), with

A1 ↔ l = t21(1− η2).

Figure 3.2 illustrates the interplay between mirror loss, mode matching and mirror

mismatch. It shows the fringe visibility as a function of the output mirror reflectivity

R2, for 0.5 < η < 1 and in the absence/presence of mirror loss A1. The input mirror

reflectivity is set to R1 = 98.5%. We see that without any loss, the visibility in the

neighbourhood of R2 = 99.9% (these values would be typical of our microcavities) is very

poor, but that the introduction of some loss, either through mode mismatch or mirror

loss (or both), will compensate for the mirror mismatch. In fact it is quite remarkable

that in the region of interest (R2 ≥ 0.99) the visibility does not go below 50% over a very

large range of parameters.

3.2.4 Experimental measurement of loss and reflectivity

It is possible to solve equations Eq. (3.15) and (3.17) or (3.16) to express the reflectivity

and propagation loss as a function of the finesse coefficient and on-resonance transmission

drop. This is interesting because the two latter quantities are experimentally much more

accessible than the former, and it will come handy in chapter 5. We get

R = 1 +
2D

F
(1− α) (3.23)

γ =
1

F 2

(
2D(F + 2)− 4α + F (F + 2− 2α) + 2

√
(F + 1)(8D2 + 8D(F − α + F (F − 4α)

)
(3.24)
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with α =
√
D(D + F ). A modestly simpler form can be reached through the approxima-

tion F >> D (since F >> 1 and D < 1). Inclusion of the mirror loss A is possible but

yields complicated expressions that do not need to be reproduced here.

3.2.5 Cooperativity

Although of limited practical use, it is an interesting exercise to calculate the cooperativity

for an atom maximally coupled to a waveguide cavity (i.e. the atom sits in the centre of

the waveguide mode). Remember that it is given by Eq. (1.17), and using Eq. (3.12) and

(1.7), we have simply

C =
g2

2κγ
=

1

2γ
· µ2ω

2~ε0V
· 2LF
πc

=
1

2γ
· µ2ω

2~ε0πc
· 2

πc
· F
A

(3.25)

This expression highlights an interesting fact: that the cooperativity is to some extent

independent of the cavity length L, because although the mode volume V = A × L gets

larger with L the resulting decrease in g2 is compensated by the corresponding reduction

in the cavity decay rate κ. In this case, L cancels out completely because the mode area

is constant, which is not the case in a free space cavity (see below).

3.3 Dielectric mirrors

All mirrors used throughout this work are standard thin film dielectric coatings, de-

posited on the carefully polished end facets of waveguide chips (on which waveguides

had previously been written), and on the spherical micromirror arrays. The thin films

were deposited by OIB GmBH in Jena, Germany, and consist of alternate layers of MgO

(refractive index nL = 1.75) and TiO2 (nH = 2.65).

The high reflectivity of these distributed Bragg reflectors (DBRs) originates from the

constructive interference of plane waves in a stack of low and high-index quarter-wave

layers. They are usually described by one or another variant of the traditional transfer

matrix method (we like the k-vector formalism developed in (130)), in which each interface

between two dielectrics and each dielectric layer is represented by a 2× 2 matrix relating

the forward and backward-propagating fields on each side of the element. Arbitrary planar

structures can be described simply by multiplying the appropriate matrices.

The matrices Mprop describing propagation in a dielectric layer of thickness d and

refractive index n1, and Minterf describing the interface between two dielectrics of refractive

indices n1 and n2, are

Mprop =

(
e−idk0n1 0

0 eidk0n1

)
and Minterf =

1

t12

(
1 −r21

r12 t12t21 − r12r21

)
. (3.26)
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Figure 3.3: Left: Reflectance spectrum of a DBR mirror made up of 5 bilayers. The
design wavelength is 780 nm, the refractive indices are 1.75 and 1.65, both substrates are
air. Right: two such mirrors have been stack together with a λ/2 gap, forming a cavity.

rij and tij are the usual Fresnel reflection and transmission coefficients

rij =
ni − nj
ni + nj

and tij =
2ni

ni + nj
(3.27)

We limited ourselves to normal incidence, which is sufficient for our purpose. The method

can be straightforwardly generalised to s and p-polarised waves at other incidence angles.

As an example, we plot in Figure 3.3 the calculated reflection spectrum of two different

structures. (a) is a simple mirror consisting of five pairs of high/low index quarter-wave

layers at 780 nm. The reflectivity at the design wavelength is 98.5%, and the bandwidth

is close to ∼ 200 nm. This is very large compared with the Bragg gratings we discuss in

Chapter 5, thanks to the large index contrast. The side lobes originate from higher-order

interferences. In (b) we concatenated two of these mirrors, with a half-wave gap. The

resulting cavity makes the structure transparent at the design wavelength.

3.4 Waveguide cavities

3.4.1 Optimising the mirror reflectivities

Initial devices and experiments

For a first experimental run we coated mirrors with reflectivities 99% and 99.5% 1 on

several chips, including “CIP” (fabricated by deposition and etching, length 32 mm) and

“Jena” (femtosecond-written, length 20 mm). These values were chosen according to the

theoretical investigation presented in Chapter 1.5.3, without considering the propagation

losses which were not yet known.

Normalised reflection spectra for these two chips are presented in Figure 3.4. The

1This should have been 98% but for a manufacturing error outside of our control.
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Figure 3.4: Typical normalised reflection spectrum of waveguide cavities on the “CIP” and
“Jena” chips. The contrast is very low because both mirrors have very similar reflectivities
(99 and 99.5%) together with a significant propagation loss. CIP chip: the finesse is 10± 1
and the contrast is 1.2 ± 0.1%, from which we infer propagation loss of 0.5 dB/cm and a
mode-matching efficiency η2

w = 42%. Jena chip: F = 24± 1 and ϑ = 2.0± 0.5%, hence the
loss is 0.28 ± 0.02 dB/cm and η2

w = 0.29 ± 0.07%. As shown in the previous chapter, these
waveguides are much larger and therefore the mode matching is rather poor.

red lines are Airy function fits to the data. They give a free spectral ranges of 3.2 and

5.1 GHz respectively, in accordance with the waveguide lengths and with an effective index

neff = 1.46. From the fits we also extract the finesses F = 10 ± 1 and 24 ± 1. In the

absence of losses, we would expect the finesse to be F = 417. With Eq. (3.15) we use the

difference to infer the propagation loss as 0.6 and 0.3 dB/cm for the CIP and Jena chips

respectively. 0.3 dB/cm is typical for femto-second written waveguides (122; 131). On the

other hand 0.6 dB/cm is much higher than the upper limit of 0.1 dB/cm claimed by the

manufacturer, CIP Technologies (132). But there are reasons to doubt the accuracy of this

claim. In particular it was noticed in the CCM waveguide chip experiment (106), which

used an almost identical chip, that roughly half of the expected waveguide transmission

was unaccounted for, even after inclusion of all the other known sources of loss. As it turns

out, the missing 50% may well be attributed to this 0.6 dB/cm factor, which translates

to a 40% single pass loss.

The propagation loss on UV-written ORC chips was measured in a similar way, but

with integrated Bragg gratings instead of end-facet mirrors. See Chapter 5 for more

details. It was found to be 0.9 ± 0.3 dB/cm. This result was confirmed by independent

measurements carried out at the ORC, using the method of Ref. (115).

The visibility of the spectra in Figure 3.4 is very poor: ϑ = 1.2 ± 0.1% and 2.0 ±
0.5% respectively. This is because the large loss effectively reduces the reflectivity of the

second mirror and, as we have seen, mirror mismatch results in low contrast. This makes

measurements somewhat difficult, in part because residual low-finesse interference fringes

from the coupling fibre are on a similar level (it is the main source of noise observed in

these data).
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Figure 3.5: Optimised input mirror. (a) Calculated finesse (dashed blue line) and fringe
visibility (solid purple line) of a cavity with 0.9 dB/cm propagation loss and output mirror
R2 = 0.99%, showing that it is sensible to decrease R1 from about 99% to about 90%
to increase the visibility without compromising the finesse too much. (b) Reflection (top;
normalised signal) and transmission (bottom; arbitrary units) spectra of waveguide cavity
ORC7-A1. Fitting these with a model including propagation loss and mode mismatch
between the waveguide and the coupling fibre, we can estimate the first as 0.9± 0.1 dB/cm
and the second as η2

w = 0.48± 0.01.

Optimised mirrors

In order to improve the visibility, we made a few changes for the next generation of

chips (UV-written, codename “ORC7”). First we wrote waveguides along the short chip

dimensions (1 cm) to minimise the loss. Secondly, we decreased the reflectivity of the input

mirror R1 (while keeping the output mirror R2 = 99%) to reduce the mirror mismatch.

Figure 3.5(a) shows how the finesse (dashed blue) and the visibility (purple curve) are

expected to change as a function of R1, given propagation loss of 0.9 dB/cm. As we can

see, with the initial R1 ' 99%, the visibility is at most a few per cent, and the finesse is

14. By decreasing R1, the visibility can be improved substantially without compromising

the finesse too much, as long as the overall damping is dominated by the propagation loss.

We settled for R1 = 90%, at which point the visibility is about 40%, while the decrease

in finesse (F = 12) is negligible.

With this parameters, we wrote straight waveguides and deposited mirrors on chip

ORC7. Figure 3.5(b) shows a typical transmission and normalised reflection spectrum.

The easiest way of extracting the required information from these is to normalise the

spectra to remove the laser intensity variation during a scan, so that the off-resonance

reflection is unity. We then fit a model based on the analysis in the previous section,

incorporating both propagation loss and mode mismatch between the waveguide cavity

and the coupling fibre.

From a number of these fits we extract the finesse F ∼ 10 ± 2 and the propagation

loss 1.0 ± 0.2 dB/cm, in line with the other experiments we already mentioned. The

mode-matching efficiency is estimated to be η2
w = 0.48± 0.01, a very disappointing result

when one remembers that we expected η2
w & 0.9. This discrepancy might be caused by
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the dielectric mirror, but then we would think that the mirror reflectivity would also be

affected — which does not seem to be the case. This is therefore a bit of a mystery, and

one which did not have the leisure to explore in any greater details.

3.4.2 Tuning the cavity length with phase shifters

We introduced the thermo-optic phase shifters in the previous chapter, but as long as we

did not have waveguide cavities, it was impossible to actually prove that they acted as

such. Here we demonstrate phase shifts of several π and investigate the response time.

We deposited NiCr heaters on top of several waveguide cavities on chip ORC7. As a

power supply we used a three-channels piezo driver (Thorlabs BPC203, maximum output

75 V, 500 mA). This lets us control several heaters simultaneously; the driver can be

controlled either manually, remotely from the computer or with a function generator.

Phase shift

Figure 3.6(a) shows the reflection spectrum of a waveguide cavity as the power dissipated

in the heater increases. The resistance of the wire was R = 107 Ω. The spectrum shifts to

lower frequencies as the control voltage V , indicated on the vertical axis, increases. The

shift reaches one full FSR (i.e. a single pass phase shift of π) at V ∼ 5.5 V, or a dissipated

power P = V 2/R ∼ 0.28 W.

In Figure 3.6(b) we plot the frequency shift (also expressed as a phase shift on the

right axis) as a function of control voltage (bottom axis) or power (top axis), for two

different heaters. The blue one is 1.1 mm long while the red one is 1.5 mm. We see that

the phase (frequency) shift is quadratic in the voltage, but linear in the power. Indeed

it should be proportional to the temperature change, which is itself proportional to the

dissipated power. The maximum phase shift here is about 3π or three full FSRs.

For a given voltage/power, the phase shift is larger for the longer heater (red). However

the slope δφ/dP depends on other factors than the length, such as the wire resistance

(which can vary by 20% at constant length) and the relative position of the heater and the

waveguide. The latter is only 5µm wide whereas the heaters width is 40 or 50µm, and

they are manually positioned on top of the waveguide with an accuracy no better than

10 to 20µm. In general δφ/dP is 3 to 5π/W. Because of these variations it is necessary

to calibrate each heater indpendently.

Response time

We measured the phase shifters’ bandwidth in two ways. First we turned off the laser

frequency scan and sat the laser on the side of a resonance fringe, and observed the

reflection signal as a small square voltage modulation is applied to the heater. The

resonance frequency shift results in a small change in the reflection amplitude (Fig. 3.7,
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Figure 3.6: (a) Frequency shift of a waveguide cavity reflection spectrum as a function
of heater voltage (indicated on the vertical axis.) (b) Frequency shift ∆f and phase shift
(∆φ = π∆f/FSR) as a function of heater voltage V and power V 2/R. The red curves
correspond to the spectra on the left (wire length 1.5 mm, resistance R = 110 Ω. The blue
curves are for a different heater (1.1 mm, 75 Ω).

left), which is then fitted with a simple exponential exp(−t/τ). We measured a 60% rise

time τ = 0.66± 0.05 ms.

In a second experiment, the laser frequency was also adjusted to sit on the side of

a fringe, but this time the heater voltage modulation was sinusoidal and we recorded

the resulting modulation amplitude (gain) as a function of modulation frequency (green

waveforms and blue dots). We then treat the heater as a simple first order, low-pass RC

circuit with a (“voltage”) gain function

G(f) ∝ 1√
1 + (2πfτ)2

. (3.28)

This fit gives a more precise response time τ = 0.56± 0.01 ms that is compatible with the

previous result. The frequency at which the modulation amplitude has dropped by half 2

is f1/2 =
√

3/(2πτ) = 492±10 Hz. We note that this compares very favourably with other

silica-on-silicon thermo-optic phase shifters that have been reported in the literature, and

whose response time typically lies in a 1-10 ms range.

The bandwidth of our heaters being of little importance at the moment, we did not

attempt a systematic study of many devices.

2In an actual electronic filter we would consider the 3 dB frequency as the point where the power has
dropped by half, or G2(f3dB) = G2(0)/2⇒ f3dB = 1/2πτ . But the “power” is ill-defined in our case.
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function of modulation frequency. It is then fitted with a simple first-order, low-pass filter
gain function. The half-maximum cut-off frequency is 492(10) Hz.
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Figure 3.8: Schematics of a waveguide coupled to a microcavity.

3.5 Waveguide- and fibre-coupled microcavities

3.5.1 Plane-concave microcavities

Having dealt with the waveguide resonators, we now turn our attention to the next type

of cavity in our system, the free space microcavities where the atoms will eventually sit.

They are simple plane-convex Fabry-Pérot resonators as depicted in Figure 3.8. In the

following we assume that the reader is familiar with the optics of Gaussian beams, which

is summarised in Appendix A.

Here the plane mirror is a multilayer coating on the end facet of the waveguide chip,

or on the tip of an optical fibre, with reflectivity Rcw. The cavity is closed by a spherical

mirror on the micromirror array chip, which has a radius of curvature ρc and is covered

with a high-reflectivity coating Rc. The distance between the two mirrors is Lc. Ignoring

all higher-order modes, the cavity mode is a paraxial Gaussian beam with a waist of

radius wc located at the plane mirror (z = 0). The beam radius w(z) and the radius of

curvature ρ(z) at position z along the cavity are:

w(z) = wc

√
1 + (z/zR)2 (3.29)

ρ(z) = z + z2
R/z (3.30)

69



zR = πw2
c/λ is the Rayleigh range: w(zR) = wc

√
2.

The cavity is stable only if 0 < Lc < ρc. The waist wc is a function of the cavity

length: by matching the beam curvature at Lc to that of the spherical mirror, one can

solve ρ(Lc) = ρc to get

wc(Lc) =
√
λ/π 4

√
Lc(ρc − Lc). (3.31)

Figure 3.9(a) shows the evolution of wc as a function of cavity length for a mirror with

radius of curvature ρc = 110µm. It reaches a maximum at Lc = ρc/2 and goes to zero at

Lc → 0 and Lc → ρc, where the mode diverges abruptly (the mode radius at the mirror

is shown in blue). The maximum value of wc is wmax
c =

√
ρcλ/2π.

In our case, with ρc = 110µm, wmax
c = 3.7µm. This is typically larger than the fibre

or waveguide waist ww ∼ 2.5µm, so there will be two cavity lengths for which the cavity

and the waveguide are mode-matched (wc = ww), as illustrated in Fig. 3.9(a). This is a

favourable situation since it minimizes the losses. The optimum cavity lengths are

L±c =
ρc

2
±
√
ρ2

c

4
− z2

R,w (3.32)

zR,w = πw2
w/λ is the Rayleigh range of the waveguide mode. In Figure 3.9(a) we also plot

the mode-matching efficiency η2 from Eq. (A.7). η2 = 1 when Lc = L±c . It is interesting

to see that even in the worst case Lc = ρc/2, the mode-matching efficiency does not fall

much below 85%: even though it should be advantageous to work close to L±c , this is not

a critical parameter.

We refer to L−c and L+
c as the short and long cavity regime, respectively. The large

cavity regime is often easier to achieve and provides access to the cavity from the sides,

but the larger mode radius on the mirror can be detrimental to the finesse if the mirror

is too small or not perfectly spherical over a wide enough area. On the other hand, the

short cavity regime offers a higher cooperativity, by virtue of its smaller mode volume,

as seen in Fig. 3.9(b) and calculated below. However, we see that L−c lies in the grey-

shaded area, which means that the cavity is shorter than the depth of the mirror. This

region is not accessible because the diameter of the fibre is larger than the diameter of

the mirror. Table 3.1 summarises the parameters of the four different micromirror arrays

at out disposal. None of them allows access to L−c .

We should point out that microcavities similar to ours have been developed elsewhere,

but in most other realisations the curved mirror is on the fibre side. This can be done

by etching the fibre tip with a CO2 laser (133; 134) or by transferring and gluing a pre-

curved mirror (135). However in this geometry there is a fundamental mode mismatch

between the cavity and fibre modes, which probably explains why in these works the

collection efficiency does not exceed 10%. In contrast, our waveguide-coupled geometry

is intrinsically mode-matched.
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Sample ρc (µm) d (µm) s (µm) L−c (µm)
1 100 100 13.4 6.8
2 110 113 7.7 6.1
3 210 86 8.7 3.1
4 310 145 8.6 2.1

Table 3.1: Parameters of the four micromirror arrays available: radius of curvature ρc,
aperture diameter d, depth s = ρc −

√
ρ2

c − d2, short cavity mode-matching length L−c .

Cooperativity

We can also calculate the cooperativity. We consider two different cases: a single atom,

located close to the microcavity waist, and an atomic ensemble distributed over the whole

cavity mode. In the first case, the mode volume is still A × Lc (since the mode volume

is defined by the cross-section at the position of the emitter), but now A = πw2
c/2 is a

function of cavity length. The cooperativity is then, using Eqs. (3.12) and (1.7)

C =
g2

2κγ
=

2Fµ2

γλ2ε0~
1√

Lc(ρc − Lc)
. (3.33)

In the second case, with atoms distributed over the entire cavity, we have to integrate

over the whole optical mode. The mode volume is found to be

V =

∫ L

0

πw(z)2

2
dz =

λ
√
L3

c(ρc − Lc)

2

(
1 +

L2
c

3z2
R

)
. (3.34)

and the cooperativity per atom is

C =
g2

2κγ
=

6Fµ2

γλ2ε0~

√
ρc − Lc√

Lc(3ρc − 2Lc)
. (3.35)

The cooperativity for typical parameters of our microcavities is plotted in Figure 3.9,

with a finesse F = 1000 (corresponding to R1,2 ' 0.997) and a mirror curvature ρc =

110µm. In the case of an atomic ensemble (blue curve), it reaches about 5 in the short

cavity regime, and drops to about 1-2 for a long cavity. C ' 1 is enough to observe some

Purcell enhancement. Note that in the vicinity of L = ρc/2, C ∼ 4 and does not vary

significantly over quite a large range. If we had assume a non-expanding Gaussian beam,

Eq. 3.25 would have given us a similar value — so this approximation can be useful. For

a single atom (purple curve), the optimum would be close to the stability limit in the long

cavity regime, where wc → 0 and the cooperativity diverges. C will be limited in practice

by the extreme divergence of the cavity mode for small wc, which will induce a large loss

at the spherical mirror.
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Figure 3.10: Reflection spectrum of a fibre-coupled microcavity. The fibred mirror re-
flectivity is 98.5% while that of the spherical micromirror is around 99.9%. The finesse is
F = 230, close to the maximum theoretical finesse of 300.

3.5.2 Microcavity length scan

We built and characterised plane-convex microcavities that were coupled either to a single

fibre (Nufern HP-780) or to waveguide chips. In the latter case, only one mirror was

deposited on the chip to form the plane mirror; the other end of the waveguide was butt-

coupled to a fibre. In order to align and tune the length of the microcavity, the spherical

mirror was mounted on a three-axis piezo flexure stage (Thorlabs NanoMax300). Because

a cavity of length 20-100µm has a free spectral range of a few THz, the finesse cannot

be measured by scanning the laser frequency, as we did with the waveguide resonators.

Instead we have to scan the cavity length, typically by driving the piezo sinusoidally at

50-100 Hz. A typical spectrum is shown in Figure 3.10.

A major problem with these NanoMax stages is the existence of low-frequency me-

chanical resonances that appear to be always excited — even when the piezo is not being

driven. This is graphically by Fig. 3.11, which shows oscilloscope traces over a single cav-
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Figure 3.11: Oscilloscope traces over a microcavity fringes before the introduction of
damping. These traces are zoomed in the linear region of the piezo sinusoidal modulation,
and the time axis spans about 12 nm. The “persistence” function was set to 1, 5 and 5 s
respectively, while the piezo modulation frequency was 100, 100 and 10 Hz. As we can see,
the amplitude of the mechanical vibration is of the order of 5-6 nm, i.e. much more than
the linewidth. The lower trace is the trigger signal.

ity fringe. The cavity in this case was waveguide-coupled. The amplitude of vibration is

about 5-6 nm, whereas the linewidth is only about 1 nm. While mechanical resonances are

expected in this type of flexure stages (as mentioned in the manufacturer’s specification),

it is surprising that they oscillate spontaneously. Attempts at isolating the stages from

other sources of vibration and noise (acoustic box, floating the optical table, disconnecting

the piezos, turning off nearby pumps and fans...) failed to produce any improvement.

In order to ascertain the origin of this vibration, we acquired a complete mechanical

spectrum by driving the stage with a sine modulation of varying frequency, adjusting

the drive amplitude so as to observe exactly one microcavity FSR over one modulation

period. The result is plotted in Figure 3.12(b, inset), and we compare it with a simple

mechanical harmonic oscillator model, whose amplitude spectrum is (136)

A(ω) ∝

√
1

γ2ω2 + (K −Mω2)2
. (3.36)

kB is the Boltzmann constant, T = 300 K is the temperature and M , K and γ are

the mass, spring constant and damping coefficient of the oscillator, respectively. The

resonant frequency ω0 and the quality factor Q are then given by K = Mω2
0 and γ =

Mω0/Q. The fit gives M = 65 g, K = 7900 gs−2, γ = 0.11 gs−1, ω0 = 350 Hz and

Q = 200. While is is difficult to evaluate the mass of the oscillating part of the stage, 65 g

certainly sounds reasonable, and the resonant frequency is compatible with that given in

Thorlabs’ specifications (375 Hz without a load; in this case the load consisted only of the

micromirror array and a small mount, weighing at most a few tens of grams).

We then turned off the piezo driver, and disconnected the piezo altogether to eliminate

the electrical noise. We scanned the laser frequency around a cavity resonance at 2 kHz.

We recorded many spectra like the one shown in Fig. 3.12(a) and monitored the position of

the fringe, f0(t). By Fourier-transforming f0(t) we obtain the top spectrum in Fig. 3.12(b).
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Figure 3.12: (a): Reflection from the microcavity as the laser frequency is scanned at
1 kHz. The resonances are jittering around due to mechanical noise in the piezo-actuated
flexure stage holding the mirror. (b): Fourier transform of the resonance position, without
damping (top) and with damping (bottom, magnified 10×). Damping is provided by small
pieces of sorbothane, and the amplitude of the oscillation was reduced by a factor ∼ 50. The
data behind this plot consist of 80 waveforms like the one shown on the left, each containing
200 resonances. The resonance positions of 10 consecutive waveforms were concatenated to
increase the spectral resolution, and the 8 redundant spectra were then averaged. Inset:
Mechanical spectrum of one of our Thorlabs NanoMax stages. Red dots: experimentally
measured relative amplitude of the driven oscillations. Blue line: fit to a simple harmonic
oscillator model (Eq. 3.36).

It exhibits a single resonance with the same frequency and with a similar Q-factor as in

the driven oscillator case (inset). Thus we are confident that the observed jitter originates

from the NanoMax stage’s mechanical resonance, although the driving force could not be

identified.

The detrimental impact of this resonance can be mitigated by the addition of some

damping, in the form of sorbothane wedges inserted between the fixed and moveable parts

of the stage. As more and more wedges were added, we repeated the previous experiments,

and we observed that the amplitude of the resonance in the Fourier transform spectrum

decreased. We were able to reduce the amplitude of the vibration by a factor close to 50,

as shown in the final spectrum in Figure 3.12(b)(bottom). This proved to be enough for

our needs, but it is not satisfactory in the long term. In particular it makes locking the

cavity impossible. Eventually we will have to replace the flexure stage by a more compact

and stable mount, currently under development, that can fit in a vacuum chamber or in

a cryostat.

These studies on single microcavities were an important step in learning empirically

how to manipulate, align and fine-tune both the waveguides and the spherical mirrors.

The successful coupled cavities experiments described in the next chapter would not have

been possible without this preliminary work.
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Chapter 4

Coupled cavities

Armed with the basic understanding of lossy optical resonators developed in the previous

chapter, we can now undertake to couple cavities together. The coupled-cavities system

we envision, as described in Chapter 1.5.3, is a chain of many interconnected cavities. We

start by considering the elementary unit of the chain: a free space microcavity coupled to

a waveguide cavity. Later in this chapter we consider two coupled waveguide resonators

with phase shifters. These provide the adjustable coupling between links of the chain.

4.1 Microcavity coupled to a waveguide cavity

The waveguide cavity-microcavity unit is depicted in Figure 4.1, and consists of a waveg-

uide cavity of length Lw between mirrors of reflectivity Rw and Rcw and a free space

microcavity of length Lc between mirrors Rcw and Rc. As before, R denotes the intensity

reflectivity, and r the (real) amplitude reflection coefficient, R = r2. We also define φc

and φw as the microcavity and waveguide round trip phases. This configuration is remi-

niscent of a recent proposal (137), where two cavities are connected by a shared moveable

mirror. By moving the mirror, a photon can be adiabatically transferred from one cavity

to the other. The analysis developed in this paper, however, only applies to cavities of

similar lengths whereas our waveguide resonator is about a hundred times longer than

the microcavity.

We therefore follow a different approach. We start by deriving theoretical expressions

for the complete reflection spectrum and for the coupling rate gcw. We then demonstrate

such coupling experimentally.

4.1.1 Derivation of the coupled-cavities spectrum

Lossless case

The most straightforward derivation of the coupled cavity spectrum is to consider the mi-

crocavity as a frequency-dependent effective mirror, with a complex amplitude reflection
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Figure 4.1: Schematics of the waveguide-microcavity system. The coupling fibre, waveg-
uide and microcavity waists are wf , ww and wc, and the mode-matching efficiencies are η2

w

and η2
cw. Waveguide and microcavity lengths Lc and Lw, mirror reflectivities Rw, Rcw and

Rc

coefficient r̃ce
iθ,and to substitute it for the output mirror in a simple cavity. The effective

mirror reflectivity is given by Eq. (3.4):

R̃c(ω) = r̃2
c =

r2
cw + r2

c − 2rcwrc cosφc

1 + r2
cwr

2
c − 2rcwrc cosφc

(4.1)

θ(ω) = arctan

[
(r2

cw − 1)rc sin(2φc)

rcw(r2
c + 1)− rc(r2

cw + 1) cos(2φc)

]
(4.2)

These can then be plugged back into Eq. (3.4) again, so that the field reflected from the

coupled cavity is

Er = Ein ×
rw − r̃ce

i(θ+φw)

1− rwr̃cei(θ+φw)
(4.3)

This produces a rich spectrum, a typical example of which is plotted in Figure 4.2(a).

There are resonances whenever

φw + θ = 0[2π]. (4.4)

To think about this spectrum, let us start with both cavities independently on reso-

nance (φw = 2πm, φc = 2πp) for an arbitrary reference light frequency ∆ω = 0 (which

typically would also be the atomic transition).

� At the microcavity resonance (∆ω = 0), the effective mirror introduces a phase shift

θ = π. Consequently the effective waveguide round trip phase is φw = 2π(m+ 1/2),

i.e. it is exactly off-resonance. We see in Fig. 4.2(a) that there is indeed a reflected

intensity dip at ∆ω = 0. On the other hand, the resonance condition is now satisfied

at detunings ∆ω = ±gcw such that φw(±gcw) + θ(±gcw) = 2πm, which gives rise

to the splitting observed near zero detuning in Fig. 4.2(a). gcw is the normal mode

splitting, i.e. the photon tunnelling rate between the two cavities, as will be justified

shortly.

� Away from the microcavity resonance, θ ' 0 and the resonances are close to those of

the waveguide alone. However, their visibility will be determined by the mismatch

between the reflectivities of the input mirror Rw and of the effective mirror R̃c(ω).

This gives rise to the observed visibility modulation. At some point we will have

Rw = R̃c(ω) and the visibility will reach unity, provided that the following condition
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Figure 4.2: Spectrum of a waveguide-microcavity system (Eq. (4.3), solid blue curves)
versus the detuning ∆ω from the microcavity resonance. The waveguide and cavity lengths
are set to 18700 and 100 wavelengths, respectively (10 mm and 78µm), and the reflectivities
are Rw = 99%, Rcw = 98%, Rc = 99.5%. (a) Ignoring waveguide propagation loss. (b)
With 0.9 dB/cm loss. The pale, dotted curve is the envelope (Eq. (4.6)). The purple
curve is the effective reflectivity r̃2

c of the microcavity. The envelope reaches the x-axis
when r̃2

c(∆ω) = Rw. The large phase shift introduced by this effective mirror causes the
waveguide resonance at ∆ω = 0 to split: this is the signature of strong coupling. This
pattern repeats itself with a periodicity given by the micro-cavity free spectral range (about
2 THz).

is fulfilled:

r2
w >

(
rcw − rc

1− rcwrc

)2

(4.5)

The fringe envelope (dashed line) can be easily extracted by setting ei(θ+φw) = 1 and

is given by

Imin =
rw − r̃c

1− rwr̃w

(4.6)

Tuning the microcavity length Lc essentially moves the envelop around, while tuning

the waveguide length Lw moves the fringes under the envelopes. Eq. (4.4) cannot generally

be solved analytically, but we can determine when the reflected intensity becomes zero.

This is of interest because the spectrum is generally sensitive to the presence of atoms

under this condition, as the field intensity in the microcavity is maximum. Zero reflected

field is possible only if Eq. (4.5) is fulfilled, and it is achieved when the cavity can be

tuned to make r2
w = r̃2

c(φc). This occurs when

φc(opt) = arccos

[
r2

w(1 + (rcrcw)2)− (r2
c + r2

cw)

2rcwrc(r2
w − 1)

]
. (4.7)

θ is then determined from Eq. (4.1) and φw from (4.4).

Because the microcavity is much shorter than the waveguide, the effective mirror

parameters r̃c and θ can be considered constant around the resonances, whose width (ie
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Figure 4.3: Intensity and phase of the fields circulating in the waveguide and in the micro-
cavity, around the split resonance (equations (4.9)-(4.10)); reflectivities have been lowered
for clarity compared to Fig. 4.2: R = 0.90, Rcw = 0.92, Rc = 0.97). The avoided crossing
and the symmetric/antisymmetric nature of the two central resonances is evident, showing
that the splitting is indeed the signature coherent energy exchange (or strong coupling)
between the two cavities.

the coupled-cavity field decay rate) can therefore be approximated according to Eq. (3.11)

as

κ̃ =
c(1− rwr̃c)

2Lw

. (4.8)

The circulating field amplitudes inside the two cavities, Ew and Ec, can be easily

computed in the effective mirror formalism. First we calculate the circulating amplitude

in the waveguide Ew as in Eq. (3.13), using the effective mirror model of the microcavity.

Then we use Ew as the input field for the microcavity. We obtain

Ew = Ein
tw

1− rwr̃cei(2φw+θ)
(4.9)

Ec = Ew
tcw

1− rcwrce2iφc
= Ein

tcwtwe
iφw

1− rcrcwe2iφc + rcrwe2i(φc+φw) − rcwrwe2iφw
(4.10)

Figure 4.3 shows a map of the circulating field intensity and phase in the two res-

onators, |Ec|2, |Ew|2, arg(Ew) and arg(Ec), as a function of waveguide and microcavity

detuning. The upper and lower branches correspond to the two peaks of the split reso-

nance we previously described in Fig. 4.2. The laser frequency is set to ∆ω = 0. Here

it is clear that the split resonance is actually an avoided crossing. The two branches are

identical, except for the microcavity phases, which are opposite in sign. Thus we inter-

pret the two resonances as the symmetric and antisymmetric normal modes of a coupled

oscillator. It follows that, if the two normal modes are initially excited with the same

amplitude, for example by placing a photon in the microcavity alone, the time evolution

of the system will be a periodic exchange of the excitation between the two cavities, with

a frequency gcw corresponding to half the normal mode splitting.
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Figure 4.4: Cooperativity of a Rb atom in a microcavity coupled to a waveguide cavity
(Rw = 0.98, Lw = 23 mm, Rcw = 0.98, Lc = 156µm, Rc = 0.999). Both cavities have been
tuned to bring a resonance (green lines, dashed envelope) and maximise the cooperativity
at the atomic frequency at ∆ω = 0.

Cooperativity

The cooperativity for an atom in the microcavity coupled to a waveguide resonator will

be very similar to the single microcavity case of Eq. (3.35). The field decay rate κ is

replaced by the coupled decay rate κ̃, and the atom-photon coupling gac of Eq. (1.7) is

modified since the photon is now distributed between the two cavities according to the

ratio Ew/Ec.

If the system is populated with a single photon of energy ~ω, the field amplitudes

become

Ec =

√
~ω

2ε0πw2
0

√
|Ec|2

Lc |Ec|2 + Lw |Ew|2
(4.11)

Ew =

√
~ω

2ε0πw2
0

√
|Ew|2

Lc |Ec|2 + Lw |Ew|2
(4.12)

We have assumed here that the microcavity mode is a Gaussian with constant waist,

and that the waveguide and microcavity waists are identical: wc = ww = w0. A full

expanding Gaussian treatment similar to the one presented in section 3.5.1 is possible,

but would result only in minor quantitative differences. The atom-photon coupling is

then given by the fraction of the total field that resides in the microcavity:

g′ac = gac

√√√√ |Ec|2

|Ec|2 + Lw

Lc
|Ew|2

. (4.13)

The cooperativity is then C = g′ac
2/2κ̃γ, and is plotted in Figure 4.4. The double-

bump structure is caused by the interplay between g′ac and κ̃, both of which peak at

φc = 0 (microcavity on resonance) whereas C ∝ g2/κ. By detuning both the microcavity
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(which translates the whole cooperativity curve, very much like the visibility function)

and the waveguide cavity, it is possible to bring a resonance at the desired frequency (here

∆ω = 0) while maximising the cooperativity, as we have done in Fig. 4.4.

It should be noted that maximum cooperativity does not coincide with maximum

visibility, as we had anticipated (see Eq. (4.7)). This is because at this point the waveg-

uide field is also rather large and the photon wavepacket is not strongly localised in the

microcavity.

Lossy waveguide

We can include the waveguide propagation loss, mirror loss and mode mismatch exactly

as we did in the previous chapter (see section 3.2). Figure 4.2(b) shows the same coupled

cavity as before, but with a waveguide propagation loss of 0.9 dB/cm. We observe a

similar splitting, since the physics of the system is identical, but the spectrum looks less

dramatic. Besides the inevitable broadening of the resonances, the main difference is that

the fringe visibility never reaches unity, because Eq. (4.5) (with rcw effectively reduced by

the loss) can no longer be fulfilled.

Mode mismatch and mirror loss do not qualitatively alter this spectrum. Their main

effect, in the relevant operating conditions, is to significantly decrease the visibility and

increase the splitting gcw. They need to be taken into account when modelling a realistic

system. We do not reproduce here the complicated expressions for the reflectivity; they

can be easily derived from the previous discussion.

4.1.2 Analytical expression of the coupling rate gcw

We would very much like to derive an analytical expression for the coupling rate gcw

between the two cavities. However it is not possible to do so directly from Eq. (4.4)

because the arctan in Eq. (4.2) cannot be linearised over the required range. Fortunately

there is a different approach to the problem, based on rate equations and developed by

Lang and Yariv in (138). It does not allow us to derive the whole coupled-cavity spectrum

as easily as we have done, but it does provide relatively simple analytical expressions for

the coupling. Through a somewhat cumbersome procedure, we obtain a set of coupled

rate equations for the freely evolving field amplitude in each cavity, Ec and Ew:

dEc(t)/dt = iκccEc(t) + iκwcEw(t) (4.14)

dEw(t)/dt = iκwwEw(t) + iκcwEc(t) (4.15)

with the complex cross- and self-coupling coefficients

κww = c
2iLw

(rwrcwe
iφw − 1) κcc = c

2iLc
(rcrcwe

iφc − 1)

κwc = −c
2iLw

ηcwtcwrwe
iφw κcw = −c

2iLc
ηcwtcwrce

iφc
(4.16)
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Figure 4.5: Waveguide-microcavity coupling as a function of middle mirror reflectivity
Rcw. Blue curve: g∆ω

cw , the spectral splitting calculated numerically from Eq. (4.4. Purple
curve: gLcw, Lang’s analytical solution of Eq. (4.19). Other parameters are Rc = 0.999,
Rw = 0.99, Lc = 156µm, Lw = 100Lc. The dashed line indicates the FSR of a cavity of
length Lc + Lw, and the dotted line to half the FSR of a cavity of length Lw.

ti, ri are the usual amplitude transmission/reflection coefficient and ηcw is the mode-

matching efficiency.

The solutions of Eq. (4.14) are damped sinusoidal oscillations of the form

Ec(t) ∝ eit(κcc+κww)/2 sin(tgcw) (4.17)

gcw = 1
2

√
(κcc + κww)2 + 4κcwκwc (4.18)

Assuming that the outside mirrors have a high reflectivity (rc ' rw ' 1), the coupling

rate can be rewritten as

gcw =
c

4LcM

√
M(1− rcw)

√
8−M(1− rcw) + 8. (4.19)

M � 1 is the ratio of the cavity lengths Lw/Lc. gcw of Eq. (4.18) (hereafter denoted gLcw)

is plotted in Figure 4.5 (purple curve), together with the spectral splitting calculated by

numerically solving the resonance condition of Eq. (4.4) (blue curve, hereafter g∆ω
cw ).

For Rcw → 1, there can be no energy exchange between the cavities and gcw → 0.

Then as Rcw decreases, the splitting increases as photon tunnelling is turned on; (4.18)

and (4.4) agree very well down to Rcw ' 0.93, which is sufficient for our purpose (we

envision Rcw > 0.98 at minimum).

At very low reflectivity, it is as if there was no middle mirror at all: the spectral

splitting g∆ω
cw becomes the half-FSR of a cavity of length Lc + Lw (dashed horizontal

line). Lang’s solution on the other hand becomes imaginary for Rcw < (1− 8/M)2, which

roughly coincides with gcw becoming larger than FSRw/4 (dotted line). This is because

the coupled equations (4.14) assume adiabaticity, and this assumption breaks down when

the coupling time scale becomes comparable to the photon round trip time of the longer

cavity.
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Figure 4.6: Observation of waveguide-microcavity coupling on ORC7. Top: the micro-
cavity is far detuned and we only observe the waveguide spectrum. Middle and bottom:
the microcavity is tuned to two different waveguide resonances. The solid lines are fits to
Eq. (4.3), including waveguide and mode matching losses. Right: scanning the laser fre-
quency and the microcavity length reveals that the observed splitting is a proper avoided
crossing. The frequency and length axes span about 8 GHz and 50 nm respectively (the
exact calibration is not available).

4.1.3 Experiments

Initial waveguide-microcavity coupling experiments were carried out on chip “CIP”, but

the loss proved too large, and although the effect of the microcavity on the waveguide

cavity could be observed as a small visibility reduction, we could not access the strong

coupling regime. We then moved on to the “ORC7” chip with mirror reflectivities Rw = 90

and Rcw = 99%. Results are presented in Figure 4.6. Top left we see the waveguide cavity

spectrum alone, the microcavity being far detuned. We fit the full cavity model of Eq. (3.4)

including propagation loss (0.9 dB/cm) and fibre-waveguide mode mismatch, from which

we estimate the mode matching efficiency as η2
w = 40±2%. This is much lower than what

we expected from the mode profile measurement (∼ 90%, see Chapter 2).

Then we bring the microcavity into resonance by changing its length, and we observe

the middle spectrum, exhibiting a clear splitting. We can tune the microcavity to the next

waveguide resonance as well (bottom). Again we use a fit based on Eq. (4.3), including

the parameters determined in the off-resonant measurement, to estimate the waveguide-

microcavity mode-matching efficiency (η2
cw = 52±2%) and the spherical mirror reflectivity

(Rc = 99.8 ± 0.1%). Rc was not known precisely beforehand, but was expected to be

around 99.9%. The observed splitting is reproduced fairly well by the analytical formula

(4.19), which gives 2gLcw/2π = 2.6 GHz with the parameters determined by the fit. The

splitting measured directly on the middle and bottom spectra is 2.7±0.2 and 2.3±0.2 GHz

respectively. Here too the mode-matching efficiency is much lower than anticipated (see

Fig. 3.9).

These disappointing mode-matching efficiencies could simply be an artifact of having

neglected the mirror loss A1. We have derived in Chapter 3.2 expressions for the visibility
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in the presence of mirror or mode mismatch losses (Equations (3.16, 3.21)). It is relatively

easy to combine both: the (1−l) or (1−A) terms are replaced by 1−[t21(1−η2)+Aη2]. Thus

introducing a mirror loss will effectively increase the mode-matching efficiency; however

there is no way of distinguishing between the two. Plugging in some numbers, we see that

we introduce a middle mirror loss Acw ' 0.002, η2
cw is increased to around 80%, which is

sensible. However achieving a similar result for ηw requires Aw ' 2%: this is simply too

high. Thus mirror loss can only be a part of the puzzle. We did not have the time to

carry out similar experiments on the latest chip, ORC8.

4.2 Coupled waveguide cavities

Having demonstrated the coupling between waveguide and microcavity, we now move

on to the second basic unit: two coupled waveguides. From a theoretical point of view

the situation is somewhat reversed, in that it will be very easy to derive an analytical

expression for the coupling rate gww and rather more difficult to work out the full spectrum.

A similar although slightly more simple device was initially proposed by Yariv (139) in the

context of coupled-resonator optical waveguides (CROWs) (140). Essentially, a coupled

waveguide resonator array can be thought of as converting a space-like coupling (without

the mirrors, propagating energy is exchanged between and along the waveguides) to a

time-like coupling (with the mirrors, it is the circulating energy that is exchanged).

4.2.1 Analytical derivation of the coupling rate gww

We have seen previously (Chapter 2.4.1) that an array of N coupled waveguides is de-

scribed in terms of N normal modes, each having a distinct k-vector βi given by Eq. (2.10).

Figure 4.21(a) shows the electric field amplitude profiles of the first eight normal modes

of a coupled array of nine waveguides; the corresponding linear dispersion relations have

been plotted in Fig. 4.21(b) (k-vectors vs optical frequency ω). What then happens if the

waveguides are terminated by two mirrors to form cavities is illustrated by 4.7(b) and (c).

It is essentially identical to the single cavity case: each normal mode has to satisfy the

resonance condition

βiL = mπ. (4.20)

Thus βi is fixed and common to all normal modes (black vertical line in Fig. 4.21(b)),

so that the resonance condition will be satisfied at a different frequency ωi for different

modes, for a given order m. Note that the waveguide length L can be larger than the

coupler length l. For a homogeneous waveguide array (all waveguide-waveguide coupling

constants κi and all waveguide optical lengths identical), applying the resonance condition
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Figure 4.7: Illustration of the conversion from space-like to time-like coupling in a waveg-
uide cavities array. (a) Electric field of the normal modes in a 9-waveguides array. (b) Each
mode has a distinct propagation constant βi, which is proportional to the frequency ω. The
quantisation of βi by a cavity (vertical line) results in different resonance frequencies ωi for
each normal mode (c). [Adapted from (139)].

to Eq. 2.10 gives the N resonant frequencies

ωi = ω0

(
1− 2

κll

mπ
cos

iπ

N + 1

)
(4.21)

as plotted in Figure 4.7(c). ω0 is the resonant frequency of a single, uncoupled waveguide

resonator.

The special case N = 2 is most interesting because the full splitting ∆ω between

the two normal modes gives immediately the photon tunnelling rate gww between the

waveguides:

gww =
∆ω

2
=
κllω

mπ
=
κll

L

c

neff

(4.22)

We notice immediately that this expression only involves the product κll, which can be

easily measured prior to coating the mirrors since it related to the the splitting ratio

C = sin2(κll). Thus we do not require any great knowledge of the inner workings of the

coupler, which is fortunate as both κl and l are difficult to access on their own.

4.2.2 Derivation of the coupled cavity spectrum

The most intuitive way of describing a system of two coupled waveguide resonators follows

the approach used to derive the single-cavity spectrum in Section 3.2. Refer to Figure 4.8
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Figure 4.8: Two coupled waveguides cavities. In the four arms (whose lengths lij are
not necessarily equal), a single mode propagate with k-vector k = 2πneff/λ. In the coupler
section (length lc), the symmetric and antisymmetric normal modes E+ and E− propagate
with k-vector k+ and k− .

for the notation. We describe the field amplitude by a vector

E(z) =

(
E1,+(z)

E2,−(z)

)
. (4.23)

where E1 and E2 are the field amplitudes in the upper and lower waveguides, in the

uncoupled section, while E+ and E− are the field amplitudes of the symmetric and anti-

symmetric normal modes in the coupler section. We switch between the (+,−) and (1, 2)

bases by multiplying E by the matrix

B =
1√
2

(
1 1

1 −1

)
. (4.24)

Propagation from the input mirror (at z = 0) to the coupler, and from the coupler to the

output mirror at z = L, is represented by the two matrices

Min =

(
eikl11 0

0 eikl12

)
and Mout =

(
eikl21 0

0 eikl22

)
(4.25)

while reflection is taken care of by two more matrices rw = rwI and rcw = rcwI. I is the

identity matrix. The coupler is represented as

Mcoupler = M ·

(
eik+lc 0

0 eik−lc

)
·M. (4.26)

In this way it is quite straightforward to derive a round trip matrix Mrt = Min · B ·
Mcoupler ·B ·Mout · rcw ·Mout ·B ·Mcoupler ·B ·Min · rw (the lengthy expression does not

need to be reproduced here). The intracavity field, close to the input mirror, in the (1,2)
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Figure 4.9: Reflection spectrum from the input waveguide of a two- and five-waveguide cou-
pled resonator array, for various values of the coupling constant κl = 0, 500, 1000, 1500 m−1.
The mirror reflectivities are 98 and 99%.

basis, assuming we are pumping only one of the waveguides, is given by the infinite sum

Eintra =

(
0

1

)
·
√

I− r2
w ·

∞∑
n=0

Mn
rt. (4.27)

√
I− r2

w is the matrix field transmission coefficient through the input mirror. We can

then use the following identity (convergence is trivial for physical reasons):

∞∑
n=0

(
a b

c d

)n

=
1

a+ bc+ d− ad− 1

(
d− 1 −b
−c a− 1

)
(4.28)

and derive a closed form, if complicated, expression for the coupled-waveguide cavity

spectrum. A typical example is shown in Figure 4.9(a). We see two resonances indeed,

whose splitting is linear in κl and reproduces exactly Eq. (4.22).

In order to strengthen our interpretation of the splitting as a coupling rate, we plot

in Figure 4.10 the intracavity intensities and phases as a function of both waveguide

detunings, exactly as we did earlier for a waveguide coupled to a microcavity (Fig. 4.3).

Again, we see a clear avoided crossing and the two branches (corresponding to the two

resonances of Fig. 4.9(a)) are identical, except for the phase sign in the second waveguide.

Thus the two branches can be interpreted as the symmetric and anti-symmetric normal

modes, and the frequency splitting between them as a coupling rate describing the rate

of energy exchange between the waveguides.

Note that this method can be easily extended to larger arrays, since the formula

corresponding Eq. (4.28) can be extended to arbitrary large matrices. The spectrum of an

array of five waveguides has thus been plotted in Figure 4.9(b). However, such analytical

expressions quickly become extremely long and cumbersome. For larger problems, a

numerical method based on transfer matrices can be used, such as that presented in (139)

(with some minor adaptations). This requires a matrix inversion for every point to be
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Figure 4.10: Intensity and phase of the fields circulating in two coupled waveguides when
changing the lengths of (detuning) the two waveguides. The plots cover ±λ/4 on both axis,
ie a full period. A is the input waveguide. The plots are very similar to the waveguide-
microcavity case (Fig. 4.3) and illustrate the symmetric/antisymmetric nature of the normal
modes. The avoided crossing is clearly resolved.

calculated and therefore becomes slow for large arrays. Since we limit ourselves to arrays

of two waveguides, we’ll stick to the analytical calculation, which has been used to make

the theoretical plots that follows in Figures 4.15 to 4.17.

4.2.3 Tuning the coupling rate with phase shifters

When describing the operation of evanescent couplers in Chapter 2.4.1, we showed that

the coupling constant κl is proportional to the overlap integral between the two modes

(Eq. (2.5)). In a coupled-resonator waveguide array, the overlap integral must also account

for the standing-wave nature of the modes, as illustrated in Fig. 4.11. It is straightforward

to show that this introduces a phase factor such that κl becomes κl cosφ. φ is just the

phase difference between the two standing waves: cosφ = 1 (full coupling) if they are in

phase (nodes facing each other), and cosφ = 0 (no coupling) if they are in quadrature.

Therefore, to use a simple image, all we need to do to tune the coupling is to translate

one of the standing waves up and down the waveguide. This we can easily do by inserting

phase shifters on both sides of the coupler, and tuning them so as to get equal magnitude

but opposite sign phase shifts to keep the cavity on resonance. Using NiCr heaters as

phase shifters, a negative phase shift means cooling, so that we have to operate the heaters

around some hot setpoint.

4.2.4 Experiments

Jena chips higher-mode coupling

The first observation of waveguide-waveguide cavity coupling was entirely accidental, on a

chip (“Jena”) that was not intended for coupling but did contain closely spaced waveguides

(
√

2.25µm = 35µm apart; see Figure 2.7). We had coupled the input fibre to one of

the waveguide, but the output fibre had been coupled to the next waveguide in line,

87



∆Φ=0 ∆Φ=Π�4 ∆Φ=Π�2 ∆Φ=3Π�4

0 Π�4 Π�2 3Π�4
0

1
2

1

Standing wave phase difference

Κ
l�
Κ

l,m
ax

Figure 4.11: Modal amplitude in two evanescently coupled waveguides cavities (negative
in blue, positive in red), and evanescent coupling constant κl cos2(δφ) as a function of phase
difference δφ between the two standing waves.
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Figure 4.12: Transmission spectrum of the Jena femtosecond-written chip with end facet
mirrors. Blue: direct transmission of the TEM00 mode. The finesse is 24. Purple: output
of the second waveguide, 35µm away from the first, which result from evanescent coupling
of 0.2% of the TEM01 mode over a single pass.

and we observed that the transmission spectrum had an unexpected doublet structure

(Figure 4.12, purple curve). The inset graphic clarifies the configuration. After realising

the mistake, we moved the output fibre to the correct waveguide, and observed the blue

spectrum, which looks more like what was expected from a single waveguide cavity. But

what was going on in the second waveguide?

The first clue is the small bump we see in the main (blue) spectrum immediately to

the left of the resonance. This seems to indicate the presence of a higher-order waveguide

mode, whose amplitude is much smaller because its overlap with the coupling fibre mode

is smaller. Moreover this bump coincides with the left peak of the second (red) spectrum:

could they be one and the same feature? To confirm this we quickly looked at the mode

profile in the second waveguide. It was shown to have a somewhat blurry double-lobe

structure compatible with a TEM01 mode, with dimensions 7× 9µm2, significantly larger

than the fundamental mode of the first waveguide (5× 7µm2).

So the most likely explanation is this: because the higher-order mode is wider, it cou-

ples evanescently more strongly than the fundamental. Therefore, although both modes

co-propagate in the first waveguide, only the higher-order one couples to the second waveg-

uide and experiences the observed splitting. To test this hypothesis quantitatively, we use

Eq. (4.22), which relates the splitting ∆ω = 2π × 0.54 GHz and the coupling constant

κl, which we evaluate from Eq. 2.5 based on the mode size given above. The only free

variable left is the waveguide index contrast ∆n, which we do not know. But we can

adjust it so as to fulfil Eq. (4.22), which yields ∆n ∼ 2 10−3. This is a perfectly sensible

value for femto-second written waveguides.

We can also calculate the single-pass coupling ratio, which is given by Eq. 4.22 as

sin2(lκl) = 0.2%. It is therefore not surprising that we never detected this coupling before
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Figure 4.13: Schematics and notation for the coupled waveguide resonators experiments.
The probe laser is injected into waveguide A, and we monitor the “reflection” from waveguide
A and the “transmission” from waveguide B. H-A1 etc. are the four thermo-optic phase
shifters.

depositing the mirrors.

ORC8

The final waveguide-waveguide coupling experiments were carried out on chip “ORC8”,

which contained five evanescent and five cross-couplers (as well as four straight waveg-

uides). The splitting ratios had all been measured prior to fabricating the mirrors (see

Fig. 2.13). After the mirror deposition, most of the couplers showed evidence of splitting.

Since we could only fit six sets of heaters on the chip, we selected the most promising

couplers (highest finesse, best symmetry). The finesse was in the range 7–16. We then

deposited the NiCr heaters, and we were able to tune all six selected couplers into res-

onance, to observe anticrossing, and to tune the splitting. However quite a few of the

heaters broke early on (because of fabrication defects or of human error), so that we were

unable to record usable data on two couplers, and only a limited set on others.

The sketch in Figure 4.13 clarifies the notation used in the following. Laser light is

butt-coupled from a v-groove fibre array into one arm (A) of a coupler. We monitor both

the reflection from waveguide A, and the “transmission” from the second waveguide (B),

which is collected in the next fibre of the v-groove array. The four heaters are denoted

H-A1, H-A2, H-B1 and H-B2: “1” refers to heaters on the input side of the coupler, “2”

to the opposite side.

In a first experiment we used a 800µm long evanescent coupler (“EVA-2”), with a mea-

sured travelling-wave splitting ratio C× = 18± 2%. We scanned the laser frequency while

increasing the power dissipated into one of the input heaters (H-A1), and we recorded the

reflection spectrum from the same waveguide. In Figure 4.14, we can see the resonance

fringes move to lower frequencies, very much like Fig. 3.6, until it gets close to the reso-

nance of the second waveguide (up to this point a barely noticeable bump). This second

resonance then gains amplitude at the expense of the first one, in what looks like an

avoided crossing. The small shift of this second resonance is caused by thermal cross-talk.

To demonstrate anticrossing further, we set the two waveguides on resonances, switched
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Figure 4.14: Evolution of the reflection spectrum as the the voltage in heater H-A1 is in-
creased, showing avoided crossing between the resonances of the two waveguides (A: dashed,
B: dotted). [ORC8-EVA2]

off the laser scan and adjusted the laser frequency to sit right in the middle of the split

resonance. We then modulated the power dissipated in the input heater H-A1 and its

opposite number on the second waveguide H-B1 simultaneously. H-A1 was modulated at

40 Hz and H-B1 at 0.5 Hz so that a full scan took only 2 s. Both heaters were calibrated

separately to convert power into a frequency detuning. The results are plotted in Fig-

ure 4.15 for both the reflection and transmission, together with a theoretical calculation

(inset).

When the two waveguides are non-resonant, scanning H-A1 and observing the reflec-

tion (A) only reveals a single resonance fringe, that of the input waveguide A. Then as

H-B1 is tuned and cavity B becomes resonant with cavity A, we see a splitting which

develops into an avoided crossing. This demonstrates strong coupling between the two

resonators. The tilt of the dark band in (A) is caused by thermal crosstalk from H-B1.

Detuning the two heaters by the same amount (δfH−B1 = δfH−A1) is equivalent to

detuning the laser; thus by measuring the resonant splitting along the dashed grey line

at 45◦ one can estimate the coupling rate as gww = 0.65± 0.05 GHz. This is quite signifi-

cantly lower than the theoretical expectation given by Eq. 4.22, with the experimentally

measured splitting ratio C× = sin2(κll) = 18 ± 2%, which gives gww = 1.4 ± 0.1 GHz.

But there is no reason to expect the maximum coupling, since we have yet to tune the

standing waves relative phase.

This is what we are about to do now, on a cross coupler this time (“X-2”, crossing

angle 2.3◦, splitting ratio C× = 32 ± 2%). Our control knobs are the two heaters on

the second waveguide, H-B1 and H-B2, which were calibrated beforehand. We start

by bringing waveguide cavity B into resonance with A. Then we manually increase the

power in H-B1 in small steps, all the while balancing it by decreasing the power in H-B2

and recording frequency spectra. The results are plotted in Figure 4.16. It shows the
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Figure 4.15: Avoided crossing on evanescent coupler ORC8-EVA2. It shows the reflection
from waveguide A and transmission from waveguide B as the power in two phase shifters
(one on each waveguide, specifically H-A1 and H-B1) is changed to detune the cavities.
The avoided crossing is clearly resolved, demonstrating that the two resonators are strongly
coupled. The data is very well reproduced by theoretical calculations (inset). The slow drift
of the main resonance (whose frequency ought to be independent from H-A1) is caused by
thermal cross talk from heater H-B1.

transmission out of waveguide B on the left and reflection from waveguide A on the right

as a function of laser frequency and heater phase shift. Starting from the bottom, where

there is no coupling, we can see the resonance broaden and split. The splitting reaches

a maximum, and would reach zero coupling again after a phase shift of π. Theoretical

calculations are shown in inset, and reproduce the data fairly well. The small overall drift

is likely caused once again by thermal cross-talk. Note that the transmission signal does

not vanish completely at φ = −π/2, as we would expect since there should be no power

in waveguide B. This is only because of the experimenter’s inadequacy: manual tuning of

the phase shifters becomes tricky when the splitting is not resolved,

The final data (Figure 4.17) addresses this point. It is very similar to the previous

one, but comes from a different coupler (cross-coupler “X-1”, crossing angle 2.2◦, splitting

ratio C× = 15±2%). Here, instead of manually balancing the two heaters, we automated

a full scan of the three-dimensional parameter space (H-B1, H-B2, frequency). Out of the

large data set, we extracted the spectra corresponding to a balanced heater tuning (ie,

those that would be lying on the grey dashed line in Fig. 4.15. The resulting graphs are

very similar to Fig. 4.16, and we can see more clearly that there is no power in the second

waveguide at the zero-splitting point.

The maximum splitting observed in these experiments is in reasonable agreement with

the theory. On X-2 (Fig. 4.16), we measure a maximum coupling rate gww = 3.8±0.1 GHz,
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Figure 4.16: Tuning the coupling rate gww on coupler ORC8-X2. (B) and (A) are the
transmission and reflection spectra respectively. The tuning is done by simultaneously
varying the power across heaters H-A2 and H-B2 to produce a phase shift equal in magnitude
(vertical axis), but opposite in sign, in the two heaters. The zero phase point has been
arbitrarily set to coincide with the maximum coupling. Theoretical calculations are shown
in inset.

while from a 30% coupling ratio we expected 3.9 ± 0.2 GHz. On X-1 (Figure 4.17) we

measured gww = 3.5 ± 0.1 GHz, whereas we expected only 2.6 ± 0.2 GHz (C = 15%). It

is quite possible that the initial measurement of the coupling ratio was off by as much as

50%: as we explained in Chapter 2, it is not as straightforward as it seems.

Conclusion

This concludes the main part of the present thesis. We have demonstrated the successful

operation of two different types of coupled cavities: a waveguide resonator coupled to

a free space microcavity, and two waveguide resonators with phase shifters for tuning.

In both systems we reached the strong coupling regime, with a clearly resolved avoided

crossing. The theory we developed, accounting for all sources of loss, reproduces quan-

titatively as well as qualitatively the main features of the data. On the other hand, our

experimental results are rather anecdotal: the limited supply of waveguide chips as well

as their fragility (notably the Nichrome heaters) did not allow for a systematic investiga-

tion of all the parameter space. Nevertheless, even on this limited basis, the evidence is

certainly conclusive.

Having thus demonstrated the basic building blocks of the coupled-cavity QED im-

plementation we devised in Chapter 1, building a full if modest array of up to a dozen

cavities ought to be no more than an engineering problem, provided we can increase the

finesse of the waveguide resonator. In our experiments, the very best exhibited a finesse
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Figure 4.17: Tuning the coupling rate gww in cross-coupler ORC8-X1. The graphs show
the transmission (waveguide B) and reflection (waveguide A) spectra as the the power in
heater H-B1 is increased while the power in H-B2 is decreased by the same amount to tune
the coupling rate, which corresponds to a change in the resonance’s spectral splitting. The
transmitted power vanishes as the coupling goes to zero near P = 0.32 W (The heaters broke
down before the power/phase shift calibration could be done).

of only 20 (16 if part of a coupler), whereas to resolve a spectrum with a dozen fringes

will require a finesse of at least 100. And this does not even considers the more strenuous

requirements of observing quantum effects.

We defer a fuller analysis of the loss problem to the final conclusion in Chapter 6. For

now, it is time to look at the potential of Bragg gratings and their promise of an even

tighter integration and better scalability.

94



Chapter 5

Bragg grating cavities

5.1 Introduction

When describing the UV-writing process (see Chapter 2.2.2), we mentioned the possibility

of integrating Bragg gratings at essentially no cost. In fact the UV-writing system at ORC

has such a capability, which we have not made use of yet. Since we do need many mirrors

and cavities, the question naturally arises of whether we can find ways of exploiting Bragg

gratings to reduce the cost, simplify fabrication, and reduce the footprint of our coupled

cavities system. In particular the prospect of replacing the first waveguide mirror Rw (see

Figure 4.1 on page 76) by a grating is very attractive. The waveguide chip would need to

be mirror-coated on one end facet only, effectively halving the fabrication cost (currently,

after the first mirror has been deposited, the chip needs to be taken out of the vacuum

chamber, turned around and the vacuum needs to be restored). Moreover the waveguide

cavities could be shortened by placing the gratings immediately after the couplers, maybe

even into the S-bends, thus mitigating the propagation loss. The chip could also be made

bigger and some elementary light processing (e.g. HBT interferometry) could be build

into the same chip. The middle mirror Rcw might also be replaced by a grating, although

mode-matching losses would likely reduce the microcavity finesse below acceptable levels;

this would also significantly increase the cavity mode volume. Finally, removing the fragile

end-facet DBRs would make handling the chip somewhat less risky.

For these reasons, we undertook to fabricate and study UV-written Bragg gratings.

Although a mainstay of the telecom industry (where they are integrated, also by UV-

writing, in optical fibres and operate at wavelengths around 1.5µm), they are a rather

new development in 780 nm waveguide chip technology. 1550 nm gratings had been made

at the ORC for applications such a chemical and temperature sensing (113), but the

780 nm writing system was quite new when we embarked on this collaboration and we

therefore entered uncharted territory: they were known to work, but had hardly been

characterised at all and their actual reflectivities were unknown.
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Beside potential applications in cavity QED, there is a lot of interest in integrated

Bragg gratings at visible wavelength, mainly for biochemical sensing applications. “Lab-

on-a-chip” devices, typically built around centimetre-scale glass or silicon-based planar

devices, open a route to miniaturising the analysis of chemical and biological reactions

thereby reducing the quantity of reactants required and the process time. One of the

key requirements of this technology is an accurate method of monitoring environmental

conditions and/or reaction progress. Fibre Bragg gratings can provide such monitoring by

allowing part of the optical mode to interact with an analyte to measure small refractive

index changes. It is therefore desirable to build Bragg gratings directly into the device,

as has been demonstrated in (113) at 1550 nm by removing the cladding to allow a liquid

analyte to interact with the optical mode of the waveguide. Such devices can display

refractive index sensitivities better than 10−5 at this wavelength. However this sensitivity

can be greatly compromised for water-based analytes due to the strong absorption of OH

bonds, in excess of 30 dB/cm above 1400 nm (116), which reduces the finesse of grating

and etalon-based sensors.

We also realised that cavities made of two Bragg gratings offered a quick and easy

way of measuring not only the grating properties (reflectivity), but also those of the

host waveguide (loss, refractive index). Most notably they offer a quick and easy way of

measuring the gratings’ group delay, a key property in the design of optical filters and

delay lines and one which is usually measured by non-trivial means such as white light

interferometry or pulse delay measurement.

This chapter is organised as follow: first we describe the simultaneous UV-writing of

Bragg gratings by the stroboscopic method (the UV-writing process itself as been studied

in a previous chapter). We then look into the theoretical modelling of the gratings in

a coupled-mode formalism, with a detail analysis of the most important grating types

we will have to deal with (uniform vs apodised and symmetric vs asymmetric). This is

followed by a quick investigation of Bragg grating cavities, and how these allow one to

measure the group delay through the indirect measurement of the cavity optical length.

Turning next to the experiments, we describe the measurement methods and data analysis

procedures before concluding on the grating properties.

Large sections of this chapter formed the basis for an article in Optics Express (141).

5.2 Direct UV-writing of Bragg gratings

The UV-writing set-up we have described in Chapter 2 (Fig. 2.3, page 36) is an earlier

version of the actual set-up currently in use at ORC. Instead of having a single beam, the

UV beam is split at a 50:50 beam splitter and the two beams are focused and overlapped

in the core layer, where they produce an interference pattern with a periodicity, defined

by the angle 2θ between the beams, of Λ = λuv/2 sin θ, as shown in Fig. 5.1. Translation

96



upper
clad

lower
clad

core

channel
waveguide silicon substrate

Bragg
grating

244nm laser light

focusing lens 2θ = 52°

Λ=278nm
Spot diameter ~ 5μm

2θ = 26°

Λ=525nm
Spot diameter ~ 8μm

36 mμ 11 mμ

λB ~ 1550nm λB ~ 780nm

z
x

y

Figure 5.1: Direct Bragg grating UV writing scheme using 244 nm light. The Bragg
wavelength Λ of the gratings is determined by the angle 2θ between the two interfering
beams according to Λ = 244 nm/(2 sin θ)). The two insets on the right indicate the main
changes in the writing apparatus when moving from the traditional 1550nm regime to 780nm.
Drawing courtesy of James Gates at the ORC.

of the sample under the CW laser spot averages out the interference pattern, resulting in a

uniform waveguide indinstinguishable from those written with the single-beam apparatus.

By contrast, if we switch the UV laser on and off by means of an acousto-optic modulator

(AOM), with a period close to the time it takes for the sample to move through one

period of the interference pattern, very much like a stroboscope, we will produce a periodic

modulation of the refractive index, i.e. a Bragg grating.

We now move to a more detailed description of this process. The intensity profile of

the intersecting beams (of waist wz along the translation axis z) is given by

I(z) = I0 exp

(
−2

z − z0(t)

wz

)2 [
1 + cos

(
2π(z − z0(t))

Λ

)]
as shown in the time domain in Fig. 5.2. z0(t) = vt is the position of the laser spot at time

t, assuming that the sample is being translated at a constant speed v. At any fixed point

A along the waveguide, located at zA, the refractive index change will be proportional to

the integrated intensity as A crosses the beams. This is called the fluence F =
∫
ton
I(t)dt.

Since the laser is being modulated this integral is taken over the times when the laser is

on, ton = {∆ti}, and it decomposed as F =
∑

i

∫
∆ti

I(t). This integral has fortunately a

somewhat decent analytical expression in term of the error function, which allows efficient

numerical evaluation:∫ t2

t1

I(t)dt =
wz
2v

√
π

2

{
erf[b(t2)]− erf[b(t1)] + e−a

2

(erf[ia+ b(t2)]− erf[ia+ b(t1)])
}

with a =
πwz√

2Λ
and b(t) =

√
2

wz
(v.t− z)

(5.1)
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Figure 5.2: Principle of the “stroboscopic” method for direct UV-writing of Bragg gratings.
The two plots represents the instantaneous UV power as a function of time at two points
distant by half a grating period, as the sample is translated under the laser focus and its
interference pattern (grey line). The laser is switched off outside of the regions marked in
red, so that the total energy deposited at these points (the fluence) is proportional to the
area under the red curve. The refractive index change in turn is proportional to the fluence,
which reaches a maximum at z = 0 when the “on” times coincide with the maxima of the
interference pattern, and a minimum a half interference period away, at z = Λ/2.

It is then straightforward to calculate the fluence along the grating. The relevant param-

eters are:

� Duty cycle: This is the fraction of a period during which the laser is on. A small

duty cycle results in a sharper index profile and a stronger grating, as shown in

Fig. 5.3.

� Modulation period: The grating period Λ (and therefore the Bragg wavelength

λB) is set by the period ∆tuv of the laser on/off switching. Thus the grating design

wavelength can be tuned, but only within some limits: If ∆tuv does not exactly

match the period of the UV interference pattern, the stroboscopic overlap is not

perfect and the fluence modulation contrast is smaller, resulting in weaker gratings

(Fig. 5.4).

� Writing speed: The laser modulation has the unwanted effect of reducing the

average fluence. In order to maintain F constant, the translation speed has to

be reduced, otherwise both the effective index and the modal properties of the

waveguide will not be matched to the other sections of the waveguide.

Fig. 5.2 illustrates the principle of the stroboscopic grating writing. It shows the laser

power as a function of time at a fixed point along the grating; the red portions indicate

when the laser is on. The fluence is proportional to the red-shaded area under the curve.

In the left plot these coincide with the maxima of the interference pattern, so the fluence

at that point is maximum. Contrast this with the plot on the right which represents a

point located Λ/2 away from the previous one: the “on” periods now coincide with the

minima of the interference pattern, resulting in a low fluence. Thus we produce a periodic
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Figure 5.3: Left: fluence variation along two grating periods for various duty cycles. Right:
fluence contrast as a function of duty cycle.

pattern of high and low index regions along the waveguide, with a smooth quasi-sinusoidal

profile as shown on Fig. 5.3.

Duty cycle and grating contrast

Notice on the same figure how a smaller duty cycle results in a steeper grating profile

as the “on” times get restricted to the most intense sections of the interference pattern.

Ultimately the strength of the grating will be limited by the AOM resolution and by how

long one is ready to wait for (since the writing speed is proportional to the duty cycle).

The figure on the right shows the grating contrast as a function of the duty cycle. The

latter can be adjusted along the grating, for example to obtain an apodised profile as

discussed below.

Tuning the design wavelength

The grating Bragg wavelength λB can be adjusted via the UV laser modulation period.

However this means that the on-off times and the UV interference pattern will no longer

be fully synchronised, and the fluence contrast will be adversely affected. Figure 5.4

shows the fluence profile and contrast as the detuning is increased. It can be seens that

this type of grating offers a relatively large range of working wavelength: indeed, if the

UV interference pattern is optimised for operation at 780 nm, a detuning parameter of

d = 1.05 (by which the contrast has dropped by about 25%) would correspond to a Bragg

wavelength of 820 nm – meaning the UV-writing setup can produce gratings operating

within a 80 nm band.

Effect of fluence saturation

So far we have assumed that the refractive index change is proportional to the fluence.

However, as Figure 5.5(a) shows, the index change saturates at high fluence. This typically

means that the upper envelop of the grating index profile, nhigh will have a smaller contrast
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Figure 5.4: Effect of detuning on grating performance. Left, fluence profile along the
waveguide as the detuning parameter d = λB/Λ is increased from 1 to 1.1 (i.e. from 780 to
860nm along the grey arrow). The duty cycle is set to 0.5. Notice how the period of the
fluence modulation increase, while the contrast drops. Right, the evolution of the contrast
as a function of detuning, for three different duty cycles.

than the lower envelop nlow, as illustrated by Figure 5.5(b). As a result, the waveguide

effective index neff = (nlow + nlow)/2 will not be constant along the grating. The effect of

this “DC-index change” (as opposed to the fast modulation with period Λ) is a spectral

asymmetry in the grating response, which will be discussed in more details below (see

Fig. 5.7).

Conclusion

In all of this discussion we have only considered ideal writing conditions. In practice the

contrast of the gratings will be limited by that of the UV interference pattern and other

experimental imperfections; but for our purpose of illustrating the grating production

process this will suffice. Finally, it should be pointed out that an improved UV-writing

set-up is currently being tested at the ORC, which offers significant improvements over

the current stroboscopic method. The AOM switch is being replaced by a custom-made

electro-optic modulator (EOM) inserted in one arm of the interferometer. Instead of

modulating the laser, we can now translate the fringe pattern in sync with the sample

by adjusting the EOM-induced phase shift. As a result there is no need to slow down

the writing to accommodate a low duty cycle, and the relatively large loss introduced by

the AOM (about 50%) is eliminated, making the writing process considerable faster. The

grating contrast should also be significantly improved.

5.3 Modelling Bragg gratings

We have described how to integrate Bragg gratings to UV-written waveguides. We now

move to a theoretical model of their operation. Before we start, let’s clarify the termi-

nology: by “Bragg gratings”, we mean long (∼mm) Bragg structures made up of many
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Figure 5.5: (a) Fluence saturation curves at 1560 nm for two different FHD samples,
fitted with an empirical model. Our waveguides are made of the same FHD wafers that
produced the lower curve, and where written with an average fluence of 14 kJ/cm2. Data
courtesy of Helen Rogers at the ORC. (b) Theoretical refractive index profile of a Bragg
grating (yellow), assuming the lower fluence curve in (a), and with an additional 0.015
offset to take into account the different wavelengths (since our gratings are designed for
780 nm). The period has been exaggerated for the purpose of illustration. The high and
low-index envelopes as well as the “DC” index change are also plotted: notice how the
fluence saturation results in asymmetric gratings. See also Fig. 5.7 for the corresponding
reflection spectrum.

periods, with a weak (∼ 10−4), typically sinusoidal refractive index modulation such as

those we just described, as opposed to “distributed Bragg reflectors” (DBR) or “Bragg

mirrors” consisting of a small number (∼ 10) of distinct high and low index layers with

a very high index contrast (∼ 1). Although obeying to the same principles, modelling

their operation calls for a very different set of tools. DBRs are best described by looking

at the Fresnel reflections at each interface and their coherent addition. This is easily

done using one or another variant of the well-known transfer matrix method. In principle

this could apply equally well to Bragg gratings, although the very large number of layers

involved (especially for continuous index variations, where the index profile of each layer

has to be discretised) makes it cumbersome and inefficient in practice. It is better to use

a couple-mode framework in which a sinusoidal grating can be described entirely from

the envelops and period of its refractive index modulation; for uniform gratings it is even

possible to derive analytical solutions. In the following we will describe the coupled-mode

formalism for Bragg gratings and highlight their most important features.

5.3.1 Couple-mode theory for Bragg gratings

We are only going to review the principles of coupled-mode theory in a very cursory

fashion before focusing on its practical application to apodised and asymmetrical Bragg

gratings. Erdogan (142) is an excellent and concise reference on this topic, although his

notation is somewhat obscure.

A grating of length l is completely characterised by a small number of parameters,

as shown in Figure 5.5: neff is the effective index of the host waveguide (as defined
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in Chapter 2.1), nlow(z) and nhigh(z) are the lower and higher index envelopes. These

define the “DC” index change ∆neff = (nhigh(z) + nhigh(z))/2 and the index contrast

δn = (nhigh(z)−nhigh(z))/2. A grating with a design (aka Bragg) wavelength λB will have

a spatial period Λ = λd/2neff .

If we only consider two identical counterpropagating modes inside the grating, with

electric field amplitudes A(z) and B(z), and if we assume that the reflection of one into

the other is the only process involved, we obtain a simple set of coupled equations (we

refer the reader to Erdogan (142) for the complete derivation):

dA(z)/dt = +i(σ + iγ)A(z) + iκB(z)e+2iδz (5.2)

dB(z)/dt = −i(σ + iγ)B(z)− iκA(z)e−2iδz (5.3)

δ = 2πneff(1/λw − 1/λd) is the detuning between the design wavelength and the work-

ing wavelength λw; κ = πδn/λw and σ = 2π∆neff/λw are the cross- and self-coupling

coefficient, respectively. We also introduced a loss parameter γ to describe absorption

in the waveguide (the field amplitude then goes as exp(−γz); we relate it to the other

loss parameters introduced in previous chapters in Appendix C). It is straightforward to

solve numerically this ordinary differential equation with initial conditions A(0) = 1 and

B(l) = 0 for any working wavelength to establish the grating spectral properties. The

reflectance, transmittance and phase shift upon reflection are then given by

R = |B(0)/A(0)|2 (5.4)

T = |A(l)/A(0)|2 (5.5)

φr = Arg[B(0)/A(0)] (5.6)

The grating strength depends on its length and index contrast. Analytical solutions

do exist for the most simple case of uniform grating (δn(z) =cst), in which case the

reflectivity is given by tanh2(κL). But the grating is not completely conditioned by the

κL product, because the phase-matching condition for constructive interferences inside the

grating becomes more and more stringent as the number of layers increases, resulting in a

smaller bandwidth even though the maximum reflectivity may be maintained constant by

decreasing δn. Thus the bandwidth of a fibre or waveguide Bragg grating, with a typical

δn of order 10−3 − 10−4, will be rather small at a few hundred GHz.

For non-uniform gratings there is no analytical solution to the coupled-mode equations,

but they can be easily solved numerically. Thus we can calculate the spectral properties of

gratings apodised in various ways (Gaussian, Cosine, Raised cosine and so on), of gratings

with a phase defect (a half-wave layer at the centre that acts as a cavity), and even of

arbitrarily complicated structures involving several gratings along a waveguide/fibre, like

the grating cavities we will discuss shortly.

102



779.6 779.8 780. 780.2 780.4
0.0

0.2

0.4

0.6

0.8

1.0

200 100 0 -100 -200

Wavelength HnmL

R
ef

le
ct

iv
ity

Frequency detuning HGHzL

HaL

779.6 779.8 780. 780.2 780.4
0

5

10

15

200 100 0 -100 -200

Wavelength HnmL

G
ro

up
D

el
ay
Hp

sL

Frequency detuning HGHzL

HbL

Figure 5.6: Reflectivity (left) and group delay (right) of uniform (dashed) and apodised
gratings (solid line). The apodisation process removes undesirable ripples. The grating is
1.7 mm long and the index contrast is 0.00038.

5.3.2 Applications

Uniform and apodised gratings The simplest type of Bragg grating is that of a

constant amplitude index modulation. This is the only type of grating to admit an

analytical solution, and while they obviously offer the highest reflectivity for a given

grating strength κL (Rmax = tanh2(κL)), this comes at the cost of unwanted side lobes, as

shown in Figure 5.6(a) (dashed line). These arise from the Fourier transform relationship

between index profile and reflectivity (which is strictly true for weak gratings only). A

widely used way of minimising the side lobes is through apodisation, that is by modulating

the refractive index contrast with a smooth function, often a Gaussian. The spectral

shape of the reflectivity function is then also close to a Gaussian (continuous line in

Figure 5.6(a)).

Figure 5.6(b) shows the calculated reflection group delay τg = dφr/dω, which for

simple grating structures is just a measure of the field penetration inside the grating.

τg is smaller where the reflectivity is maximum, because the field gets reflected earlier.

There too, apodisation reduces the amplitude of the ripples. All of the gratings used in

this work were Gaussian-apodised (with a 1/e half-width equal to a quarter of the grating

length).

Symmetrical and asymmetrical gratings We have discussed the effect of fluence

saturation on the grating index profile. The main effect is that the upper and lower

envelopes are no longer symmetrical. Figure 5.7 illustrates how this affects the reflectivity

profile and group delay in the case of an apodised grating. The reflectivity acquires a

pronounced asymmetry and small sidelobes on the short wavelength side (near 779.8 nm).

This is because the DC-index change causes shorter wavelengths to be closer to the design

wavelength in the wings of the gratings than in the centre, which results in a small
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enhancement of the reflectivity together with the formation of an optical cavity. The

latter causes the zero in the reflection spectrum. It is believed that the asymmetry often

observed in the experiments we will describe later result mostly from this DC-index effect.

The overall shift in the Bragg wavelength, ∆λB, results from the the lower effective

index at the centre of the grating and is given by ∆λB = ∆neff

neff
λB
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Figure 5.7: Typical reflectivity and group delay of a grating with and without dc-index.
The presence of a dc-index induces an asymmetry of the reflection spectra as well as addi-
tional ripples on the blue side and general spectral shift. The asymmetric grating profile is
calculated from the lower fluence curve of Figure 5.5(a).

Bragg cavities and group delay The group delay (ie the delay experienced by the

reflected wave upon reflection) is given by

τg =
dφ

dω
= − λ2

2πc

dφ

dλ
(5.7)

and is typically measured in picoseconds. The group delay can be related to an effective

penetration length Lg of the incoming wave into the grating through τg = 2Lgneff/c (neff

is the effective index of the host waveguide). To validate this interpretation, one can

imagine a cavity made of two identical gratings, separated by a distance L, and measure

its free spectral range FSR = c/2neffLeff . The effective length of the cavity should be

Leff = L+ 2Lg.

We simulated such a cavity with two apodised gratings of length 1.7 mm and index

contrast 8 × 10−4, with a 14.3 mm gap (i.e. the maxima of their index envelops are

separated by 16 mm). The resulting spectrum in Figure 5.8(a) exhibits the usual Fabry-

Perot comb structure (the gap in this figure has been reduced to 4 mm for clarity). From

the spectrum, we extracted the frequency of about 60 resonance fringes to calculate the

free spectral range and, through the equations given above, we estimated the grating

group delay τg (plotted as red dots in (Figure 5.8(a)). These can be compared with the

group delay calculated directly for a single grating (blue line), and the agreement validates

our initial interpretation of the group delay in term of penetration depth.
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Figure 5.8: (a) Calculated transmission spectrum of a cavity made up of two Gaussian-
apodised gratings separated by 4 mm. The blue curves shows the lossless case whereas the
red curve includes realistic propagation losses of 0.9 dB/cm. (b) Group delay as calculated
from coupled-modes theory (solid line) and derived from a cavity spectrum similar to that
on the left.

Impact of propagation loss Finally, a few words about losses are in order. The grating

cavity spectrum we just discussed (Figure 5.8(a), blue curve) did not include any losses.

The red curve in the same plot does include a propagation loss of 0.9 dB/cm, typical of

out worse waveguides. As can be seen by looking at the edges of the grating stop-band,

this corresponds to a single-pass loss of 25% in this 4 mm-long cavity. The finesse drops

considerably, and the amplitude of the resonance peaks (or, if we were looking at the

reflection spectrum, the visibility) also decreases. This is a consequence of the larger

photon lifetime at higher reflectivities, which increase the propability of absorption due

to propagation loss. Another factor in the reduced visibility is the mismatch effectively

induced between the two mirror. All of this can be easily understood from the detailed

discussion on lossy cavities in Chapter 3.2.

5.4 Bragg grating cavities: experiments

Having described the fabrication, modelling and properties of Bragg gratings, we now

turn to the experimental characterisation of actual gratings. All the following experiments

were performed on a single waveguide chip (codename: ORC3) containing six sets of five

waveguides with an integrated grating cavity. The grating length varies between the sets

(denoted A, B,..., F) from 1.3, 1.4,..., to 1.8 mm, while within each set the gap between

the gratings varies between 4 and 16 mm. All waveguide were written at the same fluence

of 14 mJ/cm2.

We undertook two sets of experiments. First, we measured finesse, transmission and

FSR of all 30 cavities at the Bragg wavelength, from which we estimated the mirror

reflectivities, penetration lengths, and the waveguide propagation loss. We then focused

on set E (1.7 mm-long gratings) and measured the same quantities over a large bandwidth,

mainly in order to demonstrate the group delay reconstruction from FSR discussed earlier.
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But before we can look at these results, we need to describe the experimental and data

analysis methods.

5.4.1 Apparatus

The experimental setup is illustrated in Figure 5.9. Light from two 780 nm distributed

feedback (DFB) laser diodes (Eagleyard Photonics) is coupled to polarisation-maintaining

fibres, and then combined at a beam splitter so that either laser can be used to probe

the waveguides. Typically one laser is tuned far from the Bragg frequency and is used

to measure the transmission through the waveguides in the “absence” of gratings. The

second laser is tuned over up to 100 GHz by scanning the drive current of the laser diode,

and beyond that by changing its temperature. Half- and quarter-wave plates adjust the

polarisation before the light is coupled into the single-mode input fibre. The exit of

this fibre is cleaved and aligned with a waveguide using a precision three-axis flexure

stage. A second such stage aligns the output fibre, which is then fed to a photodiode.

Undesirable etalon effects between the fibres and the waveguide chip are avoided by using

index-matching oil.

DFB 1

DFB 2

Waveguide chip

PD

PM fibres

BS Input
fibre

Output
fibre

Lasers

PD

Reference cavity

λ/2 λ/4

PD

Laser power
monitor

Figure 5.9: Schematic representation of the experimental setup. On the chip, a typical set
of cavities with different grating and cavity lengths.

A second beam splitter sends a fraction of the light to a photodiode used as a normal-

isation to compensate for variations of the laser power during a frequency scan. Finally,

part of the scanning laser is diverted to a reference cavity consisting of a 5 cm long block

of glass, with two reflection-coated lenses glued to the ends of the block. This cavity sits

in a heavy aluminium housing that provides thermal inertia. A cavity finesse of 30 is

measured, in agreement with the nominal mirror reflectivity of 90%. The free spectral

range is measured to be FSRref = 1.905(5) GHz. During a laser scan we monitor the

fringes of light transmitted by this cavity to obtain a calibrated relative frequency scale.
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5.4.2 Measurement method

Broadband frequency scanning

As we have seen, the bandwidth of typical UV-written Bragg gratings is of the order of

200 GHz. The mode-hop free current-tuning range of the laser diode however is only about

100 GHz. Therefore to scan the laser frequency over the required 500 GHz range, we use

a combination of current and temperature tuning. While scanning the current rapidly

(20 Hz) over a few FSRs, we change the set-point of the laser temperature controller.

As the temperature, and therefore the mean laser frequency, slowly drifts over several

minutes, we accumulate a collection of transmission spectra (also called frames) for both

the reference and waveguide cavities. The accurately known (and constant) FSR of the

reference cavity is used to normalise the frequency, i.e. to convert the time axis of each

frame to optical frequency, as detailed in the next section.

Because the temperature-induced frequency shift is much slower than the current one

(as illustrated in Figure 5.10), there is a large overlap between successive frames. In

particular, if the mean frequency shift from one frame to the next is smaller than the

FSR, it is possible to keep track of the phase and frequency over the entire collection of

frame, and thus to reconstruct the whole spectrum.
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Figure 5.10: Left: Six successive transmission spectra (frames) for the 16 mm waveguide
cavity. The large overlap makes it possible to keep track of the slowly varying initial fre-
quency. Inset: the laser diode temperature (Celsius) at which each frame was taken. The
arrow indicates the order in which the frames were taken. Right: Typical evolution of the
laser diode temperature (dashed line) and reconstructed phase of the grating cavity spectra
(solid line) during one measurement. The total scan amplitude is about 90 times the cavity
FSR, or 500 GHz over 12 ◦C. The inset shows the phase evolution before unwrapping.

Frequency normalisation

The relationship between the laser current and frequency is slightly non-linear, as can be

seen in Figure 5.11 and 5.10 where the FSR of the reference and waveguide cavities is

clearly larger at the beginning of the frame. Therefore, before we can fit the waveguide

cavity spectrum with an Airy function to extract information such as finesse, free spectral
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Figure 5.11: Frequency normalisation. Left, the reference cavity spectrum as acquired.
The red dots indicates the position of each resonance fringe, which is very non-linear in
time/drive current, fitted with Eg. 5.8. Left: the same spectrum after normalisation, fitted
with an Airy function. The frequency is now expressed in terms of the reference cavity FSR,
1.905 GHz.

range etc., we have to reconstruct the frequency scale. This is the role of the reference

cavity described previously.

The normalisation process is summarised in Figure 5.11. A typical frame (blue curve

in figure (a)) consists of 2000-2500 samples acquired via the NI-DAQmx card at a rate

of up to 400 kS/s. For each of the p = {1, ..., n} fringes in the spectrum we recover the

timestamp of the sample of maximum amplitude (black dots). We then plot the order

number as a function of time, p(t) (red dots) and fit it with an empirical function of the

form

p(t) = a+ b
√
t+ ct+ dt2. (5.8)

Although it is possible to improve the accuracy of the fringe timestamping, for example

by fitting a quadratic polynomial around each resonance, this has not proved necessary,

partly because any jitter in the determination of fringe position will be smoothed out

during the fitting of Eq. (5.8). The last step is simply to replot the spectrum against p(t)

(Fig. 5.11(b)). The frequency will be in units of the reference cavity FSR, and conversion

to physical units is immediate. Figure 5.11(b) shows the initial reference cavity spectrum

replotted against the normalised frequency, and fitted with an Airy function whose FSR

has been set to 1. The finesse is 30, as expected from the 90% reflectivity of the lens

coating, and the fit is excellent.

Fitting the spectra

Once all the frames within an experimental run have been individually normalised, they

can be fitted with the usual Airy function A(f) of Eq. (3.7). Since the absolute frequency

of the fringes in not known, we include a frequency offset f0 = ψ × FSR; we also need a
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DC offset b:

A(f) = b+
I

1 + F sin2
[
π
(

f
FSR

+ ψ
)] . (5.9)

The reflectivity of the gratings can vary substantially within one frame, so that the finesse

F , free spectral range FSR and amplitude I are not constant. Therefore we let them vary

linearly or quadratically, on a case-by-case basis, e.g. F (f) = F0 + F1 × f + F2 × f 2. F0

is then taken as “the” frame finesse, and so on.

With such a rapidly varying function up to a dozen free parameters, the proper conver-

gence of the fitting algorithm depends on good initial guesses for these parameters. With

hundreds of frames in each experimental run, manual fine-tuning is out of the question,

so we use a semi-automated method as follows.

A single initial guess for the finesse Finit and free spectral range FSRinit is usually

sufficient for a whole set of frames, and the amplitude Iinit can be easily estimated for

each frame. Much more critical is the phase, for which we use the following estimate:

ψinit =
fm mod FSRinit

FSRinit

(5.10)

where fm is the frequency of the resonance with the highest amplitude in the frame, and

mod denotes the modulo operation. Even with such precautions it is not uncommon for

the fit to fail in a significant proportion of frames, as exemplified by the scattered blue

points in Figure 5.12(a,b,c).

To improve the fits, we devised a feedback method based on the idea that the param-

eters cannot differ much from one frame to the next, and therefore when the fit fails it

can be improved by updating the starting points using values from nearby, successful fits.

We do so by cleaning up the parameters of the first fit attempt with a combination of

thresholding and a moving average. The cleaned-up parameters (Figure 5.12(a,b,c), pur-

ple points) are then fed back to the fit routine as new initial guesses, and the second fit is

usually fairly successful, as shown in Figure 5.12(d). A few frames may still not be fitted

properly and can be fine-tuned by hand, or even just ignored. Occasionally repeating the

feedback process one more time, including by changing the expansion order of F , I or

FSR, can yields significant improvements. This feedback method is semi-automated in the

sense that no fine-tuning of individual frames is required, but that manual intervention

is necessary to properly clean up the initial fit parameters.

Once we have determined all the parameters relevant to single frames, we need to

attribute a single frequency fi to the frames in order to reconstruct the grating spectrum

F (fi), FSR(fi) etc. From our definition of the frame phase ψi, we have the following the

relation between two consecutive frames:

fi+1 − fi = FSRref × FSRi × (ψi+1 − ψi). (5.11)
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Figure 5.12: Adaptive fitting. Plots (a), (b) and (c) show the free spectral range, finesse
and fringe amplitude as determined by the initial fit (blue dots) and after the clean-up
procedure (purple dots). (d) shows the same parameters at the end of the adaptive fitting
process; there are no outliers left.

To reconstruct fi fully, we need to unwrap the phase, as illustrated in Figure 5.10(b).

This simply involves parsing the list of {ψi} and adding either 1 or -1 (conditioned on the

phase increasing or decreasing) to all subsequent ψi whenever ψ reaches 1 and is reset to

0. Figure 5.10(b) shows a typical example of the phase evolution across a few hundred

frames, before and after unwrapping, as the laser temperature changes by about 12◦C.

Free spectral range noise improvement

One of the most important feature of this convoluted data acquisition process is that

it allows the determination of the laser frequency throughout a large temperature scan

without the need for a wavemeter. One can judge the surfeit of data to be positive or

negative depending on the perspective. In any case it is fair to argue that much of it is

redundant: the FSR as much as the finesse are after all only defined with respect to a

particular resonance, or a pair thereof. One is therefore tempted to use this redundancy to

obtain a single, averaged value of the cavity parameters, associated with each resonance.

A more practical motivation for doing so is the presence of oscillatory artefact with a

period identical to the waveguide cavity FSR, particularly on the FSR itself, as exemplified

in Figure 5.13. These artefacts are a rather unavoidable side-effect of the fitting procedure:

it is not hard to see why the sudden entrance of a new fringe in a frame, or the exit of
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Figure 5.13: A FSR spectrum reconstructed through the fitting method (blue dots),
exhibiting a typical staircase structure associated with new resonances entering or exiting
the frames. The red circles show the result of the data reduction method (see text for
details), where each resoance order has been attributed a single FSR value. The red curve
is just a guide for the eye.

another one, could and does cause jumps in the fitted parameters. We have to alleviate

this problem in one way or another before we can focus our attention on the FSR, and

use it to reconstruct the group delay.

The starting point of the method we are about to describe is the observation that the

frame phase obtained through the fitting process, ψi, is immune to these artefacts. We can

therefore take it for granted. We can also take the average of all the fits FSR as a crude

global estimate of the FSR, FSRinit. We then reanalyse the raw data by fitting a quadratic

polynomial around the tip of every fringe, in order to extract accurately the relative

frequency fi,j of all fringe orders j in all frames i. The same fringe of order j will appear

across several frames with a different relative frequency fi,j, but the absolute frequency

of that particular order, νj, should be the same. Thus we produce Figure 5.14(a), which

plot the estimated absolute frequency

νj = fi,j − FSRinit × ψi (5.12)

of the nearly 4000 fringes in this data set (on average 8 fringes in each of 500 frame). We

then produce Figure 5.14(b) by gathering togeter all fringes belonging to the same order.

Because we used only an estimate of the FSR, the νj are not all identical, as in the red

inset. But to get the “true” FSR, all we have to do is adjust FSRinit until they form an

horizontal line (green inset). Mathematically we express this as

fi,j = νj + FSRj × ψi. (5.13)

This set of m linear equations forms a trivial linear least squares problem and can easily be

solved for νj and FSRj to obtain exactly what we were looking for: a single, “averaged”

(in this case through the least square fit) FSR associated with each resonance order.
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Figure 5.13 compares the FSR before and after application of this method: notice how

the artefact is all but gone.
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Figure 5.14: Illustration of the improved FSR extraction method. Left, the absolute
frequency of all resonance peaks from all frames, fi,j = fi + FSRinit × ψi. Notice the pat-
tern shown in the inset: the purple, diagonal lines indicate resonances from a single frame,
whereas the grey horizontal lines follow a single resonance across consecutive frames. Group-
ing together the resonances of the same order across many frames is then straightforward, as
illustrated in the figure on the right. This shows that an inaccurate value of FSRinit results
in a slow drift of the calculated nth fringe frequency. A “time-averaged” FSR can thus be
determined by minimising this drift.

5.4.3 Experimental results I

A typical, large-range set of data is shown in Figure 5.15 for a 1.7 mm-long grating cavity

with 16 mm spacing (E1). Graph (a) shows, on a logarithmic scale, a few frames extracted

from a total of about 400 to recontruct the spectrum over the whole grating stopband,

while in (b) we plot the finesse, FSR and fringe amplitude. All three parameters behave

according to the patterns discussed earlier. The larger FSR at the centre of the stop band

indicates a smaller penetration length where the reflectivity (and the finesse F ) is higher,

while the dramatic drop in fringe amplitude I (almost two orders of magnitude) betrays

the presence of large propagation loss. The clear asymmetry, with a sharper finesse drop

at shorter wavelengths, is most likely a consequence of the fluence saturation and resulting

DC component of the index modulation.

We then measured these three parameters (F , I, FSR) at the centre of the stop band

for all 30 waveguides. The results are summarised by sets of identical grating lengths in

Figure 5.16 for F and I, for the two normal waveguide polarisations. The propagation

loss and mirror reflectivities calculated according to Eq. (3.24) are also shown.

To help with the interpretation we have plotted the theoretical finesse and transmission

(grey lines in set F, based on typical parameters R = 0.84 and 0.9 dB/cm loss), as well

as the theoretical reflectivity (red dots in the last column, assuming an index contrast

∆n = 6.4×10−4). The purpose of these indicator is to give an idea of the expected trends:
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Figure 5.15: Data taken using a 16 mm long waveguide cavity with 1.7 mm-long gratings.
(a) Log of intensity transmitted by cavity, reconstituted from 13 frames (out of 400), with
gray/black parts denoting different frames. In the wings the transmission is close to 100%,
at the centre it oscillates between 0.5% and 3%. (b) Black pluses show the coefficient of
finesse F , blue crosses plot the free spectral range FSR, and red dots indicate the maximum
transmitted intensity.

they are not intended to fit the data. Important deviations from these expectations are

clearly visible. First, for each set of waveguides, we expect the total propagation loss to

increase with the cavity length, and therefore the finesse and transmission should also

fall. This is indeed what we observe for the transmission, but when it comes to the finesse

this trend is often violated. Set A is most peculiar in that regard; moreover it shows a

finesse significantly higher than the other sets, although the gratings are shorter and the

reflectivity ought to be smaller. The mirror reflectivity should be constant within each

set, and increasing with grating length. Neither seems to be the case, with R varying

considerably between 70 and 90%, and the loss between 0.5 and 1.5 dB/cm. The one

consistent trend throughout the data is that the propagation loss is slightly lower for one

of the two polarisations.

When using Eq. (3.24) to calculate loss and reflectivity, we did not include the mirror

loss A. However, introducing this parameter, assumed to be constant for all gratings,

does nothing to alleviate the inconsistencies, so we are left with the conclusion that they

are simply a natural product of the writing process. This lack of reproducibility, and

maybe more importantly the fact that the reflectivity seems limited to about 90%, make

the prospect of using these gratings in a cavity QED system highly unrealistic.

Let’s now turn our attention to the free spectral range (Figure 5.17). Since the FSR is

inversely proportional to the effective cavity length Leff , a plot of FSR−1 versus L yields

an intercept on the abscissa of −2Lg, which gives τg. Figure 5.17(a) shows the plots for

two series of cavities, one with gratings 1.4 mm long and the other 1.8 mmS. The six values

of τg derived from these and the other four sets of cavities are plotted in Fig. 5.17(b) as

black dots with error bars. As indicated by the dashed line, τg increases linearly with

the physical length of the grating. In part, this reflects the fact that, because of the
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Figure 5.16: Summary of measurements on chip ORC3, grating sets A to . From top to
bottom, the grating lengths are 1.3, 1.5,...,1.8 mm respectively. First two columns: Mea-
sured finesse and transmission at the centre of the grating’s linewidth. Last two columns:
Propagation loss and mirror reflectivity as calculated from the data on the left, according
to Eq. (3.24). On each plot the two sets of data represent the two orthogonal polarisations.
The grey lines on the last line show the theoretical behaviour of F and T based on R = 0.84
and 0.9 dB/cm propagation loss; the red dots in the last column are the theoretical mirror
reflectivities based on ∆n = 6.4 × 10−4. They have been added to illustrates the expected
trend: the lack of consistency reflects large uncertainties in the UV-writing process.
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apodising function, the field must penetrate more deeply into longer gratings before the

index contrast is high enough to produce strong reflection. The upper solid red line in

Fig. 5.17(b) show the group delay given by coupled mode theory for an index contrast of

3.9× 10−4. By contrast, the results obtained using shorter gratings correspond to ∆n as

large as 6.3 × 10−4, the lower red line. We believe that the decrease of ∆n with grating

length is in fact a decrease of index contrast with the time of writing, the gratings having

been written in order of increasing length. The waveguide chip is loaded with hydrogen

prior to writing in order to increase the photosensitivity, and it is known that enough

hydrogen outgasses over the several hours of writing to produce an effect of this size.
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Figure 5.17: (a) FSR−1 plotted versus length L for five cavities formed between 1.4 mm-
long gratings and five using 1.8 mm-long gratings. Determination of group delay by extrap-
olating to FSR−1 = 0, indicated by red dots in the bottom left corner. (b) Evolution of
group delay as the length of the grating increases. For the penultimate grating, two points
are shown: one is derived from the three cavities of Figure 5.18, while the second one uses
a different set of data including all five cavities. The dashed line is a linear fit to the data.
Red lines: coupled mode theory for two values of index contrast.

5.4.4 Experimental results II: group delay spectroscopy

So far we have only looked at the grating properties at the centre of the stop band. We

are now going to have a broader look at the entire grating bandwidth, focusing on the

FSR and the group delay. We acquired a new set of spectra on three grating cavities

with spacings L = 4, 10 and 16 mm between the front faces of the Bragg mirrors (Set

E, waveguides 1, 3 and 5). Each mirror is 1.7 mm long, corresponding to approximately

6400 grating planes. The variation of the FSR with frequency for each cavity is shown

by the dots in Figures 5.18(a), (b) and (c). As expected the FSR reaches a maximum at

the central wavelength of the gratings, where the reflectivity is highest, and therefore the

field penetration Lg into the gratings is smallest.

115



æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

à

à

à

à

à

à

à

à

à

à

à

à

ì

ì

ì

ì

ì

ì
ì

ì

ì

ì

ì

ì

HaL

-100 -50 0 50 100

17.0

17.5

18.0

18.5

19.0

Frequency HGHzL

FS
R
HG

H
zL

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ æ æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

à

à

à

à

à

à

à

à

à

à

à

à
à

à

à

à

à

à

à

à

à

à

à

à

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì ì

ì
ì

ì
ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

HbL

-100 -50 0 50 100

8.2

8.4

8.6

8.8

9.0

Frequency HGHzL

FS
R
HG

H
zL

a

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
++
+
+

+
++
+++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

×

×

×

×

×

×

×

×

×

×

×

×
×
× × ×

×

×

×

×

×

×

×

×

×

× ×
´

´

´

´

´

´
´

´

´

´

´

´

HdL

-100 -50 0 50 100
6

7

8

9

10

11

Frequency HGHzL

G
ro

up
de

la
y
Hp

sL

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ æ

æ
æ

æ
æ æ

æ æ æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

à

à

à

à

à

à
à

à

à

à

à

à

à
à à

à

à
à

à
à à

à
à

à

à

à

à

à

à

à

à

à

à

à

à

à

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì
ì

ì

ì ì ì
ì

ì

ì
ì

ì

ì ì ì ì
ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

HcL

-100 -50 0 50 100

5.6

5.7

5.8

5.9

Frequency HGHzL

FS
R
HG

H
zL

a

HeL

-150 -100 -50 0 50 100 150
0

5

10

15

20

Frequency HGHzL

F

Figure 5.18: (a)-(c): free spectral range versus frequency for cavities of spacing (a) 16 mm,
(b) 10 mm, and (c) 4 mm. Points: experimental data with uncertainties shown as shaded
area. Dashed line: theoretical FSR derived from coupled mode theory. (d) Grating group
delay τg. Blue crosses, red dots and green pluses are derived from the data in (a), (b) and (c)
respectively, while the solid black line is calculated from coupled mode theory fitted to the
data with index contrast as the only fit parameter. (e): Measured (solid) and theoretical
(dashed line) finesse of the cavity in (b), fitted by adjusting the propagation loss and the
index contrast.
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We take the frequency at which the FSR peaks to be the Bragg frequency fB. Averaged

over five such cavities we obtain the value fB = 3.8422(1) × 1014 Hz. Together with the

known grating spacing ΛB = 267.3 nm, this yields a mean refractive index n = 1.4595(1)

through the relation n = c
2fBΛB

. The group delay τg = n
c
(Leff − L) is then given by

τg =
1

2FSR
− nL

c
(5.14)

and is plotted in Figure 5.18(d) for all three cavities. Near the centre of the band, there is

good agreement between the results from the three cavities and the theory, represented by

the solid line, with ∆n = 3.9(5)× 10−4 being the only free parameter. The two thin gray

lines are the theoretical group delay with ∆n = 3.85 and 3.95 × 10−4 and represent the

theoretical error bar; they encompass all the data points near the Bragg frequency. Away

from that frequency, however, there are clear systematic differences between the three

data sets. These could be due to variation from one grating to another in the apodisation

profile. The theory also differs significantly from all three data sets in that it predicts a

much faster and more pronounced flattening off of the group delay away from the Bragg

frequency. This seems to suggest that the real apodisation profile is not in fact Gaussian,

but we do not have enough information to reconstruct what it is.

Finally, we turn to Figure 5.18(e) which shows the measured finesse coefficient F for

the 10 mm-long cavity, plotted against frequency (solid line). For a theoretical cavity

with grating reflectivity R and single-pass attenuation γ = exp(−αLeff) due to propa-

gation loss, one finds that F = 4Rγ

(1−Rγ)2 (see derivation in Chapter 3.2). By adjusting γ

and changing R through the choice of ∆n, we obtain a theoretical curve (dashed) that

corresponds reasonably well with the measurements when ∆n = 5.5 × 10−4 and the ab-

sorption coefficient is α = 0.9 dB/cm. It is difficult to assign error bars here because, once

again, there is a systematic difference between theory and experiment in the wings of the

band, making this method of measuring ∆n inferior to the group delay method described

above. The primary purpose of this measurement is to estimate the absorption coefficient

α which we consider to be accurate within about 20%.

It is instructive to compare this α = 0.9(2) dB/cm with the 0.235(6) dB/cm loss mea-

sured in nearly identical waveguides (115) at 1550 nm. This indicates that only a small

part or the loss at 1550 nm, 20% or less, can be due to Rayleigh scattering, which scales

as λ−4. We believe that the total loss may be significantly reduced in future by improving

control over the planar silica layers.

5.4.5 Conclusion

Cavities integrated into optical waveguide chips are of great interest for chemical and

biological analysis on a chip and for applications in quantum optics and quantum infor-
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mation processing. Visible and very near infrared wavelengths are particularly important

for these applications. We have developed such cavities incorporating Bragg reflectors,

fabricated by writing in a photosensitive doped silica layer using UV laser light. In the

course of characterising them, we have measured transmission spectra from which we de-

rive values for the free spectral range as a function of frequency. We have shown how this

provides a simple way to measure the delay of light reflected from the mirrors. Using a

coupled mode approach, we have used this delay to determine the index contrast of the

gratings. These quantities, delay and index contrast, are of sufficiently general interest

that our very simple method may be of use in characterising other devices such as fibre

Bragg gratings and delay lines, which are widely used in telecommunications and astron-

omy. However the reflectivity is too low for applications requiring a high finesse, such as

QED experiments.
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Chapter 6

Conclusion and prospects

In this thesis we have described our experimental efforts towards the first realisation

of a coupled-cavity QED system based on waveguide-coupled Fabry-Pérot microcavities

containing atoms — a flexible, tunable, practical platform for quantum simulations and

many-body quantum physics. Although no fully working device has been built yet, im-

portant steps have been taken. Drawing on existing technology at the University of

Southampton, UV-written waveguide chips were fabricated, which were made into optical

resonators by depositing multi-layer dielectric mirror on the end facets. A single waveg-

uide resonator was coupled to a free space microcavity formed by one of these mirrors and

a spherical mirror etched on a silicon substrate. The latter had been developed for the

microcavity QED experiment at Imperial. We observed normal-mode splitting in the re-

flection spectrum of the coupled waveguide-microcavity system, indicating strong optical

coupling between the two. We then coupled two waveguide resonators on the chip, and

again we observed normal-mode splitting. We successfully tuned the coupling rate gww

by introducing phase shifts with NiCr heaters deposited on top of the waveguides. This

is in itself a new photonic device with potential applications as a tunable delay line in the

context of coupled-resonators optical waveguides (139). Finally, in a related but indepen-

dent project, we demonstrated for the first time Bragg gratings operating at 780 nm in

UV-written waveguides and we investigated their properties by combining two gratings

into a cavity.

Waveguide loss

It certainly did not escape the reader’s perspicacity that in all these experiments the

finesse of our waveguide cavities (either formed by Bragg gratings or end-facets DBRs) is

rather low — 10 to 40 at most — as a result of large propagation losses. This is why we

did not attempt to introduce atoms or other quantum emitters in our system, since we

cannot hope to observe quantum effects such as Rabi splitting or Purcell enhancement,

much less quantum dynamics, in such a strongly dissipative system. We require the loss
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Figure 6.1: Propagation loss in UV-written waveguides. A 30 s CCD exposure with maxi-
mum gain reveals that light is being scattered at many localised sites along the waveguides.
Inset: detail of the central area

to be, at minimum, not larger than the mirrors largest transmission, say 1% per single

waveguide pass. If the waveguide is 1 cm long, this translates into a maximum tolerable

loss of 0.01 dB/cm.

Of all the waveguides we used, the femtosecond-written sample from Jena university

had the lowest loss, although it is still too large at 0.3 dB/cm. Most of our chips were UV-

written, with a loss as high as 1 dB/cm. To investigate its origin we recorded high-gain,

long-exposure micrographs of ORC waveguides. A typical example is shown in Figure 6.1

(light is coupled from the right). We see that light is being scattered out of the waveguide

at many well-localised spots.

The origin of this high loss is not entirely clear. In any case it is much higher than the

intrinsic absorption of silica at 780 nm (optical fibres operating at this wavelength have a

propagation loss of 3-4 dB/km, or 0.00003-4 dB/cm). Another common source of loss is

the wall roughness, although this is expected to quite small for UV-written waveguides: in

one dimension the index profile is defined by the boundary between the core and cladding

layer, which is ultra-smooth at small length scales. In the other dimension it is limited by

the writing laser, and any imperfection of the laser spot should average out as the sample

is translated during the writing process.

In the early developments of the UV-writing technology at the ORC, inhomogeneities

in the germanium doping were a major problem. The germanium ions would bunch into

islands and wires, so that it was impossible to write a continuous waveguide. Improve-

ments in wafer fabrication solved the problem. However, it could be that residual inho-

mogeneities contribute to variations of the refractive index along the waveguide, which

would induce scattering. If this is indeed the main source of loss at the moment (which is

rather difficult to assert accurately), there should be room for improvement, provided one

is willing to spend a significant amount of time and money optimising the wafer produc-

tion. Nonetheless, given that the best “ultra-low loss” UV-written waveguides reported

in the literature do not go below 0.2 dB/cm, it is doubtful whether one can reasonably

hope to ever improve the loss much below 0.1 dB/cm. The prospects for femtosecond or

deposition/etching waveguide are not much better (see Chapter 2.2 for references).
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Future directions

It is likely that overcoming the loss problem and building a working waveguide-based

coupled-cavity QED platform will require different, emergent technologies. A promising

candidate, compatible with the current design, are flat fibres. Currently under develop-

ment at the ORC (104), they are made from a fibre preform that is flattened during the

drawing process. The resulting core layer can be 5µm thick and a few millimetres wide. If

the core had been previously doped with germanium, waveguides can be written exactly

as with the silica-on-silicon chips. Fibre-like optical properties can be expected in terms

of material purity and homogeneity, resulting in very low loss. On the other hand, the

scalability will be more limited: no more than a dozen waveguides or so may fit in the

flat area of the fibre.

In another remarkable advance, a propagation loss as low as 0.1 dB/m at 1550 nm

was achieved in waveguides consisting of a silicon nitride core with a high aspect ratio

(50 nm × 5µm) buried in silica (143). Despite the core’s aspect ratio, the TE mode is

quasi-circular and has a waist of about 3µm, similar to that of an optical fibre. Even if

the propagation loss is significantly larger at 780 nm, it may still be low enough for our

purpose.

Other alternatives may require a radical revision of our design. For example, instead

of the low contrast waveguides we have used so far (which are very similar to optical

fibres), it may be advantageous to use surface (ridge) high-index-contrast waveguides in

silicon, silicon nitride or tantalum. These have in general a lower loss thanks to a stronger

confinement. Silicon waveguides may integrate bends with a radius of curvature of only

tens of microns, whereas we were limited to several millimetres. The downside is that the

waveguide mode, being an order of magnitude smaller, is no longer compatible with the

microcavities.

One can then follow one of two roads. Either one shrinks the microcavity by decreas-

ing the silicon mirrors’ radius of curvature. The group of Jason Smith at Oxford recently

reported on microcavity arrays with a radius of curvature as small as 7µm. Of course

in this regime one loses the ability to address the quantum emitters individually from

outside the cavity, but at the same time the mode volume is substantially smaller. The

other possibility would be to forget about the external cavity altogether, and to integrate

resonators on the waveguide itself, using Bragg gratings as mirrors. They could be fabri-

cated by focus ion beam milling. Phase shifters can still be integrated: heating elements

if the waveguides are made of silicon or silicon nitride, electro-optics ones if using lithium

niobate.

With surface waveguides, dye molecules embedded in a crystalline matrix are prime

candidates for the role of quantum emitters. Progress along the lines of Ref. (12) is being

made at CCM, and we have also undertaken to integrate dye molecules in the Fabry-Pérot
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microcavities.
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Appendix A

Optics of Gaussian beams

A.1 Fundamentals

The Gaussian beam is the propagating solution to the wave equation with both the mini-

mum transverse extension and the minimum divergence (144). Its electric field amplitude

is:

E(x, y, x, t) =

√
2

πw0

exp

(
−x

2 + y2

w2(z)

)
exp

(
−ikx

2 + y2

2R(z)
− ikz + i arctan(z/zR)

)
(A.1)

and is normalised such that
∫∫
|E(x, y)|2dxdy = 1. The beam radius w(z) is defined

at the 1/e half-width of the electric field amplitude, or 1/e2 half-width of the intensity

I = |E|2, as illustrated in Figure A.1. At the origin it is called the waist w0, and as a

function of propagation distance z we have

w(z) = w0

√
1 +

(
z

zR

)2

. (A.2)

The Rayleigh length or range zR = πw2
0/λ is the distance at which the radius has increased

by a factor
√

2. The wavefront is spherical with a radius of curvature

R(z) = z +
z2
R

z
(A.3)

which is maximum at the Rayleigh length and flat at the waist and at infinity. The

longitudinal (Gouy) phase term introduces an extra π phase shift as the beam goes through

the focus: the beam appears to propagate more slowly. It can be neglected for our many

wavelengths-long microcavities.

Higher order Gaussian modes can be described by modulating the fundamental mode

with Laguerre or Hermite polynomials. For a very good introduction to Gaussian beams

see Kogelnik’s classic paper (145).
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Figure A.1: Longitudinal and transverse mode profile of a Gaussiam beam. The parame-
ters are detailed in the text.

A.2 Mode matching efficiency

In various places throughout this thesis we had to butt-couple Gaussian beams (e.g. fibre-

waveguide, waveguide-microcavity). The coupling efficiency η is given by the integral

overlap (i.e. the convolution) (146) between the two normalised mode fields functions

E and E ′, which we take here to be cylindrical Gaussians of waists wx,y anf w′x,y whose

centres are misaligned by ∆x,∆y:

η =

∫∫
E(x, y)E ′∗(x− x0, y − y0)dxdy (A.4)

=

∫∫
2

π
√
wxw′x

√
wyw′y

e

„
− x2

w2
x
− y2

w2
y

«
e

„
− (x−∆x)2

w′x
+

(y−∆y)2

w′2y

«
dxdy (A.5)

= 2

√
wxwyw′xw

′
y

(w2
x + w′2x )(w2

y + w′2y )
exp

(
− ∆x2

w2
x + w′2x

− ∆y2

w2
y + w′2y

)
(A.6)

The two main features of the last expressions are:

1. If the modes are aligned, the intensity mode-matching efficiency (i.e. the power

coupled from the first to the second mode) is

η2 = 4
wxwyw

′
xw
′
y

(w2
x + w′2x )(w2

y + w′2y )
. (A.7)

2. If the size of the fibre mode E is known, the size of the unknown waveguide E ′

can be determined by scanning the fibre in front of the waveguide. The detected

intensity, as a function of misalignment, will be proportional to η2, and therefore will

be a Gaussian of widths Wx =
√
w2
x + w′2x ) and Wy =

√
w2
y + w′2y . The waveguide
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mode size is then w′x =
√
W 2
x − w2

x and w′y =
√
W 2
y − w2

y. The scanning fibre can

be calibrated against itself, we then have Wx,y =
√

2wx,y.

A.3 Propagation of Gaussian beam in optical sys-

tems

Propagation of Gaussian beams through optical systems can be conveniently described

by a lensmaker equation similar to that of geometrical optics:

1

s1 + zR1/(s1 − f)
+

1

s2

=
1

f
(A.8)

s1,2 and zR1,2 are the positions of the object and image waists and the associated Rayleigh

ranges; f is the lens focal length. The usual geometric equation is recovered in the “point

source” limit zR → 0. The most surprising feature of Gaussian beam imaging is that the

magnification m = s2/s1 depends on the beam size:

m =
s2

s1

=
1√

(1− s1/f)2 + (zR1/f)2
(A.9)

and m → 0 as w0 → ∞. This is not so surprising since the magnification’s definition

breaks down for plane waves.

The second big difference with geometrical optics is that the image is always located at

a finite distance from the lens. The maximum image distance is obtained for s1 = f + zR1

and

s2,max = f +
f 2

2zR1

. (A.10)

The lensmaker equation only relates the image and object waists. A more flexible

and powerful is the ABCD matrix formalism, another classic from geometrical optics that

can be applied, with some modifications, to Gaussian beams (145). The matrices are the

same: for example for free space propagation across a distance s and for a thin lens of

focal f we have

M =

(
a b

c d

)
, Mspace =

(
1 s

0 1

)
, Mlens =

(
1 0

−1/f 1

)
(A.11)

Complex optical systems are described by multiplying elementary ABCD matrices in the

correct order.

We then introduce the beam parameter q = (1/R− i/zR)−1. It is propagated through

an arbitrary ABCD matrix as

q2 =
aq1 + b

cq1 + d
. (A.12)
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Figure A.2: Microscope imaging of a Gaussian beam. The graph shows the dimensions
of the image waist as a function of distance from the lens, w(z). What is the relationship
between the geometrical magnification (geometrical image size is represented by the dotted
line) and the Gaussian magnification? The screen, located at a fixed distance l from the
lens, is indicated by the vertical grey line; it is close to the image Rayleigh distance zR. This
is why an infinity-collimated Gaussian beam (blue curve) will be larger than the geometric
image. However the beam will be collimated not at infinity but on the screen (green line);
no matter where the screen is, we can always “defocus” the lens so that the beam waist is
tangent to the geometrical image at the screen.

We now apply this formalism to the problem of imaging a Gaussian beam with a

microscope objective.

Measuring the beam radius

In Chapter 2, we measured the mode radius of a waveguide by imaging its output on a

CCD with a high-power (×100, f = 1.86 mm) oil immersion objective. The actual magni-

fication, calibrated with a TEM (electron microscope) reference grid, is only 82 because

of the non-standard tube length. However, as we’ve seen previously, the magnification

may be different from the geometric one when observing a Gaussian beam. Moreover the

problem is compounded by the fact that the image plane is located at a fixed distance

from the screen, so that in general we do not record the image waist. We may argue that

the rules of geometrical optics should apply since zR ≈ 20µm << f . On the other hand,

the Rayleigh range on the image size is comparable to the screen distance, so Gaussian

correction may be required. Let’s investigate

In this scenario, the tube length (and therefore the lens-screen distance l) is fixed

and we focus the beam by adjusting the object distance s1 to minimise the image beam

radius at the screen. It is tempting to set s2 = l in the lens maker equation, but a

closer examination reveals that for our parameters s2,max = 70 mm < l, so that we cannot

possibly be imaging the waist. So we have to use the ABCD matrix formalism to find the

spot size at an arbitrary distance z2 from the lens, as a function of object distance s1:

w(z2) =
w1

fzR1

√
(s1z2 − f(s1 + z2))2 + (fzR1 − z2zR1)2. (A.13)
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Taking the derivative it is then straightforward to show that w(z2) is minimised when s1 =

−fz2/(f−z2) (s1 → f when z2 →∞, as it should be), and that w(z2)min = w1(f−z2)/f ,

and the magnification is then simply m = (f − z2)/f . Which is none other than the

geometric magnification. Note that nowhere do we have made any approximations: this

an exact property of this particular configuration, and is illustrated in Fig. A.2. Thus it

is in general correct to use the geometric magnification when imaging a Gaussian beam.
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Appendix B

Coupling of a dipole to a nanofibre

In the summer of 2011 I became involved in a project with Jaesuk Hwang and his mas-

ter student, Nico Verhart from Leiden University, Netherlands. The project consisted

in depositing quantum dots on the surface of nanofibres (optical fibres that have been

stretched down to a diameter of 1µm or less), which results in the guided modes extend-

ing significantly out of the fibre together with a very small mode volume. This leads to

an enhanced coupling between the dipole and the guided mode whereby up to 25% of

the dipole’s spontaneous emission ends up into a single guided, as has since then been

experimentally demonstrated by another group (15).

In addition to the experiment, Nico Verhart was theoretically investigating the dipole-

nanofibre coupling by mean of finite-difference time-domain FDTD simulations, whose

interpretation was sometimes difficult (especially since we hadn’t realised yet that the

fibres were multimode), and we decided to look into analytical solutions to the problem.

Indeed, according to Fermi’s golden rule, the spontaneous emission rate into a given

guided mode is given by

Γ = 2πg2D(ω).

g is the dipole-field coupling strength, which is related to the mode size and profile, and

D(ω) is the density of modes, which depends on the group velocity. For circular fibre,

both quantities can be analytically calculated, which is what I set out to do. First I will

briefly discuss the calculation of the nanofibre modes, before showing how to derive useful

expressions for the coupling rate to the nanofibre from the golden rule.

B.1 Derivation of coupling rates from Fermi’s golden

rule

Fermi’s golden rule originates from first-order time-dependent perturbation theory (see,

for example, Sakurai’s textbook (147)). It describes the transition probability between

a time-dependent (and often, but nor necessarily, constant) perturbation, of which a
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Figure B.1: Left: Spherical coordinate system. Right: the different possible orientations
of a dipole near the surface of a nanofibre.

classical electromagnetic field would be a typical and relevant example. Time-dependent

essentially means it doesn’t have to conserve energy, at least in the limit where the

amplitude of the perturbation is not significantly altered during the interaction, and

as such it can describe extremely well absorption and emission of radiation between an

emitter and the classical field.

What we are interested here, and what the golden rule allows us to do, is to derive an

expression for the ratio Γwg/Γrad of spontaneous emission into the waveguide vs sponta-

neous emission in free space. Therefore we have to evaluate this two rates, which involve

calculating the density of mode D(ω) and the coupling strengh g2 in both cases.

I assume everywhere that the dipole sits in vacuum a short distance away from the

fibre, which make the problem somewhat simpler (we don’t have to keep track of the

refractive index of the medium outside the fibre). Otherwise I follow closely a similar

discussion in (12), with some corrections.

B.1.1 Dipole in free space

Density of mode Consider a spherical coordinate system in k-space {k,θ,φ} as depicted

in Figure B.1. The infinitesimal volume element is dk × kdθ × k sin θdφ. Restricting

free space to a very large quantisation volume V = L3, each mode occupies a volume

V0 = (2π/L)3. To find the density of modes available for a dipole to decay, we have to

integrate over a shell {k, k+dk} and divide by V0, taking into account the dipole radiation
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pattern sin2 θ and the polarisation degeneracy:

D(k)dk = 2×
(
L

2π

)3

×
∫ k+dk

k

k2dk ×
∫ π

0

sin3 θdθ ×
∫ 2π

0

dφ

With
∫ π

0
sin3 θdθ = 4/3 and

∫ k+dk

k
k2dk = k2dk, this results in D(k)dk = 2k2dk

3π2 V or, in

terms of angular frequency

D(ω)dω =
2ω2dω

3π2c3
V

Coupling strength g Assuming that the dipole is aligned with the field polarisation,

g is defined as

g2 =
d2E2

vac

~2

where Evac is the vacuum field amplitude. In the same quantisation box as above, it is

given by ~ω =
∫
ε0E

2
vacd

3V or

E2
vac =

~ω
ε0V

Note that since we are only interested in the ratio of guided to free space emission, I have

dropped annoying factors of 2 that would have cancelled later on anyway. Then

g2 =
d2ω

~ε0V

Spontaneous decay rate in free space Using the results from above, we get

Γrad =
4

3π

d2

~ε0
ω3

c3

B.1.2 Dipole on waveguide/nanofibre

Density of modes The k-space is now one-dimensional. With a similar quantisation

“volume” L, each mode occupies a volume 2π/(Lng), where ng is the mode’s group index.

The density of modes is then simply D(k)dk = Lng
2π
dk for propagation along one direction

only (in the 3D case, bi-directional propagation is implicit in the
∫ 2π

0
dφ term). In terms

of angular frequency this becomes

D(ω) =
Lng
2πc

=
L

2πvg

where vg = c/ng is the group velocity. The polarisation here is set by the guided mode,

so there is no degeneracy to account for.

Waveguide-dipole coupling strength The mode is described by an electric field

amplitude E(r), and the waveguide by its relative permittivity εr(r) = n2(r). The coupling
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strength is

g2 = d2E2
vac(r0)/~2

where r0 is the position of the molecule. The vacuum field is such that

~ω = L

∫
ε0εr(r)E2

vac(r)d2r

where L is the same quantisation length as before. It is then convenient to define an

effective mode area

Aeff =

∫∫
εr(r)E2(r)d2r

E2(r0)

which can be easily calculated and recast in term of the vacuum field as

Aeff =
~ω/(ε0L)

E2
vac(r0)

.

Substituting E2
vac(r0) in g2 then gives simply

g2 =
d2ω

~ε0LAeff

Spontaneous emission rate into waveguide Combining the two previous results,

Γwg =
d2ω

~ε0Aeffvg

B.1.3 Guided to free space ratios

The ratio of spontaneous emission into the waveguide (one direction only) to spontaneous

emission in free space is
Γwg

Γrad

=
3π

4Aeffvg

c3

ω2
=

3cλ2

16πAeffvg
.

Note that this is different from the fraction of spontaneous emission coupled to the fibre

relative to the total spontaneous emission in presence of the fibre, which is much more

difficult to calculate as it involves a large number of modes of different nature.

B.2 Modes of the nanofibre

We have already gone over the procedure to calculate the mode of an optical fibre in

Chapter 2. Because of the high index contrast (nco − ncl = nSiO2 − 1 = 0.45), the weak

guiding approximation does not apply: we have to use hybrid modes. The dispersion rela-

tion of the first few modes as a function of the nanofibre radius is plotted in Figure B.2(a)

(the wavelength is set to 605 nm), whereas in Fig. B.2(b) we plotted for comparison the

dispersion relation of the initial, non-tapered fibre (SMF28, index contrast 0.0067, core
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Figure B.2: Left: Dispersion diagram and selected hybrid mode profiles of a nanofibre.
Notice how the field can extend significantly outside the core. Right: same diagram but for
a standard fibre in the weak guiding (LP modes) regime. A standard single-mode fibre for
1550 nm (SMF28) lies close to v = 6 (vertical line).

diameter 8.2µm) as a function of the wavelength. The transverse mode profiles of a few

selected modes are also shown. We can see that the nanofibre mode extend quite signifi-

cantly outside the core; in particular looking at the EH11 mode, we can see that the field

peaks at two diametrically opposed points just outside the core. The effective mode area

at these maxima is only 0.62λ2 (at λ = 605 nm) for a radially-oriented dipole, so we can

therefore expect that an emitter located at one of this point would experience a strong

coupling to the waveguide.

We also need the group index/velocity. This can be calculated from the modal index as

ng = neff − λ0dn/dλ0 with λ0 the vacuum wavelength. Alternatively, it can be calculated

from the modal fields via the elegant theorem (74)

vg =

∫
Sd3r

UE + UH
(B.1)

S =
1

2
Re[E∗ ×H] (B.2)

UE =
ε0

4

∫
ε(r)|E(r)|2d3r (B.3)

UH =
µ0

4

∫
|H(r)|2d3r (B.4)

where S, UE and UH are respectively the Poynting vector and the energy stored in the

electric and magnetic fields (of course, UE = UH). In other words, the velocity of energy

propagation is the ratio of energy flux to energy density.
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Figure B.3: Spontaneous decay rate of an atom (relative to free space emission γ0) sitting
10 nm above a nanofibre as a function of the fibre diameter. The inset describes the three
possible orientations of the dipole. The coupling tends to decrease as the fibre gets larger,
but jumps upward whenever new decay channels become available in the form of additional
guided modes (grey vertical lines are the cut-off frequencies).

B.3 Discussion

We know have all the tools needed to compute the fraction of emission coupled to the fibre,

Γwg/Γrad, as a function of the nanofibre diameter. If the fibre is large enough to support

several modes, we only have to add the contribution of the different decay channels: since

all guided modes are orthogonal, they can be treated independently.

The final result are plotted in Figure B.3. It shows the Γwg/Γrad ratio as a function

of the nanofibre diameter, together with the FDTD results. The two agree remarkably

well, considering how difficult it can be to extract the guided vs total power from FDTD

simulations (largely because the computational cell is limited to a few tens of microns along

the fibre due to memory constrains). We observe an oscillatory structure with periods

of exponential decays as the modes confinement increases with the fibre diameter, with

sudden jumps coinciding with the appearance of new guided modes offering additional

decay channels to the emitter. It is quite remarkable that once these oscillations are

abstracted, the coupling ratio is essentially constant.

It can be seen that the coupling is significantly larger for radially-oriented dipoles.

This is because the electric field perpendicular to a dielectric interface is not continuous

(unlike the tangential components of the field), and the magnitude of the discontinuity

is given by the refractive index difference (in this case, nco − ncl = 0.45). The radial

component of the field, and the coupling of radial dipoles, is thus enhanced by about 50%

compared to the tangential components.

The maximum coupling occurs for a nanofibre diameter of about 300 nm, where it is

higher than 30%.

In the multimode case (V > 2.405), The collection efficiency is not determined solely
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by the nanofibre: higher-order modes also have to survive in the non-tapered section.

For a standard SMF28 fibre designed for operation at 1.5µm, the normalised frequency

at 605 nm is V = 5.98, very close to that in the tapered region of the fibres used in our

experiments (2a = 1.1µm, V ' 6.0).
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Appendix C

Conversion between different loss

parameters

In the course of this thesis we have not been very consistent in describing propagation

loss in waveguides, preferring to use the most “natural” way in different settings. In this

appendix we summarise the different ways of introducing the propagation loss and we

give conversion formulae between them.

Decibels per unit length

Consider a waveguide of length l. The optical power at the input and output are Pin and

Pout. The loss in dB per unit length (usually per centimenter) is then defined as

LdB =
10

l
log10

(
Pout
Pin

)
. (C.1)

Cavity imaginary round trip phase Γ

This has been described in section 3.2. To the cavity round trip phase φ = 2kLcav we add

an imaginary component, so it becomes φ− iΓ. Lcav is the cavity length. We showed in

Chapter 3.2.1 that if the power is Pin at the cavity input, it becomes Pout = e−ΓPin after

a single pass. Therefore the dB/cm loss is

LdB = 10 log10

(
e−Γ
) 1

Lcav

= − 10

ln(10)

Γ

Lcav

. (C.2)

Imaginary refractive index q

Whenever the refractive index appears explicitly, we can introduce an imaginary part q:

ñ = n+ iq. Consider then a plane wave of vacuum wave vector k0 = 2π/λ. It propagates
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along z as

E(z) ∝ eik0(n+iq)z+iωt

Therefore its intensity decreases as e−2k0ql = e−≡Γ over a distance l, so that the loss in

dB/cm is

LdB = 10 log10

(
e−2kql

) 1

l
= − 20

ln(10)
k0q (C.3)

and we have also

Γ = 2qLcavk0 (C.4)

Exponential decay rate q

Finally, in section 5.3.1 we introduced a loss parameter in the coupled-mode equations.

In the absence of cross- and self-coupling, these become

dA(z)

dz
= −γA(z)⇒ A(z) = A(0)e−γz (C.5)

and therefore, after a length l we have

e−γl = e−Γ ⇒ γl = Γ (C.6)

Linear dB loss

For small loss (ie Pout/Pin > 90%), we can write the dB loss as 10 log10(1 − Plost) where

Plost = Pout/Pin. Eq. (C.1) can be linearised as

LdB =
10

ln 10
Plost = 4.34Plost (C.7)

Summary

Table C.1 summarises the relationships between all these parameters.
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Γ q γ dB/cm

Γ 2Lcavk0q γLcav − ln(10)

10
LcavLdB

q
Γ

2Lcavk0

γ

2k0

ln(10)

20
k0LdB

γ
Γ

Lcav

2k0q − ln(10)

10
LdB

dB/cm − 10

ln(10)

Γ

Lcav

− 20

ln(10)
k0q − 10

ln(10)
γ

Table C.1: Loss conversion table.
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