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Second order discretization of Backward SDEs∗

D. Crisan, K. Manolarakis†

Abstract

In [5] the authors suggested a new algorithm for the numerical approximation of a
BSDE by merging the cubature method with the first order discretization developed by
Bouchard and Touzi [3] and Zhang [16]. Though the algorithm presented in [5] compared
satisfactorily with other methods it lacked the higher order nature of the cubature method
due to the use of the low order discretization. In this paper we introduce a second order
discretization of the BSDE in the spirit of higher order implicit-explicit schemes for
forward SDEs and predictor corrector methods.
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Mathematics subject classification: 60H10; 65C30.

1 Introduction

The present paper is concerned with the problem of numerical approximation to forward
backward SDEs (FBSDEs henceforth). Let (Ω, F, P) be a probability space on which we
have defined a triple of processes (X, Y , Z ) which solve the decoupled forward-backward
system:

Xt = X0 +

∫ t

0

V0 (Xu) du +

d
∑

i=1

∫ t

0

Vi (Xu) ◦ dW i
u

Yt = Φ(XT ) +

∫ T

t

f(Xu, Yu, Zu)du −

∫ T

t

Zu · dWu

, t ∈ [0, T ] . (1.1)

where Wt is a d-dimensional Brownian motion and

Vk : Rq → R
q, k = 0, . . . , d, f : Rq × R × R

d → R

are some appropriate functions. The system is called decoupled as the (backward) pro-
cesses (Y , Z ) do not appear in the dynamics of the forward component X . Systems of the

∗The results in this paper were announced by the second author at the workshop ”New advances in Backward
SDEs for financial engineering applications”, Tamerza (Tunisia), October 25 - 28, 2010
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form (1.1) have received a lot of attention over the past twenty years primarily due to their
applications in the field of Mathematical Finance (see for example [6] and the references
therein for details).

Of equal importance is the fact that, the stochastic flow associated with (1.1), i.e., the triple
of processes (X (t,x), Y (t,x), Z (t,x)), (t, x) ∈ [0, T ] × R satisfying

X t,x
s = x +

∫ s

t

V0

(

X t,x
u

)

du +

d
∑

i=1

∫ s

t

Vi

(

X t,x
u

)

◦ dW i
u

Y t,x
s = Φ(X t,x

T ) +

∫ T

s

f(X t,x
u , Y t,x

u , Z t,x
u )du −

∫ T

t

Z t,x
u · dWu

s ∈ [t, T ], (1.2)

provides a Feynman-Kac representation for the (viscosity) solution of a class of semi-linear
PDEs. In particular, let u(t, x) : [0, T ] × R

d → R
d, be the viscosity solution of

du

dt
+ Ṽ (x) · ∇u +

1

2
T r
[

V (x) V ∗ (x) D2u
]

+ f (t, x, u, ∇uV (x)) = 0

u(T , x) = Φ(x)
, (1.3)

where Ṽ (x) = V0(x) − 1
2

∑d
j=1 ∇Vj (x)Vj(x). In their seminal work [15], Pardoux and Peng

showed that

u(t, x) = Y t,x
t , (t, x) ∈ [0, T ] × R

d. (1.4)

In addition, Ma and Zhang [14] showed that when this viscosity solution is continuously
differentiable in its spatial variables, we have the following representation for the solution
of the PDE 1.3 and its gradient

u(t, x) = Y t,x
t , Z t,x

t = ∇u(t, x)V (x), a.s. (1.5)

From the perspective of numerical analysis, the above means that any probabilistic method
for the resolution of (1.1), provides an algorithm for the resolution of semi-linear PDEs. As
a result, the interest in robust algorithms for their resolution is high.

Algorithms designed to solve the problem of numerical approximation of the backward part
of (1.1) consist of two parts: Firstly, the backward equation is discretized. This step involves
the use of one or more conditional expectations. Secondly, a numerical method is grafted
onto the chosen discretization to compute the conditional expectations involved. Following
the work of Bouchard and Touzi [3] and Zhang [16], the most popular discretization scheme
is given by:1

Y π
1,tn

:= Φ(Xtn
), Zπ

1,tn
:= 0

Zπ
1,ti

:=
1

δi+1
E
[

Y π
1,ti+1

∆Wi+1|Fti

]

, i = 0, . . . , n − 1

Y π
1,ti

:= E
[

Y π
1,ti+1

|Fti

]

+ f
(

ti, Xti
, Y π

1,ti
, Zπ

1,ti

)

, i = 0, . . . , n − 1,

(1.6)

where π is a given partition π := {0 = t0 < t1 < . . . < tn = T} of [0, T ] and ∆Wi+1 =
Wti+1

− Wti
, i = 0, . . . , n − 1.

1See Bender and Zhang [2] for an alternative approach based on Picard iterations
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Assuming that all coefficients of (1.1) are at least Lipschitz continuous in their spatial
variables, we have, following [3] and [16], that

sup
0≤t≤T

E

[

| Y π
t − Yt |2

]

+ E

[ ∫ T

0

| Zπ
t − Zt |2 dt

]

≤ C |π|, (1.7)

where {(Y π
t , Zπ

t ), t ≥ 0} are the step processes

Y π
t :=

n−1
∑

i=0

Y π
1,ti

1[ti,ti+1)(t) + Y π
1,tn

1t=tn
, Zπ

t :=

n−1
∑

i=0

Zπ
1,ti

1[ti,ti+1)(t) + Zπ
1,tn

1t=tn
. (1.8)

In other words, the above discretization of the backward part achieves a convergence of
order 1/n1/2, when n points are used, i.e. the same order as the strong convergence order
of the Euler scheme for a (classical) SDE. When more smoothness on the coefficients is
assumed, it is shown in Gobet and Labart [8] that the rate of convergence of the processes
(1.8) is of order 1/n. In fact an error expansion is obtained in [8] and the leading order
coefficients in the error expansion are identified.

To be more precise, the above results are proved for the case when the process X in (1.6) is
replaced by its Euler approximation Xπ and, respectively, the filtration {Fti

}n
i=0 is replaced

by the natural filtration {Fπ
ti

}n
i=0 associated with Xπ . However the same proofs apply both

to Xπ and X .

To obtain an implementable scheme using the discretization (1.6), one has to develop a
method for approximating the conditional expectations2

E[Y π
1,ti+1

|Fti
] and E[Y π

1,ti+1
∆Wi+1|Fti

].
Various such methods have been introduced, based on Malliavin calculus [3], on projection
on function basis [9], [10] and on quantization [1]. In [5], the authors suggested the application
of the cubature method of [13], which is based on the ideas of Kusuoka [12]. The overall
rate of convergence of this second approximation step is still of order 1/n1/2 or of order 1/n
when coefficients are smooth.

In this paper, we introduce a discretization for the backward component of the BSDEs of
order 1/n2. As for the discretization (1.6), this new scheme will require the computation of
conditional expectations. This can be done by means of an order 5 cubature formula. Since
the order 5 cubature method has local order error 1/n3, when combined with a second order
discretization for BSDEs, will generate a genuine second order algorithm for BSDEs.

To understand which terms such a scheme should include we revisit (1.6) from the point
of view of Stratonovich-Taylor expansions. Moreover, to deduce the rate of convergence of
the method, we shall rely on the Feynman Kac representation (1.5) and on some estimates
on the bounds for the derivatives of (1.3) obtained by Delarue [7].

2 Preliminaries

Throughout the paper, we will use the following assumptions:

2When the process X in (1.6) is replaced by its Euler approximation, then E[Y π
1,ti+1

|Fπ
ti

] and E[Y π
1,ti+1

∆Wi+1|Fπ
ti

]

need to be computed.
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(A) The coefficients of the forward SDE Vi : R
d → R

d, i = 0, 1, ..., d have all entries
belonging to C∞

b (Rd), the space of bounded infinitely differentiable functions with
all partial derivatives bounded. We also assume that the matrix V := (V1| . . . |Vd) is
elliptic.

(B) The driver of the BSDE f : [0, 1] ×R
d ×R×R

d → R belongs to C
[m/2],m
b . The exact value

for the parameter m shall be made precise as we proceed.

(C1) The terminal condition Φ : Rd → R is Lipschitz continuous.

(C2) The terminal condition Φ belongs to Cm
b

(

R
d;R

)

. Again the value of m shall be deter-
mined further on.

We shall denote by K the constant that bounds all derivatives that appear in our assump-
tions. When (C1) is in force we shall assume that Φ is K-Lipschitz. Of course under (A),
(B) with m ≥ 1 and (C1) the system (1.1) has a unique solution such that

E

[

sup
0≤t≤T

(

Y 2
t + |Xt|

2
)

+

∫ T

0

|Zs|
2ds

]

< ∞

To abbreviate notation we shall denote by Mi ≡ Mti
, i = 0, . . . , n, where M can be any of

the processes that appear in this paper. Moreover we write Es [ · ] for E [ ·|Fs ]. Note that
in the current (Markovian) set up E [ ·|Fs ] = E [ ·|Xs ] . We shall also consider as given a
partition π := {0 = t0 < t1 < . . . < tn = T} of [0, T ] and consider the related notation

δi := ti − ti−1, ∆Wi := Wi − Wi−1, ∆W l
i := W l

i − W l
i−1, l = 1, . . . , d, i = 1, . . . , n.

Lastly, the driver of the BSDE shall be abbreviated as f̄(s, x) = f(x, u(s, x), ∇uV (s, x)),
where u is the solution of the semilinear PDE (1.3).

Remark 2.1. Any attempt to discretize the backward part of (1.1) should start with a
method to produce (an approximation for ) the value of the forward diffusion at the times
on the partition π. In this paper we assume that we have at our disposal the forward
diffusion X at the times of the partition Xt1

, . . . , Xtn
. This entails no loss of generality,

as we aim to combine the second order discretization with the cubature method, which
approximates directly the law of X at the times of the partition.

For the benefit of methods that would combine the present discretization with a Monte
Carlo simulation, that most probably requires some sort of discretization for the forward
process X , we note that all results regarding the second order scheme (particularly Theorem
3.3 and Corollary 3.4) remain valid, once one replaces X with a second order approximation.
A wealth of such approximations3 are presented on chapters 12- 15 of [11].

Working towards a higher order discretization of the backward part of (1.1) we shall rely
heavily on the Stratonovich-Taylor expansions. Hence we need to fix notation and present
some elementary facts regarding these expansions:

3Such approximations can be chosen to be explicit, in other words completely derivative free.
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2.1 Stratonovich-Taylor expansions

In the following we will use the set of multi-indices A = {∅} ∪
⋃∞

m=1{0, 1, . . . , d}m endowed
with the norms | · | and ‖·‖ given by

|β| = length of β, ‖β‖ := |β| + Card{j : βj = 0, 1 ≤ j ≤ |β|}.

Clearly |∅| = ‖∅‖ = 0. For a β = (j1, . . . , jl) ∈ A we also write β− = (j1, . . . , jl−1) and
−β = (j2, . . . , jl). We define the subsets of A,

Am = {β ∈ A : ‖β‖ ≤ m} and A1
m = {β ∈ A\{∅, (0)} : ‖β‖ ≤ m}.

Given two multi-indices α = (α1, . . . , αk ) and β = (β1, . . . , βl) we define their concatenation
as α ∗ β = (α1, . . . , αk , β1, . . . , βl). For a suitably chosen function f and a multi-index
β = (β1, . . . , βl), we define the iterated Stratonovich/Lebesgue integrals as follows

Jβ [f ]t, s :=











f(s) |β| = 0
∫ s

t
Jβ−[f ]t, udu l ≥ 1, jl = 0

∫ s

t
Jβ−[f ]t, u ◦ dW jl (u) l ≥ 1, jl 6= 0

.

Let Lj , j = 0, . . . , d be the operators:

Lj :=

q
∑

k=1

V k
j ∂xk

, j = 1, . . . , d, L0 := ∂t +

q
∑

k=1

V k
0 ∂xk

.

The iteration of this family of operators is understood as : Lα f := Lα1 . . . Lαn f, α =
(α1, . . . , αn) and we also use the convention L∅f = f .

Given a multi index α = (α1, . . . , αn) the following identity is proven in Proposition 5.2.10
of [11]

W
j
t J α [1]0,t =

n+1
∑

k=0

J0,t
(α1,...,αk ,j,αk+1 ,αn), j = 1, . . . , d. (2.1)

A direct consequence of (2.1) (Corollary 5.2.11 of [11]) is that if α = (k, k, . . . , k), k = 0, . . . , d

with |α| = m, then

Jα [1]0,t =
1

m!

(

J (k)[1]0,t

)k
(2.2)

The (conditional) expectations of iterated integrals can also be computed. In particular we
have a characterization for those iterated integrals that have non zero expectation (see, for
example, [4]):

Lemma 2.2. Let α = (i1, . . . , ir) be an arbitrary multi-index with ‖α‖ = m and t ∈ [0, T ]. If
m is odd, then E[Jα [1]0,t ] = 0 and if m is even then

E[Jα [1]0,t ] =

{

tm/2

2r−m/2(m/2)!
if α ∈ Am,r

0 otherwise
,

where Am,r ⊂ Am is the set of multi-indices with α = α1 ∗ . . .∗ αm/2 ∈ Am, such that αi = (0)
or αi = (j, j), j ∈ {1, . . . , d}.
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A non empty subset G ⊆ A is called a hierarchical set if supα∈G |α| < ∞ and −α ∈
G for any α ∈ G\{∅}. Given a hierarchical set G we define the remainder set

B (G) = {β ∈ A\G : −β ∈ G}.

Note that Am and A1
m are hierarchical sets. If f : Rd → R is a smooth function with all

partial derivatives bounded, then by repeatedly applying the Itô-Stratonovich formula, we
obtain the Stratonovich-Taylor expansion

f(X0,x
t ) =

∑

α∈K

Lαf(x)Jα [1]0,t +
∑

α∈B (K)

Jα [Lαf(·)]0,t

=:
∑

α∈K

Lαf(x)Jα [1]0,t + Rm(t, x, f)
(2.3)

for any hierarchical set K. The second term on the right hand side of (2.3) is called the
m-th order remainder process and is denoted by Rm(t, x, f). Obviously as m increases, and
for small t, the remainder process gets smaller and smaller.

A hierarchical set that facilitates computations for Stratonovich-Taylor expansions is A(m).
For this set we have that

B (A(m)) = {(j) ⋆ β|j = 0, . . . , d, ‖β‖ = m}.

To estimate the remainder that corresponds to B (A(m)), we need to estimate iterated
Stratonovich integrals of the form Jα [g ( ·, X· )]s,t for appropriate function g such that the
previous integral makes sense. For 0 ≤ s ≤ t with t − s < 1, we have

∣

∣

∣

∣

sup
s≤r≤t

Es

[

Jα [g(·, X·)]s,r

]

∣

∣

∣

∣

≤ C (t − s)‖α‖/2
(

sup
s≤r≤t

{

Es [|Lαng(r, Xr)| 1αn 6=0]

+ Es [|g(r, Xr)| 1αn=0]
}

)

, (2.4)

see chapter 5 of Kloeden and Platen [11]. Applying the estimate (2.4) to every index in
the set B (A(m)) , provides us with the following estimate for the remainder of the Taylor
formula,

E [ | Rm(t, X, f) |p ]
1/p

≤ C (t − s)(m+1)/2 max
m≤‖γ‖≤m+2

sup
0≤r≤t

E [ | Lγf(r, Xr ) |p ]
1/p

. (2.5)

To conclude our preliminary results, we shortly discuss the backward PDE (1.3). For the
latter, when all coefficients are smooth and bounded, it is well understood that it posseses
a smooth and bounded solution. Moreover, a smooth solution u(t, x) will still exist when
working only under (C1) for t ∈ [0, T ). The solution itself will be bounded on all [0, T ]. Its
derivatives however shall not. The next result characterises the behaviour of the derivatives.

Theorem 2.3 (Delarue [7]). Let (A) and (B) hold true and assume further that Φ is Lips-

chitz continuous. Then there exists a unique u ∈ C
⌈m/2⌉,m
b

(

[0, T ) × R
d
)

that solves (1.3).
Moreover, for any α ∈ A(m) we have

‖Dαu(t, ·)‖∞ ≤ C
‖∇Φ‖∞

( T − t )(‖α‖−1)/2
, t ∈ [0, T ),

for a constant C independent of u.
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In other words, when the final condition is Lipschitz continuous (and the driver is smooth),
the derivatives of the solution of (1.3), explode as t ↑ T with the given rate. The exact rates
are important to quantify the error of our method.

3 One step discretization

To understand the terms that a second order scheme should incorporate, we present first the
intuitive arguments that lead to the discretization scheme (1.6). We consider the backward
part of (1.1) between two successive times of the partition π

Yti
= Yti+1

+

∫ ti+1

ti

f(Xs, Ys, Zs)ds −

∫ ti+1

ti

Zs · dWs

and discretize the Riemann integral using the left hand side point, as in [3], thus leading
to an implicit equation for Yti

and the stochastic part in the usual way, to obtain

Yti
≃ Yti+1

+ δi+1f(Xti
, Yti

, Zti
) − Zti

· ∆Wi+1. (3.1)

By conditioning (3.1) with respect to Fti
in (3.1) we obtain a first order approximation for

Yti

Yti
≃ E

[

Yti+1

∣

∣

∣Fti

]

+ δi+1f(Xti
, Yti

, Zti
), (3.2)

but for the presence of Zti
. To treat the Zti

, we can multiply both sides of (3.1) by ∆W l
i+1, l =

1, . . . , d and condition with respect to Fti
, to obtain

Z l
ti

≃ E

[

Yti+1

∆W l
i+1

δi+1

∣

∣

∣Fti

]

, l = 1, . . . , d. (3.3)

Observe that scheme (1.6) is just the backward iteration of equations (3.2) and (3.3).

Clearly, to achieve a higher order approximation of the BSDE, we need to add more terms
in its (stochastic) expansion ideally without involving any derivatives. As far as the driver
is concerned, the next elementary result tells us that the Crank-Nickolson rule indeed
achieves a third order local error, thus leading to a second order global error:

Lemma 3.1. Let assumptions (A) and (B) hold true, Φ ∈ CLip

(

R
d
)

and denote by f̄(t, x) ≡
f(x, u(t, x), ∇u(t, x)V (x)), where u(t, x) is the classical solution to PDE (1.3). Then there
exists a constant C independent of the partition and of u such that

∣

∣

∣

∣

Ei

[ ∫ ti+1

ti

f̄ (s, Xs)ds −
δi+1

2

(

f̄(ti, Xti
) + f̄(ti+1, Xti+1

)
)

] ∣

∣

∣

∣

≤ Cδ3
i+1 max

‖α‖=4,5
‖Lαu(ti+1, ·)‖∞ .

Proof. Note first that the nonlinear Feynman Kac formula tells us that Yt = u(t, Xt) and
Z l

t = Llu(t, Xt), l = 1, . . . , d, where the existence of u, ∇u is guaranteed by Theorem (2.3).
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The proof is a simple consequence of the expansion (2.3), using the hierarchical set A(3),
applied to the integrand of the integral

Ei

[ ∫ ti+1

ti

f̄(s, Xs)ds

]

=

δi+1 f̄(ti, Xi) + Ei





∫ ti+1

ti





∑

α∈A0(3)

Lα f̄(ti, Xi) Jα [1]ti, u +
∑

α∈A(5)\A0(3)

Jα [Lα f̄(·, X·)]ti, u



 du





(3.4)

and to f̄ ( ti+1, Xi+1 ),

δi+1

2
( f ( Xi, Yi, Zi ) + Ei [ f ( Xi+1, Yi+1, Zi+1 ) ] ) =

δi+1 f̄ (ti, Xi) +
δi+1

2
Ei





∑

α∈A0(3)

Lα f̄ (ti, Xi) Jα [1]ti, ti+1
+

∑

α∈A0(5)\A0(3)

Jα [Lα f̄(·, X·)]ti, ti+1





(3.5)

If α ∈ A0(3), then one of the following holds

α =







(i), i = 0, . . . , d

(0, i), (i, 0), i = 1, . . . , d
(i, j), (i, j, k) i, j, k = 1, . . . , d,

Elementary facts about stochastic integrals and Lemma 2.2 tell us that Es [Jα [1]s, u] = 0,
u ≥ s for all α ’s as above except when α = (0), or (j, j), j = 1, . . . , d. For these two cases,
we have

Es

[

J(0)[1]s, u

]

= u − s and Es

[

J(j,j)[1]s,u

]

=
1

2
E

[

(

W j
u − W j

s

)2
]

=
u − s

2
.

Substituting the above into (3.4), (3.5) and taking their difference we have

∣

∣

∣

∣

Ei

[ ∫ ti+1

ti

f̄ (s, Xs)ds −
δi+1

2

(

f̄(ti, Xti
) + f̄(ti+1, Xti+1

)
)

] ∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

Ei





∫ ti+1

ti





∑

α∈A0(5)\A0(3)

Jα [Lα f̄(·, X·)]ti, u



 du −
δi+1

2

∑

α∈A0(5)\A0(3)

Jα [Lα f̄(·, X·)]ti, ti+1





∣

∣

∣

∣

∣

∣

.

The estimates on the remainder process complete the proof.

The above result combined with a Stratonovich Taylor expansion applied on Z (as the
integrand of the stochastic part) give us a first intuitive approach for the second order
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discretization:

Yti
≃ Yti+1

+
δi+1

2

(

f(Xti
, Yti

, Zti
) + f(Xti+1

, Yti+1
, Zti+1

)
)

−

d
∑

l=1

{

Llu ( ti, Xti
) ∆W l

i+1 +
d
∑

k=1

L(k,l)u ( ti, Xti
)

∫ ti+1

ti

J(k)[1]ti,sdW l
s

+

d
∑

k,j=1

L(k,j,l)u ( ti, Xti
)

∫ ti+1

ti

J(k,j)[1]ti,sdW l
s

+ L(0,l)u ( ti, Xti
)

∫ ti+1

ti

s dW l
s +

∑

‖α‖=3

Lα⋆(l)u ( ti, Xti
)

∫ ti+1

ti

Jα [1]ti,sdW l
s

+

∫ ti+1

ti

R3(Llu, ti, s)dW l
s

}

(3.6)

As in (3.3), we need to innovate a way to recover Z l
i , l = 1, . . . , d, i = 0, . . . , n − 1, from

(3.6), but this time up to a second order error.

If we multiply both sides of (3.6) by
∆W l

i+1

δi+1
and condition with respect to Fi, we shall obtain

Z l
ti

but some surviving terms of order δi+1 will render the approximation first order. For
example consider

1

δi+1
E

[

L(0,l)u ( ti, Xti
)

∫ ti+1

ti

s dW l
s∆W l

i+1|Fti

]

=
δi+1

2
L(0,l)u ( ti, Xti

) .

Hence, we need to find an appropriate weight, that will multiply (3.6) and after conditioning
with respect to Fti

, provides a second order approximation for Zti
by canceling out all first

order terms. We make the following judicious choice

Zl
i := λ1

∆W l
i+1

δi+1
+ λ2

J(0,l)[1]ti,ti+1

δ2
i+1

, l = 1, . . . , d, i = 0, . . . , n − 1. (3.7)

With a few straightforward computations, we obtain for any q = 1, . . . , d

E

[

d
∑

l=1

Llu ( ti, Xti
) ∆W l

i+1Z
q
i

∣

∣

∣Fti

]

=

(

λ1 +
λ2

2

)

Lqu ( ti, Xti
)

E

[

d
∑

l=1

L(0,l)u ( ti, Xti
)

∫ ti+1

ti

s dW l
sZ

q
i

∣

∣

∣Fti

]

=

(

λ1δi+1

2
+

λ2δi+1

3

)

L(0,q)u ( ti, Xti
)

E





d
∑

l=1

d
∑

k,j=1

L(k,j,l)u ( ti, Xti
)

∫ ti+1

ti

J(k,j)[1]ti,sdW l
sZ

q
i

∣

∣

∣Fti



 =

(

λ1δi+1

4
+

λ2δi+1

6

) d
∑

k=1

L(k,k,q)u ( ti, Xti
)

E





d
∑

l=1





d
∑

k=1

∫ ti+1

ti

J(k)[1]ti,sdW l
s +

∑

‖α‖=3

∫ ti+1

ti

Jα [1]ti,sdW l
s



Z
q
i

∣

∣

∣Fti



 = 0.

By choosing λ1 = 4, λ2 = −6, we have the following :
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Lemma 3.2. Let assumptions (A), (B) hold true and let u(t, x) denote the classical solution
of PDE (1.3). Set

Zl
i := 4

∆W l
i+1

δi+1
− 6

J(0,l)[1]ti,ti+1

δ2
i+1

, l = 1, . . . , d, i = 0, . . . , n − 2.

Then
∣

∣

∣

∣

Z l
ti

− Ei

[(

Yti+1
+

δi+1

2
f(Xti+1

, Yti+1
, Zti+1

)

)

Zl
i

] ∣

∣

∣

∣

≤ δ2
i+1 max

‖α‖=4,5
‖Lαu(ti+1, ·)‖∞ .

Proof. It should be clear from the discussion preceding Lemma 3.2 combined with the result
of Lemma 3.1 that

∣

∣

∣

∣

Z l
ti

− Ei

[(

Yti+1
+

δi+1

2
f(Xti+1

, Yti+1
, Zti+1

)

)

Zl
i

] ∣

∣

∣

∣

≤

∣

∣

∣

∣

Ei

[

Zl
i

(∫ ti+1

ti

R3(f̄ , ti, s) ds +

∫ ti+1

ti

R3(L
lu, ti, s)dW l

s

)] ∣

∣

∣

∣

The result then follows from the estimate (2.5) on the remainder process and the Cauchy
Schwartz inequality.

Lemmas 3.1 and 3.2 dictate the following second order algorithm :

•Initialization

If (C1) is in force :

Y π
2,tn

:= Φ(Xn), Zπ
2,tn

:= 0, and Zπ
2,tn−1

:= Zπ
1,tn−1

, Y π
2,tn−1

:= Y π
1,tn−1

.

If (C2) is in force:

Y π
2,tn

:= Φ(Xn), Zπ
2,tn

:= ∇Φ(Xn)V (Xn)

•Backward induction:

Zπ
2,ti

= Ei

[(

Y π
2,ti+1

+
δi+1

2
f(Xi+1, Y π

2,ti+1
, Zπ

2,ti+1
)

)

Zi

]

, Zi := (Z1
i , . . . , Zd

i )T

Y π
2,ti

= Ei

[

Y π
2,ti+1

]

+
δi+1

2

(

f
(

Xi, Y π
2,ti

, Zπ
2,ti

)

+ Ei

[

f
(

Xi+1, Y π
2,ti+1

, Zπ
2,ti+1

)]

)

. (3.8)

A small clarification is perhaps in order for the peculiarity of our scheme in the first back-
ward step. If the terminal condition is not smooth, then none of the intuitive arguments
that we have presented can apply at time tn = T . Hence, when working under (C1), we
take the first backward step in an Euler fashion. After this, we expect the PDE to “smooth
out” the value function and hence all that we have discussed so far apply. We will see in
Corollary 3.4 how a non equidistant partition can compensate for this.
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Theorem 3.3. Let assumptions (A),(B) and either of (C1), (C2) hold true. Then there exists
a constant C > 0 such that

max
0≤i≤n−2

[

∣

∣Yti
− Y π

2,ti

∣

∣

2
+

δi+1

4d

∣

∣Zti
− Zπ

2,ti

∣

∣

2
]

≤ C

(

∣

∣Ytn−1
− Y π

2,tn−1

∣

∣

2
+

δn

4d

∣

∣Ztn−1
− Zπ

2,tn−1

∣

∣

2
)

+

n−1
∑

i=1

δ5
i max

‖α‖=4,5
‖Lαu(ti, ·)‖2

∞

Proof. In the following proof, C will denote a constant whose value might change from line
to line. It will however be independent of the partition and of the bounds of the derivatives
of the solution of (1.3). For ease of notation, we set

∆π
i Y := Yti

− Y π
2,ti

, ∆π
i Z := Zti

− Zπ
2,ti

,

∆π
i f := f ( Xti

, Yti
, Zti

) − f
(

Xti
, Y π

2,ti
, Zπ

2,ti

)

Ψi+1 := Yti+1
+

δi+1

2
f(Xti+1

, Yti+1
, Zti+1

), Ψπ
i+1 := Y π

2,ti+1
+

δi+1

2
f(Xti+1

, Y π
2,ti+1

, Zπ
2,ti+1

)

∆Ψi+1 = Ψi+1 − Ψπ
i+1.

Let us fix a value for i = 0, . . . , n − 2. We consider the difference of the solution of the
BSDE at time ti and of scheme (3.8):

∆π
i Y = Ei [∆π

i+1Y ] +
δi+1

2
Ei

[

f
(

Xi, Y π
2,ti

, Zπ
2,ti

)

+ f
(

Xi+1, Y π
2,ti+1

, Zπ
2,ti+1

)]

∓
δi+1

2
Ei

[

f̄ (ti, Xi) + f̄ (ti+1, Xi+1)
]

−

∫ ti+1

ti

Ei

[

f̄ (s, Xs)
]

ds
(3.9)

According to the estimates of Lemma 3.1 we have that
∣

∣

∣

∣

Ei

[

f
(

Xi, Y π
2,ti

, Zπ
2,ti

)

+ f
(

Xi+1, Y π
2,ti+1

, Zπ
2,ti+1

)]

−
δi+1

2
Ei

[

f̄ (ti, Xi) + f̄ (ti+1, Xi+1)
]

∣

∣

∣

∣

≤ Cδ3
i+1 max

‖α‖=4,5
‖Lαu(ti+1, ·)‖∞

(3.10)

Moreover, according to the mean value theorem, we can argue on the existence of a real
number and vector µ1 ∈ R, ν1 ∈ R

d bounded by K , such that

δi+1

2
∆π

i f =
δi+1

2
(µ1∆

π
i Y + ν1 · ∆π

i Z ) (3.11)

Combining (3.9)-(3.11) with Young’s inequality with γ1 > 0, we have

| ∆π
i Y |2 ≤ ( 1 + γ1δi+1 ) |Ei [ ∆π

i+1Ψ ] |2 +

(

1 +
1

γ1δi+1

)

Cδ2
i+1

(

| ∆π
i Y |2 + | ∆π

i Z |2
)

+

(

1 +
1

γ1δi+1

)

Cδ6
i+1 max

‖α‖=4,5
‖Lαu(ti+1, ·)‖2

∞

(3.12)

Next, observe that for any random variable F which is measurable with respect to Fti+1
we

have

|Ei [ FZi ] |2 = |Ei [ ( F − Ei [ F ] ) Zi ] |2 ≤
1

δi+1

(

Ei

[

F 2
]

− Ei [ F ]2
)
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Combining this with definition of Zπ
2,ti

, i = 0, . . . , n − 2 and the conclusion of Lemma 3.2, we
have

δi+1E

[

| ∆π
i Z |2

]

≤ 2d
(

E

[

| ∆Ψi+1 |2
]

− E

[

|Ei [ ∆Ψi+1 ] |2
] )

+Cδ6
i+1 max

‖α‖=4,5
‖Lαu(ti+1, ·)‖2

∞

(3.13)

Putting together (3.12) and (3.13) we get

E

[

| ∆π
i Y |2 +

δi+1

4d
| ∆π

i Z |2
]

≤ ( 1 + γ1δi+1 )E |Ei [ ∆π
i+1Ψ ] |2

+ Cδi+1E

[

| ∆π
i Y |2

]

+

(

C

γ1
+

1

4d
+ Cδi+1

)

δi+1E

[

| ∆π
i Z |2

]

+ Cδ5
i+1 max

‖α‖=4,5
‖Lαu(ti+1, ·)‖2

∞

≤ ( 1 + γ1δi+1 )E
[

| ∆π
i+1Ψ |2

]

Cδi+1E

[

| ∆π
i Y |2

]

+ Cδ5
i+1 max

‖α‖=4,5
‖Lαu(ti+1, ·)‖2

∞

(3.14)

where we have chosen γ1 = C4d.

We can argue once more with the mean value theorem and Young’s inequality to deduce
that

( 1 − Cδi+1 )E

[

| ∆π
i Y |2 +

δi+1

4d
| ∆π

i Z |2
]

≤ (1 + C ′δi+1)

(

E

[

| ∆π
i+1Y |2 +

δi+1

4d
| ∆π

i+1Z |2
])

+ Cδ5
i+1 max

‖α‖=4,5
‖Lαu(ti+1, ·)‖2

∞ .

for some different constant C ′. By appealing to the discrete version of Gronwall’s lemma
we complete the proof.

Theorem 3.3 justifies the fact that scheme (3.8) produces a second order discretization of
the backward component of the BSDE when (A), (B) hold true and Φ is smooth. Clearly in
this case, max‖α‖=4,5 ‖Lαu(ti+1, ·)‖2

∞ is uniformly bounded, the error on the first backward
step is of O(1/n2) when n points are used on the time discretization and hence, with a
uniform partition n points, we obtain an overall error of O(1/n2).

The more interesting case ocurs when Φ is only Lipschitz continuous. Given the results
of Theorem 2.3, we expect the bound on the derivatives of u to explode as t ↑ T . To
compensate for this and for the fact that our first backward step is of Euler style, we work
with a non equidistant partition that becomes more dense as we approach T . Hence we
are still able to achieve a 1/n2 rate of convergence with a n-points partition.

Corollary 3.4. Let assumptions (A), (B) hold true and assume that Φ is Lipschitz continuous.
Consider the discretization (3.8) along the partition π :

ti = T

(

1 −

(

1 −
i

n

)β
)

, i = 0, . . . , n, β ≥ 5.
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Then, there exists a constant C independent of the partition and of the value function u,
such that

max
0≤i≤n−1

E

[

∣

∣Yti
− Y π

2,ti

∣

∣

2
+
∣

∣Zti
− Zπ

2,ti

∣

∣

2
]1/2

≤
C

n2
.

Proof. Clearly, we can establish the result by estimating the terms δ5
i+1 max‖α‖=4,5 ‖Lαu(ti+1, ·)‖2

∞.
According to Theorem 2.3, we have

n−1
∑

i=1

δ5
i max

‖α‖=4,5
‖Lαu(ti, ·)‖2

∞ ≤
n−1
∑

i=1

δ5
i

C ‖∇Φ‖∞

(T − ti)4

=

n−1
∑

i=1

T 5

(

∫ 1− i−1
n

1− i
n

βsβ−1 ds

)5
C ‖∇Φ‖∞

T 4
(

1 − i
n

)4β

≤
n−1
∑

i=1

Tβ5

n5

(

1 − i−1
n

)5(β−1)

(

1 − i
n

)4β
≤ C/n4

(3.15)

since β ≥ 5.

To complete our proof we estimate the error on the first backward step. Using the standard
estimate on the Euler discretization error of Lebesque integrals we have

∣

∣Yn−1 − Y π
1,tn−1

∣

∣

2
=

∣

∣

∣

∣

Ei

[ ∫ tn

tn−1

f̄ ( s, Xs ) ds

]

∓ f ( Xn−1, Yn−1, Zn−1 ) δn

−f
(

Xn−1, Y π
1,tn−1

, Zπ
1,tn−1

)

δn

∣

∣

2

≤ Cδ2
n

(

1 +
∣

∣Yn−1 − Y π
1,tn−1

∣

∣

2
+
∣

∣Zn−1 − Zπ
1,tn−1

∣

∣

2
)

.

where once again, we have used the mean value theorem. Rearranging terms, we may
argue on the existence of a constant C such that

( 1 − Cδn )

(

∣

∣Yn−1 − Y π
1,tn−1

∣

∣

2
+

δn

4d

∣

∣Zn−1 − Zπ
1,tn−1

∣

∣

2
)

≤ Cδ2
n + Cδn

∣

∣Zn−1 − Zπ
1,tn−1

∣

∣

2

(3.16)

From standard estimates on BSDEs we know that under (A), (B) and (C1)

sup
0≤t≤T

E

[

| Zt |2
]

< +∞.

Lastly, under (C1) we have that

E

[

∣

∣Zπ
1,tn−1

∣

∣

2
]

=
1

δ2
n

E

[

|En−1 [ Φ(Xn)∆Wn ] |2
]

=
1

δ2
n

E

[

|En−1 [ ( Φ(Xn) − Φ(Xn−1) ) ∆Wn ] |2
]

≤ C

(3.17)

Substituting (3.17) into (3.16) and then taking square roots, completes the proof.
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