Biosynthesis

Biosynthesis of Isoprenoids: Terpenes (Including Steroids & Carotenoids)

Alan C. Spivey a.c.spivey@imperial.ac.uk

Imperial College London

Dec 2014

Format & Scope of Lectures

• What are isoprenoids?

- $n \times C_5$ diversity: terpenes, steroids, carotenoids & natural rubber
- 'the isoprene rule'
- mevalonate & 1-deoxyxylulose pathways to IPP & DMAPP

• Monoterpnes (C₁₀)

- regular ('head-to-tail') via geranyl pyrophosphate
- irregular: incl. iridoids (e.g. seco-loganin)
- Sesquiterpenes (C₁₅)
 - farnesyl pyrophosphate derived metabolites
 - sesquiterpene cyclases: pentalenene, aristolochene & 5-epi-aristolochene
- Diterpenes (C₂₀)
 - gibberellins & taxol
- Triterpenes (C₃₀)
 - hopanoids (squalene \rightarrow hopene)
 - steroids (2,3-oxidosqualene \rightarrow lanosterol \rightarrow cholesterol \rightarrow estrone)
 - ring-opened 'steroids': vitamin D_2 & azadirachtin
- Biomimetic cationic cyclisation cascades
- Carotenoids (C₄₀)
 - β-carotene, retinal & vitamin A

Isoprenoids

- isoprenoids are widely distributed in the natural world
 - particularly prevalent in plants and least common in insects; >30,000 known
 - composed of integral numbers of C_5 'isoprene' units:
 - monoterpenes (C₁₀); sesquiterpenes (C₁₅); diterpenes (C₂₀); sesterpenes (C₂₅, rare); triterpenes (C₃₀); carotenoids (C₄₀)

Historical Perspective – 'The Isoprenoid Rule'

- Early 1900s:
 - common structural feature of terpenes integral # of C₅ units
 - pyrolysis of many monoterpenes produced two moles of isoprene:

- 1940s:
 - **biogenesis** of terpenes attributed to oligomers of isoprene 'the isoprene rule'
- 1953:
 - Ruzicka proposes 'the biogenetic isoprene rule' to accomodate 'irregular' terpenoids:
 - *i.e.* that terpenes were derived from a number of *biological equivalents of isoprene* initially joined in a '*head-to-tail*' manner & sometimes subsequently modified enzymatically to provide greater diversity of structure
- 1964:
 - Nobel prize awarded to Bloch, Cornforth & Popjak for elucidation of biosynthetic pathway to cholesterol including the first steps:
 - acetate \rightarrow mevalonate (MVA) \rightarrow isopentenyl pyrophosphate (IPP) & dimethylallyl pyrophosphate (DMAPP)
- 1993:
 - *Rohmer, Sahm* & *Arigoni* elucidate an additional pathway to *IPP* & *DMAPP*:
 - * pyruvate + glyceraldehyde-3-phosphate \rightarrow 1-deoxyxylulose-5-phosphate \rightarrow IPP & DMAPP

Primary Metabolism - Overview

Biosynthesis of Mevalonate

Mevalonate (MVA) is the first committed step of isoprenoid biosynthesis

•

- this key 6-carbon metabolite is formed from three molecules of acetyl CoA via acetoacetyl CoA:

Biosynthesis of IPP & DMAPP - via Mevalonate

IPP & DMAPP are the key C₅ precursors to all isoprenoids

٠

- the main pathway is via: acetyl CoA \rightarrow acetoacetyl CoA \rightarrow HMG CoA \rightarrow mevalonate \rightarrow IPP \rightarrow DMAPP:

HMG CoA reductase inhibitors - Statins

•

- 33 enzyme mediated steps are required to biosynthesise cholesterol from acetyl CoA & in principle the inhibition of any one of these will serve to break the chain. In practice, control rests with HMG-CoA reductase as the result of a variety of biochemical feedback mechanisms
- **'Statins'** inhibit HMG CoA reductase and are used clinically to treat **hypercholesteraemia** a causative factor in **heart disease**
 - e.g. **mevinolin** (=lovastatin[®], Merck) from Aspergillus terreus is a competitive inhibitior of HMG-CoA reductase

Biosynthesis of IPP & DMAPP – via 1-Deoxyxylulose

- the *mevalonate* route to *IPP* & *DMAPP* has been proven in *yeast* & *animals* & in *some plants* & for a long while was believed to be the only pathway to these key intermediates
 - However, in some bacterial labelling studies:
 - no incorporation of mevalonolactone was observed
 - the pattern of label from glucose was inconsistent with derivation via catabolism to acetate
- in **1993** an additional pathway to **IPP** & **DMAPP** was discovered:
 - Rohmer et al. Biochem. J. 1993, 295, 517 (DOI)

The pathway is prevalent in many *pathogenic bacteria* and so its inhibition represents an exciting opportunity for antiinfective therapeutic development: Rohdich J. Org. Chem. 2006, 71, 8824 (DOI)

Chorismate → Coenzymes Q & Vitamins E & K

- Chorismate \rightarrow p- & o-hydroxybenzoic acids \rightarrow coenzymes Q & vitamins E & K
 - NB. 'Mixed' biosynthetic origin: *shikimate/mevalonate (isoprenoid)*

Hemi-Terpenes – 'Prenylated Alkaloids'

- **DMAPP** is an excellent **alkylating agent**
- C₅ units are frequently encountered as part of alkaloids (& shikimate metabolites) due to 'latestage' alkylation by DMAPP
 - the transferred dimethyl allyl unit is often referred to as a 'prenyl group'
 - **'normal prenylation' 'S_N 2'-like** alkylation; **'reverse prenylation' 'S_N 2'-like** alkylation
 - e.g. lysergic acid (recall the ergot alkaloids) a 'normal prenylated' alkaloid (with significant subsequent processing)
 - e.g. roquefortine (recall diketopiperazine alkaloids) a 'reverse prenylated' alkaloid

review: R.M. Williams et al. 'Biosynthesis of prenylated alkaloids derived from tryptophan' Top. Curr. Chem. 2000, 209, 97-173 (DOI)

Linear C_{5n} 'head-to-tail' Pyrophosphates

- head-to-tail C₅ oligomers are the key precursors to isoprenoids
 - geranyl pyrophosphate (C_{10}) is formed by $S_N 1$ alkylation of DMAPP by IPP \rightarrow monoterpenes
 - *farnesyl* (C₁₅) & *geranylgeranyl* (C₂₀) pyrophosphates are formed by *further* S_N1 *alkylations* with *IPP*:

Monoterpenes from Parsley & Sage

apiol

Parsley (*Petroselinum sativum*)

Sage (Salvia officinalis)

thujone

camphene

Monoterpenes from Rosemary & Thyme

camphor

borneol

Rosemary (Rosmarinus officinalis)

Thyme (*Thymus vulgaris*)

thymol

carvacrol

Limonene & Carvone

Chiroscience plc. (now Dow Inc.)

Monoterpenes – α -Terpinyl Cation Formation

- geranyl pyrophosphate isomerises readily via an allylic cation to linalyl & neryl pyrophosphates
 - the leaving group ability of pyrophosphate is enhanced by coordination to 3 × Mg²⁺
 - all three pyrophosphates are substrates for *cyclases via* an α -terpinyl cation:

Monoterpenes – Fate of the α -Terpinyl Cation

- The *α*-terpinyl cation undergoes a rich variety of further chemistry to give a diverse array of monoterpenes
- Some important enzyme catalysed pathways are shown below
 - NB. intervention of Wagner-Meerwein 1,2-hydride- & 1,2-alkyl shifts

Irregular Monoterpenes

- Non-'head-to-tail' linkage of *IPP* &/or *DMAPP* leads to '*irregular' monoterpenes*
 - e.g. daisy (Compositae) & chrysanthemum metabolites:

- Natural crysanthemic acid derivatives are referred to as *pyrethrins* and are natural *insecticides*
- Synthetic analogues of crysanthemic acid are referred to as *pyrethroids*. *e.g.* bifenthrin:

Apparently Irregular Monoterpenes

- apparently 'irregular' monoterpenes can also occur by non-cationic cyclisation of geranyl PP derivatives followed by extensive rearrangement
 - e.g. iridoids named after Iridomyrmex ants but generally of plant origin and invariably glucosidated
 - *e.g.* **seco-loganin** (recall **indole alkaloids**) is a key component of **strictosidine** precorsor to numerous complex medicinally important alkaloids:

Strictosidine → Vinca, Strychnos, Quinine etc.

• The diversity of alkaloids derived from *strictosidine* is stunning and many pathways remain to be fully elucidated:

Sesquiterpenes – Farnesyl Pyrophosphate (FPP)

'S_N2'-like alkylation of geranyl PP by IPP gives farnesyl PP:

 just as geranyl PP readily isomerises to neryl & linaly PPs so farnesyl PP readily isomerises to equivalent compounds – allowing many modes of cyclisation & bicyclisation

Sesquiterpene Cyclases

Christianson et al. Curr. Opin. Struct. Biol. 1998, 695 (DOI)

Terpene Cyclases – Control of Cyclisation

Functional aspects of terpenoid cyclases:

- Templating: Active site provides a template for a <u>specific conformation</u> of the flexible linear isoprenoid starting material.
- **Triggering:** Cyclase <u>initiates carbocation</u> formation.
 - Metal-assisted leaving group departure (e.g. pyrophosphate ionization aided by Mg²⁺)
 - C=C bond protonation (*e.g.* squalene-hopene cyclase, see later).
 - Epoxide protonation (e.g. oxidosqualene cyclase, see later).
- Chaperoning: Chaperones conformations of carbocationic intermediates through the reaction sequence, ordinarily leading to one specific product.
- **Sequestering:** Sequesters the carbocation intermediates by burying the substrate in a hydrophobic cavity that is generally solvent-inaccessible. Carbocations are concomitantly stabilized by the presence of aromatic residues in the active site that exert their effects *via* cation- π interactions

RECALL:
$$= \underbrace{\bigotimes}_{\substack{\delta^{\ominus} \\ \delta^{\ominus} \\ \delta^{\ominus}}} \underbrace{\delta^{\ominus} \text{ on edges}}_{\substack{\delta^{\ominus} \\ \delta^{\ominus} \text{ on faces}}} \begin{bmatrix} R \\ R \\ R \end{bmatrix} \underbrace{\bigotimes}_{\substack{R \\ R}} \underbrace{\operatorname{cation}_{\substack{stabilisation \\ (\sim 40-80 \text{ kJmol}^{-1})}}_{\text{Enz}}$$

- Adapted from: Christianson et al. Curr. Opin. Struct. Biol. 1998, 695 (DOI)
- BUT:
 - individual terpene cyclases can give multiple products, see: Matsuda J. Am. Chem. Soc. 2007, 129, 11213 (DOI)

Sesquiterpene Cyclase Crystal structures

pentalenene synthase

 \rightarrow pentalenolactone (antibiotic)

5-epi-aristolochene synthase

aristolochene synthase

 \rightarrow fungal (myco)toxins (e.g. bipolaroxin, PR-toxin)

Aristolochene & 5-Epi-Aristolochene Synthases

- molecular modelling studies indicate that the shape of the active sites determines the conformation of FPP and thus the stereochemistry of the final product
 - Penicillium roqueforti aristolochene synthase Felicetti & Cane J. Am. Chem. Soc. 2004, 126, 7212 (DOI)

- tobacco 5-epi-aristolochene synthase - Starks, Back, Chappell & Noel Science 1997, 277, 1815 (DOI)

held by enzyme active site in different conformations from above

Diterpenes - Gibberellins

effects of gibberellin A₁ and brassinolide on rice seedlings

Dwarf rice seedlings (on the left) have a defect in the gibberellindependent signalling mechanism

gibberellin A₂₀

Diterpenes – Geranylgeranyl Pyrophosphate

S_N2 alkylation of farnesyl PP by IPP gives geranylgeranyl PP:

- geranylgeranyl PP readily cyclises to give numerous multicyclic diterpenes
 - e.g. gibberellins plant growth hormones

.

• NB. cyclisation initiated by alkene protonation NOT loss of PPO-

• review: L.N. Mander 'Twenty years of gibberellin research' Nat. Prod. Rep. 2003, 20, 49-69 (DOI)

Diterpenes - Taxol

Diterpenes – Geranylgeranyl PP → Taxol

- Taxol is a potent anti-cancer agent used in the treatment of breast & ovarian cancers
 - comes from the bark of the pacific yew (Taxus brevifolia)
 - binds to tubulin and intereferes with the assembly of microtubules
- biosynthesis is from geranylgeranyl PP:

- for details see: http://www.chem.qmul.ac.uk/iubmb/enzyme/reaction/terp/taxadiene.html
- home page is: http://www.chem.qmul.ac.uk/iubmb/enzyme/
 - recommendations of the Nomenclature Committee of the International Union of Biochemistry and Molecular Biology on the Nomenclature and Classification of Enzyme-Catalysed Reactions
 - based at Department of Chemistry, Queen Mary University of London

Triterpenes – *FPP* → *Squalene*

- triterpenes (C₃₀) arise from the 'head to head' coupling of two fanesyl PP units to give squalene catalysed by squalene synthase:
 - squalene was first identified as a steroid precursor from *shark liver oil*
 - the dimerisation proceeds via an unusual mechanism involving electrophilic cyclopropane formation rearrangement to a tertiary cyclopropylmethyl cation and reductive cyclopropane ring-opening by NADPH (NB. exact mechanism disputed)
 - Zaragozic acids (squalestatins) mimic a rearrangement intermediate and inhibit squalene synthase. They constitute interesting leads for development of new treatments for hypercholesteraemia & heart disease (cf. statins)

For an interesting account of the elucidation of this pathway see: Poulter J. Org. Chem. **2009**, 74, 2631 (DOI)

Triterpenes – Squalene \rightarrow 2,3-Oxidosqualene

 squalene is oxidised to 2,3-oxidosqualene by squalene oxidase – which is an O₂/FADH₂dependent enzyme:

the key oxidant is therefore a *peroxyflavin*:

Modes of Cyclisation of Squalene

- all triterpenes (steroids, hopanoids *etc.*) are formed by the action of *cyclase enzymes* on either squalene or 2,3-oxidosqualene
 - *i.e.* different methods of 'triggering' cyclisation

Squalene-Hopene Cyclase (SHC)

- Squalene-Hopene Cyclase (SHC) catalyses the formation of hopene from squalene:
 - what does the enzyme have to do to achieve such exquisite regio- & stereoselectivity over the formation of 9 new stereogenic centres?
 - enforce an appropriate conformation of squalene
 - activate the C2 alkene by protonation
 - shield reactive cations from nucleophiles (e.g. H₂O) using aromatic residues (cation-π)
 - position a general base precisely to facilitate the terminal elimination
 - until recently, the 'appropriate' conformation was believed to be the formally appealing 'all-chair' conformation allowing for a concerted cationic ring-closure cascade (shown below)
 - remaining stereocontrol would then be taken care of by *intrinsic stereoelectronics*
 - *i.e.* correct orbital overlap
 - however, this requires anti-Markovnikov regioselectivity for the C & D ring-closures...

Squalene-Hopene Synthase (SHC)

X-ray crystal structure: Wendt, Poralla & Schulz Science, 1997, 277, 1811 (DOI)

Squalene-Hopene Synthase - Mechanism

- The process is apparently more complex & has more recently been shown to involve:
 - 2x Markovnikov ring-closure/1,2-alkyl-shift ring-expansion sequences to establish the C & D rings
 - lessons?
 - the *conformation* enforced by the enzyme is *NOT* strictly an *all-chair* one! (although probably very close)
 - · the process is NOT concerted, discrete cationic intermediates are involved
 - stereoelectronics dictate the regio- & stereoselectivity

review: Wendt et al. Angew. Chem. Int. Ed. 2000, 39, 2812 (DOI) & Wendt ibid 2005, 44, 3966 (DOI)

Oxidosqualene-Lanosterol Cyclase (OSC)

- oxidosqualene-lanosterol cyclase catalyses the formation of lanosterol from 2,3-oxidosqualene:
 - this cascade establishes the characteristic ring system of ALL steroids
 - until recently, as for SHC, the enzyme was believed to enforce a *chair-boat-chair conformation* to allow a *concerted cationic ring-closure cascade* followed by a series of *suprafacial 1,2-shifts* (shown below)
 - however, this also requires **anti-Markovnikov regioselectivity** for the **C ring-closure...**

Oxidosqualene-Lanosterol Cyclase – Mechanism

- This process has also been shown to involve a *Markovnikov ring-closure/1,2-alkyl-shift ring*expansion sequence to establish the *C ring*
 - again, the *conformation* enforced by the enzyme is *NOT strictly a chair-boat-chair* one (although probably close), the process is *NOT concerted*, discrete *cationic intermediates* are involved & *stereoelectronics dictate* the *regio-* & *stereoselectivity*

- "The enzyme's role is most likely to shield intermediate carbocations... thereby allowing the hydride and methyl group migrations to proceed down a thermodynamically favorable and kinetically facile cascade"
 - Wendt et al. Angew. Chem. Int. Ed. 2000, 39, 2812 (DOI) & Wendt ibid 2005, 44, 3966 (DOI)

Lanosterol → Cholesterol – Oxidative Demethylation

Several steps are required for conversion of *lanosterol* to *cholesterol*: •

[-> vitamin D]

NADH

Cholesterol → Human Sex Hormones

- **cholesterol** is the precursor to the human sex hormones **progesterone, testosterone** & **estrone**
 - the pathway is characterised by **extensive oxidative processing** by **P**₄₅₀ **enzymes**
 - estrone is produced from androstendione by oxidative demethylation with concomitant aromatisation:

NB. The involvement of a peroxyacetal during aromatase demethylation has recently been disputed, see: Guengerich *J. Am. Chem. Soc.* **2014**, *136*, 15036 (DOI).

Steroid Ring Cleavage - Vitamin D & Azadirachtin

- vitamin D_2 is biosynthesised by the **photolytic cleavage** of Δ^7 -dehydrocholesterol by UV light:
 - a classic example of photo-allowed, conrotatory electrocyclic ring-opening:

- D vitamins are involved in *calcium absorption; defficiency* leads to *rickets* (brittle/deformed bones)
- Azadirachtin is a potent insect anti-feedant from the Indian neem tree:
 - exact biogenesis unknown but certainly via steroid modification:

Biomimetic Cationic Cyclisations - Progesterone

- in 1971, W.S. Johnson utilized a biomimetic polyolefin cyclization in a pioneering & elegant total synthesis of the hormone progesterone
 - the substrate's preference for the 'chair-chair' conformation provided the progesterone core with impressive stereoselectivity
 - the cascade was *initiated* by *protonation* of a *tert-alcohol*

- Johnson, Gravestock & McCarry J. Am. Chem. Soc. 1971, 93, 4332 (DOI)

Biomimetic Cationic Cyclisations – Enantioselective

 Yamamoto has achieved several enantioselective cationic cascade cyclisations using a chiral 'Lewis acid assisted Brønsted acid' (LBA) prepared by mixing binol & SnCl₄:

- Yamamoto et al. J. Am. Chem. Soc., 1999, 121, 4906 (DOI)
- Yamamoto et al. J. Am. Chem. Soc. 2001, 123, 1505 (DOI)

Carotenoids – β -Carotene & vitamin A₁

- *Carotenoids* (C₄₀) are coloured pigments made by photosynthetic plants & certain algae, bacteria & fungi. Dietary ingestion by birds and further processing gives rise to bright feather pigments *etc.*
 - biosynthesised by *head-to-head* coupling of two geranylgeranyl PP units to give lycopersene:

- subsequent oxidative degradation (*cf.* ozonolysis!) gives *retinal* (mediator of vision) & *vitamin* A₁:

•

Primary Metabolism - Overview

