Biosynthesis

Biosynthesis of Fatty Acids & Polyketides

Alan C. Spivey a.c.spivey@imperial.ac.uk

Imperial College London

Dec 2014

Format & Scope of Lectures

• *What are fatty acids?*

- 1° metabolites: fatty acids; 2° metabolites: their derivatives
- biosynthesis of the building blocks: acetyl CoA & malonyl CoA

• *Fatty acid synthesis by Fatty Acid Synthases (FASs)*

- the chemistry involved
- the FAS protein complex & the dynamics of the iterative synthesis process

• *Fatty acid secondary metabolites*

- polyacetylenes
- eiconasiods: prostaglandins, thromboxanes & leukotrienes
- branched and cyclopropanated fatty acid derivatives

• *What are polyketides?*

- definitions & variety
- $-$ ¹³C labelling techniques
- *Polyketide synthesis by PolyKetide Synthases (PKSs)*
	- the chemistry involved
	- the PKS protein complexes & the dynamics of the iterative synthesis process

• *Polyketide secondary metabolites*

- Type I modular metabolites: macrolides *e.g.* erythromycin & rapamycin
- Type I iterative metabolites: *e.g.* mevinolin (=lovastatin®)
- Type II iterative metabolites: aromatic compounds and polyphenols: *e.g.* actinorhodin *etc.*

Fatty Acid Primary Metabolites

OH OH OH *glycerol*

> $-OCOR₁$ $-OCOR₂$ $-OCOR₃$

glycerides

3x fatty acids

• *Primary metabolites:*

– *fully saturated, linear carboxylic acids* & derived *(poly)unsaturated derivatives:*

- constituents of essential natural waxes, seed oils, *glycerides* (fats) & phospholipids
- *structural role glycerides* & phospholipids are essential constituents of cell membranes
- *energy storage glycerides* (fats) can also be catabolised into acetate → citric acid cycle
- *biosynthetic precursors* for elaboration to secondary metabolites

Fatty Acids Derivatives - Secondary Metabolites

Secondary metabolites \bullet

- further elaborated derivatives of polyunsaturated fatty acids (PUFAs) $\overline{}$
	- e.g. polyacetylenes & 'eicosanoids' (prostaglandins, thromboxanes & leukotrienes) \bullet

Primary Metabolism - *Overview*

Biosynthesis of Malonyl Coenzyme A

- *Malonyl coenzyme A* is the key *'extender unit'* for the biosynthesis of *fatty acids (& polyketides):*
	- is formed by the *carboxylation* of *acetyl coenzyme A* mediated by a *biotin-dependent enzyme*
	- this is the *first committed step of fatty acid/polyketide biosynthesis* (& is a rate controlling step)

Oxidative Decarboxylation of Pyruvate

- *Oxidative decarboxylation* of pyruvate is catalysed by the *Pyruvate Dehydrogenase Complex (PDC)*
	- PDC is a huge complex comprising many copies of each of 3 enzymes:
		- 24 \times E₁ Pyruvate dehydrogenase; 24 \times E₂ Dihydrolipoyl transferase; 12 \times E₃ Dihydrolipoyl dehydrogenase
	- Pyruvate dehydrogenase effects the key decarboxylation using thiamine pyrophosphate as a cofactor

Oxidative Decarboxylation of Pyruvate

- *The Pyruvate Dehydrogenase Complex (PDC)*
	- <http://www.bmsc.washington.edu/WimHol/figures/figs5/WimFigs5.html>

Components of a 2-oxo acid dehydrogenase multienzyme complex and the dynamics of its functional cycle.

Biosynthesis of Malonyl Coenzyme A

- *Bicarbonate* is the source of the CO₂:
	- the bicarbonate is first *activated* via *phosphorylation* by *ATP*
	- then the *phosphorylated bicarbonate* carboxylates *biotin* to give *carboxybiotin*
	- then the *carboxybiotin* carboxylates the enolate of *acetyl CoA* to give *malonyl CoA:*

- the carboxylation of biotin & acetyl CoA are mediated by a *single biotin-dependent enzyme (complex)* having both *biotin carboxylase* and *transcarboxylase active sites*
- *NB.* coupling to ATP 'hydrolysis' provides *energy* to drive carboxylation processes

Acetyl CoA Carboxylase

• the biotin co-factor is swung between two active sites:

Biosynthesis of Fatty Acids – *Iterative Oligomerisation*

- *fatty acids* are biosynthesised from *acetyl CoA* as a *starter unit* by *iterative* 'head-to-tail' *oligomerisation* involving:
	- condensation with *malonyl CoA* as an *extender unit* (with loss of *CO2*) a *decarboxylative Claisen condensation*
	- 3-step *reduction* of the resulting *ketone → methylene*
- after **n = 3-8 iterations** the *C8-20 saturated fatty acid* is released from the enzyme(s):

The Decarboxylative Claisen Condensation (dCc)

• *in vitro* – the classical *Claisen condensation*:

• *in vivo* - the *decarboxylative Claisen condensation* catalysed by a *ketosynthase (KS)*

- the energy released upon loss of $CO₂$ provides a driving force for the condensation
- thioesters are also particularly reactive partners in this type of condensation...

The Claisen Condensation - *Why Thioesters*?

- recall the chemistry of *coenzyme A* (1st lecture) properties of **alkyl thioesters** (*cf.* alkyl esters)
	- *good leaving group ability of RS-* (*cf.* RO-)
		- due to pK_a (RSH) ~10 *cf.* pK_a (ROH) ~16

- *high acidity of protons* ^α *to the carbonyl of thioesters* (*cf.* ester) & *weak C-S bond* (*cf.* C-O bond):
	- due to poor orbital overlap between the lone pairs on sulfur (n_s) [*cf.* n_0] and the carbonyl anti bonding orbital $\pi^*_{C=0}$

Ketone → Methylene - *Reduction*

- *ketone* → *methylene* reduction is achieved *via* a *3-step process:*
	- *1. NADPH*-mediated *ketone → alcohol reduction* catalysed by a *keto reductase (KR)*
	- *2. syn-eliminataion* of water catalysed by a *dehydratase (DH)*
	- *3. NADPH*-mediated *hydrogenation* of the double bond catalysed by an *enoyl reductase (ER)*

- all steps are generally stereospecific but stereospecificity varies from organism to organism
	- indicated specificities are for *human FAS*

Biosynthesis of Fatty Acids – *Overview of FAS*

- The *in vivo* process by which all this takes place involves a 'molecular machine' *Fatty Acid Synthase (FAS)*
	- *Type I FAS: single multifunctional protein complex* (*e.g.* in mammals incl. humans)
	- *Type II FAS: set of discrete, dissociable single-function proteins (e.g. in bacteria)*
	- *All FASs* comprise *8 components* (ACP & 7× catalytic activities): *ACP*, *KS*, *AT*, *MT*, *KR*, *DH*, *ER* & [*TE*] :

KS = keto synthase (also known as **CE** = condensing enzyme); **AT** = acetyl transferase; **MT** = malonyl transferase; **KR** = keto reductase; **DH** = dehydratase; **ER** = enoyl reductase; **TE** = thioesterase; **ACP** = acyl carrier protein

The Acyl Carrier Protein (ACP)

- the *Acyl Carrier Protein (ACP)* is the key protein that allows the growing oligomer to access the appropriate active sites
- The ACP is first *primed* by the post-translational modification of one of its serine hydroxyl groups:
	- the introduction of a *phosphopantetheine 'swinging-arm'* by reaction with *acetyl coenzyme A:*

- this swinging-arm provides *flexibility* for module-module acyl transfer & provides *binding energy* for catalysis
- the ACP is inactive prior to priming

Human Fatty Acid Synthase (FAS)

- *Human FAS* (EC 2-3-185) is a *type I FAS* a homodimer of a multifunctional protein (272 kDa)
	- each monomer is 'barrel' shaped with diameter \sim 210 Å & length \sim 250 Å
	- each subunit protein contains seven catalytic activities plus the acyl carrier protein (ACP)

– *NB.* keto synthases (**KS**) are also smetimes referred to as condensing enzymes (**CE**)

Human Fatty Acid Synthase (FAS)

- the first three-dimensional structure of human fatty acid synthase at 4.5 Å resolution by X-ray crystallography:
	- Maier, Jenni & Ban *Science* **2006**, *311*, 1258 (**[DOI](http://dx.doi.org/10.1126/science.1123248)**) ; also Fungal FAS @ 3.1 Å resolution see: Jenni *et al. Science* **2007**, *316*, 254 & 288

Structural overview. (**A**) Front view: FAS consists of a lower part comprising the KS (lower body) and MAT domains (legs) connected at the waist with an upper part formed by the DH, ER (upper body), and KR domains (arms). (**B**) Top view of FAS with the ER and KR domains resting on the DH domains. (**C**) Bottom view showing the arrangement of the KS and MAT domains and the continuous electron density between the KS and MAT domains

FATTY ACID BIOSYNTHESIS (type II FAS)

NB. the following sequence of slides have been adapted from: [http://www.courses.fas.harvard.edu/%7echem27/](http://www.courses.fas.harvard.edu/~chem27/)

• AT₁ loads acetyl group onto KS_1

• AT_1 loads malonyl group onto ACP₁

• $KS₁$ catalyzes Claisen condensation

• $KR₁$ catalyzes reduction of ketone

 \cdot DH₁ catalyzes dehydration of alcohol

'SH

 \cdot ER₁ catalyzes reduction of alkene

• $KS₂$ catalyzes translocation to module 2

• MT₂ loads malonyl group onto ACP_2

• $KS₂$ catalyzes Claisen condensation

• $KR₂$ catalyzes reduction of ketone

• $DH₂$ catalyzes dehydration of alcohol

 \cdot ER₂ catalyzes reduction of alkene

• TE catalyzes transesterification

• TE catalyzes hydrolysis

Biosynthesis of Unsaturated Fatty Acids

- *two mechanisms* are known for the introduction of double bonds into fatty acids:
	- in *BACTERIA: anaerobic [O]* → monounsaturated FAs (*MUFAs*)
	- in *MAMMALS*, *INSECTS* & *PLANTS: aerobic [O]* → *MUFAs* & polyunsaturated FAs (*PUFAs*)

Biosynthesis of Polyacetylenes

- A family of over 1000 natural products!
	- *review:* Tykwinski *Angew. Chem. Int. Ed.* **2006**, *45*, 1034 (**[DOI](http://dx.doi.org/10.1002/anie.200502071)**)
- Few detailed pathways have been established but generally involve *sequential dehydrogenations:*
	- *e.g.* biosynthesis of *matricaria ester (Matricaria chamomilla):*
		- *component of chamomile tea*

Matricaria chamomilla

Biosynthesis of Prostaglandins & Thromboxanes

- *prostaglandins* & *thromboxanes* are derived from further oxidative processing of arachiodonic acid
- both are important *hormones* which control *e.g.* smooth *muscle contractility* (blood pressure), *gastric secretion*, *platelet aggregation* & *inflammation* (<nM activity)
	- various pharmaceuticals including *corticosteroids* & *asprin* inhibit biosynthethetic steps in these pathways

Biomimetic Synthesis of Prostaglandins

- In 1984 Corey published a classsic biomimetic total synthesis of prostaglandins
	- Corey, Shimoji & Shih J. Am. Chem. Soc. 1984, 106, 6425 (DOI)

review: E.J. Corey & X.-M. Cheng 'The logic of chemical synthesis' Wiley, New York, 1989, pp297

Biosynthesis of Leukotrienes

- *leukotrienes* are the other main class of 2° metabolites derived from *arachidonic acid*
	- they are potent (<nM) *inflammatory substances* released during allergic reactions

Branched & Cyclopropanated Fatty Acids

- fatty acid metabolites occaisionally contain 'extra' methyl groups:
	- there are *two methods* by which these are added:
		- by use of a different extender unit *methyl malonyl CoA:*

• by SAM-mediated *methylation*/*cyclopropanation* process:

The Polyketide Pathway

- *Polyketides* are also sometimes known as *acetogenins*
- *acetyl CoA* is also the starting point for the biosynthesis of *polyketide* secondary metabolites
- these metabolites are topologically very different to the fatty acid metabolites but are in fact synthesised in a very similar fashion. The significant difference is that during the iterative cycle of chain extension *the* β*-keto group is generally not completely reduced out*. This gives rise to huge structural diversity based around a 1,3-oxygenation pattern & cyclisation to give aromatic compounds

• *NB.* unlike fatty acids. polyketides are NOT biosynthesised by humans – only microorganisms (bacteria) & fungi

Polyketides

- the structural variety of *polyketide secondary metabolites* is very wide:
	- *NB.* starter units marked in red; extender units in bold black; post oligomerisation appended groups in blue

Historical Perspective – *'The Acetate Hypothesis'*

• *1907: James Collie* (University of London) converts *dehydroacetic acid* to *orcinol* by boiling with $Ba(OH)$ ₂ (while trying to deduce the structure of the former):

- Collie perceptively postulated the *triketone* as an intermediate *&* suggetsed that this might also be an *intermediate* in the *biosynthesis* of *orcinol* (the 'polyketide hypothesis')
- *1955: Arthur Birch* used 14C labelled acetate to show that 6-methylsalicylic acid (ex. *Penicillium patulum*) was biosynthesised by head-to-tail oligomerisation of *4 × acetate units* and proposed the following biogenesis – proceeding *via* a *tetraketide intermediate* (*cf.* Collie!):

Isotopic Labelling Studies – *Use of 13C*

- *1970s:* Commercial availability of 13C & 2H labelled precursors & NMR instruments allowed rapid determination of labelling patterns of polyketides (*cf.* radiolabelling/degradation)
- *single labelled acetate {[1-13C]- or [2-13C]-acetate, cf.* 14C label used by Birch*}*
	- *1. feed ~99.9% 13C enriched acetate*
	- *2. verify uniform incorporation along backbone (ideally obtain incorporation to give ~ doubling of signal size)*
	- *3. assign positions of labelled carbons by reference to standard 13C spectrum*

• *double labelled acetate {[1,2-di-13C]-acetate}*

- *1. feed >90% 2× 13C enriched acetate*
- *2. observe pairs of 13C-13C coupled doublets (NB. again incorporation to a level representing ~ doubling of signal sizes is standard; since natural abundance is ~1% this amounts to ~1% incorporation...this ensures that statistically very few (1 in 104) labelled acetates will be sequentially incorporated & result in inter-unit coupling patterns)*
- *3. assign positions of labelled carbons by reference to standard 13C spectrum*
- *e.g.*

Isotopic Labelling Studies – *Use of 13C/2H*

- the *'*α*-shift' technique* for following the fate of hydrogens:
	- allows # of hydrogens (deuteriums) retained at the labelled carbon following biosynthesis \rightarrow evidence of redox processing *etc.*

– useful for identifying *starter units e.g.*

• *13C & 3× 2H labelled acetate {[2-13C,2H3]-acetate}*

- *1. feed multiply labelled acetate*
- *2. observe shifts of labelled carbons*
- *3. assign positions of labelled carbons & determine fate of attached hydrogens*

Biosynthesis of Polyketides – *Oligomerisation Steps*

- *polyketides* are biosynthesised by a process very similar to that for *fatty acids*
	- the key *differences* are:
		- *greater variety* of *starter units, extender units* & *termination processes*
		- *absent or incomplete reduction of the iteratively introduced* β*-carbonyl groups: ie. each cycle may differ in terms of KR, DH & ER modules & stereochemistry*

[–] this leads to *enormous diversity...*

Polyketide Diversity

CoAS

• *starter units:*

• *extender units:*

O

CoAS

R' = H R' = Me R' = Et

R = Me R = Et

O

R'

O

R = *ⁿ* **Pr &** *ⁱ* **Pr**

O

acetyl CoA propionyl CoA butyryl CoA

O

O

CoAS

O

isobutyryl CoA

CoAS

• *non-functional or missing KR, DH, ER:*

O

CoAS

 $CoAS²$

• *stereochemistry:*

1) side chain stereochemistry (determined by KS_n) 2) OH stereochemistry (determined by KR_{n+1}) **3)** alkene stereochemistry (determined by DH_{n+1})

- *termination step:*
	- depends on nucleophile that releases product at *TE* stage:

Biosynthesis of Polyketides – *Overview of PKS*

- the *in vivo* process of polyketide synthesis involves *PolyKetide Synthases (PKSs):*
	- *PKSs* (except Type II, see later) comprise the same *8 components* as *FASs*. *i.e.* (ACP & 7× catalytic activities): *ACP*, *KS*, *AT*, *MT*, [*KR*, *DH*, *ER* & *TE]*
	- *Type I PKSs: single (or small set of) multifunctional protein complex(es)*
		- *modular (microbial)* each 'iteration' has a dedicated set of catalytic site s (*→ macrolides*)
		- *iterative (fungal)* single set of catalytic sites, each of which *may* operate in each iteration (*cf.* FASs) (*→ aromatics/polyphenols* - generally)
	- *Type II PKSs: single set of discrete, dissociable single-function proteins (see later)*
		- *iterative (microbial*) each catalytic module *may* operate in each iteration (*cf.* FASs) (*→ aromatics/polyphenols*)

KS = keto synthase; **AT** = acetyl transferase; **MT** = malonyl transferase; **KR** = keto reductase; **DH** = dehydratase; **ER** = enoyl reductase; **TE** = thioesterase; **ACP** = acyl carrier protein

POLYKETIDE BIOSYNTHESIS [Type I – (modular)]

NB. the following sequence of slides has also been adapted from: [http://www.courses.fas.harvard.edu/%7echem27/](http://www.courses.fas.harvard.edu/~chem27/)

• $AT₀$ loads starting group (propionyl) onto ACP₀

• $KS₁$ catalyzes translocation to module 1

• AT_1 loads methylmalonyl group onto ACP₁

• $KS₁$ catalyzes Claisen condensation

• $KR₁$ catalyzes reduction of ketone

• no DH_1 activity

• no ER_1 activity

• $KS₂$ catalyzes translocation to module 2

- *Electron cryo-microscopy has recently thrown additional light on how this process works for the Type 1 PKS that synthesises pikromycin in Streptomyces venezuelae.*
	- Dutta *et al*. *Nature* **2014**, *510*, 512-517 (**[DOI](http://dx.doi.org/10.1038/nature13423)**) and Whicher *et a*l. *Nature* **2014**, *510*, 560-564 (**[DOI](http://dx.doi.org/10.1038/nature13409)**)
	- For a video of the process see: <http://cen.acs.org/articles/92/i25/Polyketide-Synthase-Secrets-Revealed.html>

'Deconvolution' of Type I(modular) PKSs

- *deduce the module structure for the type I modular PKS responsible for the synthesis of this hexaketide:*
	- 1. identify the *last building block:*

- 2. identify *each extender unit* (working back from the last one):
	- *2C* in the *backbone*
	- + 0, 1, 2 (or more) C in the *sidechain*

3. identify the *starter unit:*

– the module that appended this unit is designated *module 0*

4. deduce what happens to each ketone: *NB.* module *n* modifies the ketone of the building block added by module *n-1*

Biosynthesis of Erythromycin – *Type I(modular) PKS*

- *6-deoxyerthronolide* is a precursor to *erythromycin A bacterial* antibiotic (*Streptomyces erythreus*):
	- *propionate* based *heptaketide*; 3 multifunctional polypeptides (DEBS1, DEBS2 & DEBS3, all ~350 kDa)
	- Katz *et al. Science* **1991**, *252*, 675 (**[DOI](http://dx.doi.org/10.1126/science.2024119)**); Staunton, Leadley *et al. Science* **1995**, *268*, 1487 (**[DOI](http://dx.doi.org/10.1126/science.7770773)**); Khosla *et al. J. Am. Chem. Soc.* **1995**, 9105 (**[DOI](http://dx.doi.org/10.1021/ja00140a043)**); *review:* Staunton & Weissman *Nat. Prod. Rep.* **2001**, *18*, 380 (**[DOI](http://dx.doi.org/10.1039/a909079g)**)

Biosynthesis of Rapamycin – *Type I(modular) PKS*

- *rapamycin – bacterial* immunosuppressant used in organ transplant surgery:
	- mixed polyketide (*acetate* & *propionate*)/peptide with novel cyclohexyl carboxamide starter unit
	- 3 multifunctional polypeptides with 70 catalytic functions!
	- RAPS1 (~900 kDa, 4 modules), RAPS2 (1.07 MDa, 6 modules), RAPS3 (660 kDa, 4 modules)
	- Staunton, Leadley *et al.* Proc. *Natl. Acad. Sci. USA* **1995***, 92,* 7839 (**[DOI](http://intl.pnas.org/cgi/content/abstract/92/17/7839)**); *ibid. Gene* **1996**, *169*, 9 (**[DOI](http://dx.doi.org/10.1016/0378-1119(95)00800-4)**)

Biomimetic Decarboxylative Thioester Aldol

• recall the key C-C bond forming process in both FAS and PKS chain extension is a decarboxylative Claisen condensation of enzyme thioester-bound acetyl and malonyl residues:

- Shair has developed an exceptionally mild *aldol* reaction of malonic acid half thioesters (MAHTs) inspired by this process:
	- Shair *et al. J. Am. Chem. Soc.* **2003**, *125*, 2852 (**[DOI](http://dx.doi.org/10.1021/ja029452x)**)

Biomimetic Iterative Claisen-Like Condensations

- Harrison has developed a glycoluril 'template' to mimic the proximal ketosynthase (KS) & acyl carrier protein (ACP) units in FAS and PKS and achieved iterative chain extension of up to eight carbons:
	- Harrison *et al. J. Chem. Soc., Perkin Trans. 1* **1998**, 437 (**[DOI](http://dx.doi.org/10.1039/a706855g)**)

Biosynthesis of Mevinolin – *Type I(iterative) PKS*

- *mevinolin (=lovastatin®)* cholesterol lowering metabolite of filamentous *fungus Aspergillus terreus*
	- inhibits HMG-CoA → mevalonate (see next lecture) rate-limiting step in biosynthesis of *cholesterol*
	- *acetate* based polyketide composed of a diketide and nonaketide linked by an ester
	- 2 × Type I (iterative) PKSs: LNKS and LDKS...both contain *MeT* (*methyl transferase*) activities
	- Hutchinson *et al. Science* **1999**, *284*, 1368 (**[DOI](http://dx.doi.org/10.1126/science.284.5418.1368)**)

Type II PKSs – *Enzyme Clusters (Microbial)*

- **Type II PKSs:** single set of discrete, dissociable single-function proteins (ACP & 6x catalytic functions): ACP, KS_α, KS_β, [KR, DH, ER, & TE] [NB. NO acetyl or malonyl transferases (AT, MT)]
	- *iterative* each catalytic module *may* operate in each iteration (*cf.* FASs) (*→ aromatics/polyphenols*)
- these clusters (generally) use *malonate* as BOTH *starter* & *extender* unit
- their *ACP proteins* are able to load malonate direct from malonyl CoA (no MT required)
	- the *starter malonate* is *decarboxylated* by '*ketosynthase'* β *(KS*β) to give *S-acetyl-ACP*
	- the *extender malonates* undergo *decarboxylative Claisen condensations* by *ketosynthase* α *(KS_a)*
- these clusters rarely utilise *KR*, *DH* or *ER* activities and produce 'true' polyketides:

Biosynthesis of Actinorhodin – *Type II PKS*

- *actinorhodin –* octaketide *bacterial antibiotic* (*Streptomyces coelicolor*)
	- Hopwood *Chem. Rev.* **1997***, 97,* 2465 (**[DOI](http://dx.doi.org/10.1021/cr960034i)**)

- *timing* of *1st cyclisation* and mechanism of *control of chain length* uncertain
	- *octaketide* synthesis then cyclisation? (as shown above)
	- *hexaketide* synthesis then cyclisation then two further rounds of extension?
- indications can sometimes be gleaned from *biomimetic syntheses*...

Biomimetic Synthesis of Quinone Antibiotics

- Pioneered by Harris. *e.g.* classic biomimetic synthesis of *chrysophanol*:
	- position of 'reduced' ketone dictates cyclisation site
	- Harris *et al. J. Am. Chem. Soc.* **1976**, *98*, 6065 (**[DOI](http://dx.doi.org/10.1021/ja00435a063)**); see also Barrett *et al. J. Chem. Soc., Perkin Trans. 1.* **1980**, 2272 (**[DOI](http://dx.doi.org/10.1039/P19800002272)**)

- Abell & Staunton's biomimetic syntheses of *rubrofusarin* & *alternariol*:
	- timing of pyrone ring formation dictates subsequent cyclisation-aromatisation pathway
	- Abell, Bush, Staunton *J. Chem. Soc., Chem. Commun.* **1986**, 15 (**[DOI](http://dx.doi.org/10.1039/C39860000015)**)

– *review* of biomimetic quinone antibiotic synthesis: Krohn *Eur. J. Org. Chem.* **2002**, 1351 (**[DOI](http://dx.doi.org/10.1002/1099-0690(200204)2002:8%3c1351::AID-EJOC1351%3e3.0.CO;2-D)**)

Biosynthesis of Citrinin - *Type II PKS*

• *Citrinin* is a liver toxic metabolite of the mould *Penicillium citrinum*

- *Note:*
	- role of *SAM* for introduction of *methyl groups*
	- *P450* then *NADP+* for *Me → CO2H oxidation*...

Methylation by SAM

• methylation at carbon by SAM takes place at the 2-position of 1,3-dicarbonys (or at the 2-position of phenols):

Oxidation by P_{450} Enzymes

• Hydroxylation at unactivated CH positions is achieved by the haem co-factor in P_{450} enzymes:

Griseofulvin Biosynthesis - *Type II PKS*

- *Griseofulvin* is a mould metabolite (*Penicillium griseofulvum*, *Penicillium janczewskii*) used to treat worm infections in animals and humans
	- *Birch* delineated the basic biogenesis in the *1950s* & in *1959* griseofulvin was marketed as an *oral fungicide* by *ICI* & *Glaxo* (as *Fulcin® & Grisovin®, respectively*)

Scope of Structures - *Type II PKS*

• *microbial polyphenolic* metabolites:

• many display interesting biological activities...

Primary Metabolism - *Overview*

