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Format & Scope of Lectures 
• What are fatty acids?  

– 1° metabolites: fatty acids; 2° metabolites: their derivatives 
– biosynthesis of the building blocks: acetyl CoA & malonyl CoA 

• Fatty acid synthesis by Fatty Acid Synthases (FASs) 
– the chemistry involved 
– the FAS protein complex & the dynamics of the iterative synthesis process  

• Fatty acid secondary metabolites 
– polyacetylenes 
– eiconasiods: prostaglandins, thromboxanes & leukotrienes 
– branched and cyclopropanated fatty acid derivatives 

• What are polyketides? 
– definitions & variety 
– 13C labelling techniques 

• Polyketide synthesis by PolyKetide Synthases (PKSs)  
– the chemistry involved 
– the PKS protein complexes & the dynamics of the iterative synthesis process 

• Polyketide secondary metabolites 
– Type I modular metabolites: macrolides – e.g. erythromycin & rapamycin 
– Type I iterative metabolites: e.g. mevinolin (=lovastatin®) 
– Type II iterative metabolites: aromatic compounds and polyphenols: e.g. actinorhodin etc.  



Fatty Acid Primary Metabolites 
• Primary metabolites: 

– fully saturated, linear carboxylic acids & derived (poly)unsaturated derivatives:   
• constituents of essential natural waxes, seed oils, glycerides (fats) & phospholipids 
• structural role – glycerides & phospholipids are essential constituents of cell membranes 
• energy storage – glycerides (fats) can also be catabolised into acetate → citric acid cycle 
• biosynthetic precursors – for elaboration to secondary metabolites  
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Fatty Acids Derivatives – Secondary Metabolites 
• Secondary metabolites 

– further elaborated derivatives of polyunsaturated fatty acids (PUFAs) 
• e.g. polyacetylenes & ‘eicosanoids’ (prostaglandins, thromboxanes & leukotrienes)  
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Primary Metabolism - Overview 

CO2 + H2O

1)  'light reactions': hv -> ATP and NADH 
2) 'dark reactions': CO2 -> sugars (Calvin cycle)
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Biosynthesis of Malonyl Coenzyme A 
• Malonyl coenzyme A is the key ‘extender unit’ for the biosynthesis of fatty acids (& polyketides): 

– is formed by the carboxylation of acetyl coenzyme A mediated by a biotin-dependent enzyme 
– this is the first committed step of fatty acid/polyketide biosynthesis (& is a rate controlling step) 
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Oxidative Decarboxylation of Pyruvate 
• Oxidative decarboxylation of pyruvate is catalysed by the Pyruvate Dehydrogenase Complex (PDC) 

– PDC is a huge complex comprising many copies of each of 3 enzymes: 
• 24 × E1 Pyruvate dehydrogenase; 24 × E2 Dihydrolipoyl transferase; 12 × E3 Dihydrolipoyl dehydrogenase  

– Pyruvate dehydrogenase effects the key decarboxylation using thiamine pyrophosphate as a cofactor 
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Oxidative Decarboxylation of Pyruvate 
• The Pyruvate Dehydrogenase Complex (PDC) 

– http://www.bmsc.washington.edu/WimHol/figures/figs5/WimFigs5.html 

http://www.bmsc.washington.edu/WimHol/figures/figs5/WimFigs5.html


Biosynthesis of Malonyl Coenzyme A 
• Bicarbonate is the source of the CO2: 

– the bicarbonate is first activated via phosphorylation by ATP 
– then the phosphorylated bicarbonate carboxylates biotin to give carboxybiotin 
– then the carboxybiotin carboxylates the enolate of acetyl CoA to give malonyl CoA:   

 
 
 
 
 
 
 
 
 
 
 
 
 
 

– the carboxylation of biotin & acetyl CoA are mediated by a single biotin-dependent enzyme (complex) 
having both biotin carboxylase and transcarboxylase active sites 

– NB. coupling to ATP ‘hydrolysis’ provides energy to drive carboxylation processes  
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Acetyl CoA Carboxylase 
• the biotin co-factor is swung between two active sites: 

bicarbonate coupled to biotin transfer to acetyl CoA 



Biosynthesis of Fatty Acids – Iterative Oligomerisation  
• fatty acids are biosynthesised from acetyl CoA as a starter unit by iterative ‘head-to-tail’ 

oligomerisation involving: 
– condensation with malonyl CoA as an extender unit (with loss of CO2) – a decarboxylative Claisen 

condensation 
– 3-step reduction of the resulting ketone → methylene 

• after n = 3-8 iterations the C8-20 saturated fatty acid is released from the enzyme(s): 
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The Decarboxylative Claisen Condensation (dCc) 
• in vitro – the classical Claisen condensation: 

 
 
 
 
 
 
 

• in vivo - the decarboxylative Claisen condensation catalysed by a ketosynthase (KS) 
 
 
 
 
 
 
 

– the energy released upon loss of CO2 provides a driving force for the condensation 
– thioesters are also particularly reactive partners in this type of condensation...  
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The Claisen Condensation - Why Thioesters? 
• recall the chemistry of coenzyme A (1st lecture) – properties of alkyl thioesters (cf. alkyl esters)  

– good leaving group ability of RS- (cf. RO-) 
• due to pKa (RSH) ~10 cf. pKa (ROH) ~16 

 
 
 
 
 
 
 
 

– high acidity of protons α to the carbonyl of thioesters (cf. ester) & weak C-S bond (cf. C-O bond): 
• due to poor orbital overlap between the lone pairs on sulfur (nS) [cf. nO] and the carbonyl anti bonding orbital π*C=O 
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Ketone → Methylene - Reduction 
• ketone → methylene reduction is achieved via a 3-step process: 

 
1. NADPH-mediated ketone → alcohol reduction catalysed by a keto reductase (KR) 
2. syn-eliminataion of water catalysed by a dehydratase (DH)  
3. NADPH-mediated hydrogenation of the double bond catalysed by an enoyl reductase (ER) 

 
 
 
 
 
 
 
 
 
 
 

 
• all steps are generally stereospecific but stereospecificity varies from organism to organism 

– indicated specificities are for human FAS  
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Biosynthesis of Fatty Acids – Overview of FAS 
• The in vivo process by which all this takes place involves a ‘molecular machine’ - Fatty Acid 

Synthase (FAS) 
– Type I FAS: single multifunctional protein complex (e.g. in mammals incl. humans) 
– Type II FAS: set of discrete, dissociable single-function proteins (e.g. in bacteria) 
– All FASs comprise 8 components (ACP & 7× catalytic activities): ACP, KS, AT, MT, KR, DH, ER & [TE] :    
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The Acyl Carrier Protein (ACP) 
• the Acyl Carrier Protein (ACP) is the key protein that allows the growing oligomer to access the 

appropriate active sites 
• The ACP is first primed by the post-translational modification of one of its serine hydroxyl groups: 

– the introduction of a phosphopantetheine ‘swinging-arm’ by reaction with acetyl coenzyme A: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

– this swinging-arm provides flexibility for module-module acyl transfer & provides binding energy for catalysis 
– the ACP is inactive prior to priming 
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AT = acetyl transferase 
MT = malonyl transferase 
CE = condensing enzyme (=KS) 

ACP = acyl carrier protein 
KR = keto reductase 
ER = enoyl reductase 

DH = dehydratase 
TE = thioesterase 

Human Fatty Acid Synthase (FAS) 
• Human FAS (EC 2-3-185) is a type I FAS – a homodimer of a multifunctional protein (272 kDa) 

– each monomer is ‘barrel’ shaped with diameter ~210 Å & length ~250 Å  
– each subunit protein contains seven catalytic activities plus the acyl carrier protein (ACP) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

– NB. keto synthases (KS) are also smetimes referred to as condensing enzymes (CE) 



Human Fatty Acid Synthase (FAS) 
• the first three-dimensional structure of human fatty acid synthase at 4.5 Å resolution by X-ray 

crystallography: 
– Maier, Jenni & Ban Science 2006, 311, 1258 (DOI) ; also Fungal  FAS @ 3.1 Å resolution see: Jenni et al. 

Science 2007, 316, 254 & 288  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Structural overview. (A) Front view: FAS consists of a lower part comprising the KS (lower body) and MAT domains (legs) connected at 
the waist with an upper part formed by the DH, ER (upper body), and KR domains (arms). (B) Top view of FAS with the ER and KR 
domains resting on the DH domains. (C) Bottom view showing the arrangement of the KS and MAT domains and the continuous 
electron density between the KS and MAT domains 

http://dx.doi.org/10.1126/science.1123248
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Biosynthesis of Unsaturated Fatty Acids 
• two mechanisms are known for the introduction of double bonds into fatty acids: 

– in BACTERIA: anaerobic [O] → monounsaturated FAs (MUFAs) 
– in MAMMALS, INSECTS & PLANTS: aerobic [O] → MUFAs & polyunsaturated FAs (PUFAs) 
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Biosynthesis of Polyacetylenes 
• A family of over 1000 natural products! 

– review: Tykwinski Angew. Chem. Int. Ed. 2006, 45, 1034 (DOI) 
• Few detailed pathways have been established but generally involve 

sequential dehydrogenations: 
– e.g. biosynthesis of matricaria ester (Matricaria chamomilla): 

• component of chamomile tea 
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Biosynthesis of Prostaglandins & Thromboxanes 
• prostaglandins & thromboxanes are derived from further oxidative processing of arachiodonic acid 
• both are important hormones which control e.g. smooth muscle contractility (blood pressure), 

gastric secretion, platelet aggregation & inflammation (<nM activity) 
– various pharmaceuticals including corticosteroids & asprin inhibit biosynthethetic steps in these pathways 
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Biomimetic Synthesis of Prostaglandins 
• In 1984 Corey published a classsic biomimetic total synthesis of prostaglandins 

– Corey, Shimoji & Shih J. Am. Chem. Soc. 1984, 106, 6425 (DOI) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

– review: E.J. Corey & X.-M. Cheng ‘The logic of chemical synthesis’ Wiley, New York, 1989, pp297 

HO

O

O

OOH

C5H11

OH
prostacyclin

(PGI2)

HO

O

OMe

OMe

H H

C5H11

HO

H

C5H11

OMe

OMe
H

1) MsCl, Et3N
2) H2O2

HOO

OMe

OMe

H H

C5H11

HOO

H

C5H11

OMe

OMe
H

1) MsCl, Et3N
2) H2O2

OMe

OMe

ClHg

C5H11

O

O

1) Hg(OCOCH2Cl)2
2) NaCl

1) Hg(OCOCH2Cl)2
2) NaCl

OMe

OMe

ClHg

C5H11

O

O

1) Bu3SnH
2) O2

(Z)

(E)

O

O

C5H11

H

OMe

OMe

OMe

OMe

O

O

OOH

C5H11

OMe

OMe

+
1) PPh3
2) PPTS

OHHO

O

CO2H

OMe 1
..
2

O O

disrotatory
(only syn products)

5-exo-trig
radical cyclisation

http://dx.doi.org/10.1021/ja00333a057


Biosynthesis of Leukotrienes 
• leukotrienes are the other main class of 2° metabolites derived from arachidonic acid 

– they are potent (<nM) inflammatory substances released during allergic reactions 
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Branched & Cyclopropanated Fatty Acids 
• fatty acid metabolites occaisionally contain 'extra' methyl groups: 

– there are two methods by which these are added: 
• by use of a different extender unit – methyl malonyl CoA: 

 
 
 
 
 
 
 
 

• by SAM-mediated methylation/cyclopropanation process: 
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The Polyketide Pathway 
• Polyketides are also sometimes known as acetogenins 
• acetyl CoA is also the starting point for the biosynthesis of polyketide secondary metabolites 
• these metabolites are topologically very different to the fatty acid metabolites but are in fact 

synthesised in a very similar fashion. The significant difference is that during the iterative cycle of 
chain extension the β-keto group is generally not completely reduced out. This gives rise to huge 
structural diversity based around a 1,3-oxygenation pattern & cyclisation to give aromatic compounds 
 
 
 
 
 
 
 
 
 
 
 

• NB. unlike fatty acids. polyketides are NOT biosynthesised by humans – only microorganisms 
(bacteria) & fungi  
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Polyketides 
• the structural variety of polyketide secondary metabolites is very wide: 

– NB. starter units marked in red; extender units in bold black; post oligomerisation appended groups in blue 
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Historical Perspective – ‘The Acetate Hypothesis’ 
• 1907: James Collie (University of London) converts dehydroacetic acid to orcinol by boiling with 

Ba(OH)2 (while trying to deduce the structure of the former): 
 
 
 
 
 
 

– Collie perceptively postulated the triketone as an intermediate & suggetsed that this might also be an 
intermediate in the biosynthesis of orcinol (the ‘polyketide hypothesis’) 
 

• 1955: Arthur Birch used 14C labelled acetate to show that 6-methylsalicylic acid (ex. Penicillium 
patulum) was biosynthesised by head-to-tail oligomerisation of 4 × acetate units and proposed the 
following biogenesis – proceeding via a tetraketide intermediate (cf. Collie!): 
 

 

O

O O

O
O

H2O

O

HO
O

dehydroacetic acid
O

OH
O

O

O

OH

HO

orcinol

H

H2O

O

OH

OH

O

HO
OH

2,4,6-triketone
(triketide)

O

OH
4x

3x H2O

O
OH

O

O O

O
OH

HO

O O

OH

HO

O O

OH

OH

OH O2x H2O
14C labelled

acetate 6-methylsalicilic acid
tetraketide



Isotopic Labelling Studies – Use of 13C 
• 1970s: Commercial availability of 13C & 2H labelled precursors & NMR instruments allowed rapid 

determination of labelling patterns of polyketides (cf. radiolabelling/degradation) 
 

• single labelled acetate {[1-13C]- or [2-13C]-acetate, cf. 14C label used by Birch} 
1. feed ~99.9% 13C enriched acetate 
2. verify uniform incorporation along backbone (ideally obtain incorporation to give ~ doubling of signal size) 
3. assign positions of labelled carbons by reference to standard 13C spectrum 

 

• double labelled acetate {[1,2-di-13C]-acetate} 
1. feed >90% 2× 13C enriched acetate 
2. observe pairs of 13C-13C coupled doublets (NB. again incorporation to a level representing ~ doubling of signal 

sizes is standard; since natural abundance is ~1% this amounts to ~1% incorporation...this ensures that 
statistically very few (1 in 104) labelled acetates will be sequentially incorporated & result in inter-unit coupling 
patterns)   

3. assign positions of labelled carbons by reference to standard 13C spectrum 
– e.g. 
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Isotopic Labelling Studies – Use of 13C/2H 
• the ‘α-shift’ technique for following the fate of hydrogens: 

– allows # of hydrogens (deuteriums) retained at the labelled carbon following biosynthesis → evidence of redox 
processing etc. 
 
 
 
 
 
 
 

– useful for identifying starter units e.g. 
 

• 13C & 3× 2H labelled acetate {[2-13C,2H3]-acetate} 
1. feed multiply labelled acetate 
2. observe shifts of labelled carbons 
3. assign positions of labelled carbons & determine fate of attached hydrogens 
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Biosynthesis of Polyketides – Oligomerisation Steps  
• polyketides are biosynthesised by a process very similar to that for fatty acids 

– the key differences are: 
• greater variety of starter units, extender units & termination processes 
• absent or incomplete reduction of the iteratively introduced β-carbonyl groups: ie. each cycle may differ in terms 

of KR, DH & ER modules & stereochemistry  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

– this leads to enormous diversity... 
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Polyketide Diversity  
• starter units: 

 
 

• extender units: 
 
 

• non-functional or missing KR, DH, ER: 
 
 
 

• stereochemistry: 
 
 
 

• termination step: 
– depends on nucleophile that releases product at TE stage: 
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Biosynthesis of Polyketides – Overview of PKS 
• the in vivo process of polyketide synthesis involves PolyKetide Synthases (PKSs): 

– PKSs (except Type II, see later) comprise the same 8 components as FASs. i.e. (ACP & 7× catalytic 
activities): ACP, KS, AT, MT, [KR, DH, ER & TE]     

– Type I PKSs: single (or small set of) multifunctional protein complex(es) 
• modular (microbial) - each ‘iteration’ has a dedicated set of catalytic site s (→ macrolides) 
• iterative (fungal) – single set of catalytic sites, each of which may operate in each iteration (cf. FASs) (→ 

aromatics/polyphenols - generally) 
– Type II PKSs: single set of discrete, dissociable single-function proteins (see later) 

• iterative (microbial) - each catalytic module may operate in each iteration (cf. FASs) (→ aromatics/polyphenols) 
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POLYKETIDE BIOSYNTHESIS [Type I – (modular)] 
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• Electron cryo-microscopy has recently thrown additional light on how this process works for 
the Type 1 PKS that synthesises pikromycin in Streptomyces venezuelae. 

– Dutta et al. Nature 2014, 510, 512-517 (DOI) and Whicher et al. Nature 2014, 510, 560-564 (DOI) 
– For a video of the process see: http://cen.acs.org/articles/92/i25/Polyketide-Synthase-Secrets-Revealed.html 
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‘Deconvolution’ of Type I(modular) PKSs  
• deduce the module structure for the type I modular PKS 

responsible for the synthesis of this hexaketide: 
 

 
1. identify the last building block: 

 
 
 

2. identify each extender unit (working back from the last one): 
– 2C in the backbone 
– + 0, 1, 2 (or more) C in the sidechain 

 
3. identify the starter unit: 

– the module that appended this unit is designated module 0 
 
 
 

4. deduce what happens to each ketone: 
NB. module n modifies the ketone of the 
building block added by module n-1 
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Biosynthesis of Erythromycin – Type I(modular) PKS  
• 6-deoxyerthronolide is a precursor to erythromycin A – bacterial antibiotic (Streptomyces erythreus): 

– propionate based heptaketide; 3 multifunctional polypeptides (DEBS1, DEBS2 & DEBS3, all ~350 kDa)  
– Katz et al. Science 1991, 252, 675 (DOI); Staunton, Leadley et al. Science 1995, 268, 1487 (DOI); Khosla et al. J. 

Am. Chem. Soc. 1995, 9105 (DOI); review: Staunton & Weissman Nat. Prod. Rep. 2001, 18, 380 (DOI)  
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Biosynthesis of Rapamycin – Type I(modular) PKS  
• rapamycin – bacterial immunosuppressant used in organ transplant surgery: 

– mixed polyketide (acetate & propionate)/peptide with novel cyclohexyl carboxamide starter unit 
– 3 multifunctional polypeptides with 70 catalytic functions! 
– RAPS1 (~900 kDa, 4 modules), RAPS2 (1.07 MDa, 6 modules), RAPS3 (660 kDa, 4 modules) 
– Staunton, Leadley et al. Proc.  Natl. Acad. Sci. USA 1995, 92, 7839 (DOI); ibid. Gene 1996, 169, 9 (DOI) 

 

http://intl.pnas.org/cgi/content/abstract/92/17/7839
http://dx.doi.org/10.1016/0378-1119(95)00800-4


Biomimetic Decarboxylative Thioester Aldol  
• recall the key C-C bond forming process in both FAS and PKS chain extension is a decarboxylative 

Claisen condensation of enzyme thioester-bound acetyl and malonyl residues: 
 
 
 
 
 
 

• Shair has developed an exceptionally mild aldol reaction of malonic acid half thioesters (MAHTs) 
inspired by this process: 

– Shair et al. J. Am. Chem. Soc. 2003, 125, 2852 (DOI)  
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Biomimetic Iterative Claisen-Like Condensations 
• Harrison has developed a glycoluril ‘template’ to mimic the proximal ketosynthase (KS) & acyl carrier 

protein (ACP) units in FAS and PKS and achieved iterative chain extension of up to eight carbons: 
– Harrison et al. J. Chem. Soc., Perkin Trans. 1 1998, 437 (DOI) 
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Biosynthesis of Mevinolin – Type I(iterative) PKS  
• mevinolin (=lovastatin®) – cholesterol lowering metabolite of filamentous fungus Aspergillus terreus 

– inhibits HMG-CoA → mevalonate (see next lecture) – rate-limiting step in biosynthesis of cholesterol 
– acetate based polyketide composed of a diketide and nonaketide linked by an ester 
– 2 × Type I (iterative) PKSs: LNKS and LDKS...both contain MeT (methyl transferase) activities 
– Hutchinson et al. Science 1999, 284, 1368 (DOI) 
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Type II PKSs – Enzyme Clusters (Microbial) 
• Type II PKSs: single set of discrete, dissociable single-function proteins (ACP & 6× catalytic 

functions): ACP, KSα, KSβ, [KR, DH, ER, & TE] [NB. NO acetyl or malonyl transferases (AT, MT)] 
– iterative - each catalytic module may operate in each iteration (cf. FASs) (→ aromatics/polyphenols) 

• these clusters (generally) use malonate as BOTH starter & extender unit 
• their ACP proteins are able to load malonate direct from malonyl CoA (no MT required) 

– the starter malonate is decarboxylated by ‘ketosynthase’ β (KSβ) to give S-acetyl-ACP 
– the extender malonates undergo decarboxylative Claisen condensations by ketosynthase α (KSα) 

• these clusters rarely utilise KR, DH or ER activities and produce ‘true’ polyketides: 
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Biosynthesis of Actinorhodin – Type II PKS  
• actinorhodin – octaketide bacterial antibiotic (Streptomyces coelicolor) 

– Hopwood Chem. Rev. 1997, 97, 2465 (DOI) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

– timing of 1st cyclisation and mechanism of control of chain length uncertain 
• octaketide synthesis then cyclisation? (as shown above) 
• hexaketide synthesis then cyclisation then two further rounds of extension? 

– indications can sometimes be gleaned from biomimetic syntheses... 
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Biomimetic Synthesis of Quinone Antibiotics 
• Pioneered by Harris. e.g. classic biomimetic synthesis of chrysophanol: 

– position of ‘reduced’ ketone dictates cyclisation site 
– Harris et al. J. Am. Chem. Soc. 1976, 98, 6065 (DOI); see also Barrett et al. J. Chem. Soc., Perkin Trans. 1. 

1980, 2272 (DOI) 
 
 

 
 
 
 
 

• Abell & Staunton’s biomimetic syntheses of rubrofusarin & alternariol: 
– timing of pyrone ring formation dictates subsequent cyclisation-aromatisation pathway 
– Abell, Bush, Staunton J. Chem. Soc., Chem. Commun. 1986, 15 (DOI) 

 
 
 
 
 
 
 

– review of biomimetic quinone antibiotic synthesis: Krohn Eur. J. Org. Chem. 2002, 1351 (DOI) 
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Biosynthesis of Citrinin - Type II PKS 
• Citrinin is a liver toxic metabolite of the mould Penicillium citrinum 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

• Note: 
– role of SAM for introduction of methyl groups 
– P450 then NADP+ for Me → CO2H oxidation... 
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Methylation by SAM 
• methylation at carbon by SAM takes place at the 2-position of 1,3-dicarbonys (or at the 2-position of 

phenols): 
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Oxidation by P450 Enzymes 

• Hydroxylation at unactivated CH positions is achieved by the haem co-factor in P450 enzymes:  
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Griseofulvin Biosynthesis - Type II PKS 
• Griseofulvin is a mould metabolite (Penicillium griseofulvum, Penicillium janczewskii) used to treat 

worm infections in animals and humans 
– Birch delineated the basic biogenesis in the 1950s & in 1959 griseofulvin was marketed as an oral fungicide 

by ICI & Glaxo (as Fulcin® & Grisovin®, respectively)   
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Scope of Structures - Type II PKS 
• microbial polyphenolic metabolites: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

• many display interesting biological activities... 
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Primary Metabolism - Overview 

CO2 + H2O

1)  'light reactions': hv -> ATP and NADH 
2) 'dark reactions': CO2 -> sugars (Calvin cycle)
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