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Lessons in synthesis - Azadirachtin 
 

• Azadirachtin is a potent insect anti-feedant from the Indian neem tree: 

– exact biogenesis unknown but certainly via steroid modification: 

 

 

 

 

 

 

 

 

 

 

 

– Intense synhtetic efforts by the groups of Nicolaou, Watanabe, Ley and others since structural elucidation in 

1987. 

– 1st total synthesis achieved in 2007 by Ley following 22 yrs of effort 

– ~40 researchers and over 100 man-years of research! – 64-step synthesis 

 

– Veitch Angew. Chem. Int. Ed. 2007, 46, 7629 (DOI) & Veitch Angew. Chem. Int. Ed. 2007, 46, 7633 (DOI) 
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Inspiration for med chem - statins 

• HMG CoA → MVA is the rate determining step in the biosynthetic pathway to cholesterol 

 

• ‘Statins’ inhibit HMG CoA reductase and are used clinically to treat hypercholesteraemia - a 

causative factor in heart disease 

– e.g. lipitor (Atorvastatin calcium, Pfizer) is a competitive inhibitior of HMG-CoA reductase and the worlds 

biggest selling drug [first drug to reach $10 billion sales (2004: $10.8 bn]  
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Format & Scope of Lectures 

• What is biosynthesis?  

– some definitions – phototrophs, chemotrophs; metabolism (catabolism/anabolism), 1° & 2° metabolites 

• Overview of primary metabolism → secondary metabolites 

– photosynthesis & glycolysis → shikimate formation → shikimate metabolites 

– acetylCoA & the citric acid cycle → a-amino acids → penicillins, cephalosporins, alkaloids 

– acetylCoA → malonylCoA → fatty acids, prostaglandins, polyketides, macrolide antibiotics 

– acetylCoA → mevalonate → isoprenoids, terpenoids, steroids, carotenoids 

• Biological/biosynthetic reactions – enzyme & cofactor chemistry 

– free energy source – ATP 

– C-C & C-O bond formation – CoASH, SAM, DMAPP, biotin 

– oxidation – NAD+, FAD/FMN, haem iron oxo monooxygenases 

– reduction – NADPH 

– C-N bond formation – pyridoxal 

• The shikimate biosynthetic pathway 

– the core shikimate pathway - mechanisms of the key enzymes  

– aromatic amino acids: Phe, Tyr & Trp 

– ArC3 metabolites – coumarins, lignans & lignins 

• mixed shikimate/malonylCoA (polyketide): flavonoids 

– ArC2, ArC1 & ArC0 metabolites 

• mixed shikimate/mevalonate (isoprenoid): ubiquinones, menaquinones & tocopherols 
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Metabolism & Natural Product Diversity 



Phototrophs & Chemotrophs 

• Living organisms are not at equilibrium. They require a continuous influx of free energy to perform 

mechanical work & for cellular growth/repair: 

  

– Phototrophs (e.g. green plants, algae & photosynthetic bacteria): derive free energy from the sun via 

photosynthesis (‘CO2 fixation’): 

• 1015 kg/year by green plants, which constitute 99% of Earths biomass (i.e. 1012 tons of dry matter) 

• 1g of carbon processed = >6250 litres of air 

 

 

 

 

 

 

– Chemotrophs (e.g. animals, fungi, most bacteria): derive free energy by oxidising nutrients (carbohydrates, 

lipids, proteins) obtained from other organisms, ultimately phototrophs 

• some bacteria & fungi require just D-glucose 

• mammals require sugars, essential amino acids (~half total used) & certain vitamins (enzyme co-factors or precursors) 

 

• Degradation of the nutrients is coupled to the stoichiometric production of ‘high energy’ phosphate compounds, particularly 

adenosine triphosphate (ATP, see later). All metabolic function is underpinned by ATP energetic coupling. 

• By analogy with a money-based economy, the metabolic cost of production of a given metabolite from another can be 

quantified in terms of ‘ATP equivalents’  defined as the # of moles of ATP consumed/produced per mole of substrate 

converted in the reaction or sequence   

CO2 + H2O
hv

(CHO) + O 2 PHOTOSYNTHESIS
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Metabolism 
• Metabolism is the term used for in vivo processes by which compounds are degraded, 

interconverted and synthesised: 

– Catabolic or degradative: primarily to release energy and provide building blocks 

• generally oxidative processes/sequences (glycolysis, Krebs cycle) 

– Anabolic or biosynthetic: primarily to create new cellular materials (1° & 2° metabolites) 

• generally reductive processes/sequences 

• These two types of process are coupled – one provides the driving force for the other: 
 



Types of Metabolite & Biosynthesis 

• Biosynthesis is the term for the in vivo synthesis of metabolites/natural products: 

– These are divided into two camps: 

• Primary metabolites: These are the universal and essential components for the survival of living organisms. e.g. sugars, 

amino acids, nucleotides, ‘common’ fats and polymers such as proteins, DNA, RNA, lipids and polysaccharides 

• Secondary metabolites: Compounds produced by organisms which are not required for survival, many of which have no 

apparent utility to the host organism.  Frequently a given metabolite will only be produced in a single organism or in a set of 

closely related organisms.  Provide a rich source of pharmacologically active compounds. e.g. shikimate derivatives, 

alkaloids, fatty acids, polyketides, isoprenoids 

– Although the boundary is imprecise the term biosynthesis is most commonly applied, by organic chemists, 

to the in vivo synthesis of secondary metabolites: 

 

 “Now ever since Perkin, failing to make quinine, founded the dyestuffs industry, organic chemists 
have found the study of ‘natural products’ an inexhaustable source of exercises, which can be 
performed out of pure curiosity even when paid for in the hope of a more commercial reward. As a 
result the organic chemist’s view of nature is unbalanced, even lunatic but still in some ways more 
exciting than that of the biochemist. While the enzymologist’s garden is a dream of uniformity, a 
green meadow where the cycles of Calvin and Krebs tick round in disciplined order, the organic 
chemist walks in an untidy jungle of uncouthly named extractives, rainbow displays of pigments, 
where in every bush there lurks the mangled shapes of some alkaloid, the exotic perfume of some 
new terpene, or some shocking and explosive polyacetylene...’’ 

 ... Since these intriguing derivatives AND e.g. lysine or ATP are ALL in a sense ‘natural products’ 
we may prefer the term ‘secondary metabolite’ for the former 

   Bu’Lock Adv. Appl. Microbiol. 1961, 3, 293   



Primary Metabolism - Overview 

CO2 + H2O

1)  'light reactions': hv -> ATP and NADH 
2) 'dark reactions': CO2 -> sugars (Calvin cycle)
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Biological/Biosynthetic Reactions – 

Enzyme Catalysis & Cofactors  

• Most biosynthetic steps are catalysed by specific, individual enzymes. They generally perform 

familiar processes such as oxidation, reduction, alkylation, hydrolysis, acylation, hydroxylation, 

elimination etc. 

• Different enzymes carrying out related reactions often employ common co-factors: small organic 

functional fragments and/or metal ions. e.g. 

 

– FREE ENERGY RELEASING COUPLE: Adenosine triphosphate (ATP) 

 

– C-C & C-O BOND FORMATION: Coenzyme A (CoASH); S-adenosyl methionine (SAM); 

dimethylallylpyrophosphate (DMAPP); biotin 

 

– OXIDATION:  NAD(P)+; FAD/FMN; Haem iron oxo species (e.g. P450) 

 

– REDUCTION: NAD(P)H; (FADH2/FMNH2) 

 

– C-N BOND FORMATION: Pyridoxal 

 



Free Energy Releasing Couple - ATP  

• Adenosine triphosphate (ATP) 

– phosphorylation of an alcohol by adenosine diphosphate (ADP) is highly exothermic (i.e. liberates energy): 

 

 

 

 

 

 

 

 

– The  phosphorylated alcohol (ROP) is then activated towards e.g. nucleophilic displacement: 

 

 

 

 

– So, overall the endothermic process ROH + Y- → RY + OH- has been achieved by ‘coupling’ the process 

to the ‘hydrolysis of ATP’ 

– The situation is analogous to the use of tosylate activation to achieve nucleophilic displacement of an 

alcohol 

– In general, the exothermicity associated with phosphorylation shifts the equilibria of ‘coupled’ process by a 

factor of ~108 
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Acylation & C-C Bond Formation a to C=O – CoASH 

• Coenzyme A (CoASH) 

– Coenzyme A acts as an acyl transfer/a-carbon activation reagent by forming reactive acyl thioesters: 

 

 

 

 

 

 

 

 

 

 

 

– Acyl CoA derivatives can act as nucleophiles or electrophiles depending on the circumstances 

– These modes of reactivity are inherent properties of alkyl thioesters: 

• The good leaving group ability of RS- (cf. RO-) reflects: pKa (RSH) ~10 cf. pKa (ROH) ~16 

• The enhanced acidity of protons a to the carbonyl of thioesters cf. normal esters reflects the poor orbital overlap 

between the lone pairs on sulfur (nS) [cf. nO] and the carbonyl anti bonding molecular orbital p*C=O 
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Methylation/Dimethylallylation – SAM & DMAPP 

• S-Adenosyl methionine (SAM) 

– SAM acts as a versatile O-, C-, N- & S- methylating reagent in vivo 

 

 

 

 

 

 

 

 

– Equivalent to performing an SN2 methylation using MeI in the laboratory 

 

• Dimethylallyl pyrophosphate (DMAPP) 

– DMAPP acts a dimethylallylating reagent – the pyrophosphate (+ Mg2+/Mn2+) is an excellent leaving group 

 

 

 

 

 

 

– Equivalent to performing an SN2 allylation using allyl bromide in the laboratory 
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Carboxylation – Biotin 

• Biotin 

– Biotin in the presence of bicarbonate, ATP and Mg2+ enables nucleophile carboxylation in vivo: 

 

 

 

 

 

 

 

 

 

– a very similar reaction can be carried out in the laboratory 

• Sakurai et al. Tetrahedron Lett. 1980,  21,1967 (DOI) 
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Oxidation – NAD+ 

• Nicotinamide-adenine dinucleotide (NAD+) [and its phosphorylated analogue (NADP+)] are 

mediators of biological oxidation (e.g. alcohol to ketone oxidation) 

– In general, the couple NAD+/NADH is used by enzymes in catabolic oxidation (degradation) 

– The reagent is a stereospecific hydride acceptor: 

 

 

 

 

 

 

 

 

 

– Different enzymes show different absolute specificities but are generally specific for the pro-R or pro-S 

hydrogens both for removal and delivery 

– The Oppenauer oxidation is a similar (non-stereoselective) laboratory reaction: 

• for asymmetric variants see: Nishide et al. Chirality 2002, 14, 759 (DOI)   
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Oxidation Reactions Mediated by NAD(P)+ 

• Adapted from C.T. Walshe, 'Enzymatic Reaction Mechanisms', Freeman, 3rd ed. 
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Oxidation – Flavins (FAD & FMN) 

• Flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN) are also mediators of 

biological oxidations (e.g. dehydrogenations – alkane to alkene) 

– Unlike NAD+, which readily diffuses from enzyme to enzyme, FAD/FMN is usually tightly bound to a given 

enzyme, sometimes covalently 

 

 

 

 

 

 

 

 

 

– Re-oxidation of the FADH2 back to FAD is generally by molecular oxygen (although NAD+ is also 

sometimes used). The intermediate peroxyflavin can also mediate hydroxylation, epoxidation & other 

oxygen transfer reactions (see next slide):      
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Oxidation Reactions Mediated by Flavins 
• Dehydrogenation by flavins – e.g. dehydrogenation of succinate → fumarate: 

 

 

 

 

 

 

 

 

• Baeyer-Villiger-type oxidation by peroxyflavins – e.g. ketone monooxygenase: 
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Biomimetic Oxidation using FAD Models 

• A stoichiometric flavin model oxidising system (alcohol → aldehyde): 

– Shinkai Chem. Lett. 1982, 812 & Bull. Soc. Chim. Fr. 1983, 56, 1694 

 

 

 

 

 

 

 

 

 

• A catalytic peroxyflavin model oxidising system (amine → amine N-oxide): 

–  Bäckvall Chem. Eur. J. 2001, 7, 297 (DOI) 
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Oxidation – Haem Iron oxo Species (P450)
 

• Haem iron oxo species e.g. in cytochrome P450 (a ubiquitous heam monooxygenase) are also 

mediators of biological oxidation (e.g. phenolic coupling, epoxidation, hydroxylation): 

 

 

 

 

 

 

 

 

 

 

– The porphyrin ring acts as a tetradentate ligand for the octahedral iron. The two axial positions are 

occupied by an enzyme amino acid ligand (typically a histidine nitrogen) and hydroxy/hydroperoxy residue 

respectively 

– Ferricyanide effects similar oxidative processes in the lab (e.g. phenolic coupling, see ‘alkaloids’, later) 

• Barton & Kirby J. Chem. Soc. 1962, 806 (DOI)  
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Reduction - NADPH 

• Dihydro-nicotinamide-adenine dinucleotide phosphate (NADPH) [and its de-phosphorylated 

analogue (NADH)] are mediators of biological reduction (e.g. ketone to alcohol reduction)  

– In general, the couple NAPH/NADP+ is used by enzymes in anabolic reduction (biosynthesis) 

– The reagent is a stereospecific hydride donor: 

 

 

 

 

 

 

 

 

 

 

– As for the reverse process, different enzymes show different absolute specificities but are generally specific 

for the pro-R or pro-S hydrogens both for removal and delivery 

– NADPH acts like a biochemical equivalent of ‘laboratory’ metal hydride reductants (e.g. LiAlH4, NaBH4) or 

their chiral equivalents (e.g. CBS-borane): 
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Biomimetic Reduction using NAD(P)H Models 

• A catalytic, enantioselective NADPH model reducing system (a,b-unsaturated aldehyde → 

aldehyde): 

– highlight: Adolfsson Angew. Chem. Int. Ed. 2005, 44, 3340 (DOI) 
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Transamination - PLP 

• Pyridoxine (vitamin B6) → pyridoxal-5’-phosphate (PLP) 

– PLP forms imines (Schiffs bases) with primary amines. This forms the basis of in vivo transamination of 

a-ketoacids to give a-amino acids (& also racemisation/decarboxylation processes, see ‘alkaloids’) 

 

 

 

 

 

 

 

 

 

– The a-carbon protonation is stereospecific and gives the (S) configured chiral centre  

– Jørgensen has developed a catalytic, enantioselective lab equivalent of this process: 

• Jørgensen et al. Chem. Comm. 2003, 2602 (DOI) 
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Primary Metabolism - Overview 

CO2 + H2O

1)  'light reactions': hv -> ATP and NADH 
2) 'dark reactions': CO2 -> sugars (Calvin cycle)
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Shikimate Metabolites 

SHIKIMATE METABOLITES
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The Shikimate Biosynthetic Pathway - Overview 

• Phosphoenol pyruvate & erythrose-4-phosphate → shikimate → chorismate → prephenate: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

– The detailed mechanisms of these steps have been studied intensively. Most are chemically complex and 

interesting. For additional details see: 

• Mann Chemical Aspects of Biosynthesis Oxford Chemistry Primer No. 20, 1994 (key details) 

• Haslam Shikimic Acid – Metabolism and Metabolites Wiley, 1993 (full details and primary Lit. citations) 

• http://www.chem.qmul.ac.uk/iubmb/enzyme/reaction/misc/shikim.html  (interesting web-site with many biosynethtic pathways) 
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PEP + E-4-P → DAHP 

• Phosphoenol pyruvate (PEP) +  erythrose-4-phosphate (E-4-P) → 3-deoxy-D-arabino-

heptulosonate-7-phosphate (DHAP)  

• Enzyme: 3-deoxy-7-phosphoheptulosonate synthase = DAHP synthase [EC 2.5.1.54] 

– chemistry catalysed: an aldol reaction 

 

 

 

 

 

 

 

 

 

 

 

 

  

– Floss et al. J. Biol. Chem. 1972, 247, 736 (DOI) 
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DAHP → 3-DHQ 
• 3-Deoxy-D-arabino-heptulosonate-7-phosphate (DHAP) → 3-dehydroquinate (3-DHQ)  

• Enzyme: 3-dehydroquinate synthase [EC 4.2.3.4] 

– chemistry catalysed: alcohol → ketone → alcohol redox cycle & cyclisation via aldol reaction 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

– Knowles et al. Biochemistry 1989, 28, 7555 (DOI) 
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3-DHQ → 3-DHS 
• 3-Dehydroquinate (3-DHQ) →  3-dehydroshikimate (3-DHS) 

• Enzyme: 3-dehydroquinate dehydratase [EC 4.2.1.10] 

– chemistry catalysed: stereoselective syn-elimination 

 

 

 

 

 

 

 

 

 

 

 

 

 

– Abell et al. Biochem. J. 1996, 319, 333 (DOI)  

– Coggins et al. J. Biol. Chem. 1995, 270, 25827 (DOI) 

– Coggins et al. Nature Struct. Biol. 1999, 6, 521 (DOI) 
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3-DHS → 3-PS 

• 3-Dehydroshikimate (3-DHS) → shikimate → 3-phosphoshikimate (3-PS) 

• Enzymes: shikimate dehydrogenase [EC 1.1.1.25] then shikimate kinase [EC 2.7.1.71] 

– chemistry catalysed: stereoselective ketone → alcohol reduction then alcohol phosphorylation 

 

 

 

 

 

 

 

 

 

 

 

 

 

– Ye et al. J. Bacteriol. 2003, 185,  4144 (DOI) 

– Morell et al. J. Biol. Chem. 1968, 243, 676 (DOI) 
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3-PS → 5-EPS-3-P 

• 3-Phosphoshikimate (3-PS) → 5-enolpyruvylshikimate-3-phosphate (5-EPS-3P) 

• Enzyme:  3-phosphoshikimate 1-carboxyvinyltransferase [EC 2.5.1.19] 

– chemistry catalysed: vinyl ether formation 

 

 

 

 

 

 

 

 

 

 

 

 

– Glyphosate (‘Roundup’) – a Monsanto agrochemical is a potent inhibitor of this biosynthetic step 

• a non-selective herbicide 

 

– Lewis et al. Biochemistry 1999, 38, 7372 (DOI) 

– Jakeman et al. Biochemistry 1998, 37, 12012 (DOI) 
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5-EPS-3-P → Chorismate 

• 5-Enolpyruvylshikimate-3-phosphate (5-EPS-3P) → chorismate 

• Enzyme:  chorismate synthase [EC 4.2.3.5] 

– chemistry catalysed: non-concerted anti-1,4-elimination 

 

 

 

 

 

 

 

 

 

 

 

– Abell et al. Bioorg. Chem. 2000, 282, 191 (DOI) 

– Abell et al. J. Biol. Chem. 2000, 275, 35825 (DOI) 

– Bornemann et al. Biochemistry 1996, 35, 9907 (DOI) 
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Claisen [3,3]
sigmatropic rearrangement

allyl vinyl ether

http://dx.doi.org/10.1006/bioo.2000.1174
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Chorismate → Tryptophan, Tyrosine & Phenylalanine 

• Chorismate  → anthranilate → tryptophan 

 

 

 

 

 

 

 

• Chorismate → prephenate → tyrosine & phenylalanine 

– NB. The enzyme chorismate mutase [EC 5.4.99.5] which mediates the conversion of chorismate to prephenate 

is the only known ‘Claisen rearrangementase’ 



Tyrosine/Phenylalanine → ArC3 Metabolites 
• Tyrosine & phenylalanine → cinnamate derivatives → ArC3 metabolites 

– coumarins, lignans (stereoselective enzymatic dimerisation) & lignins (stereorandom radical polymerisation)  



Biomimetic Lignan Synthesis 
• Oxidative dimerisation of cinnamyl alcohols gives symmetric furanofuran lignans 

– review: Brown & Swain Synthesis 2004, 811 (DOI) 

– IN VIVO: Lewis et al. Science 1997, 275, 362 (DOI) (oxidase → single enantiomer of product) 

– IN VITRO: Vermes et al. Phytochem. 1991, 30, 3087 (DOI) [CuSO4 (cat.), O2, acetone-H2O (90%)] 
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Tyrosine/Phenylalanine → Flavonoids 

• 4-Hydroxycinnamic acid → flavonoids: flavanones, flavanonols, flavones & anthocyanins 

– Glycosides of these ArC3 metabolites (esp. anthocyanins) constitute coloured pigments in flowers and insects. 

They also confer bitter and astringent flavours (e.g. tannins & catechins in tea are polymerised flavonoids) 

– NB. ‘Mixed’ biosynthetic origin: shikimate/malonylCoA (polyketide) 
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Chorismate → Coenzymes Q & Vitamins E & K 

• Chorismate  → p- & o-hydroxybenzoic acids → coenzymes Q & vitamins E & K 

– NB. ‘Mixed’ biosynthetic origin: shikimate/mevalonate (isoprenoid) 
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Primary Metabolism - Overview 

CO2 + H2O

1)  'light reactions': hv -> ATP and NADH 
2) 'dark reactions': CO2 -> sugars (Calvin cycle)
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