Biosynthesis of Natural Products

Biosynthesis of Fatty Acids & Polyketides

Alan C. Spivey a.c.spivey@imperial.ac.uk

Imperial College London

Format & Scope of Lecture

What are fatty acids?

- 1° metabolites: fatty acids; 2° metabolites: their derivatives
- biosynthesis of the building blocks: acetyl CoA & malonyl CoA

Fatty acid synthesis by Fatty Acid Synthases (FASs)

- the chemistry involved
- the FAS protein complex & the dynamics of the iterative synthesis process

Fatty acid secondary metabolites

eiconasiods: prostaglandins, thromboxanes & leukotrienes

What are polyketides?

definitions & variety

Polyketide synthesis by PolyKetide Synthases (PKSs)

- the chemistry involved
- the PKS protein complexes & the dynamics of the iterative synthesis process

Polyketide secondary metabolites

- Type I modular metabolites: macrolides e.g. erythromycin
- Type I iterative metabolites: e.g. mevinolin (=lovastatin®)
- Type II iterative metabolites: aromatic compounds and polyphenols: e.g. actinorhodin

Fatty Acid Primary Metabolites

Primary metabolites:

- fully saturated, linear carboxylic acids & derived (poly)unsaturated derivatives:
 - constituents of essential natural waxes, seed oils, glycerides (fats) & phospholipids
 - structural role glycerides & phospholipids are essential constituents of cell membranes
 - energy storage glycerides (fats) can also be catabolised into acetate → citric acid cycle
 - biosynthetic precursors for elaboration to secondary metabolites

SATURATED ACIDS [MeCH₂(CH₂CH₂)_nCH₂CO₂H (n = 2-8)] e.g.

$$_{8}$$
 CO₂H caprylic acid (C8, n = 2)

$$CO_2H$$
 capric acid (C8, n = 3)

$$CO_2H$$
 lauric acid (C12, n = 4)

$$myristic \ acid \ (C14, \ n=5)$$

palmitic acid (C16,
$$n = 6$$
)

stearic acid (C18,
$$n = 7$$
)

MONO-UNSATURATED ACID DERIVATIVES (MUFAs) e.g.

oleic acid (C18, Z- Δ^9) (>80% of fat in olive oil)

POLY-UNSATURATED ACID DERIVATIVES (PUFAs)

e.g.

arachidonic acid (AA) (C20,
$$Z - \Delta^5$$
, $Z - \Delta^8$, $Z - \Delta^{11}$, $Z - \Delta^{14}$)

eicosapentaenoic acid (EPA) (C20,
$$Z$$
- Δ^5 , Z - Δ^8 , Z - Δ^{11} , Z - Δ^{14} , Z - Δ^{17}) (in cod liver oil)

Fatty Acids Derivatives – Secondary Metabolites

Secondary metabolites

- further elaborated derivatives of polyunsaturated fatty acids (PUFAs)
 - e.g. polyacetylenes & 'eicosanoids' (prostaglandins, thromboxanes & leukotrienes)

Primary Metabolism - Overview

For interesting animations' of e.g. photosynthesis see: http://www.johnkyrk.com/index.html

Biosynthesis of Malonyl Coenzyme A

- Malonyl coenzyme A is the key 'extender unit' for the biosynthesis of fatty acids (& polyketides):
 - is formed by the carboxylation of acetyl coenzyme A mediated by a biotin-dependent enzyme
 - this is the first committed step of fatty acid/polyketide biosynthesis (& is a rate controlling step)

Biosynthesis of Malonyl Coenzyme A

- Bicarbonate is the source of the CO₂:
 - the bicarbonate is first activated via phosphorylation by ATP
 - then the phosphorylated bicarbonate carboxylates biotin to give carboxybiotin
 - then the carboxybiotin carboxylates the enolate of acetyl CoA to give malonyl CoA:

- the carboxylation of biotin & acetyl CoA are mediated by a single biotin-dependent enzyme (complex)
 having both biotin carboxylase and transcarboxylase active sites
- NB. coupling to ATP 'hydrolysis' provides energy to drive carboxylation processes

Biosynthesis of Fatty Acids – Iterative Oligomerisation

- fatty acids are biosynthesised from acetyl CoA as a starter unit by iterative 'head-to-tail' oligomerisation involving:
 - condensation with malonyl CoA as an extender unit (with loss of CO₂) a decarboxylative Claisen condensation
 - 3-step *reduction* of the resulting *ketone* → *methylene*
- after **n = 2-8 iterations** the **C8-20 saturated fatty acid** is released from the enzyme(s):

The Decarboxylative Claisen Condensation (dCc)

• in vitro – the classical **Claisen condensation**:

in vivo - the decarboxylative Claisen condensation catalysed by a ketosynthase (KS)

- the energy released upon loss of CO₂ provides a driving force for the condensation
- thioesters are also particularly reactive partners in this type of condensation...

The Claisen Condensation - Why Thioesters?

- recall the chemistry of coenzyme A (1st lecture) properties of alkyl thioesters (cf. alkyl esters)
 - highly electrophilic carbonyl (~ ketone)
 - high acidity of protons α to the carbonyl of thioesters (cf. ester)
 - weak C-S bond (cf. C-O bond):
 - due to poor orbital overlap between the p-orbital lone pair on sulfur (n_S) [cf. n_O] and the carbonyl anti bonding orbital $\pi^*_{C=O}$; (i.e. minimal 'resonance' $n_S \to \pi^*_{C=O}$)

- good leaving group ability of RS⁻ (cf. RO⁻)
 - due to pK_a (RSH) ~10 cf. pK_a (ROH) ~16

Ketone → Methylene - Reduction

- ketone → methylene reduction is achieved via a 3-step process:
 - 1. NADPH-mediated ketone → alcohol reduction catalysed by a keto reductase (KR)
 - 2. syn-eliminataion of water catalysed by a dehydratase (DH)
 - 3. NADPH-mediated hydrogenation of the double bond catalysed by an enoyl reductase (ER)

- all steps are generally stereospecific but stereospecificity varies from organism to organism
 - indicated specificities are for human FAS

Biosynthesis of Fatty Acids – Overview of FAS

- The in vivo process by which all this takes place involves a 'molecular machine' Fatty Acid Synthase (FAS)
 - Type I FAS: single multifunctional protein complex (e.g. in mammals incl. humans)
 - Type II FAS: set of discrete, dissociable single-function proteins (e.g. in bacteria)
 - All FASs comprise 8 components (ACP & 7× catalytic activities): ACP, KS, AT, MT, KR, DH, ER & [TE]:

KS = keto synthase (also known as CE = condensing enzyme); AT = acetyl transferase; MT = malonyl transferase;
KR = keto reductase; DH = dehydratase; ER = enoyl reductase; TE = thioesterase; ACP = acyl carrier protein

The Acyl Carrier Protein (ACP)

- the Acyl Carrier Protein (ACP) is the key protein that allows the growing oligomer to access the
 appropriate active sites
- The ACP is first *primed* by the post-translational modification of one of its serine hydroxyl groups:
 - the introduction of a phosphopantetheine 'swinging-arm' by reaction with acetyl coenzyme A:

- this swinging-arm provides flexibility for module-module acyl transfer & provides binding energy for catalysis
- the ACP is inactive prior to priming

Human Fatty Acid Synthase (FAS)

- the first three-dimensional structure of human fatty acid synthase (272 kDa) at 4.5 Å resolution by X-ray crystallography:
 - Maier, Jenni & Ban Science 2006, 311, 1258 (DOI); also Fungal FAS @ 3.1 Å resolution see: Jenni et al.
 Science 2007, 316, 254 & 288

Structural overview. (**A**) Front view: FAS consists of a lower part comprising the KS (lower body) and MAT domains (legs) connected at the waist with an upper part formed by the DH, ER (upper body), and KR domains (arms). (**B**) Top view of FAS with the ER and KR domains resting on the DH domains. (**C**) Bottom view showing the arrangement of the KS and MAT domains and the continuous electron density between the KS and MAT domains

FATTY ACID BIOSYNTHESIS (type II FAS)

NB. the following sequence of slides have been adapted from: http://www.courses.fas.harvard.edu/%7echem27/

AT₁ loads acetyl group onto KS₁

AT₁ loads malonyl group onto ACP₁

• KS₁ catalyzes Claisen condensation

• KR₁ catalyzes reduction of ketone

DH₁ catalyzes dehydration of alcohol

• ER₁ catalyzes reduction of alkene

• KS₂ catalyzes translocation to module 2

MT₂ loads malonyl group onto ACP₂

• KS₂ catalyzes Claisen condensation

• KR₂ catalyzes reduction of ketone

DH₂ catalyzes dehydration of alcohol

• ER₂ catalyzes reduction of alkene

• TE catalyzes transesterification

• TE catalyzes hydrolysis

Biosynthesis of Unsaturated Fatty Acids

- *two mechanisms* are known for the introduction of double bonds into fatty acids:
 - in BACTERIA: anaerobic [O] → monounsaturated FAs (MUFAs)
 - in MAMMALS, INSECTS & PLANTS: aerobic [O] → MUFAs & polyunsaturated FAs (PUFAs)

AEROBIC ROUTE (mammals, insects & plants) (dehydrogenation occurs after chain elongation) **MUFAs & PUFAs** thioesterase (TE) (hydrolysis) oleic acid Position of alkenes in PUFAs 1st alkene animals 1st alkene plants

Biosynthesis of Prostaglandins & Thromboxanes

- prostaglandins & thromboxanes are derived from further oxidative processing of arachiodonic acid
- both are important hormones which control e.g. smooth muscle contractility (blood pressure),
 gastric secretion, platelet aggregation & inflammation (<nM activity)
 - various pharmaceuticals including corticosteroids & asprin inhibit biosynthethetic steps in these pathways

Biosynthesis of Leukotrienes

- leukotrienes are the other main class of 2° metabolites derived from arachiodonic acid
 - they are potent (<nM) inflammatory substances released during allergic reactions

The Polyketide Pathway

- Polyketides are also sometimes known as acetogenins
- acetyl CoA is also the starting point for the biosynthesis of polyketide secondary metabolites
- these metabolites are topologically very different to the fatty acid metabolites but are synthesised in a very similar fashion. The difference is that during the iterative cycle of chain extension the β-keto group is generally not completely reduced out. This gives rise to huge structural diversity based around a 1,3-oxygenation pattern & cyclisation to give aromatic compounds

the polyketide pathway

 NB. unlike fatty acids. polyketides are NOT biosynthesised by humans – only microorganisms (bacteria) & fungi

Polyketides

- the structural variety of polyketide secondary metabolites is very wide:
 - NB. starter units marked in red; extender units in bold black; post oligomerisation appended groups in blue

Historical Perspective – 'The Acetate Hypothesis'

• 1907: James Collie (University of London) effects conversion of dehydroacetic acid to orcinol by boiling with Ba(OH)₂ (while trying to deduce the structure of the former):

- Collie perceptively postulated the *triketone* as an intermediate & suggetsed that this might also be an *intermediate* in the *biosynthesis* of *orcinol* (the 'polyketide hypothesis')
- **1955: Arthur Birch** used ¹⁴C labelled acetate to show that 6-methylsalicylic acid (ex. *Penicillium patulum*) was biosynthesised by head-to-tail oligomerisation of **4** × **acetate units** and proposed the following biogenesis proceeding *via* a **tetraketide intermediate** (*cf.* Collie!):

Biosynthesis of Polyketides – Oligomerisation Steps

- polyketides are biosynthesised by a process very similar to that for fatty acids
 - the key differences are:
 - greater variety of starter units, extender units & termination processes
 - absent or incomplete reduction of the iteratively introduced β -carbonyl groups: ie. each cycle may differ in terms of KR, DH & ER modules & stereochemistry

this leads to enormous diversity...

Polyketide Diversity

starter units:

extender units:

• non-functional or missing KR, DH, ER:

- stereochemistry:
- 1) side chain stereochemistry (determined by KS_n)
- 2) OH stereochemistry (determined by KR_{n+1})
- 3) alkene stereochemistry (determined by DH_{n+1})
- termination step:
 - depends on nucleophile that releases product at *TE* stage:

Biosynthesis of Polyketides – Overview of PKS

- the in vivo process of polyketide synthesis involves PolyKetide Synthases (PKSs):
 - PKSs (except Type II, see later) comprise the same 8 components as FASs. i.e. (ACP & 7× catalytic activities): ACP, KS, AT, MT, [KR, DH, ER & TE]
 - Type I PKSs: single (or small set of) multifunctional protein complex(es)
 - modular (microbial) each 'step' has a dedicated catalytic site (→ macrolides)
 - iterative (fungal) single set of catalytic sites, each of which may operate in each iteration (cf. FASs) (→
 aromatics/polyphenols generally)
 - Type II PKSs: single set of discrete, dissociable single-function proteins
 - iterative (microbial) each catalytic module may operate in each iteration (cf. FASs) (→ aromatics/polyphenols)

POLYKETIDE BIOSYNTHESIS [Type I - (modular)]

NB. the following sequence of slides has also been adapted from: http://www.courses.fas.harvard.edu/%7echem27/

AT₀ loads starting group (propionyl) onto ACP₀

• KS₁ catalyzes translocation to module 1

AT₁ loads methylmalonyl group onto ACP₁

• KS₁ catalyzes Claisen condensation

• KR₁ catalyzes reduction of ketone

no DH₁ activity

no ER₁ activity

• KS₂ catalyzes translocation to module 2

Biosynthesis of Erythromycin – Type I(modular) PKS

- 6-deoxyerthronolide is a precursor to erythromycin A bacterial antibiotic (Streptomyces erythreus):
 - propionate based heptaketide; 3 multifunctional polypeptides (DEBS1, DEBS2 & DEBS3, all ~350 kDa)
 - Katz et al. Science 1991, 252, 675 (<u>DOI</u>); Staunton, Leadley et al. Science 1995, 268, 1487 (<u>DOI</u>); Khosla et al. J. Am. Chem. Soc. 1995, 9105 (<u>DOI</u>); review: Staunton & Weissman Nat. Prod. Rep. 2001, 18, 380 (<u>DOI</u>)

Biosynthesis of Mevinolin – Type I(iterative) PKS

- mevinolin (=lovastatin®) cholesterol lowering metabolite of filamentous fungus Aspergillus terreus
 - inhibits HMG-CoA → mevalonate (see next lecture) rate-limiting step in biosynthesis of *cholesterol*
 - acetate based polyketide composed of a diketide and nonaketide linked by an ester
 - 2 × Type I (iterative) PKSs: LNKS and LDKS...both contain MeT (methyl transferase) activities
 - Hutchinson et al. Science 1999, 284, 1368 (DOI)

Type II PKSs – Enzyme Clusters (Microbial)

- Type II PKSs: single set of discrete, dissociable single-function proteins (ACP & 6× catalytic functions): ACP, KS_α, KS_β, [KR, DH, ER, & TE] [NB. NO acetyl or malonyl transferases (AT, MT)]
 - iterative each catalytic module may operate in each iteration (cf. FASs) (→ aromatics/polyphenols)
- these clusters (generally) use malonate as BOTH starter & extender unit
- their ACP proteins are able to load malonate direct from malonyl CoA (no MT required)
 - the starter malonate is decarboxylated by 'ketosynthase' β (KS_{β}) to give S-acetyl-ACP
 - the extender malonates undergo decarboxylative Claisen condensations by ketosynthase α (KS $_{\alpha}$)
- these clusters rarely utilise KR, DH or ER activities and produce 'true' polyketides:

 KS_{β} = 'keto synthase β' (=decarboxylase!); KS_{α} = 'keto synthase α' (=ketosynthase!); KR = keto reductase; DH = dehydratase; ER = enoyl reductase; TE = thioesterase; ACP = acyl carrier protein

Biosynthesis of Actinorhodin – *Type II PKS*

- actinorhodin octaketide bacterial antibiotic (Streptomyces coelicolor)
 - Hopwood Chem. Rev. 1997, 97, 2465 (DOI)

- timing of 1st cyclisation and mechanism of control of chain length uncertain
 - octaketide synthesis then cyclisation? (as shown above)
 - · hexaketide synthesis then cyclisation then two further rounds of extension?
- indications can sometimes be gleaned from biomimetic syntheses...

Scope of Structures - Type II PKS

microbial polyphenolic metabolites:

many display interesting biological activities...

Primary Metabolism - Overview

For interesting animations' of e.g. photosynthesis see: http://www.johnkyrk.com/index.html