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Format & scope of lecture 6

• Ionic 1,2-rearrangements, part 2

– Pinacol & semi-pinacol

– Baeyer-Villiger reaction

– Beckmann rearrangement

• Ionic fragmentations

– Grob

– Eschenmoser ring expansion

• Reflection on Importance of Reaction Stereoelectronics
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[1,2]-Sigmatropic rearrangements
• [1,2]-Sigmatropic rearrangements take place when an electron deficient/cationic centre is formed 

adjacent to a group capable of migration using a lone or bonding pair of electrons

– Participation of bonding electrons of aryl, alkyl and hydride groups are of particular importance:

– 1,2-Aryl-, alkyl- & hydride shifts towards carbenium ions/electron deficient carbon:

– 1,2-Aryl-, alkyl- & hydride shifts towards electron deficient oxygen:

– 1,2-Aryl-, alkyl- & hydride shifts towards electron deficient nitrogen:
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1,2-Shifts to C+ – pinacol rearrangements

• Treatment of the 1,2-diol ‘pinacol’ with acid results in a 1,2-rearrangement to give a ketone ‘pinacolone’:

– Review: Song et al. Chem. Rev. 2011, 111, 7523 [DOI]

– the ‘push’ of the lone pair and the ‘pull’ of the carbenium ion provide a low energy kinetic pathway 

– the exothermicity of C=O bond formation provides a thermodynamic driving force

• The reaction is a useful method of preparing spirocyclic compounds:

• More generally, any functionality giving rise to a carbenium ion adjacent to an oxygenated carbon can 

undergo a semi-pinacol rearrangement...
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1,2-Shifts to C+ – semi-pinacol rearrangements 

• Treatment of epoxides with Lewis acids results in semi-pinacol rearrangements:

• Diazotisation of b-amino alcohols results in semi-pinacol rearrangements (Tiffaneau-Demyanov):

1,2-alkyl shift

1) nO -> *C-C (app)

2) C-C -> pvac (pp)
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Semi-pinacol rearrangement - stereochemistry  

• The importance of correct orbital alignment for 1,2-shifts is illustrated by subjecting all four isomers of 

the following bromohydrin to identical conditions:
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1,2-Shifts to O+ – Baeyer-Villiger reaction

• Treatment of ketones & aldehydes with peracids induces a Baeyer-Villiger reaction:

– use of basic hydrogen peroxide on an electron rich aryl ketone/aldehyde is called the Dakin reaction

– the driving force is the exothermicity of cleavage of a weak O-O bond and formation of a C=O bond

– order of migration generally follows migratory aptitude series presented earlier:
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1,2-Shifts to N+ – Beckmann rearrangement
• Hydride, alkyl & aryl groups also migrate towards electron deficient nitrogen centres

– NB. nitrenium ions themselves are too high in energy to exist (cf. carbenium ions)

• Oximes undergo useful 1,2-rearrangements in acidic media – the Beckmann rearrangement:

– the group app to the N-O bond migrates irrespective of migratory aptitude BUT beware oxime E/Z isomerisation



9

Ionic fragmentations – characteristics
• Ionic fragmentation reactions are reactions in which C-C bonds are broken in a heterolytic fashion

• They are relatively rare NOT because C-C bonds are particularly strong:

– cf. Bond Dissociation Energies:

• BUT because C-C bonds are not generally highly polarised/polarisable

• It follows that fragmentations occur for polarised/polarisable C-C bonds

– the most common scenario involves an electron source at one end and an electron sink at the other:

– This type of fragmentation is sometimes referred to as a Grob fragmentation (=homologous pinacol)

– As with 1,2-rearrangements CORRECT ORBITAL OVERLAP IS CRUCIAL... 
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C-O   351 kJmol
-1

C-H   418 kJmol
-1
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Grob-type fragmentations
• There are numerous variants of the Grob fragmentation – in all cases correct conformation &

stereoelectronics are crucial for success

– Contrast the behaviour of two isomeric tosylates:

1) nN  -> *C-C (app)

2) C-C  -> *C-O (app)
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The Eschenmoser fragmentation
• A particularly spectacular type of fragmentation for ring-expansion was developed in the late 1960s by 

the Swiss chemist Albert Eschenmoser – the Eschenmoser fragmantation

– the driving force for the fragmentation is enthalpic (formation of toluene sulfinate) & entropic [formation of N2 (g)]
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Stereoelectronics - A panacea for rationalisation of 

conformation & reactivity?

• NO!…stereoelectronic analysis is constrained by the limitations of:

– APPROXIMATIONS INVOLVED IN CONSIDERING ONLY LOCALISED MOLECULAR ORBITALS (e.g. NBOs)

– PERTURBATION THEORY (i.e. the Klopman-Salem expression)

– FRONTIER ORBITAL THEORY

• Moreover, stereoelectronic analysis must, as we have seen, be augmented by consideration of 

many additional factors which influence chemical reactivity:

– STRAIN: Compressive/tensile: Bayer (=angle)/Pitzer (=torsional)/Prelog (=transannular). All van der Waals in origin

– STERIC EFFECTS: van der Waals in origin (e.g. hydrocarbon conformations; Lennard-Jones potential)

– ENTROPY EFFECTS: Statistics! [e.g. possibly of significance in the ‘Thorpe-Ingold effect’]

– SOLVENT EFFECTS: electrostatic and dipole interactions with the reaction medium

– ELECTROSTATIC/DIPOLE EFFECTS: [e.g. a factor in the anomeric effect, significant factor in carbonyl addition 

reactions cf. Felkin-Anh]


