CHEM60001: An Introduction to Reaction Stereoelectronics

LECTURE 4 Chemistry of the Carbonyl Group

Alan C. Spivey a.c.spivey@imperial.ac.uk

Imperial College London

Format & scope of lecture 3

- Reactions of the Carbonyl Group
 - Nucleophilic addition to carbonyls (Bürgi-Dunitz angle)
 - Felkin-Anh model for diastereoselective addition to α-chiral carbonyl compounds
 - Deprotonation α to carbonyls enolate formation
 - Stereoselective lithium enolate formation

Nucleophilic attack on carbonyl functions

What orbitals are involved?

- A donor orbital on the nucleophile [typically a lone pair (n)] and the $\pi^*_{C=0}$ orbital of the carbonyl group
- Recall the orbital co-efficient situation for a $\pi^*_{C=0}$ orbital:

• The Bürgi-Dunitz trajectory

It follows that, at close range, a nucleophile will attack the carbonyl carbon along a trajectory that maximises overlap – the so-called *Bürgi-Dunitz trajectory* (Bürgi *J. Am. Chem. Soc.* 1973, *95*, 5065 [DOI] & *Tetrahedron* 1974, *30*, 1563 [DOI])

Diastereoselective addition to α -chiral carbonyls

The Felkin-Anh Model:

- Review: Reiser Chem. Rev. 1999, 99, 1191 [DOI]; O'Brien Tetrahedron, 2011, 67, 9639 [DOI]
- Felkin Tetrahedron Lett. 1968, 9, 2199 [DOI]; Anh Nouv. J. Chem. 1977, 1, 61.

R_L = bulkiest group X = electronegative atom/group "polar-Felkin-Anh"

Features:

- 1) R_I/X perpendicular to carbonyl
- 2) Nu approaches over R_S at Burgi-Dunitz angle
- 3) R_S distal to carbonyl irrespective of size of R (even R = H) to facilitate approach of ${
 m Nu}$

$$X = EWG$$
 R_{S}
 $R_{M/L}$
 $\pi_{C=0}$
 $\pi_{C=0}$

best acceptor σ^* orbital perpendicular to C=O $n_{\text{Nu}} \rightarrow \sigma^*_{\text{C-X}}$ $\pi_{\text{C=O}} \rightarrow \sigma^*_{\text{C-X}}$

Applicable to:

See separate handout for details

X = non-chelating
electronegative atom/group
(cf. chelating - next slide)

Diastereoselective addition to α -chiral carbonyls

The Cram Chelate Model:

- Review: Reetz Angew. Chem. Int. Ed. 1984, 23, 556 [DOI]
- Cram J. Am. Chem. Soc. 1959, 81, 2748 [DOI]

Applicable to:

X = chelating
heteroatom/group

See separate handout for details

– Example:

Enolisation of carbonyl functions

Enolisation is under stereoelectronic control

- This was first proposed in 1956 as 'CH-π overlap effect': Corey J. Am. Chem. Soc. 1956, 78, 6269 [DOI]
- The essential requirement is that the σ_{C-H} bond α to the carbonyl must adopt a conformation *perpendicular* to the plane of the carbonyl for deprotonation to occur [i.e. to allow $\sigma_{C-H} \to \pi^*_{C=O}$ (pp)]

Evidence:

Deportoonation of norcamphor at the exo-hydrogen is favoured over that at the endo-hydrogen by a factor of >700: Houk J. Org. Chem. 2000, 65, 8970 [DOI]

Stereoselective Li enolate formation - (E) vs (Z) stereochemistry

Lithium enolates of esters & ketones:

- When an enolate is formed there are often two different stereoisomers that can be formed depending on which α proton is removed: the (*E*)- or *trans* enolate and the (*Z*)- or *cis* enolate
- For the formation of *lithium enolates* using *lithium amide bases* (e.g. lithium diisopropylamide, LDA) in THF, a six-membered chair-like 'closed' TS for deprotonation is expected and two competing factors dictate enolate geometry: A^{1,2}-strain and 1,3-diaxial interactions:

(E)-Selective Li-enolate formation

- (E)-Lithium enolates of esters & ketones (via closed TS# with small X group):
 - Lithium amide bases used in enolisation generally have bulky substituents (e.g. 2 x iPr groups in the case of LDA; 2 x TMS groups in the case of LiHMDS) this, and performing the reaction at low temperature, ensures that the reagent acts as a base and NOT as a nucleophile
 - Consequently, the **1,3-diaxial interactions** (which involve these substituents) generally override the $A^{1,2}$ -**strain** for enolisation of standard esters & ketones (e.g. X = Me or OMe).
 - This leads to the predominant formation of (E)-enolates when using LDA in THF at -78°C:

(Z)-Selective Li enolate formation

- (Z)-Lithium enolates of esters & ketones [via closed TS# with large X group OR via open TS#]:
 - Substrates containing very bulky R groups (e.g. X = ^tBu or an Evans oxazolidinone) will lead to predominant formation of (Z)-enolates when using LDA in THF at -78°C because the A^{1,2}-strain now overrides the 1,3-diaxial interactions in the 'closed' TS
 - However, when using LDA at -78°C in a *mixed solvent system* of THF & hexamethylphosphoroustriamide (HMPA) even standard esters & ketones give predominant formation of *(Z)-enolates* because the HMPA strongly co-ordinates to the lithium cation breaking up the 'closed' TS and leading to an 'open' TS
 - This removes the 1,3-diaxial interaction leaving the $A^{1,2}$ strain as the dominant factor:

