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Format & scope of lecture 7

• Cycloaddition reactions

– Diels-Alder reaction

• Rates

• Regioselectivity

• Stereoselectivity – the endo ‘rule’

– 1,3-Dipolar cycloadditions

• Ozonolysis



3Cycloaddition: the Diels-Alder reaction 
Overall synthetic characteristics - summary:

• Reaction rates: dependent on the HOMO-LUMO energy gap
– Therefore varies as a function of reaction partner electronics

• ‘Normal’ electron demand: accelerated by having an EDG on the diene & an EWG on the dienophile (cf. A vs. B vs. C/D)

• ‘Inverse’ electron demand: accelerated by having an EWG on the diene & an EDG on the dienophile 

• Reaction regioselectivity: dependent on the coefficients (=sizes) of the HOMO & LUMO reacting orbitals
– can usually be anticipated by considering the ‘polarisation’ of the reaction partners

– ortho and para products tend to predominate (cf. Ei vs Eii)

– rate & selectivity often increased by catalysis 

• Reaction stereoselectivity: dependent on secondary orbital interactions  
– endo products formed preferentially  for normal electron demand reactions (i.e. involving EWG p-conjugated 

alkene dienophiles) (see: F)
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4Diels-Alder reactivity – HOMO-LUMO matching 

Reaction rates:
• Reactivity is controlled by the relative energies of the FMOs

• The key interaction is between the HOMO of one reactant and the LUMO of the other reactant
– the closer the two interacting orbitals are in energy the faster the reaction rate (cf. Klopman-Salem equation, lecture 1, slides 7/8

– consequently, 2 important types can be identified:

– Recall from Lecture 1 (slides 9/10): EWG (Z-substituents) lower HOMO & LUMO energies 

– EDG (X-substituents) raise HOMO & LUMO energies

– conjugating systems (C-substituents) raise HOMO & lower LUMO

• Catalysis of ‘normal’ electron demand Diels-Alder reactions is generally by ‘LUMO-lowering’ catalysis’:
– i.e. interaction of catalyst with a carbonyl conjugated to an alkene in the dienophile 
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Diels-Alder regioselectivity – dienophile polarity
Can we understand how substitution on dienophile with an EWG changes orbital coefficients?

• Consider acrolein as an average of allyl cation and butadiene:

• In the presence of a Lewis acid (e.g. AlCl3) acrolein

will have more allyl cation character and hence the

C-terminus coefficient of the LUMO will be larger, leading

to greater selectivity (as well as higher rate).
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Diels-Alder regioselectivity – diene polarity

Similarly, the effect on orbital coefficients of substituting the diene with electron donating groups

• consider 1-methoxybutadiene as an average of butadiene and a pentadienyl anion:

• HOMO of diene has a large orbital coefficient at the end of the diene.
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Diels-Alder regioselectivity - summary
• Large-large and small-small overlap is best

• Z = EWG (e.g. CO2Me), X = EDG (e.g. OMe), C = conjugating group (vinyl, phenyl)
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Diels-Alder regioselectivity – in practice…
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• Fortunately, for most synthetically useful D-A reactions, 

resonance-based polarity will correctly predict regioselectivity:

• BUT, not always. Sometimes, only the orbital coefficient 

approach correctly predicts the outcome.
– However, these ‘exceptions’ are generally poor reactions from a 

HOMO-LUMO energy matching perspective (i.e. slow rates), e.g.
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Diels-Alder stereoselectivity
◼ The endo-product is generally the major with dienophiles containing p-conjugation (e.g. a Z substituent)
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◼ Secondary orbital overlap is a simple explanation for the kinetic preference for the endo-adduct 

◼ Reversibility (as in D-A reactions with furan) can lead to the thermodynamically preferred exo adduct
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Diels-Alder stereoselectivity
◼ Drawing and working out stereochemistry for Diels-Alder reactions
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RECALL: Heteroaromatics Lectures

• Prof. Donald Craig, lectures 2 & 3:

1,3-Dipolar cycloadditions
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1,3-Dipolar cycloadditions
◼ sp2-hybridized central atom
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1,3-Dipolar cycloaddition: ozonolysis
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