Chemistry II (Organic)

Heteroaromatic Chemistry LECTURE 7

Deprotonation & Benzo-heterocyces: Indoles & (Iso)quinolines

Alan C. Spivey a.c.spivey@imperial.ac.uk

Imperial College London

Mar 2012

Format & scope of lecture 7

- *Deprotonation of heteroaromatics:*
	- Thermodynamic *vs*. kinetic deprotonation
	- azines
	- 5-membered heteroaromatics
- *Benzo-heterocycles – Indoles & (iso)quinolines:*
	- structure & properties
	- syntheses
	- reactivity

Deprotonation - *thermodynamic vs kinetic*

• *Overall process:*

- *thermodynamic deprotonation using hindered lithium amide bases:*
	- amine anions are poorly nucleophilic and undergo slow competitive addition reactions
	- reversible equilibration, success depends on the pK_a of the heteroaryl proton being lower than that of the amine:

- *kinetic deprotonation using alkyl lithium bases (RLi):*
	- branched alkyl lithiums undergo slow competitive nucleophilic addition reactions
	- *irreversible loss of RH*, maximum basicity of alkyl lithiums is in non-co-ordinating solvents *e.g.* hexane (with TMEDA co-solvent to break up aggregates – *i.e*. form monomeric species)

Deprotonation - *regioselectivity*

• *kinetically and thermodynamically most acidic protons may differ:*

Deprotonation – *azines*

- Deprotonation of *pyridines (and other azines):*
	- *Thermodynamically more favourable* and *kinetically faster* than for *benzene* particularly for protons:
		- *ortho* to ring N
		- *ortho* to a "directing group (DG)" (see later)
	- **Thermodynamics:** (pK_a Ar_{C=N}H \sim 35 *cf.* benzene \sim 40) due to:

– *Low temperatures* & *bulky bases* required to supress *addition reactions* to *C=N function:*

– *Reviews:* Snieckus & Beak *Angew. Chem. Int. Ed.* **2004**, *43*, 2206 (**[DOI](http://dx.doi.org/10.1002/anie.200300590)**), Schlosser *Angew. Chem. Int. Ed.* **2005**,

⁶ Deprotonation - *5-ring heteroarenes*

• *furans and thiophenes:*

– facile *kinetic* and *thermodynamic* deprotonation of hydrogens *ortho* to ring heteroatom

- *pyrroles: N-protection is required to avoid NH deprotonation (see lecture 2)*
	- electron withdrawing protecting groups enhance *kinetic* and *thermodynamic* acidity of *ortho-*hydrogens

• *The concept of lateral protection can also be applied to deprotonation (cf. S_EAr):*

• *NOT generally susceptible to addition reactions*

⁷ Directing Groups - *directed ortho-metalation (DoM)*

• *Many substituents kinetically and thermodynamically acidify hydrogens ortho to themselves:*

– *e.g.*

Pharmaceutical preparation by DoM

• *losartan potassium: antihypertensive*

– Process route for Merck (Rouhi *Chem. Eng. News* **2002**, *July 22*, 46) (**[DOI](http://pubs.acs.org/cen/coverstory/8029/8029finechemicals.html)**)

- *efavirenz: anti-viral, anti-AIDS*
	- Process route for Bristol-Myers Squibb (Rouhi *Chem. Eng. News* **2002**, *July 22*, 46) (**[DOI](http://pubs.acs.org/cen/coverstory/8029/8029finechemicals.html)**)

Indoles – Importance

Indole – Structure and Properties

- A colourless, crystalline solid, mp 52 °C
- *Bond lengths* and *¹H NMR chemical shifts* as expected for an aromatic system:

- Resonance energy: 196 kJmol⁻¹ [most of which is acounted for by the benzenoid ring (*cf.* benzene, 152 kJmol⁻¹, naphthalene, 252 kJmol⁻¹ & pyrrole, 90 kJmol⁻¹)]:
	- $\Box \rightarrow$ resonance energy associated with pyrrolic ring is significantly less than for pyrrole itself hence enamine character of N1-C2-C3 unit is pronounced

electron neutral (cf. benzene)

electron rich

(d. pyrrole)

H

- *Electron density:* pyrrolic ring is *electron rich*, just a little less electron rich than pyrrole; benzenoid ring has similar electron density to benzene:
	- → *very reactive towards electrophilic substitution (SEAr)* at *C3*
	- □ → unreactive towards nucleophilic substitution (S_NAr)
- *NH-acidic* (pK_a 16.2; *cf. pyrrole* 17.5). *Non-basic*; as for pyrrole, the *N* lone pair is involved in aromatic system; protonation occurs at *C3* (as for an enamine):

Quinolines & Isoquinolines – Importance

*Natural product***s:**

OMe

N

Quinolines & Isoquinolines – Structure and Properties

- *Quinoline:* colourless liquid, bp 237 °C; *isoquinoline:* colourless plates, mp 26 °C
- *Bond lengths* and *¹H NMR chemical shifts* as expected for aromatic systems:

- Resonance energies: quinoline = 222 kJmol⁻¹ (cf. 252 kJmol⁻¹ naphthalene)
- *Electron density:* for both systems the *pyridinyl ring* is *electron deficient* (*cf.* ~pyridine); the *benzenoid ring* is slightly electron deficient relative to *benzene* itself:

- → both *quinoline* and *isoquinoline* are:
	- reactive towards electrophiic substitution (S_EAr) in the benzenoid ring
	- reactive towards nucleophilic subnstitution (S_NAr) in the pyridinyl ring
- **Basic:** both systems have pK_as similar to pyridine (5.2):
	- **quinoline:** $pK_a = 4.9$
	- *<u>u</u>* isoquinoline: $pK_a = 5.1$

isoquinoline (pK_a 5.1)

Fischer: aryl hydrazine with enolisable ketone

NOTES:

- aryl hydrazone cyclisation under acidic or Lewis acidic conditions
- high temperature (≥150 °C) but varies with catalyst & solvent *etc.*
- ketones that are able to form regioisomeric enamines can give mixtures of products but cyclisation is preferred *via more substituted enamine* (*i.e.* the more thermodynamically stable one)
- **driving forces:**
	- 1) loss of H₂O & NH₃ [*i.e.* ΔS° +ive, entropically favourable]
	- 2) N-N (weak bond) broken & C-C (strong bond) formed [*i.e.* ∆H° -ive, enthalpically favourable]
	-

Quinolines & Isoquinolines – Syntheses

Quinolines:

- *Doebner-von Miller:* enone with aniline then *in situ* oxidation:
	- *via apparent* 1,4-addition of aniline NH₂ group to enone then cyclodehydration then dehydrogenation (oxidation) by the *imine* formed between the enone and aniline in a side reaction

(Tetrahydro)isoquinolines:

Pictet-Spengler: B-phenethylamine with aldehyde (intramolecular Mannich)

(Dihydro)isoquinolines:

Bischler-Napieralski: β-phenethylamine with acid chloride

Indoles – Reactivity

Electrophilic substitution: via addition-elimination (S_EAr) in the pyrrolic ring

- **reactivity:** reactive towards many electrophiles (**E⁺**); ~pyrrole
- **regioselectivity:** the kinetic 3-substituted product predominates (*cf.* 2-position for pyrrole); predict by estimating the energy of the respective Wheland intermediates \rightarrow 3-substitution is favoured:

□ *e.g.* **<u>nitration</u>: (E⁺ = NO₂⁺)**

Metallation: (NH pK_a = 16.2) *NB*. For an overview & mechanistic discussion see Joule & Smith (5th Ed) chapter 4.

Electrophilic substitution: via addition-elimination (S_EAr) in the benzenoid ring (<i>i.e. more electron rich ring)

□ reactivity: reactive towards many electrophiles (E⁺); <benzene but >pyridine

$$
relative rates 1 \qquad \qquad \sim 10^{-5} \qquad \qquad \sim 10^{-6} \qquad \qquad \sim 10^{-12}
$$

regioselectivity: substitution at *C5* (& *C8* for quinolines) predominate – *via* most stable Wheland intermediates:

Quinolines & Isoquinolines – Reactivity cont.

- *Nucleophilic substitution: via addition-elimination (S_NAr)*
	- **reactivity:** reactive towards nucleophilies (**Nu-**) provided leaving group is situated at appropriate carbon
	- **<u>regioselectivity:</u>** reactive at positions for which the Meisenheimer type intermediates have negative charge stabilised on the electronegative nitrogen ['leaving group' (LG) can be H but Cl, Br, NO₂ *etc.* more facile]:
		- *quinoline: C4* > *C2 i.e.* as for pyridine
		- *isoquinoline: C1 > C3*

□ *e.g.* **the Chichibabin reaction: (Nu⁻ = NH₂⁻, LG = H)**

Metallation:

 deprotonation by strong bases *ortho* to the *N* is difficult due to competing addition reactions but can be achieved using *e.g.* highly basic and non-nucleophilic zincates:

Metallation at benzylic positions:

 deprotonation at benzylic positions that give *enaminate anions* (*i.e. C4 > C2* for *quinoline*; *C1* > *C3* for *isoquinoline*) are facile (*i.e.* as for pyridine):

