Chemistry II (Organic)

Heteroaromatic Chemistry LECTURE 7

Deprotonation & Benzo-heterocyces: Indoles & (Iso)quinolines

Alan C. Spivey a.c.spivey@imperial.ac.uk

Imperial College London

Mar 2012

Format & scope of lecture 7

- Deprotonation of heteroaromatics:
 - Thermodynamic vs. kinetic deprotonation
 - azines
 - 5-membered heteroaromatics
- Benzo-heterocycles Indoles & (iso)quinolines:
 - structure & properties
 - syntheses
 - reactivity

Deprotonation - thermodynamic vs kinetic

• Overall process:

- thermodynamic deprotonation using <u>hindered</u> lithium amide bases:
 - amine anions are poorly nucleophilic and undergo slow competitive addition reactions
 - **reversible equilibration**, success depends on the pK_a of the heteroaryl proton being lower than that of the amine:

- kinetic deprotonation using alkyl lithium bases (RLi):
 - branched alkyl lithiums undergo slow competitive nucleophilic addition reactions
 - *irreversible loss of RH*, maximum basicity of alkyl lithiums is in non-co-ordinating solvents *e.g.* hexane (with TMEDA co-solvent to break up aggregates *i.e.* form monomeric species)

Deprotonation - regioselectivity

• kinetically and thermodynamically most acidic protons may differ:

Deprotonation – azines

- Deprotonation of *pyridines (and other azines):*
 - Thermodynamically more favourable and kinetically faster than for benzene particularly for protons:
 - ortho to ring N
 - ortho to a "directing group (DG)" (see later)
 - **Thermodynamics:** ($pK_a Ar_{C=N}H \sim 35 cf.$ benzene ~40) due to:

Low temperatures & bulky bases required to supress addition reactions to C=N function:

Reviews: Snieckus & Beak Angew. Chem. Int. Ed. 2004, 43, 2206 (DOI), Schlosser Angew. Chem. Int. Ed. 2005, 44, 376 (DOI).

Deprotonation - 5-ring heteroarenes

• furans and thiophenes:

- facile kinetic and thermodynamic deprotonation of hydrogens ortho to ring heteroatom

- pyrroles: N-protection is required to avoid NH deprotonation (see lecture 2)
 - electron withdrawing protecting groups enhance kinetic and thermodynamic acidity of ortho-hydrogens

• The concept of lateral protection can also be applied to deprotonation (cf. S_EAr):

• NOT generally susceptible to addition reactions

Directing Groups - directed ortho-metalation (DoM) 7

• Many substituents kinetically and thermodynamically acidify hydrogens ortho to themselves:

– e.g.

Pharmaceutical preparation by DoM

• losartan potassium: antihypertensive

- Process route for Merck (Rouhi Chem. Eng. News 2002, July 22, 46) (DOI)

- efavirenz: anti-viral, anti-AIDS
 - Process route for Bristol-Myers Squibb (Rouhi Chem. Eng. News 2002, July 22, 46) (DOI)

Indoles – Importance

Indole – Structure and Properties

- A colourless, crystalline solid, mp 52 °C
- **Bond lengths** and ¹*H NMR chemical shifts* as expected for an aromatic system:

- Resonance energy: 196 kJmol⁻¹ [most of which is acounted for by the benzenoid ring (*cf.* benzene, 152 kJmol⁻¹, naphthalene, 252 kJmol⁻¹ & pyrrole, 90 kJmol⁻¹)]:
 - □ → resonance energy associated with pyrrolic ring is significantly less than for pyrrole itself hence enamine character of N1-C2-C3 unit is pronounced

electron neutral

(cf. benzene

electron rich

(cf. pyrrole)

- Electron density: pyrrolic ring is electron rich, just a little less electron rich than pyrrole; benzenoid ring has similar electron density to benzene:
 - \rightarrow very reactive towards electrophilic substitution (S_EAr) at C3
 - \rightarrow unreactive towards nucleophilic substitution (S_NAr)
- NH-acidic (pK_a 16.2; cf. pyrrole 17.5). Non-basic; as for pyrrole, the N lone pair is involved in aromatic system; protonation occurs at C3 (as for an enamine):

Quinolines & Isoquinolines – Importance

Natural products:

Quinolines & Isoquinolines – Structure and Properties

- **Quinoline:** colourless liquid, bp 237 °C; **isoquinoline:** colourless plates, mp 26 °C
- **Bond lengths** and ¹*H NMR chemical shifts* as expected for aromatic systems:

- **Resonance energies: quinoline** = 222 kJmol⁻¹ (*cf.* 252 kJmol⁻¹ naphthalene)
- Electron density: for both systems the pyridinyl ring is electron deficient (cf. ~pyridine); the benzenoid ring is slightly electron deficient relative to benzene itself:

electron neutral { (cf. benzene) { (cf. pyridine)	electron neutral { electron deficient (cf. benzene) { (cf. pyridine)
quinoline	isoquinoline

- \square \rightarrow both *quinoline* and *isoquinoline* are:
 - reactive towards electrophic substitution (S_EAr) in the benzenoid ring
 - reactive towards nucleophilic subnstitution (S_NAr) in the pyridinyl ring
- **Basic:** both systems have pK_as similar to pyridine (5.2):
 - **quinoline:** $pK_a = 4.9$
 - **isoquinoline:** $pK_a = 5.1$

isoquinoline (pK_a 5.1)

Fischer: aryl hydrazine with enolisable ketone

NOTES:

- aryl hydrazone cyclisation under acidic or Lewis acidic conditions
- □ high temperature (≥150 °C) but varies with catalyst & solvent *etc.*
- ketones that are able to form regioisomeric enamines can give mixtures of products but cyclisation is preferred via more substituted enamine (i.e. the more thermodynamically stable one)
- driving forces:
 - 1) loss of $H_2O \& NH_3$ [*i.e.* ΔS° +ive, entropically favourable]
 - 2) N-N (weak bond) broken & C-C (strong bond) formed [*i.e.* ΔH° -ive, enthalpically favourable]
 - 3) aromaticity of product indole [*i.e.* ΔH° -ive, enthalpically favourable]

Quinolines & Isoquinolines – Syntheses

<u>Quinolines</u>:

- Doebner-von Miller: enone with aniline then in situ oxidation:
 - via apparent 1,4-addition of aniline NH₂ group to enone then cyclodehydration then dehydrogenation (oxidation) by the *imine* formed between the enone and aniline in a side reaction

(Tetrahydro)<u>isoquinolines</u>:

Pictet-Spengler: <u>β-phenethylamine</u> with <u>aldehyde</u> (intramolecular Mannich)

(Dihydro)<u>isoquinolines</u>:

Bischler-Napieralski: β-phenethylamine with acid chloride

Indoles – Reactivity

Electrophilic substitution: via addition-elimination (S_EAr) in the pyrrolic ring

- reactivity: reactive towards many electrophiles (E+); ~pyrrole
- <u>regioselectivity</u>: the kinetic 3-substituted product predominates (*cf.* 2-position for pyrrole); predict by estimating the energy of the respective Wheland intermediates → 3-substitution is favoured:

• e.g. <u>nitration</u>: $(E^+ = NO_2^+)$

Metallation: (NH pK_a = 16.2) *NB*. For an overview & mechanistic discussion see Joule & Smith (5th Ed) chapter 4.

Electrophilic substitution: via addition-elimination (S_EAr) in the benzenoid ring (*i.e.* more electron rich ring)

□ <u>reactivity:</u> reactive towards many electrophiles (E+); <benzene but >pyridine

$$relative rates 1 -10^{-5} -10^{-6} -10^{-12}$$

<u>regioselectivity:</u> substitution at **C5** (& **C8** for quinolines) predominate – *via* most stable Wheland intermediates:

Quinolines & Isoquinolines – Reactivity cont.

- Nucleophilic substitution: via addition-elimination (S_NAr)
 - reactivity: reactive towards nucleophilies (Nu⁻) provided leaving group is situated at appropriate carbon
 - regioselectivity: reactive at positions for which the Meisenheimer type intermediates have negative charge stabilised on the electronegative nitrogen ['leaving group' (LG) can be H but Cl, Br, NO₂ etc. more facile]:
 - quinoline: C4 > C2 i.e. as for pyridine
 - isoquinoline: C1 > C3

• e.g. the Chichibabin reaction: $(Nu^- = NH_2^-, LG = H)$

Metallation:

deprotonation by strong bases ortho to the N is difficult due to competing addition reactions but can be achieved using e.g. highly basic and non-nucleophilic zincates:

Metallation at benzylic positions:

deprotonation at benzylic positions that give enaminate anions (*i.e.* C4 > C2 for quinoline; C1 > C3 for isoquinoline) are facile (*i.e.* as for pyridine):

