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Format & scope of lecture 7 

• Deprotonation of heteroaromatics: 

– Thermodynamic vs. kinetic deprotonation 

– azines 

– 5-membered heteroaromatics 

 

• Benzo-heterocycles – Indoles & (iso)quinolines: 

– structure & properties 

– syntheses 

– reactivity 
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Deprotonation - thermodynamic vs kinetic 

• Overall process: 

 

 

• thermodynamic deprotonation using hindered lithium amide bases: 

– amine anions are poorly nucleophilic and undergo slow competitive addition reactions 

– reversible equilibration, success depends on the pKa of the heteroaryl proton being lower than that of the amine: 

 

 

 

 

 

 

• kinetic deprotonation using alkyl lithium bases (RLi): 

– branched alkyl lithiums undergo slow competitive nucleophilic addition reactions 

– irreversible loss of RH, maximum basicity of alkyl lithiums is in non-co-ordinating solvents e.g. hexane (with 

TMEDA co-solvent to break up aggregates – i.e. form monomeric species) 
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Deprotonation - regioselectivity 
• kinetically and thermodynamically most acidic protons may differ: 
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Deprotonation – azines 
• Deprotonation of pyridines (and other azines): 

– Thermodynamically more favourable and kinetically faster than for benzene particularly for protons: 

• ortho to ring N 

• ortho to a “directing group (DG)” (see later) 

 

– Thermodynamics: (pKa ArC=NH ~35 cf. benzene ~40) due to: 

  

 

 

 

– Kinetics: due to: 

 

 

 

 

– Low temperatures & bulky bases required to supress addition reactions to C=N function: 

 

 

 

 

 

– Reviews: Snieckus & Beak Angew. Chem. Int. Ed. 2004, 43, 2206 (DOI), Schlosser Angew. Chem. Int. Ed. 2005, 

44, 376 (DOI). 
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6 Deprotonation - 5-ring heteroarenes 
• furans and thiophenes: 

– facile kinetic and thermodynamic deprotonation of hydrogens ortho to ring heteroatom 

 

 

 

 

• pyrroles: N-protection is required to avoid NH deprotonation (see lecture 2) 

– electron withdrawing protecting groups enhance kinetic and thermodynamic acidity of ortho-hydrogens 

 

 

 

 

 

 

• The concept of lateral protection can also be applied to deprotonation (cf. SEAr): 

 

 

 

 

 

• NOT generally susceptible to addition reactions 

 



7 Directing Groups - directed ortho-metalation (DoM) 
• Many substituents kinetically and thermodynamically acidify hydrogens ortho to themselves: 

– e.g. 
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Pharmaceutical preparation by DoM 

• losartan potassium: antihypertensive 

– Process route for Merck (Rouhi Chem. Eng. News 2002, July 22, 46) (DOI) 

 

 

 

 

 

 

 

 

 

• efavirenz: anti-viral, anti-AIDS 

– Process route for Bristol-Myers Squibb (Rouhi Chem. Eng. News 2002, July 22, 46) (DOI) 

http://pubs.acs.org/cen/coverstory/8029/8029finechemicals.html
http://pubs.acs.org/cen/coverstory/8029/8029finechemicals.html


Indoles – Importance 

 Natural products: 

 

 

 

 

 

 

 

 Pharmaceuticals: 

 

 

 

 

 

 

 

 

 Agrochemicals: 
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Indole – Structure and Properties 

 A colourless, crystalline solid, mp 52 °C 

 Bond lengths and 1H NMR chemical shifts as expected for an aromatic system: 

 

 

 

 

 

 

 Resonance energy: 196 kJmol-1 [most of which is acounted for by the benzenoid ring (cf. benzene, 152 kJmol-1, 

naphthalene, 252 kJmol-1 & pyrrole, 90 kJmol-1)]: 

 → resonance energy associated with pyrrolic ring is significantly less than for pyrrole itself – hence enamine 

character of N1-C2-C3 unit is pronounced 

 

 Electron density: pyrrolic ring is electron rich, just a little less electron rich than pyrrole; benzenoid ring has similar 

electron density to benzene: 

 → very reactive towards electrophilic substitution (SEAr) at C3 

 → unreactive towards nucleophilic substitution (SNAr) 

 

 NH-acidic (pKa 16.2; cf. pyrrole 17.5). Non-basic; as for pyrrole, the N lone pair is involved in aromatic system; 

protonation occurs at C3 (as for an enamine): 
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Quinolines & Isoquinolines – Importance 

 Natural products: 

 

 

 

 

 

 

 

 Pharmaceuticals: 

 

 

 

 

 

 

 

 

 Chiral catalysts:  

 Sharpless Angew. Chem. Int. Ed. 2002, 41, 2024 (DOI): 
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Quinolines & Isoquinolines – Structure and Properties 

 Quinoline: colourless liquid, bp 237 °C; isoquinoline: colourless plates, mp 26 °C 

 Bond lengths and 1H NMR chemical shifts as expected for aromatic systems: 

 

 

 

 

 

 

 Resonance energies: quinoline = 222 kJmol-1 (cf. 252 kJmol-1 naphthalene) 

 

 Electron density: for both systems the pyridinyl ring is electron deficient (cf. ~pyridine); the benzenoid ring is 

slightly electron deficient relative to benzene itself: 

 

 

 

 

 → both quinoline and isoquinoline are: 

 reactive towards electrophiic substitution (SEAr) in the benzenoid ring 

 reactive towards nucleophilic subnstitution (SNAr) in the pyridinyl ring 

 

 Basic: both systems have pKas similar to pyridine (5.2): 

 quinoline: pKa = 4.9 

 isoquinoline: pKa = 5.1 

1
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cf. ave C-C 1.48 Å

     ave C=C 1.34 Å
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Indoles – Syntheses 

 Fischer: aryl hydrazine with enolisable ketone 

 

 

 

 

 

 

 

 

 

 

 

 NOTES: 

 aryl hydrazone cyclisation under acidic or Lewis acidic conditions 

 high temperature (≥150 °C) but varies with catalyst & solvent etc. 

 ketones that are able to form regioisomeric enamines can give mixtures of products but cyclisation is preferred via 

more substituted enamine (i.e. the more thermodynamically stable one) 

 driving forces: 

 1) loss of H2O & NH3 [i.e. DS° +ive, entropically favourable] 

 2) N-N (weak bond) broken & C-C (strong bond) formed [i.e. DH° -ive, enthalpically favourable] 

 3) aromaticity of product indole [i.e. DH° -ive, enthalpically favourable] 

H

pt

H2O

protonated
aryl hydrazone

N
NH2

R''

R

R'

O N N R'
R''

aryl hydrazine

[3,3]-sigmatropic
rearangement

+ R

N

R''

H

NH2

R'

R

NH3

N
H

N N
H2

R'
R''

R

N
R''

R'

R

NH3

H

H

N

R

R'

R''

imine tautomer enamine tautomer



Quinolines & Isoquinolines – Syntheses 

 Quinolines: 

 Doebner-von Miller: enone with aniline then in situ oxidation: 

 via apparent 1,4-addition of aniline NH2 group to enone then cyclodehydration then dehydrogenation 

(oxidation) by the imine formed between the enone and aniline in a side reaction 

 

 

 

 

 (Tetrahydro)isoquinolines: 

 Pictet-Spengler: -phenethylamine with aldehyde (intramolecular Mannich)  

 

 

 

 (Dihydro)isoquinolines: 

 Bischler-Napieralski: -phenethylamine with acid chloride 
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Indoles – Reactivity 

 Electrophilic substitution: via addition-elimination (SEAr) in the pyrrolic ring 

 reactivity: reactive towards many electrophiles (E+); ~pyrrole 

 regioselectivity: the kinetic 3-substituted product predominates (cf. 2-position for pyrrole); predict by estimating 

the energy of the respective Wheland intermediates → 3-substitution is favoured: 

 

 

 

 

 

 

 

 

 

 

 

 

 e.g. nitration: (E+ = NO2
+) 
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Indoles – Reactivity cont. 

 Metallation: (NH pKa = 16.2) NB. For an overview & mechanistic discussion see Joule & Smith (5th Ed) chapter 4. 

 

 

 

 

 

 

 

 

 

 

 

 Reaction as an enamine: 

 e.g. as hetero-Diels-Alder dienophile 



Quinolines & Isoquinolines – Reactivity 

 Electrophilic substitution: via addition-elimination (SEAr) in the benzenoid ring (i.e. more electron rich ring) 

 reactivity: reactive towards many electrophiles (E+); <benzene but >pyridine 

 

 

 

 

 

 regioselectivity:  substitution at C5 (& C8 for quinolines) predominate – via most stable Wheland intermediates: 

 

 

 

 

 

 e.g. nitration: (E+ = NO2
+) 
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 Nucleophilic substitution: via addition-elimination (SNAr) 

 reactivity: reactive towards nucleophilies (Nu-) provided leaving group is situated at appropriate carbon 

 regioselectivity: reactive at positions for which the Meisenheimer type intermediates have negative charge 

stabilised on the electronegative nitrogen [‘leaving group’ (LG) can be H but Cl, Br, NO2 etc. more facile]: 

   quinoline: C4 > C2 – i.e. as for pyridine  

   isoquinoline: C1 > C3 

 

 

 

 

 

 

 

 e.g. the Chichibabin reaction: (Nu- = NH2
-, LG = H) 

Quinolines & Isoquinolines – Reactivity cont. 
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Quinolines & Isoquinolines – Reactivity cont. 

 Metallation: 

 deprotonation by strong bases ortho to the N is difficult due to competing addition reactions but can be achieved 

using e.g. highly basic and non-nucleophilic zincates: 

 

 

 

 

 

 

 Metallation at benzylic positions: 

 deprotonation at benzylic positions that give enaminate anions (i.e. C4 > C2 for quinoline; C1 > C3  for 

isoquinoline) are facile (i.e. as for pyridine): 
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