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Pyridines — Importance

B Natural products:
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niacin - vitamin B3 pyridoxal phosphate nicotine
(skin growth promotor) (cofactor for transaminases) (tobacco alkaloid
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Benzene — Pyridine

B Pyridine can be considered as benzene in which one CH unit has been replaced by an iso-electronic N unit
a itis no longer C6-symmetric but it retains 6p electrons and is still aromatic:
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B The MO diagram for pyridine resembles that for benzene (lecture 1) but loss of symmetry — loss of degeneracy:

benzene E pyridine E . —_—
6nes) 2 — Gres) 0 +_~H_

0 As for pyrrole the energy match and orbital overlap between the N-centred p-orbital and the adjacent C-centred
p-orbitals is relatively poor so the resonance energy is lower than for benzene: 117 kdmol- cf. 152 kimol-




Pyridine: Calculated Electron Density < Reactivity

B Like benzene, pyridine has 6 n-electrons distributed over 6 atoms; However, both induction and resonance effects
draw electron density towards the N atom so that the carbon framework is ELECTRON DEFICIENT
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B The distribution of n-electron density is manifested in its calculated z~electron density and dipole moment (although
this latter property is dominated by the sp? lone pair):
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B The REACTIVITY of pyridine shows aspects which resemble the reactivity of:
O benzene: substitution reactions; resistance to addition/ring-opening (to avoid loss of resonance energy)

O tert-amines: protonation, alkylation, N-oxide formation & co-ordination to Lewis acids by the N lone pair:
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O conjugated imines/carbonyl compounds: susceptibility to attack by nucleophiles at «/C2 and y/C4 positions:

© © Nu : = ©
®0 | g NUnaa | ] Nusort  T7 o oy N ~ | LINZN
O -~ /O —_— J O : N@ - /N - NN N@
aj 2

Nu Nu




Pyridine — Structure and Properties

B Aliquid bp 115 °C
B Bond lengths, 'H and 13C NMR chemical shifts and coupling constants as expected for an aromatic system:

7-9 Hz
bond lengths: 139 A A 3¢c and 'H NMR: 135.7 ppm 7.7 ppmq
' SN cf. ave C-C 1.48
1.39 A O ave C=C 1.34 A S P | \/ fe BIPIE ) wacllils
134 A N ave C-N 1.45 A 149.8 ppm  "N” 8.6 ppm

B Resonance energy: 117 kJmol-[i.e. lower than benzene (152)]
O — can undergo nucleophilic addition reactions (particularly pyridinium salts)

B Electron density: electron deficient cf. benzene
O — reactive towards nucleophilic substitution (SyAr), poorly reactive towards electrophilic substitution (ScAr)
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B Basic (pK, 5.2) because the N lone pair is NOT part of the aromatic sextet of electrons. Less basic than a tert-amine
(e.g. Et3N, pK, 11) because of difference in hybridisation (sp? vs. sp3; see supplementary slide 1):
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Pyridines — Syntheses

B Pyridines can be prepared by cycloaddition or cyclisations/cyclocondensation:

O some common approaches are:
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(hetero-Diels Alder reactions)
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Pyridines — Synthesis by cycloaddition

B CYCLOADDITION REACTIONS:

0 aza-Diels-Alder between aza-1,3-dienes and alkenes/alkynes (usually inverse electron demand)

0 generally give non-aromatic heterocycles — extrusion of small molecule(s) — aromatic species

B 2-Aza-1,3-dienes:

O e.g. inverse electron demand hetero-Diels-Alder cycloaddition of 1,2,4-trazine with an enamine:
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1,2,4-triazine N~N CNH

B 1-Aza-1,3-dienes:

O e.g. inverse electron demand hetero-Diels-Alder cycloaddition of a 1,2,3-trazine with an enamine:
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Pyridines — Synthesis by cyclisation/cyclocondensation

®  Paal-Knorr (Type I): 1,5-dicarbonyl with NH,

NH;
H
(o mt [ Ros LR Pt RS~ _~_R _pt Z N0 pt
ﬁ RT& | YRS A — RJ~ — ]
CHI O oY O H,N OH (mH HOy "N™ "R’ ) R ENIR
Mo ‘% H,0

NB. unsaturation in 1,5-dicarbonyl obviates oxidation

B ‘Guareschi’ (Type Il): 1,3-dicarbonyl with 1° enamine
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®  Hantzsch: 1.3-dicarbonyl(x2) & aldehyde with NH; then oxidation (typically with HNO,, lecture 2)
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Pyridines — Reactivity

B Electrophilic addition to the pyridyl N:
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0 N-oxides are particularly valuable because they:

are more susceptible to SLAr than pyridines: but react at C4 cf. C3 for pyridines (see later)
are more susceptible to SyAr than pyridines: same selectivity: i.e. C4 > C2 >> C3 (see later)
promote ortho-metallation (i.e. deprotonation)

allow some synthetically useful rearrangements

for details see supplementary slides 2-3




Pyridines — Reactivity cont.

B Electrophilic substitution: via addition-elimination (SgAr)
O reactivity: unreactive towards most electrophiles (E*); <<benzene (relative rate x10-1?); similar to nitrobenzene
= Two factors: 1) ‘n-deficient’; 2) salt formation via N lone pair:
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O regioselectivity: the kinetic 3- & 5-products predominate; reaction at these positions avoid unfavourable positive
charge build-up on nitrogen in the Wheland-type intermediate:
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Wheland intermediate...positive charge
NOT on nitrogen (cf. reaction at 2 or 4 positions)

O e.g.sulfonylation: (E* = SOzH")
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Pyridines — Reactivity cont.

B Nucleophilic substitution: via addition-elimination (SyAr)
0O reactivity: reactive towards strong nucleophilies (Nu-)

O regioselectivity: substitution at 4 & 2 positions (C4 > C2) — Meisenheimer intermediates have negative charge
stabilised on the electronegative nitrogen

= ‘leaving group’ (LG) can be H but CI, Br, NO, etc. more facile
= nucleophiles include alkoxides, amines, thiolates, organolithiums and Grignard reagents
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O e.g.the Chichibabin reaction: (Nu- = NH,", LG = H)
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Pyridines — Reactivity cont.

B Metallation ortho to N:

0 deprotonation by strong bases ortho to the N with lithium amide bases possible but more facile on N-oxide
derivatives:

1) LDA (2eq) . cf. 1) LDA (2eq) o NHBoc =
N THF, -78°C N | THF, -78°C O
Q 2)PhcHO o || | @ 2) PhCHO ~ “Ph 5\N)J\OJ<
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0 i.e. the ortho directing effect of the ‘NLiBoc’ group overrides that of the ring N but not that of the N-oxide
0 NB. For an overview & mechanistic discussion see LECTURE 7 (also: Joule & Smith (5 Ed) chapter 4).

B Metallation at benzylic C2 & C4 positions:
0 have similar acidity to protons a-to a carbonyl (pK, ~25) and can be readily deprotonated (even with alkoxides) to
give enaminate anion:
.
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Supplementary Slide 1 — Nitrogen Basicity «» Hybridisation of Lone Pair

B The basicity of a N lone pair depends critically on its hybridisation state:
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rationale
greater s-character:
— lower energy orbital (= ‘more electronegative’)
— less able to carry +ive charge
— more able to carry -ive charge




Supplementary Slide 2 — Pyridine-N-oxide reactivity — ScAr & Sy Ar

B Pyridine-N-oxides are more reactive towards SgAr than pyridines & react at C4 (cf. C3 ) because:
o 1) the N lone pair is no longer available to form unreactive salts (— faster reactions)

O 2) aresonance form in which an oxygen lone pair can help stabilise the positive charge in the Wheland
intermediate is possible for reaction at C4 (& C2) (— different regioselectivity):
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reaction at C2 & C4 allows resonance forms involving oxygen -
reaction at C4 favoured in practice, mainly for steric reasons
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B Pyridine-N-oxides are also more reactive towards S Ar than pyridines because a resonance form in which the
negative charge in the Meisenheimer intermediate is localised on the electronegative oxygen is possible for reaction
at C4 & C2 (i.e. same regioselectivity as for pyridine):
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Supplementary Slide 3 — Pyridine-N-oxide reactivity — metallation & rearrangements

Pyridine-N-oxides are more readily metallated (i.e. deprotonated) at the ortho positions than pyridines

0 this is because the N-oxide decreases pair-pair electron repulsions and increases chelation:
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O 2-acetoxylation:

0 benzylic acetoxylation:
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Pyridine-N-oxides also undergo some useful rearrangements to give oxygenated pyridines:
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Supplementary Slide 4 — Nucleophilic Aromatic Substitution: SyAr

B Mechanism: addition-elimination
0 Rate = K[ArX][Y"] (bimolecular but rate determining step does NOT involve departure of LG (cf. S\2)
a e.g. 4-fluoro nitrobenzene:

notes
= * Intermediates: energy minima
O « Transition states: energy
Y /_‘ maxima
S @ © * Meisenheimer intermediate is
.. NOT aromatic but stabilised by
N0 slow fast » Generally under kinetic control

(rds)  Meisenheimer intermediate
cf. Wheland

reaction co-ordinate




