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Format & scope of lectures 4 & 5 

• Bonding, aromaticity & reactivity of 5-ring heteroaromatics: 

– cf. cyclopentadienyl anion 

– pyrroles, furans & thiophenes: 

• MO and valence bond descriptions 

• resonance energies 

• electron densities  

• Pyrroles: 

– structure & properties 

– syntheses 

– reactivity 

• Furans: 

– structure & properties 

– syntheses 

– reactivity 

• Thiophenes: 

– structure & properties 

– syntheses 

– reactivity 

• Supplementary slides 1-2 

– revision of SEAr mechanism 



Pyrroles, Furans & Thiophenes – Importance 

 Natural products: 
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Cyclopentadienyl anion → pyrrole, furan & thiophene  

 The cyclopentadienyl anion is a C5-symmetric aromatic 5-membered cyclic carbanion: 

 

 

 

 

 

 

 

 Pyrrole, furan & thiophene can be considered as the corresponding aromatic systems where the anionic CH   unit has 

been replaced by the iso-electronic NH, O and S units respectively: 

 

 

 

 

 

 

 

 

 

 

 

 They are no longer C5-symmetric and do not bear a negative charge but they retain 6p electrons and are still aromatic 
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MO Description ↔ Resonance Energies: pyrrole, furan & thiophene  

 The MO diagram for the cyclopentadienyl anion can be generated using the Musulin-Frost method (lecture 1). The 

asymmetry introduced by CH → NH/O/S ‘replacement’ → non-degenerate MOs for pyrrole, furan & thiophene: 

 

 

 

 

 

 Moreover, the energy match and orbital overlap between the heteroatom-centered p-orbital and the adjacent C-centered 

p-orbitals is less good and so the resonance energies are lower: 

 

 

 

 

 

 

 Consequently, the resonance energies (~ ground state thermodynamic stabilities)  loosely reflect the difference in the 

Pauling electronegativities of S (2.6), N (3.0) & O (3.4) relative to C (2.5): 

 

 

 

 

 The decreasing resonance energies in the series: thiophene > pyrrole > furan → increasing tendancy to react as 

dienes in Diels-Alder reactions and to undergo electrophilic addition (cf. substitution) reactions (see later) 

cyclopentadienyl
anion

6 e's

E

0

E

0

pyrrole, furan
& thiophene

6 e's

Heteroatoms are more electronegative than carbon and so their 

p-orbitals are lower in energy. The larger the mismatch in energy 

(Ei) the smaller the resulting stabilisation (ESTAB) because:

E

carboaromatic

Ei = 0; ESTAB = 'BIG'

heteroaromatic

Ei > 0; ESTAB = 'SMALL'

ESTAB
pc

ESTAB

pc
px

pc

ESTAB 
S

2

Ei

S
2
 = overlap integral

ESTAB = stabilisation energy

Ei = interaction energy

Ei

S N
H

O

152 kJmol
-1resonance energies: 122 kJmol

-1
90 kJmol

-1
68 kJmol

-1

MOST

resonance

energy

LEAST

resonance

energy



Calculated Electron Densities ↔ Reactivities: pyrrole, furan & thiophene  

 However, relative resonance energies are NOT the main factor affecting relative reactivities with electrophiles... 

 

 Pyrrole, furan & thiophene have 6 -electrons distributed over 5 atoms so the carbon frameworks are ALL inherently 

ELECTRON RICH (relative to benzene with 6 -electrons over 6 atoms) – all react quicker than benzene with E+ 

 

 Additionally, the distribution of -electron density between the heteroatom and the carbons varies considerably between 

the 3 ring-systems. The overall differences are manifested most clearly in their calculated -electron densities 

 NB. many text books highlight dipole moments in this regard – but the sp2 lone pairs of furan and thiophene (cf. 

N-H of pyrrole) complicate this analysis 

 

 

 

 

 

 

 

 The calculated -electron densities reflect the relative REACTIVITIES of the 3 heterocycles towards electrophiles: 
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Valence Bond Description ↔ Electron Densities: pyrrole, furan & thiophene  

 The calculated -electron densities reflect a balance of ~opposing factors: 

 INDUCTIVE withdrawl of electron density away from the carbons (via s-bonds): 

 this mirrors Pauling electronegativities: O (3.4) > N (3.0) > S (2.6) as revealed by the dipole moments of the 

saturated (i.e. non-aromatic) heterocycles:    

 

 

 

 

 

 RESONANCE donation of electron density towards the carbons (via -bonds): 

 

 

 

 

    the importance of this depends on the ability of the heteroatom to delocalise its p-lone pair 

    this mirrors the basicities of the protonated saturated heterocycles (i.e. ability of X atom to accommodate 

+ive charge: 

 

 

 

 

 

 RESONANCE is the dominant factor pushing electron density onto the carbons and hence affecting REACTIVITY 
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Pyrrole – Structure and Properties 

 A liquid bp 139 °C 

 Bond lengths, 1H and 13C NMR chemical shifts and coupling constants as expected for an aromatic system: 

 

 

 

 

 

 Resonance energy: 90 kJmol-1 [i.e. lower than benzene (152); intermediate cf. thiophene (122) & furan (68)] 

 → rarely undergoes addition reactions & requires EWG on N to act as diene in Diels-Alder reactions 

 

 Electron density: electron rich cf. benzene & higher than furan & thiophene 

 → very reactive towards electrophilic substitution (SEAr), unreactive towards nucleophilic substitution (SNAr) 

 

 

 

 

 NH-acidic (pKa 17.5). Non-basic because the N lone pair is part of the aromatic sextet of electrons & protonation leads 

to a non-aromatic C-protonated species: 
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Pyrroles – Syntheses 

 Paal-Knorr (Type I): 1,4-dicarbonyl with NH3 or 1º amine 

 

 

 

 

 Knorr (Type II): b-ketoester or b-ketonitrile with -aminoketone  

 

 

 

 

 Hantzsch (Type II): -chloroketone with enaminoester 

 

 

 

 

 Commercial synthesis of pyrrole: 
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Pyrroles – Reactivity 

 Electrophilic substitution: via addition-elimination (SEAr) (see supplementary slides 1-2) 

 reactivity: extremely reactive towards many electrophiles (E+); >furan, thiophene, benzene; similar to aniline 

 regioselectivity: the kinetic product predominates; predict by estimating the energy of the respective Wheland 

intermediates → 2-substitution is favoured: 

 

 

 

 

 

 

 

 

 e.g. nitration: (E+ = NO2
+) 



Pyrroles – Reactivity cont. 

 Electrophilic substitution (SEAr) cont. 

 e.g. halogenation: (E+ = Hal+) 

 reacts rapidly to give tetra-halopyrroles unless conditions are carefully controlled 

 

 

 

 

 

 

 

 e.g. acylation: (E+ = RCO+) 

 comparison with analogous reactions of furan & thiophene 

 

 

 

 

 Vilsmeyer formylation:  (E+ = chloriminium ion) 



Pyrroles – Reactivity cont. 

 Electrophilic substitution (SEAr) cont. 

 e.g. Mannich reactions (aminomethylation): (E+ = RCH=NR’2
+, iminium ion) 

 

 

 

 

 

 

 e.g. acid catalysed condensation with aldehydes & ketones: (E+ = RCH=OH+, protonated carbonyl compound) 

 → tetrapyrroles & porphyrins 

 

 

 

 

 



Pyrroles – Reactivity cont. 

 Metallation: (NH pKa = 17.5) NB. For an overview & mechanistic discussion see LECTURE 7 (also: Joule & Smith (5th 

Ed) chapter 4). 

 

 

 

 

 

 

 

 

 

 

 

 Reaction as a Diels-Alder diene: 

 only possible with EWG on N to reduce aromatic character (i.e. reduce resonance energy): 

N N E

R R

1) lithium base

    (e.g. BuLi or LDA)

2) E

NH-pyrroles:
(N-metallation)

NR pyrroles:
(C-metallation)

N
H

N

NaNH2 Na

N

MgBr

RMgBr

NH3

RH
covalent

ionic
E

E

N
H

E

N

E

E  X  = MeI, RCOCl etc.

metallated pyrrole is an
ambident nucleophile

hard

soft
2

1

2
E  X  = MeI, RCOCl etc.

E

E

N

CO2Me

CO2Me

MeO2C

O
O

hv, CH2Cl2

N

O
O

N

MeO2C

CO2Me

CO2Me

MeO2C

AlCl3, CH2Cl2, 0 ºC



Furan – Structure and Properties 

 A liquid bp 31 °C 

 Bond lengths, 1H and 13C NMR chemical shifts and coupling constants as expected for an aromatic system: 

 

 

 

 

 

 

 

 Resonance energy: 68 kJmol-1 [i.e. lower than benzene (152), thiophene (122) & pyrrole (90)] 

 → tendency to undergo electrophilic addition as well as substitution 

 → a good diene in Diels-Alder reactions 

 

 

 Electron density: electron rich cf. benzene (& thiophene) but less so than pyrrole 

 → fairly reactive towards electrophilic substitution (SEAr), unreactive towards nucleophilic substitution (SNAr) 
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Furans – Syntheses 

 Paal-Knorr (Type I): dehydration of 1,4-dicarbonyl 

 

 

 

 

 

 Feist-Benary (Type II): 1,3-dicarbonyl with -haloketone 

 

 

 

 

  

 

 Commercial synthesis of furan: 
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Furans – Reactivity 

 Electrophilic substitution: via addition-elimination (SEAr) (see supplementary slides 1-2) 

 reactivity: reactive towards many electrophiles (E+); <pyrrole, but >thiophene & benzene 

 regioselectivity: as for pyrrole the kinetic 2-substituted product predominates 

 e.g. nitration: (E+ = NO2
+) 

 

 

 

 e.g. sulfonylation: (E+ = SO3) 

 

 

 e.g. halogenation: (E+ = Hal+) like pyrrole – mild conditions to avoid poly-halogenation 

 

 

 

 e.g. acylation: Vilsmeyer formylation (E+ = chloriminium ion) as for pyrrole 
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Furans – Reactivity cont. 

 Metallation: NB. For an overview & mechanistic discussion see LECTURE 7 (also: Joule & Smith (5th Ed) chapter 4). 

 

 

 

 

 Reaction as a Diels-Alder diene: NB. reversible reactions → exo (NOT endo) products 

 

 

 

 

 

 Reaction as an enol ether – electrophilic addition: 

 usually achieved by use of an electrophile in a nucleophilic solvent at low temperature 
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Thiophene – Structure and Properties 

 A liquid bp 84 °C 

 Bond lengths, 1H and 13C NMR chemical shifts and coupling constants as expected for an aromatic system: 

 

 

 

 

 

 

 Resonance energy: 122 kJmol-1 [i.e. lower than benzene (152); but high cf. pyrrole (90) & furan (68)] 

 → rarely undergoes addition reactions 

 → does not act as a diene in Diels-Alder reactions 

 

 

 Electron density: electron rich cf. benzene but less so than pyrrole & furan 

 → fairly reactive towards electrophilic substitution (SEAr), unreactive towards nucleophilic substitution (SNAr) 
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Thiophenes – Syntheses 

 Paal-Knorr (Type I): 1,4-dicarbonyl with P2S5 or Lawesson’s reagent (lecture 1) 

 

 

 

 

 

 Hinsberg: 1,2-dicarbonyl with thiodiacetate 

 NB. Z = CO2R’’ 

 

 

 

 

  

 

 Commercial synthesis of thiophene: 
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Thiophenes – Reactivity 

 Electrophilic substitution: via addition-elimination (SEAr) (see supplementary slides 1-2) 

 reactivity: reactive towards many electrophiles (E+); <<pyrrole & <furan, but >benzene 

 regioselectivity: as for pyrrole/furan the kinetic 2-substituted product predominates 

 

 e.g. halogenation: (E+ = Hal+) like pyrrole/furan – mild conditions to avoid poly-halogenation 

 

 

 

 

 Metallation: as for furan but -protons more acidic – easier to deprotonate 

 NB. For an overview & mechanistic discussion see LECTURE 7 (also: Joule & Smith (5th Ed) chapter 4). 

 

 

 

 

 NO reactivity as a Diels-Alder diene – high resonance energy 

 NO reactivity as a thioenol ether (i.e. addition reactions, cf. furan) – high resonance energy 

 Reactions at sulfur: 

 oxidation/reduction chemistry: 
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Supplementary Slide 1 – Electrophilic Aromatic Substitution: SEAr 

 Mechanism: addition-elimination 

 e.g. for benzene: 
notes 

• Intermediates: energy minima 

• Transition states: energy 

maxima 

• Wheland intermediate is NOT 
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Supplementary Slide 2 – Electrophiles for SEAr 

 nitration: 

 c.HNO3:c.H2SO4 (1:1) or c.HNO3 in Ac2O 

 

 

 

 

 halogenation: 

 molecular halide ± Lewis acid (LA) catalyst in the dark 

 

 

 

 acylation: 

 acid chloride or anhydride ± LA promoter: 

 

 

 

 sulfonylation: 

 oleum (c.H2SO4 saturated with SO3) 
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