Chemistry II (Organic)

Heteroaromatic Chemistry LECTURES 4 & 5

Pyrroles, furans & thiophenes – properties, syntheses & reactivity

Alan C. Spivey a.c.spivey@imperial.ac.uk

Imperial College London

Mar 2012

Format & scope of lectures 4 & 5

- Bonding, aromaticity & reactivity of 5-ring heteroaromatics:
 - cf. cyclopentadienyl anion
 - pyrroles, furans & thiophenes:
 - MO and valence bond descriptions
 - resonance energies
 - electron densities

• Pyrroles:

- structure & properties
- syntheses
- reactivity

• Furans:

- structure & properties
- syntheses
- reactivity

• Thiophenes:

- structure & properties
- syntheses
- reactivity

• Supplementary slides 1-2

revision of S_EAr mechanism

Pyrroles, Furans & Thiophenes – Importance

The *cyclopentadienyl anion* is a *C5*-symmetric aromatic 5-membered cyclic carbanion:

Pyrrole, furan & thiophene can be considered as the corresponding aromatic systems where the anionic CH⁹ unit has been replaced by the iso-electronic NH, O and S units respectively:

They are no longer C5-symmetric and do not bear a negative charge but they retain 6p electrons and are still aromatic

The MO diagram for the *cyclopentadienyl anion* can be generated using the *Musulin-Frost* method (lecture 1). The asymmetry introduced by $CH \rightarrow NH/O/S$ 'replacement' \rightarrow non-degenerate MOs for pyrrole, furan & thiophene:

Moreover, the energy match and orbital overlap between the heteroatom-centered p-orbital and the adjacent C-centered p-orbitals is less good and so the resonance energies are lower:

Heteroatoms are more electronegative than carbon and so their p-orbitals are <u>lower</u> in energy. The larger the mismatch in energy (ΔE_i) the smaller the resulting stabilisation (ΔE_{STAB}) because:

 S^{2} = overlap integral E_{STAB} = stabilisation energy ΔE_{i} = interaction energy

Consequently, the resonance energies (~ ground state thermodynamic stabilities) loosely reflect the difference in the Pauling electronegativities of S (2.6), N (3.0) & O (3.4) relative to C (2.5):

■ The decreasing resonance energies in the series: thiophene > pyrrole > furan → increasing tendancy to react as dienes in Diels-Alder reactions and to undergo electrophilic addition (cf. substitution) reactions (see later)

Calculated Electron Densities ↔ Reactivities: pyrrole, furan & thiophene

- However, relative resonance energies are NOT the main factor affecting relative reactivities with electrophiles...
- Pyrrole, furan & thiophene have 6 π -electrons distributed over 5 atoms so the carbon frameworks are **ALL** inherently **ELECTRON RICH** (relative to benzene with 6 π -electrons over 6 atoms) all react quicker than benzene with E⁺
- Additionally, the distribution of π -electron density between the heteroatom and the carbons varies considerably between the 3 ring-systems. The overall differences are manifested most clearly in their *calculated* π -electron densities
 - NB. many text books highlight dipole moments in this regard but the sp² lone pairs of furan and thiophene (cf. N-H of pyrrole) complicate this analysis

The *calculated π*-electron densities reflect the relative *REACTIVITIES* of the 3 heterocycles towards *electrophiles*:

Valence Bond Description ↔ Electron Densities: pyrrole, furan & thiophene

The *calculated* π -*electron densities* reflect a balance of ~opposing factors:

- **INDUCTIVE** withdrawl of electron density **away from the carbons** (via σ-bonds):
 - this mirrors Pauling *electronegativities*: O (3.4) > N (3.0) > S (2.6) as revealed by the dipole moments of the <u>saturated</u> (*i.e.* non-aromatic) heterocycles:

RESONANCE donation of electron density *towards the carbons* (*via* π -bonds):

- the importance of this depends on the ability of the heteroatom to delocalise its p-lone pair
- this mirrors the basicities of the protonated saturated heterocycles (i.e. ability of X atom to accommodate +ive charge:

RESONANCE is the dominant factor pushing electron density onto the carbons and hence affecting REACTIVITY

- A liquid bp 139 °C
- **Bond lengths**, ¹H and ¹³C NMR chemical shifts and coupling constants as expected for an aromatic system:

Resonance energy: 90 kJmol⁻¹ [*i.e.* lower than benzene (152); *intermediate cf.* thiophene (122) & furan (68)] \rightarrow rarely undergoes addition reactions & requires EWG on N to act as diene in Diels-Alder reactions

Electron density: electron rich cf. benzene & higher than furan & thiophene

p-orbital lone-pair

 π -excessive'

 \rightarrow very reactive towards electrophilic substitution (S_FAr), unreactive towards nucleophilic substitution (S_MAr)

NH-acidic (pK_a 17.5). *Non-basic* because the N lone pair is part of the aromatic sextet of electrons & protonation leads to a non-aromatic C-protonated species:

pK₂-3.8 N.B. protonates on C2 (resulting cation is delocalised) NOT on N (would not be delocalised) Paal-Knorr (Type I): <u>1,4-dicarbonyl</u> with <u>NH₃ or <u>1° amine</u></u>

$$\begin{array}{c} & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\$$

Knorr (Type II): β -ketoester or β -ketonitrile with α -aminoketone

Hantzsch (Type II): α -chloroketone with enaminoester

Pyrroles – Reactivity

Electrophilic substitution: via addition-elimination (S_EAr) (see supplementary slides 1-2)

- **<u>reactivity</u>**: extremely reactive towards many electrophiles (E⁺); >furan, thiophene, benzene; similar to aniline
- □ regioselectivity: the kinetic product predominates; predict by estimating the energy of the respective Wheland intermediates → 2-substitution is favoured:

• e.g. <u>nitration</u>: $(E^+ = NO_2^+)$

Electrophilic substitution (S_EAr) cont.

- e.g. halogenation: (E⁺ = Hal⁺)
 - reacts rapidly to give tetra-halopyrroles unless conditions are carefully controlled

- *e.g.* <u>acylation:</u> (E⁺ = RCO⁺)
 - comparison with analogous reactions of furan & thiophene

Vilsmeyer formylation: (E⁺ = chloriminium ion)

- Electrophilic substitution (S_EAr) cont.
 - e.g. <u>Mannich reactions (aminomethylation)</u>: (E⁺ = RCH=NR'₂⁺, iminium ion)

- e.g. <u>acid catalysed condensation with aldehydes & ketones:</u> (E⁺ = RCH=OH⁺, protonated carbonyl compound)
 - → tetrapyrroles & porphyrins

Metallation: (NH pK_a = 17.5) *NB*. For an overview & mechanistic discussion see *LECTURE* 7 (also: Joule & Smith (5th Ed) chapter 4).

Reaction as a Diels-Alder diene:

only possible with EWG on N to reduce aromatic character (*i.e.* reduce resonance energy):

A liquid bp 31 °C

Bond lengths, ¹H and ¹³C NMR chemical shifts and coupling constants as expected for an aromatic system:

Resonance energy: 68 kJmol⁻¹ [*i.e.* lower than benzene (152), thiophene (122) & pyrrole (90)]

- □ → tendency to undergo *electrophilic addition* as well as substitution
- $\Box \rightarrow$ a good *diene* in *Diels-Alder reactions*

Electron density: electron rich cf. benzene (& thiophene) but less so than pyrrole

□ → fairly reactive towards **electrophilic substitution** (S_EAr), unreactive towards nucleophilic substitution (S_NAr)

Paal-Knorr (Type I): dehydration of <u>1,4-dicarbonyl</u>

$$\begin{array}{c} & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\$$

Feist-Benary (Type II): <u>1,3-dicarbonyl</u> with α -haloketone

Commercial synthesis of furan:

Furans – Reactivity

- *Electrophilic substitution: via* addition-elimination (S_EAr) (see supplementary slides 1-2)
 - **<u>reactivity</u>**: reactive towards many electrophiles (E⁺); <pyrrole, but >thiophene & benzene
 - regioselectivity: as for pyrrole the kinetic 2-substituted product predominates
 - e.g. <u>nitration:</u> $(E^+ = NO_2^+)$ $AcONO_2$ $AcONO_2$ $AcO^{\odot} H^{O_2}$ $AcO^{\odot} H^{O_2}$ pyridine e.g. <u>sulfonylation:</u> $(E^+ = SO_3)$ $AcO^{\odot} H^{O_2}$ $AcO^{\odot} H^{O_2}$ $AcO^{\odot} H^{O_2}$
 - e.g. halogenation: (E⁺ = Hal⁺) like pyrrole mild conditions to avoid poly-halogenation

• e.g. <u>acylation</u>: Vilsmeyer formylation (E⁺ = chloriminium ion) as for pyrrole

$$\bigcup_{O} \xrightarrow{\text{DMF}} \left[\bigcup_{O} \xrightarrow{\text{Me}} \stackrel{\text{Me}}{\underset{\oplus}{N}} Me \right] \xrightarrow{\text{Cl}^{\ominus}} \xrightarrow{\text{H}_2O} \underbrace{}_{O} \xrightarrow{\text{2}}_{O} O$$

$$\underbrace{\text{Me}_2\text{NH} + \text{HCl}}_{\text{Me}}$$

Metallation: NB. For an overview & mechanistic discussion see LECTURE 7 (also: Joule & Smith (5th Ed) chapter 4).

Reaction as a Diels-Alder diene: NB. reversible reactions \rightarrow exo (NOT endo) products

Reaction as an enol ether – electrophilic addition:

usually achieved by use of an electrophile in a nucleophilic solvent at low temperature

- A liquid bp 84 °C
- **Bond lengths**, ¹H and ¹³C NMR chemical shifts and coupling constants as expected for an aromatic system:

Resonance energy: 122 kJmol⁻¹ [*i.e.* lower than benzene (152); but *high cf.* pyrrole (90) & furan (68)]

- \square \rightarrow rarely undergoes addition reactions
- $\Box \rightarrow$ does not act as a diene in Diels-Alder reactions

Electron density: electron rich cf. benzene but less so than pyrrole & furan

 \Box \rightarrow fairly reactive towards *electrophilic substitution* (S_EAr), unreactive towards nucleophilic substitution (S_NAr)

Paal-Knorr (Type I): <u>1,4-dicarbonyl</u> with P₂S₅ or Lawesson's reagent (lecture 1)

$$\begin{array}{c} \textcircled{\textcircled{}} \textcircled{\textcircled{}} \textcircled{\textcircled{}} \textcircled{\textcircled{}} \textcircled{\textcircled{}} \textcircled{\textcircled{}} \textcircled{\textcircled{}} \end{matrix}{\textcircled{}} \rule{0.5ex}{1.5ex}{1.5ex} \rule{0.5ex}{1.5e$$

- Hinsberg: <u>1,2-dicarbonyl</u> with thiodiacetate
 - $\square NB. Z = CO_2 R''$

Commercial synthesis of thiophene:

$$\overline{\qquad} \qquad \frac{S_8}{600 \, ^\circ C} \qquad \qquad \overbrace{S}^{\sim}$$

- *Electrophilic substitution: via* addition-elimination (S_EAr) (see supplementary slides 1-2)
 - □ **<u>reactivity</u>**: reactive towards many electrophiles (E⁺); << pyrrole & <furan, but >benzene
 - regioselectivity: as for pyrrole/furan the kinetic 2-substituted product predominates
 - e.g. halogenation: (E⁺ = Hal⁺) like pyrrole/furan mild conditions to avoid poly-halogenation

Metallation: as for furan but α -protons more acidic – easier to deprotonate

□ *NB*. For an overview & mechanistic discussion see *LECTURE* 7 (also: Joule & Smith (5th Ed) chapter 4).

- NO reactivity as a Diels-Alder diene high resonance energy
- NO reactivity as a thioenol ether (i.e. addition reactions, cf. furan) high resonance energy
- Reactions at sulfur:
 - oxidation/reduction chemistry:

- Mechanism: addition-elimination
 - *e.g.* for benzene:

.δ⊕

δ⊕

н

<u>notes</u>

- Intermediates: energy minima
- Transition states: energy maxima
- Wheland intermediate is NOT aromatic but stabilised by delocalisation
- Generally under kinetic control

nitration:

• $c.HNO_3:c.H_2SO_4$ (1:1) or $c.HNO_3$ in Ac₂O

$$\begin{array}{c} H & O \\ O - N \oplus \\ O \ominus \end{array} \xrightarrow{H_2 SO_4} \begin{array}{c} H_4 & O \\ \oplus O - N \oplus \\ H_2 & O \ominus \end{array} \xrightarrow{H_2 O} \begin{array}{c} H_2 O \\ \oplus O - N \oplus \\ H_2 & O \ominus \end{array} \xrightarrow{H_2 O} \begin{array}{c} O \\ \oplus O - N \oplus \\ H_2 & O \ominus \end{array} \xrightarrow{H_2 O} \begin{array}{c} O \\ \oplus O - N \oplus \\ H_2 & O \ominus \end{array} \xrightarrow{H_2 O} \begin{array}{c} O \\ \oplus O - N \oplus \\ H_2 & O \ominus \end{array} \xrightarrow{H_2 O} \begin{array}{c} O \\ \oplus O - N \oplus \\ H_2 & O \ominus \end{array} \xrightarrow{H_2 O} \begin{array}{c} O \\ \oplus O - N \oplus \\ H_2 & O \ominus \end{array} \xrightarrow{H_2 O} \begin{array}{c} O \\ \oplus O - N \oplus \\ H_2 & O \ominus \end{array} \xrightarrow{H_2 O} \begin{array}{c} O \\ \oplus O - N \oplus \\ H_2 & O - N \oplus \\ H_2 & O \oplus \end{array} \xrightarrow{H_2 O} \begin{array}{c} O \\ \oplus O - N \oplus \\ H_2 & O \oplus \end{array} \xrightarrow{H_2 O} \begin{array}{c} O \\ \oplus O - N \oplus \\ H_2 & O \oplus \end{array} \xrightarrow{H_2 O} \begin{array}{c} O \\ \oplus O - N \oplus \\ H_2 & O \oplus \end{array} \xrightarrow{H_2 O} \begin{array}{c} O \\ \oplus O - N \oplus \\ H_2 & O \oplus \end{array} \xrightarrow{H_2 O} \begin{array}{c} O \\ \oplus O - N \oplus \\ H_2 & O \oplus \end{array} \xrightarrow{H_2 O} \begin{array}{c} O \\ \oplus O - N \oplus \\ H_2 & O \oplus \end{array} \xrightarrow{H_2 O} \begin{array}{c} O \\ \oplus O - N \oplus \\ H_2 & O \oplus \end{array} \xrightarrow{H_2 O} \begin{array}{c} O \\ \oplus O - N \oplus \\ H_2 & O \oplus \end{array} \xrightarrow{H_2 O} \begin{array}{c} O \\ \oplus O - N \oplus \\ H_2 & O \oplus \end{array} \xrightarrow{H_2 O} \begin{array}{c} O \\ \oplus O - N \oplus \\ H_2 & O \oplus \end{array} \xrightarrow{H_2 O} \begin{array}{c} O \\ \oplus O - N \oplus \\ H_2 & O \oplus \end{array} \xrightarrow{H_2 O} \begin{array}{c} O \\ \oplus O - N \oplus \\ H_2 & O \oplus \end{array} \xrightarrow{H_2 O} \begin{array}{c} O \\ \oplus O - N \oplus \\ H_2 & O \oplus \end{array} \xrightarrow{H_2 O} \begin{array}{c} O \\ \oplus O - N \oplus \\ H_2 & O \oplus \end{array} \xrightarrow{H_2 O} \begin{array}{c} O \\ \oplus O - N \oplus \\ H_2 & O \oplus \end{array} \xrightarrow{H_2 O} \begin{array}{c} O \\ \oplus O - \\ H_2 & O \oplus \end{array} \xrightarrow{H_2 O} \begin{array}{c} O \\ \oplus O - \\ H_2 & O \oplus \end{array} \xrightarrow{H_2 O} \begin{array}{c} O \\ \oplus O - \\ H_2 & O \oplus \end{array} \xrightarrow{H_2 O} \begin{array}{c} O \\ \oplus O - \\ H_2 & O \oplus \end{array} \xrightarrow{H_2 O} \begin{array}{c} O \\ \oplus O - \\ H_2 & O \oplus \end{array} \xrightarrow{H_2 O} \begin{array}{c} O \\ \oplus O - \\ H_2 & O \oplus \end{array} \xrightarrow{H_2 O} \begin{array}{c} O \\ \oplus O - \\ H_2 & O \oplus \end{array} \xrightarrow{H_2 O} \begin{array}{c} O \\ \oplus O - \\ H_2 & O \oplus \end{array} \xrightarrow{H_2 O} \begin{array}{c} O \\ \oplus O \end{array} \xrightarrow{$$

halogenation:

molecular halide ± Lewis acid (LA) catalyst in the dark

acylation:

acid chloride or anhydride ± LA promoter:

sulfonylation:

• oleum ($c.H_2SO_4$ saturated with SO₃)

$$\begin{array}{c} O_{\stackrel{}{\sim}S_{\stackrel{}{\sim}O}} \\ O_{\stackrel{}{\sim}S_{\stackrel{}{\sim}O}} \\ O_{\stackrel{}{\sim}S_{\stackrel{}{\sim}O}} \\ O_{\stackrel{}{\sim}S_{\stackrel{}{\sim}O}} \\ O_{\stackrel{}{\sim}S_{\stackrel{}{\sim}O}} \\ O_{\stackrel{}{\sim}S_{\stackrel{}{\sim}O}} \\ H \\ O_{\stackrel{}{\sim}S_{\stackrel{}{\sim}O}} \\ H \\ HSO_{4} \\ HSO$$