Chemistry II (Organic)

Heteroaromatic Chemistry LECTURE 1 Introduction & overview

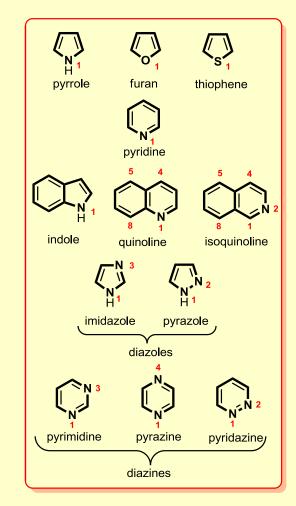
Alan C. Spivey a.c.spivey@imperial.ac.uk

Imperial College London

Feb 2012

Format & scope of lecture 1

Definitions of structural types

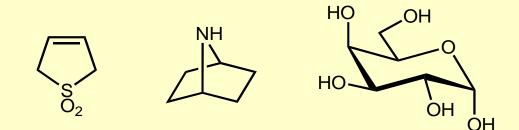

- heterocyclic compounds
- aromatic heterocycles (heteroaromatics)

Occurrence and relevance

- seratonin & histamine
- LSD
- cimetidine (Tagamet[™]) & ranitidine (Zantac[™])
- atorvastatin calcium (Lipitor™) & torcetrapib
- sildenafil citrate (Viagra™) & vardenafil citrate (Levitra™)
- celecoxib (Celebrex[™]) & rofecoxib (Vioxx[™])
- natural products & chiral auxiliaries/catalysts
- agrochemicals & 'smart' materials

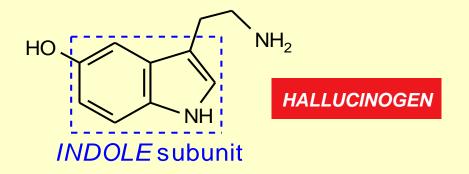
• Physical, chemical & spectroscopic properties

- recap of structure of benzene and aromaticity
- valence bond and molecular orbital representations
- Hückel's rule
- resonance energies and symmetry

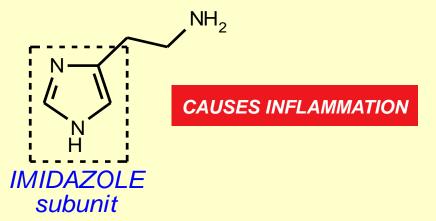

Heterocyclic Compounds

- composed of primarily carbon atoms
- contain at least one other element
- *nitrogen*, *oxygen* and *sulphur*
- *half* the known organic compounds
- present in almost ALL *pharmaceuticals* and *agrochemicals*

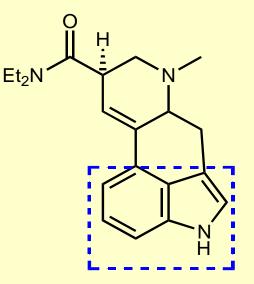
- AROMATIC heterocycles (HETEROAROMATICS)
 - obey HÜCKEL's RULE (see later)
 - ~planar
 - contiguous, cyclic array of p-orbitals (delocalised electrons)
 - 4n+2 electrons delocalised (n is an integer)
 - possess characteristics of arenes
 - 'anomalous' chemical properties
 - unusual NMR chemical shifts
 - occur widely in nature



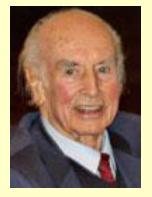
¹³C and ¹H chemical shifts (δ/ppm)


5-HYDROXYTRYTPTAMINE (SEROTONIN)

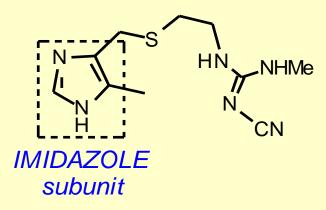
- □ first isolated in 1948
- possesses wide range of pharmacological activity:
 - induces arterial constriction
 - affects mood and appetite
 - induces blood platelet aggregation

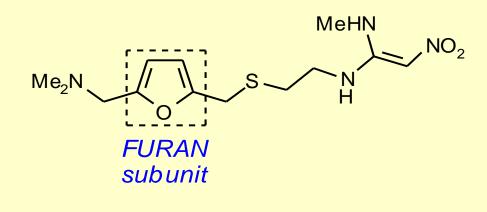

HISTAMINE

- isolated in 1927
- derived in vivo from decarboxylation of amino acid histidine
 - Liberated from cells upon injury
 - Iowers blood pressure
 - directly involved in allergic reactions
- **ANTIHISTAMINES** widely used therapeutically (see later)

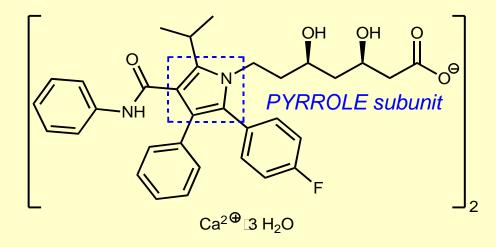


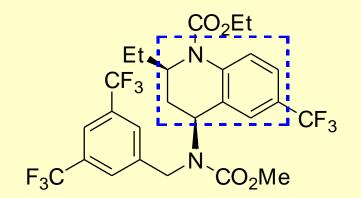
LYSERGIC ACID DIETHYLAMIDE (LSD)


- derivative of Lysergic Acid
 - found in ergot, a common grain fungus
- many potent physiological effects documented
- LSD 1st made in 1938 by Dr. Albert Hoffmann (Sandoz, Basel, Switzerland)
 - spring 1943, Hofmann resynthesized 'LSD-25'
 - cycled home after self-dosing: suffered 'trip'
- known as 'acid'
- strongly hallucinogenic/psychedelic
 - induces enhanced sensory perception
- many adverse reactions
 - 'bad trip'
 - flashbacks may occur years later
 - can induce permanent psychosis
 - has serotonin-blocking effect
 - interferes with dopamine action


INDOLE subunit

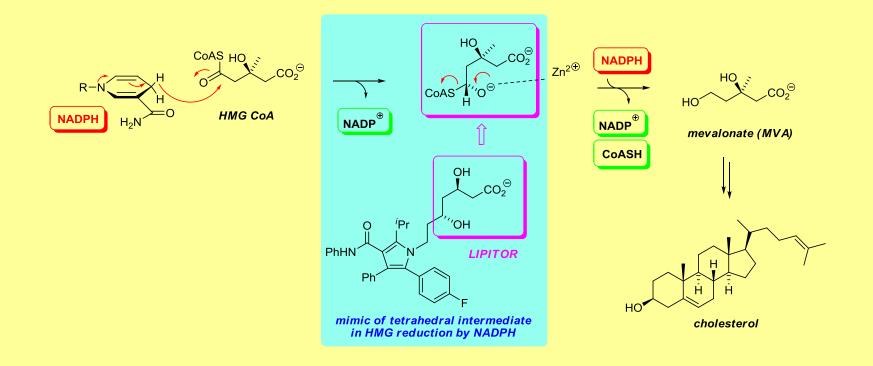
Prof. Albert Hofmann 100th birthday in 2006 I. Amato 'Trip of a century' *Chem. Eng. News.* **2006**, Feb, 43 (DOI) D. Nichols 'LSD: cultural revolution & medical advances' *Chem. World* **2006**, Jan, 30 (DOI) CIMETIDINE (Tagamet[®])

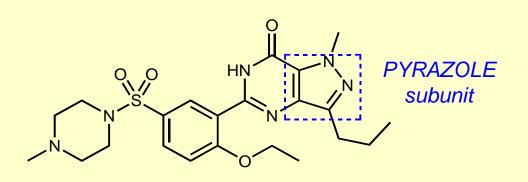

RANITIDINE (Zantac[®])


- SmithKlineFrench (now GSK) histamine H₂-receptor antagonist
- blocks acid secretions
- Indicated for:
 - Treatment & prevention of stomach ulcers
 - gastroœsophagal reflux disorder (GERD)
- World Health Organization: "one of world's most essential drugs"

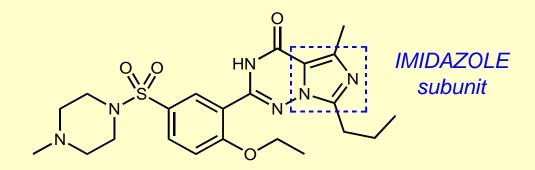
- GlaxoWellcome (now GSK) histamine H₂-receptor antagonist
- blocks acid secretions
- Indicated for:
 - Treatment & prevention of stomach ulcers
 - gastroœsophagal reflux disorder (GERD)
- World Health Organization: "one of world's most essential drugs"

ATORVASTATIN CALCIUM (Lipitor[®])

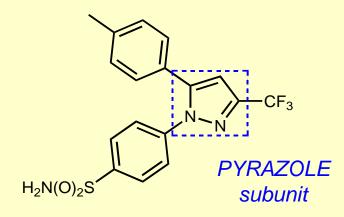

TORCETRAPIB (CP-529414)

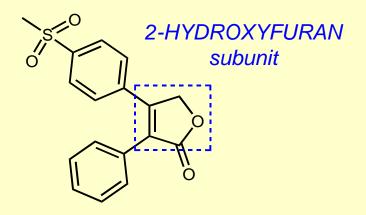

tetrahydro QUINOLINE subunit

- Pfizer cholesterol-lowering statin
- HMGCoA inhibitor (see next slide)
- indicated for stroke and heart-attack prevention
- first drug to reach >\$10 billion annual sales (2004: \$10.8 bn)
- "the most popular drug ever sold ever in the history of the world"
- Pfizer cholesteryl ester transfer protein (CETP) inhibitor
- designed to reduce build-up of low-density lipoproteins (LDLs) 'bad cholesterol' as a cotherapy with Lipitor for cardiovascular protection
- Nov 30th 2006: Pfizer's chief executive "This will be one of the most important compounds of our generation."
- Dec 2nd 2006: phase III trials abandoned (DOI)


- HMG CoA → MVA is the rate determining step in the biosynthetic pathway to cholesterol
 - 33 enzyme mediated steps are required to biosynthesise cholesterol from acetyl CoA & in principle the inhibition of any one of these will serve to break the chain. In practice, control rests with HMG-CoA reductase as the result of a variety of biochemical feedback mechanisms
- Statins' inhibit HMG CoA reductase and are used clinically to treat hypercholesteraemia a causative factor in heart disease
 - □ e.g. *Lipitor*[™] (Pfizer) *a* competitive inhibitior of HMG-CoA reductase

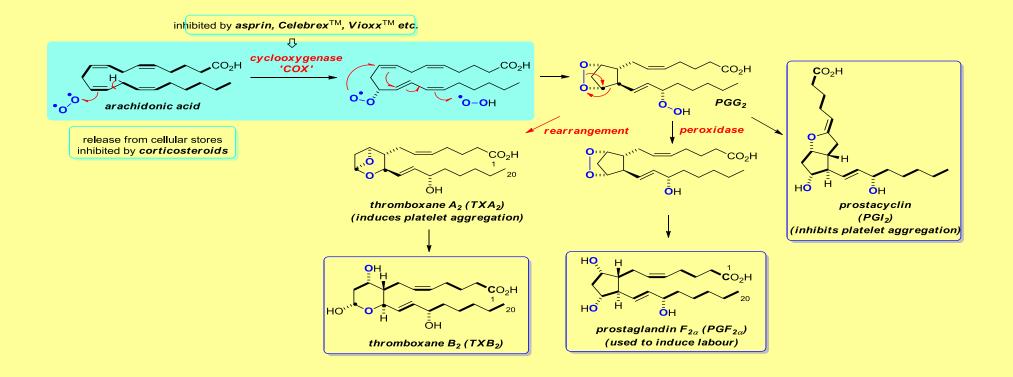
SILDENAFIL CITRATE (Viagra[®])


VARDENAFIL CITRATE (Levitra[®])

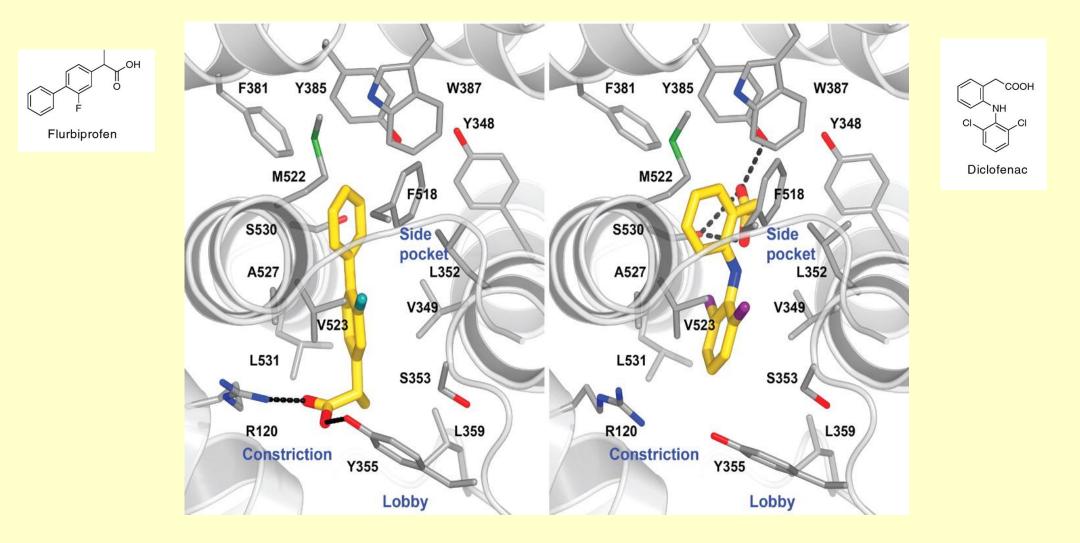

- Pfizer type 5 phosphodiesterase (PDE) inhibitor
- prevents breakdown of cyclic GMP & originally designed for treatment of hypertension (high blood pressure)
- indicated for treatment for erectile dysfunction
- annual sales: \$1.7 bn

- Bayer type 5 phosphodiesterase (PDE) inhibitor
- prevents breakdown of cyclic GMP
- Indicated for treatment for erectile dysfunction
- annual sales: \$0.25 bn

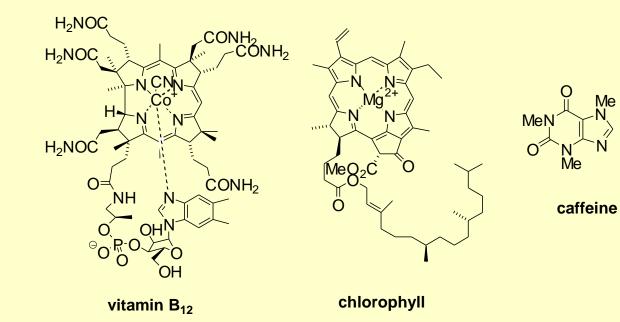
CELECOXIB (Celebrex[®])


ROFECOXIB (Vioxx [®])

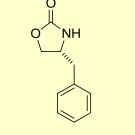
- Pfizer non-steroidal anti-inflammatory drug (NSAID)
- selective COX-2 inhibitor (see next slide)
- indicated for:
 - osteoarthritis
 - rheumatoid arthritis
 - acute pain
- US sales 2004: \$2.1 bn
- Merck non-steroidal anti-inflammatory drug (NSAID)
- selective COX-2 inhibitor (see next slide)
- indicated for:
 - osteoarthritis
 - rheumatoid arthritis
 - acute pain
- US sales 2004: **\$0.9 bn**
- withdrawn from market December 2004 due to cases of heart attack

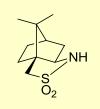

Biosynthesis of Prostaglandins & Thromboxanes

- prostaglandins & thromboxanes are derived from further oxidative processing of arachiodonic acid
- both are important hormones which control e.g. smooth muscle contractility (blood pressure), gastric secretion, platelet aggregation & inflammation (<nM activity)</p>
 - various pharmaceuticals including corticosteroids, NSAIDs & asprin inhibit biosynthethetic steps in these pathways

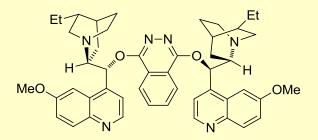


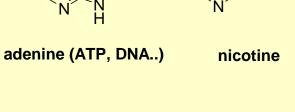
Crystal structures of flurbiprofen (Ansaid[®]) & diclofenac (Zolterol[®]) bound in mCOX-2 active site


Duggan et al. J. Biol. Chem. 2010, 285, 34950-34959 (DOI)


More bioactive natural products

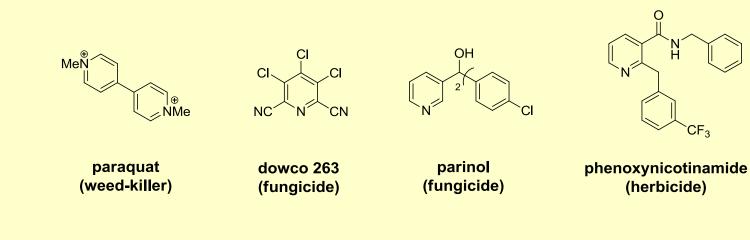
Chiral auxiliaries and catalysts

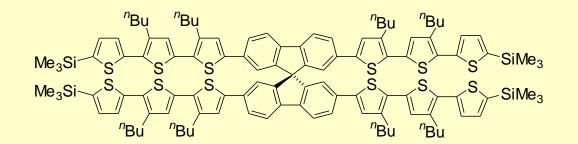

Evans' oxazolidinone


Me

NH₂

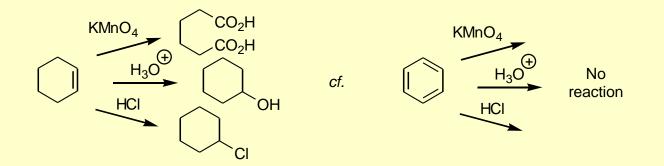
Oppolzer's camphor sultam


(DHQ)₂PHAL (Sharpless' AD catalyst)

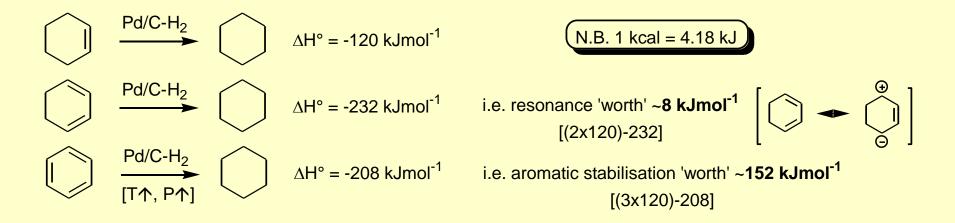

Ňe

н

Agrochemicals

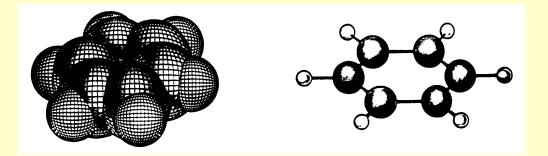


'Smart' materials

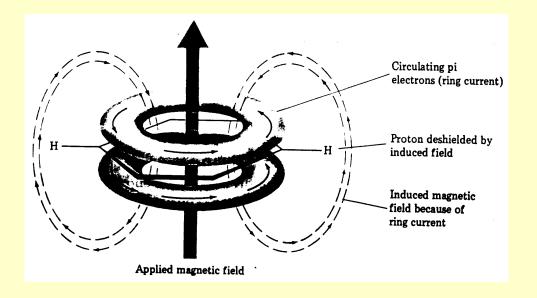


 $\stackrel{n \Pr}{\longrightarrow} \stackrel{n \Pr}{\longrightarrow} \stackrel{n \Pr}{\longrightarrow} \stackrel{N \longrightarrow}{\longrightarrow} \stackrel{N$

An orthogonally fused conjugated oligomer comprised of thiophene units (a potential molecular-scale electronic device) seco-porphyrazine (¹O₂ photosensitiser for photodynamic chemotherapy) Benzene is unusually <u>un</u>reactive (*i.e.* stable) *cf.* alkenes



A direct estimate of resonance energy can be made by consideration of heats of hydrogenation of cyclohexenes



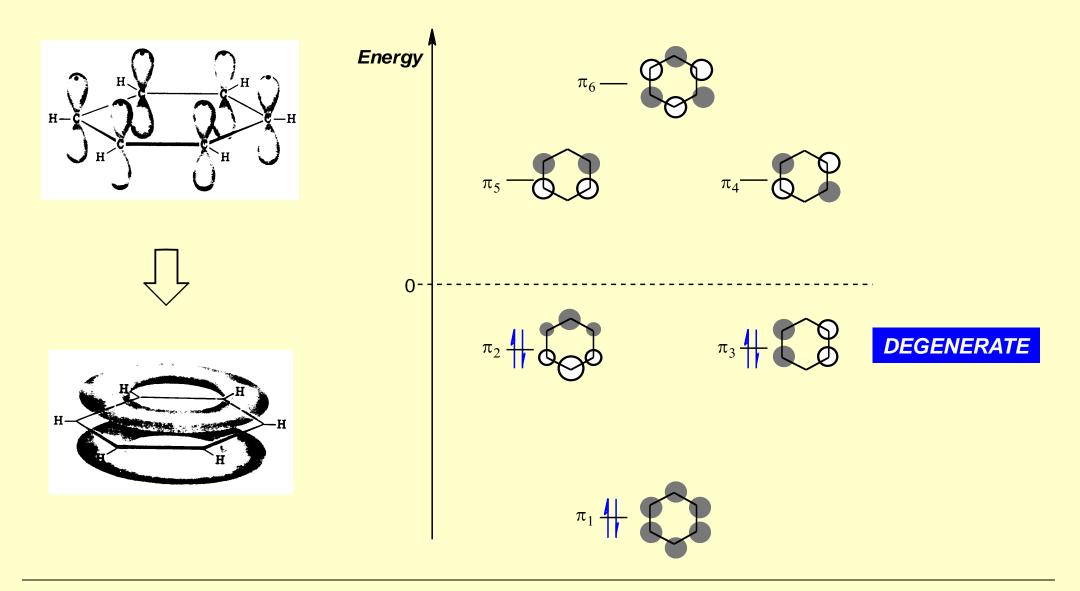
□ see: K.P.C.Vollhardt J. Am. Chem. Soc. 2000, 122, 7819 (DOI)

■ X-ray data show all bond lengths to be the same (1.39 Å *cf.* average C-C 1.54 Å & average C=C 1.34 Å)

¹H NMR reveals aryl protons experience deshielding (*i.e.* \rightarrow low field) – due to induced ring current:

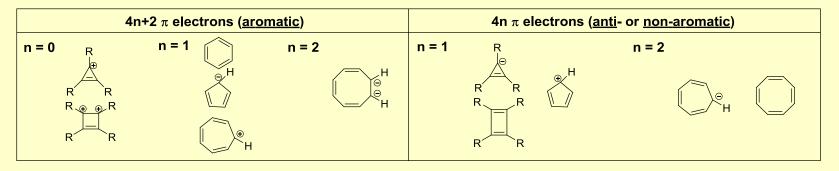
VALENCE BOND (VB) THEORY

- resonance hybrids imaginary structures which differ only in position of electrons (atoms/nuclei do not move)
- □ Not all resonance structures contribute equally 'real' structure is weighted average of resonance structures

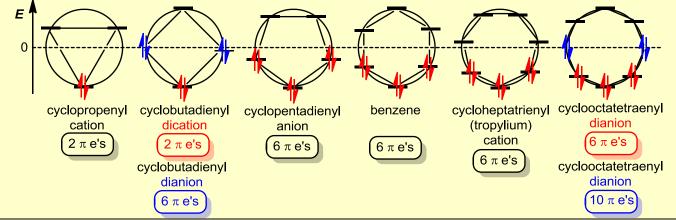


MOLECULAR ORBITAL (MO) THEORY

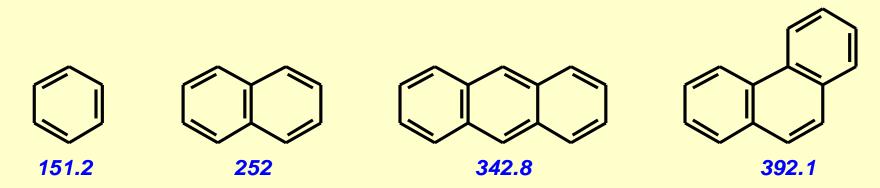
- Linear Combination of Atomic Orbitals (LCAO)
- \Box σ -bonding framework formed from sp² hybridised carbons
- leaves p-orbital on each C atom orthogonal to ring
- \Box 6 atomic p-orbitals (AOs) \rightarrow [LCAO maths] \rightarrow 6 MOs
- each MO capable of containing 2 electrons
- □ 6 electrons available to occupy the 6 MOs
- placed in 3 molecular orbitals of lowest energy: bonding orbitals
- □ 3 anti-bonding orbitals remain vacant



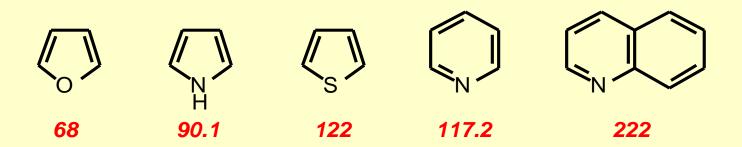
Molecular orbital theory rationalises reactions and properties of benzene:


Hückel Z. Phys. **1931**, 70, 204; empirical rule for aromaticity

- For compounds which are planar & have a contiguous, cyclic array of p-orbitals perpendicular to plane of ring:
 - Those with 4n+2 p electrons display special stabilisation: *i.e.* aromatic
 - Those with 4n p electrons display special instability: *i.e.* anti-aromatic



Frost & Musulin J. Chem. Phys. **1953**, 21, 572 (**DOI**); graphical device for constructing MO energy diagrams


- Draw appropriate regular polygon within a circle (with atoms touching circumference)
- **\Box** Ensure one atom is at lowest point \rightarrow ring atom positions represent energy levels
- Centre of circle is zero energy level (*i.e.* bonding orbitals below, anti-bonding above)

- The anomalous stability of benzene and other aromatic compounds is due primarily to the resonance stabilization gained by the highly symmetric electron delocalisation
 - □ A large energy input is required to disrupt the cyclically-arranged electrons
 - Consequently, aromatic compounds react slowly with electrophiles
- Other carboaromatic compounds show <u>similar</u> resonance energies (in kJ/mol)

Heteroaromatic compounds usually have <u>lower resonance energies (in kJ/mol)</u>

