Chemistry I (Organic)

Stereochemistry LECTURE 1 Hybridisation & shape

Alan C. Spivey a.c.spivey@imperial.ac.uk

Imperial College London

Oct 2011

Format & scope of lecture

Atomic orbitals – the carbon atom

- energies
- shapes

• Hybridised atomic orbitals - carbon in molecules

- shapes of hybrid orbitals
- sp³ hybrid systems
- sp² hybrid systems
- sp hybrid systems

NB. For 3D Jmol models of molecules A-C see link @ http://www.ch.ic.ac.uk/spivey/?q=firstyear

Atomic orbitals – *the carbon atom*

- CARBON is in group 4 of the periodic table \rightarrow 4 valence electrons
- Atomic structure: 1s² 2s² 2p²
- There are $1 \times 2s$ and $3 \times 2p$ (i.e. $2p_x$, $2p_y \& 2p_z$) energetically available valence atomic <u>orbitals</u> with the following relative energies:

 In the GROUND STATE, according to the aufbau principle & Hund's rule these are occupied as follows:

• i.e. 2s² 2p_x¹2p_y¹2p_z⁰

Atomic orbitals – the carbon atom

- The **2s** orbital is SPHERICAL and the **2p** orbitals are 'DUMBELL' shaped
- So, in the GROUND STATE we have:

• Clearly, if we want to form a molecule e.g. methane with 4 bonds to carbon we need to promote an electron $2s \rightarrow 2p_z$:

• BUT, methane is TETRAHEDRAL with all bonds equivalent (recall VSEPR theory)...

Hybridised atomic orbitals - sp³ carbon

This is because mathmatically [1x 2s + 3x 2p] atomic orbitals are equivalent to [4 x sp³] degenerate hybrid orbitals:

 The shapes of the new orbitals are distorted dumbells pointing towards the vertices of a tetrahedron:

• *i.e.* sp³ hybridised: <u>tetrahedral</u> (4 × hybrid orbitals)

Hybridised atomic orbitals - sp³ carbon

- Consequently, in molecules which have FOUR atoms/groups bonded to carbon, the carbon atom has a TETRAHEDRAL shape
- e.g. methane

• This has important consequences in terms of stereochemistry when all the groups bonded to carbon are different because two stereoisomers are possible (more later...)

Hybridised atomic orbitals – *sp² carbon*

Similarly, [1x 2s + 2x 2p] atomic orbitals are mathmatically equivalent to [3 x sp²] degenerate hybrid orbitals:

 The shapes of the new orbitals are distorted dumbells having a <u>trigonal planar</u> arrangement, all perpendicular to the unhybridised remaining atomic 2p orbital:

i.e. sp² hybridised: trigonal planar (1× p + 3× hybrid orbitals)

Hybridised atomic orbitals – *sp² carbon*

- Consequently, in molecules which have THREE atoms/groups bonded to carbon, the carbon atom has a TRIGONAL PLANAR shape
- e.g. acetone

• This also has important consequences in terms of stereochemistry (more later...):

Hybridised atomic orbitals - sp carbon

Similarly, [1x 2s + 1x 2p] atomic orbitals are mathmatically equivalent to [2 x sp] degenerate hybrid orbitals:

 The shapes of the new orbitals are distorted dumbells in a <u>linear</u> arrangement along an axis perpendicular to both the unhybridised remaining atomic 2p orbitals:

• *i.e.* sp hybridised: linear (2× p + 2× hybrid orbitals)

Hybridised atomic orbitals - sp carbon

- Consequently, in molecules which have TWO atoms/groups bonded to carbon, the carbon atom has a LINEAR shape
- e.g. ethyne

• this also has important consequences in terms of stereochemistry (more later...):

