Year 1 CHEM40006 Reactivity at Carbon Centres

LECTURE 15 - Reactivity at sp² Centres: Aromatic Compounds as Electrophiles

Alan C. Spivey a.c.spivey@imperial.ac.uk

Imperial College London

Format and scope of presentation

Nucleophilic aromatic substitution:

- S_NAr
 - mechanism (addition-elimination)
 - leaving group influence and examples
- $S_N 1_{Ar} \& S_{RN}$
 - · diazonium salt formation
 - Sandmeyer-type reactions
- Benzyne & arynes

Key further reading: Clayden, Greeves & Warren, Organic Chemistry, 2nd Ed., Chapter 22

- S_NAr pages 514 520
- $S_N 1_{Ar} \& benzyne pages 520 525$

Nucleophilic Aromatic Substitution - S_NAr

- Mechanism: addition-elimination
 - Rate = $k[ArX][Y^-]$; bimolecular <u>but</u> rate determining step does *NOT* involve departure of leaving group (*cf.* $S_N 2$)
 - e.g. 4-fluoro nitrobenzene:

only efficient for <u>electron deficient</u> benzene derivatives
 (i.e. those having an electron withdrawing/anion stabilising group at ortho or para position relative to leaving group)

<u>notes</u>

- Intermediates: energy minima
- Transition states: energy maxima
- Meisenheimer intermediate is NOT aromatic but stabilised by delocalisation
- Generally under kinetic control

Nucleophilic Aromatic Substitution - S_NAr

- *Mechanism:* recent studies by Jacobsen indicate these reactions can also be *concerted*
 - Jacobsen Nat. Chem. 2018, 10, 917 (DOI) & Lennox Ang. Chem. Int. Ed. (Highlight) 2018, 57, 14686 (DOI)
 - Use of Singleton natural abundance ¹²C/¹³C Kinetic Isotope Effects measured *via* ¹⁹F NMR satellites from carbon *ipso* to fluorine leaving group:

More O'Ferrall-Jencks plot for S_NAr reactions

CONCLUSION:

There is a mechanistic continuum between $S_N 2$ Ar and $S_N 1_{Ar}$. When employing fluoride as a nucleophile with a CI or Br leaving group on a very electron deficient aryl the process can be concerted, *i.e.* 'mid-way' between the two mechanistic extremes

S_NAr - Leaving group influence & examples

- Halides: ease of substitution mirrors electronegativity ("element effect")
 - Sugiyama Chem. Lett., 1999, 7, 691 (DOI)
 - Fluorides are often difficult to prepare and unstable so chlorides are generally used

F >> CI > Br >> I

• Activation by an anion-stabilising group at the ortho or para position is required:

$$CI \longrightarrow K_2CO_3 \longrightarrow KHCO_3 \longrightarrow KF$$

$$K_1 \longrightarrow K_2CO_3 \longrightarrow K_1 \longrightarrow K_2CO_3 \longrightarrow KF$$

$$K_2CO_3 \longrightarrow K_2CO_3 \longrightarrow KF$$

$$K_1 \longrightarrow K_2CO_3 \longrightarrow KF$$

$$K_2CO_3 \longrightarrow KF$$

$$K_1 \longrightarrow K_2CO_3 \longrightarrow KF$$

$$K_2 \longrightarrow KF$$

$$K_2 \longrightarrow KF$$

$$K_1 \longrightarrow K_2CO_3 \longrightarrow KF$$

$$K_2 \longrightarrow KF$$

$$K_2 \longrightarrow KF$$

$$K_2 \longrightarrow KF$$

$$K_3 \longrightarrow KF$$

$$K_4 \longrightarrow KF$$

$$K_4 \longrightarrow KF$$

$$K_4 \longrightarrow KF$$

$$K_5 \longrightarrow KF$$

$$K_6 \longrightarrow KF$$

$$K_7 \longrightarrow KF$$

$$K_8 \longrightarrow KF$$

$$K_9 \longrightarrow K_9 \longrightarrow KF$$

$$K_9 \longrightarrow KF$$

Nitrosation & the formation of diazonium salts

- Reactions of anilines with nitrosonium salts give diazonium salts
 - These are versatile substrates for nucleophilic substitution reactions but NOT via the S_NAr mechanism...

- Typical conditions for nitrosonium salt formation
 - formed in situ from sodium nitrite and a mineral acid (e.g. HCl, H₂SO₄ or HBF₄)

The nitrosonium ion reacts with the nitrogen lone pair (NOT the aryl ring ipso/para positions):

$S_N 1_{Ar} \& S_{RN}$ (Sandmeyer) reactions of diazonium salts

- $S_N 1_{Ar}$ reactions:
 - ipso-substitution with loss of nitrogen gas:

S_{RN} (Sandmeyer reactions):

Aromatic $S_N 1_{Ar} \& S_{RN}$ reaction mechanisms

- **Diazonium salts** can react *via* either $S_N 1_{Ar}$ or S_{RN} mechanisms:
 - NB. No activating anion stabilising groups are required (cf. S_NAr)
- In <u>absence</u> of Cu salts S_N1_{Ar}:

- Rate = $k[ArN_2^+]$ (unimolecular)
- Driving force is loss of N_2 ($\Delta G = \Delta H T\Delta S$)
- Aryl cation is still aromatic BUT high s-character of sp² hybrid orbital (~33%; cf. p-orbital!) → high energy carbocation
- Using copper(I) salts (i.e. Sandmeyer reactions) S_{RN}

Review: Bunnett Acc. Chem. Rev. 1978, 11, 413 (DOI)

Alternative/competing reactions of diazonium salts – diazo coupling

- Certain 'soft' nucleophiles react at the terminal nitrogen of diazonium ions (cf. 'hard' nucleophiles at the ipso-carbon as in $S_N 1_{Ar}$ and S_{RN} reactions)
 - e.g. synthesis of diazo dyes using phenols as C-nucleophiles:

• Diazonium salts are therefore 'ambident' electrophiles:

Benzynes and arynes - preparation

Mechanism: Elimination-addition:

• =
13
C label benzyne = 13 C label benzyne

- *Evidence:* ¹³C labelling (see above) & 2 x *ortho*-substituents → no reaction
- Preparation other methods:
 - Oxidation of aminobenzotriazoles with LTA: Rees J. Chem. Soc. C. 1969, 5, 742 (DOI):

$$\begin{array}{c|c}
 & \text{Pb(OAc)}_4 \\
 & \text{NH}_2
\end{array}$$

$$\begin{array}{c|c}
 & \text{cycloaddition} \\
 & \text{cycloaddition}
\end{array}$$

Treatment of 1,2-silyltriflates with fluoride @low temperature: Kobayashi Chem. Lett. 1983, 12, 1211 (DOI), see also: Garg Org. Lett. 2020, 22, 1665 (DOI):

$$\begin{array}{c|c}
\text{OTf} & \text{Me}_4\text{NF} \\
\text{SiMe}_3 & \text{TMS-F} \\
\text{Me}_4\text{NOTf}
\end{array}$$

Arynes in synthesis – [4+2]-cycloaddition

- Review: Pellissier Tetrahedron 2003, 59, 701 (DOI)
- Review of the effect of strain on aryne regiochemistry, Garg, J. Am. Chem. Soc, 2014, 136, 15798 (DOI)
- e.g. Guitian Eur. J. Org. Chem. 2001, 4543 (DOI)

