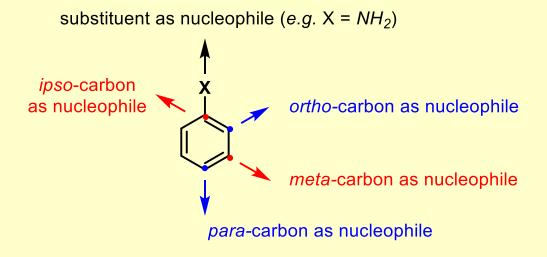
Year 1 CHEM40006 Reactivity at Carbon Centres

LECTURE 14 - Reactivity at sp² Centres: Aromatic Compounds as Nucleophiles

Alan C. Spivey a.c.spivey@imperial.ac.uk

Imperial College London

Format and scope of presentation

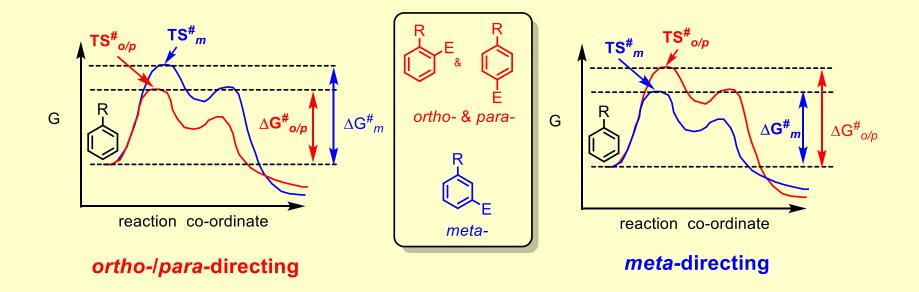

- Electrophilic aromatic substitution (S_EAr):
 - Directing effects
 - meta-directing groups (deactivating)
 - ortho-/para-directing groups which deactivate
 - ortho-/para-directing groups which activate
 - · ortho-/para-ratios
 - ipso-directing groups
 - Polysubstituted aromatics
 - cooperating and competing directing influences

Key further reading: Clayden, Greeves & Warren, Organic Chemistry, 2nd Ed., Chapter 21

• *directing effects* – pages 479 - 492

Aromatics as ambident nucleophiles – directing effects

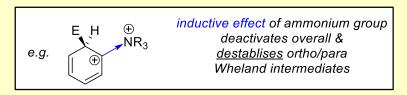
- Substituted aromatics are 'ambident' nucleophiles
 - i.e. they can potentially react at various positions

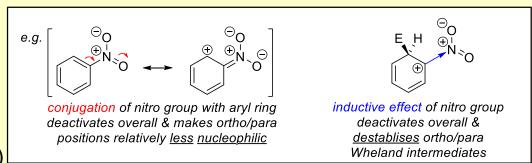


What governs the position of reactivity?

- The 'directing effect' of the substituent X
- These fall into two broad categories:
 - · meta-directing groups
 - ortho-/para-directing groups...

Directing effects

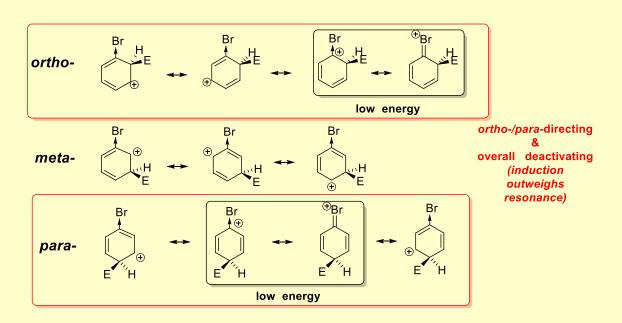

- Electrophilic substitution is under kinetic control i.e. fastest formed product predominates
- The fastest formed product will be formed via the lowest energy transition state:


- How can we estimate which transition state has lowest energy?
- HAMMONDS POSTULATE: 'energy of TS# will resemble that of Wheland intermediate more closely than the starting materials or products'
- We can estimate the energies of the Wheland intermediates from their resonance forms...

meta-Directing groups (deactivating)

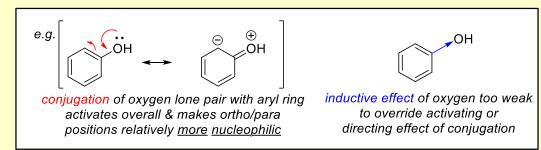
- <u>'Deactivated'</u> i.e. less reactive than benzene (overall more electron deficient)
- CF₃, NR₃+, NH₃+
 (induction deactivates overall & destabilizes o-/p-Wls)

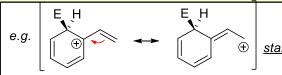
NO₂, CN, SO₃H, SO₂R, CHO, COR, CO₂R, CO₂H
 (conjugation deactivates overall & decreases relative reactivity of o-/p- positions; induction deactivates overall & destabilizes o-/p-WIs)



ortho-/para-Directing (deactivating)

- <u>Deactivating</u> i.e. less reactive than benzene (overall more electron deficient)
- I, Br, CI, NO
 (conjugation increases relative reactivity of o-/p- positions;


induction deactivates overall)


i.e. conjugation dominates relative reactivity of *o-/p- vs. m*-but induction deactivates overall

ortho-/para-Directing (activating)

- Activating i.e. more reactive than benzene (overall more electron rich)
- NR₂, NH₂, OH, OR, NHCOR, OCOR
 (conjugation activates overall & increases relative reactivity of o-/p- positions)
- Alkenyl, aryl
 (conjugation activates overall & stabilizes o-/p-Wls)
- Alkyl
 (sigma conjugation activates overall & stabilizes o-/p-WIs)

conjugation of alkene group activates overall & stablises ortho/para Wheland intermediates

$$e.g. \qquad \begin{array}{|c|c|c|} \hline E & H & H \\ \hline & H \\ \hline & H \\ \hline \end{array}$$

sigma conjugation of methyl group activates overall & stablises ortho/para Wheland intermediates

ortho-Ipara-Ratios

- Statistically we expect ~2:1 ortho-: para-
- Theoretical charge density studies favour the para-:

Steric effects (large E+ or directing substituent or both) disfavour the ortho-

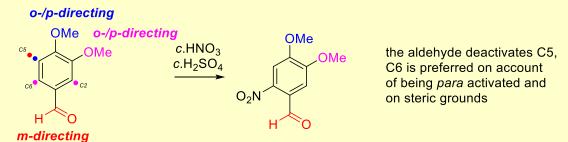
- Complexation (chaperone) effects can favour the ortho-
 - Strazzolini J. Org. Chem. 1998, 63, 952 (DOI)

Solvent effects are difficult to predict

ipso-Substitution

Proto-desulfonylation:

Utility of SO₃H as temporary directing group


- Desilylation, degermylation & destannylation:
 - Review: Eaborn J. Organometal. Chem. 1975, 100, 43 (DOI)

Polysubstituted Aromatics

Two substituents direct to the same positions - cooperation:

- Two substituents activate different positions competition:
 - two activating groups the more powerful director dominates:

an activating & a deactivating group: in general, activating effects override deactivating effects:

Synthetic 'check list' for S_EAr

- Will E+ react at ring carbon or elsewhere (e.g. at amine substituent -> diazonium salt)?
- Is the E⁺ sufficiently reactive to react with a ring carbon?
- If reaction at a ring carbon is expected, what orientation relative to existing group(s) (i.e. directing effects)?
 - ortho-/para- or meta- or ipso-?
 - If ortho-/para- ...which?
 - Do directing effects of existing groups cooperate or compete?
 - Use a temporary directing group to get desired orientation?
- Mono- or multiple substitution?
 - Will introduction of E activate or deactivate the ring relative to the starting material?