Year 1 CHEM40006 Reactivity at Carbon Centres

LECTURE 13 - Reactivity at sp² Centres: Aromatic Compounds as Nucleophiles

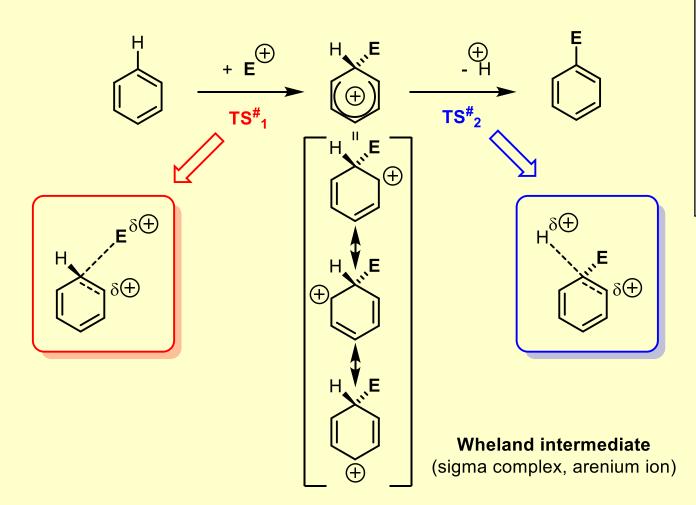
Alan C. Spivey a.c.spivey@imperial.ac.uk

Imperial College London

Format and scope of presentation

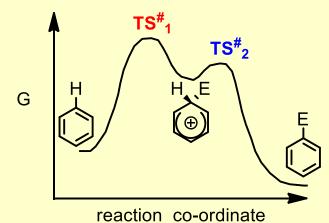
- Electrophilic aromatic substitution (S_EAr):
 - Mechanism
 - Wheland intermediates
 - energy profile diagrams
 - deuterium isotope effects
 - Useful S_FAr reactions
 - nitration
 - sulfonylation
 - halogenation
 - Friedel-Crafts alkylation
 - · Friedel-Crafts acylation

Key further reading: Clayden, Greeves & Warren, Organic Chemistry, 2nd Ed., Chapter 21


- mechanism and examples pages 473 478
- Friedel-Crafts alkylation & acylation pages 492 494

Electrophilic Aromatic Substitution (S_EAr) - Mechanism

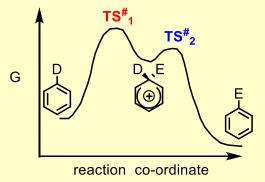
• Comparison with electrophilic addition reactions of sp² centres in alkenes:


Electrophilic Aromatic Substitution: S_EAr

Mechanism: addition-elimination

notes

- Intermediates: energy minima
- Transition states: energy maxima
- Wheland intermediate is NOT aromatic but stabilised by delocalisation
- Generally under kinetic control



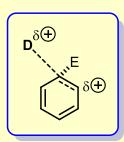
Evidence for addition-elimination

Deuterium Isotope Effects

- NB. C-D bonds are slightly stronger than C-H bonds (due to difference in zero point energies)
 - See: http://www.princeton.edu/chemistry/macmillan/group-meetings/RRK-KIE.pdf

Case 1

TS[#]₁ is the
Rate Determining Step (RDS)


this DOES NOT involve C-D bond breaking

i.e. NO Deuterium Isotope Effect

This is the case for <u>almost ALL</u> S_EAr REACTIONS

TS[#]₂ is the Rate Determining Step (RDS)

this DOES involve C-D bond breaking

i.e. primary Deuterium Isotope Effect expected

very <u>RARE</u> for S_EAr REACTIONS

Nitration

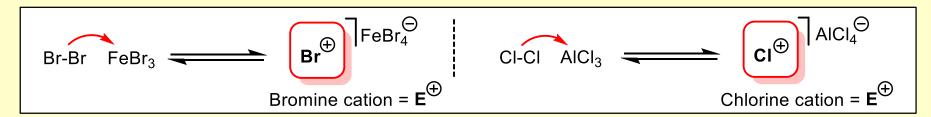
• **Typical conditions:** c.HNO₃/c.H₂SO₄ (1:1)

– Nitro aryls can be selectively reduced to aryl amines ("anilines"), which in turn are very useful precursors to aryl diazonium salts and hence $S_N 1_{Ar}$ reactions (see lecture 4):

Overall, sulfuric acid is a catalyst in S_FAr nitration:

$$\begin{array}{c} \text{H} \quad \text{NO}_{2}^{\oplus} \text{HSO}_{4}^{\ominus} \\ \\ & \oplus \\ \\ & \oplus \\ \end{array} \begin{array}{c} \text{H} \quad \text{NO}_{2} \\ \\ & \oplus \\ \\ \end{array} \begin{array}{c} \text{H} \quad \text{NO}_{2} \\ \\ & \oplus \\ \\ \end{array} \begin{array}{c} \text{H} \quad \text{NO}_{2} \\ \\ & \oplus \\ \end{array} \begin{array}{c} \text{H} \quad \text{NO}_{2} \\ \\ & \oplus \\ \end{array} \begin{array}{c} \text{H} \quad \text{NO}_{2} \\ \\ & \oplus \\ \end{array} \begin{array}{c} \text{H} \quad \text{NO}_{2} \\ \\ & \oplus \\ \end{array} \begin{array}{c} \text{H} \quad \text{NO}_{2} \\ \\ & \oplus \\ \end{array} \begin{array}{c} \text{H} \quad \text{NO}_{2} \\ \\ & \oplus \\ \end{array} \begin{array}{c} \text{H} \quad \text{NO}_{2} \\ \\ & \oplus \\ \end{array} \begin{array}{c} \text{H} \quad \text{NO}_{2} \\ \\ & \oplus \\ \end{array} \begin{array}{c} \text{H} \quad \text{NO}_{2} \\ \\ & \oplus \\ \end{array} \begin{array}{c} \text{H} \quad \text{NO}_{2} \\ \\ & \oplus \\ \end{array} \begin{array}{c} \text{H} \quad \text{NO}_{2} \\ \\ & \oplus \\ \end{array} \begin{array}{c} \text{H} \quad \text{NO}_{2} \\ \\ & \oplus \\ \end{array} \begin{array}{c} \text{H} \quad \text{NO}_{2} \\ \\ \end{array} \begin{array}{c} \text{H} \quad \text{NO}_{$$

Sulfonylation


Typical conditions: 'oleum', i.e. c.H₂SO₄ saturated with SO₃

 Sulfonation is essentially irreversible below 80 °C (kinetic control), but becomes reversible at higher temperatures – allowing access to products of thermodynamic control. e.g.

Overall, sulfuric acid is a *catalyst* in S_EAr sulfonylation:

Halogenation

typical conditions: Molecular halogen + Lewis acid

- bromine and chlorine: for activated aromatics (i.e. electron rich, e.g. phenols) no Lewis acid is required
- <u>iodine</u>: requires oxidising promoters, e.g. I₂ Ceric Ammonium Nitrate (Ce⁴⁺), or use of I-CI
- <u>fluorine</u>: generally reacts explosively with aromatics. So, fluorine is best introduced by thermal rearrangement of a diazonium salt formed using HBF₄ (a S_N1_{Ar} reaction, see lecture 4):

Overall, the Lewis acid is a catalyst in S_EAr halogenation:

Friedel-Crafts alkylation

Typical conditions: alkyl halide + Lewis acid

R-Br FeBr₃
$$\longrightarrow$$
 FeBr₄ carbocation = \mathbf{E}^{\oplus}

- <u>Limitation 1</u>: carbocations often rearrange by e.g. Wagner-Meerwein 1,2-hydride and alkyl shifts
- <u>Limitation 2</u>: the products are activated (*i.e.* electron rich) relative to starting materials leading to polyalkylation. e.g.

Overall, the Lewis acid is a catalyst in Friedel-Crafts alkylation:

Friedel-Crafts acylation

• Typical conditions: acid chloride (or anhydride) + Lewis acid

AICI₃ AICI₄ acylium ion =
$$\mathbf{E}^{\oplus}$$

- for activated aromatics (i.e. electron rich, e.g. phenols) no Lewis acid is required
- Friedel-Crafts acylation followed by carbonyl reduction is a preferred alternative to any Friedel-Crafts alkylation reaction requiring a primary carbocation as it avoids rearrangements and over-alkylation. e.g.

$$S_{E}$$
Ar S_{E} Ar S_{E

although in theory the Lewis acid is a catalyst in Friedel-Crafts acylation, most Lewis acids complex to the
product more strongly than to the acid chloride – so stoichiometric amounts are required