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A change of condition
in a process or a piece
of equipment may be
a developing fault or
variations in  the
production regimes.

Fault detection and
diagnosis determines
the occurrence, the
type and the severity

of the undesirable
changes.
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New analytics approaches which combine data from
heterogeneous sources whilst accounting for varying
production regimes improve the detection, diagnosis and
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Combining data from
disparate sources for
condition monitoring
purposes

Improving feature design Accounting for varying production regimes

Better feature design can increase the robustness & industrial

applicability of solutions. New methods were developed:

* Normalizing process measurements using alarm thresholds

 Extracting features in alarm logs or multimode process data

* Ranking and selecting process measurements (using their
alarms) or features from electromechanical measurements

Alarm Coactivation Matrix (ACM)

Raw alarm series On-line Alarm Flood (AF) classification
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The ACM is a condensed representation of the alarm activations. It can cope with uncertainty in the order and dates of the alarms.

Varying production regimes should be distinguished from
undesirable changes. This was achieved by:

* Characterizing multimode data using a new localized kernel
* Creating a framework with adaptive clustering & a new kernel
* Identifying varying dynamics using Bayesian Kalman filtering
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The new kernel describes multimode
data better than existing approaches

The on-line monitoring framework

Bayesian Kalman filtering allows
can account for new operating modes

different dynamic modes to be identified

Combining the heterogeneous data

Creating the PRONTO heterogeneous benchmark dataset

modelling of change of condition.

Combining data from diverse sources improves the reliability &
robustness of condition assessments. Methods created for:

* Fusing process measurements and alarm and event logs
* Fusing signals from multiple sensors and acquisition systems
* Fusing process measurements and statistical alarms
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Fused signals

Actual Condition

F1: Healthy motor

F7: Motor with two broken rotor bars
F8: Motor with bearing fault

Fo: Motor with three broken rotor bars.
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By fusing results from different signal types, the developed Two-stage Bayesian Fusing process measurements and statistical

Framework increases the reliability and robustness of fault detection alarms to increase diagnosis accuracy

The PRONTO benchmark dataset was created to meet the need
for a benchmark dataset to support development and validation
of monitoring techniques with heterogenous data.

The dataset was used in PRONTO and is openly available to the
scientific community at doi.org/10.5281/zenodo.1341583.
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Normal Process data 1Hz (Rl
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Input air blockage via

Vit Event-driven

Alarm and event log Discrete events

B N Ultrasonic data 10 kHz. 60s recordings
Input air leakage via V10
High-frequency "
Diverted flow via U39 pressure 5 kHz 60s recordings
Slugging Videos 30-60s recordings

Various fault modes were
simulated in the facility

The PRONTO Benchmark Dataset contains data

Fully-automated process facility used to
from a number of heterogeneous sources

generate the PRONTO Benchmark Dataset:
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