E

Energy-SmartOps Integrated Control and Operation of Process, Rotating Machinery and Electrical Equipment

Electricity Demand Side Management in Steel Plant Scheduling

Hubert Hadera, liro Harjunkoski, Guido Sand

ABB Corporate Research Center, Wallstadter Str. 59, 68526 Ladenburg, Germany Email: hubert.hadera@de.abb.com

Goal and problem statement

Research methodology and solution approach

Mixed Integer Linear Programming monolithic model (Hadera & Harjunkoski 2013) implemented in GAMS/CPLEX

- Continuous-time melt shop scheduling with precedence and assignment variables (Harjunkoski & Grossmann 2001, Harjunkoski & Sand 2008)
- $w_{p,st} \ge t_{m,m'}^{min}(X_{m,p} + X_{m',p} 1)$ Minim transportation time $\forall p \in P, st \in ST, m, m' \in M, \{st, m\} \in SM_{st, m},$ $\{st + 1, m'\} \in SM_{st,m}, m \neq m', st \neq |ST|$
- $w_{p,st} \leq t_{p,st}^{max}$ Maximum holdup
- $\forall p \in P, st \in ST$
- $t_{m,p'}^s \geq t_{m,p}^f + t_m^{setup}$ $\forall p, p' \in P, m \in M, st \in ST, \{st, m\} \in SM_{st,m}, p \neq p',$ (1d) $-M(3 - Y_{st,p,p'} - X_{m,p} - X_{m,p'})$ Subsequent heat starts after previous finishes and setup is carried out (CC requires more constraints) st < |ST|
- Electricity-aware time grid with task-time slot relations (Nolde & Morari 2010)

 $q_{s} = \sum_{n,m} h_{p,m} (AS_{p,m,s}\tau_{p,m} + bs_{p,m,s} + cs_{p,m,s} + DS_{p,m,s}(t_{s} - t_{s-1})) \frac{1}{60} \qquad \forall m \in M, p \in P, s \in S$ (3a) q_s is the electricity consumption of a given slot

μ =

$$\sum_{s} e_{s} \cdot q_{s} \quad \text{Electricity cost} \qquad \forall s \in S \qquad (3b)$$

- Penalties from load deviation depend on the fine levels
 - and amount of electricity under or over consum $\delta = p^{over} \cdot \sum c_s^{over} + p^{under} \cdot \sum c_s^{under}$
 - ∀s ∈ S
- $\forall s \in S$ (5)

(4a)

(4b)

 $\forall s \in S$

 $\forall s \in S$

cost and electricity penalties paid

Results and discussion

Comparison: 1h schedule delay, 31% savings on electricity cost

X Monolithic model too complex to solve a large scale problem

Further work

- Detailed EAF stage scheduling
- Alternative mathematical formulations To enable computing a real-world
- Integration of Energy Management with **Production Scheduling**

roblem size in reasonable time

- EIA US Energy Information Administration, 2011, International Energy Outlook, Paris
- · H. Hadera and I. Harjunkoski, 2013, Continuous-time batch scheduling approach for optimizing electricity consumption, Proceedings of the 23rd ESCAPE, 9-12 June 2013, Lappeenranta, Finland (in preparation)
- I. Harjunkoski and I. E. Grossmann, 2001, A Decomposition Approach for the Scheduling of a Steel Plant Production, Computers & Chemical Engineering, 25, pp. 1647-1660
- I. Hariunkoski and G. Sand, 2008, Flexible and configurable MILP models for meltshop scheduling optimization, Computer Aided Chemical Engineering, Volume 25, Pages 677-682
- K. Nolde and M. Morari, 2010, Electrical load tracking scheduling of a steel plant, Computers & Chemical Engineering, 34, pp. 1899-1903
- · Ch. Xu, 2012, Coordination of Large-scale Scheduling Problems with Application to Steel Production (PhD Dissertation submitted)

(1b)

(1c)

 $d_s = a_s + c_s^{over} - c_s^{under} + b_s \quad \forall s \in S$ Objective function $min\sum c\cdot t^{ms}+\mu+\delta$

 $b_s < a_s \cdot b_s^{over}$

 $b_s \geq -a_s \cdot b_s^{uder}$

Load deviation response

(4c)

