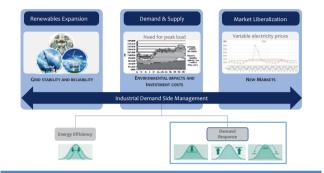
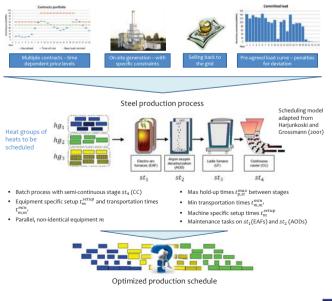
ITN ENERGY-SMARTOPS WORKSHOP "Optimization to provide energy savings by better integration of operations across the process-mechanical-electrical interfaces", LADENBURG, GERMANY, 22-24 Oct 2013.

Energy-SmartOps Integrated Control and Operation of Process, Rotating Machinery and Electrical Equipment


Steel Plant Scheduling with Electricity Contracts Optimization

Hubert Hadera^{1,2}, liro Harjunkoski¹, Guido Sand¹, Sebastian Engell²

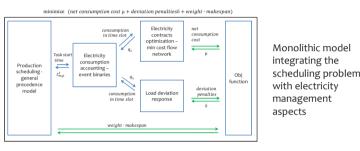
¹ABB Corporate Research Center, Wallstadter Str. 59, 68526 Ladenburg, Germany

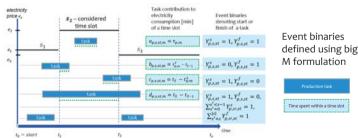

²Technical University of Dortmund, August-Schmidt Str. 4, 44227 Dortmund, Germany

Motivation and background

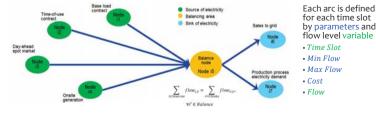
Goal and problem statement

Electricity contracts management




Research methodology and solution approach

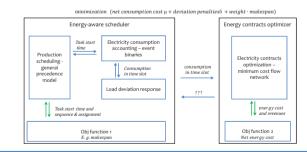
Mixed Integer Linear Programming monolithic model (Hadera & Harjunkoski 2013, Hadera et al. 2014) implemented in GAMS/CPLEX


• Monolithic model structure

 Electricity consumption accounting – discrete time grid with task-time slot relations via event binaries

• Electricity contracts optimization - minimum cost flow network

The research leading to these results has received funding from the People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme PITN-GA-2010-26940


Results and discussion

• Case study for 20 products and 24h scheduling horizon with fixed sequence and assignment variables

Assumptions	Computation		Economic assessment					
Purchase structure	CPUs	CPUs 2% Gap	Net cost [k€]	Purchase cost [k€]		Day- ahead market [MWh]	TOU market [MWh]	Onsite generation [MWh]
Base case (all contracts)	228	12	109	128	26	0	10	952
Low volatility of spot	3 081	10	76,8	166,6	13	1275	0	952
No base load	570	13	143	96,4	24	190	1 097	952
No onsite gen	300	41	107,5	144,7	27	22	229	-
Sale as spot	771	4	-1642	1623	24	0	19 734	952
No penalties	2	2	109,1	128,5	-	0	16	952
No spot-fixed penalties	70	10	109	128	24	-	10	952
Flow-minimal schedule	1	1	242,2	170	11 0292	287	84	0

Further work

- Energy contracts optimizer as black-box due to complexity
- Iterative framework "composition" structure with functionally separated models

References

- H. Hadera and I. Harjunkoski, 2013, Continuous-time batch scheduling approach for optimizing electricity consumption cost, In: Andrzej Krasławski and likka Turunen, Editor(s), Computer Aided Chemical Englineering, Elsevier, Vo. 32, pp. 403-408
- H. Hadera, I. Harjunkoski, I. E. Grossmann, G. Sand, S. Engell, 2014, Steel Production Scheduling with Optimization of Time-Sensitive Electricity Purchases, Proceedings of the 24rd ESCAPE, 15-18 June 2014, Budapest, Hungary (Submitted)
- I. Harjunkoski and I. E. Grossmann, 2001, A Decomposition Approach for the Scheduling of a Steel Plant Production, Computers & Chemical Engineering, 25, pp. 1647-1660

