Let us start with the familiar Navier-Stokes equation for an incompressible fluid

$$\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} + \frac{1}{\rho} \nabla p - \frac{\mathbf{f}}{\rho} = \frac{\mu}{\rho} \nabla^2 \mathbf{u},\tag{1}$$

in which **f** is a general external body force per unit volume (such as gravity $-\rho g \hat{\mathbf{k}}$). We are particularly interested in the relative importance of the second term on the left-hand side and the term on the right hand side. If L is a typically length scale over which the flow varies, and U is a typical scale of the velocity,

$$\frac{\mathbf{u}.\nabla\mathbf{u}}{\frac{\mu}{\rho}\nabla^2\mathbf{u}} \sim \frac{UL\rho}{\mu} = \operatorname{Re},\tag{2}$$

Where 'Re' is the Reynolds number. It is this reasonable that if $\text{Re} \ll 1$, we might neglect the $\mathbf{u} \cdot \nabla \mathbf{u}$ term in Equation 1. This limit holds for small. slowly moving, viscous flows. Most discussions I have seen simply assume $\frac{\partial \mathbf{u}}{\partial t} = 0$ as well, which then leave you with Stokes' flow

$$\nabla p - \mathbf{f} = \mu \nabla^2 \mathbf{u}.\tag{3}$$

But why should we take $\frac{\partial \mathbf{u}}{\partial t} = 0$? Is it immediately obvious that it follows from Re $\ll 1$? Personally, I don't think so. Let's put it back in to Equation 3

$$\rho \frac{\partial \mathbf{u}}{\partial t} = -\nabla p + \mathbf{f} + \mu \nabla^2 \mathbf{u}.$$
(4)

What happens if the RHS is not zero, and there is an imbalance between the driving forces and the dissipation? The flow will respond until this imbalance disappears, by changing \mathbf{u} . And the lower the Reynolds number, the faster the response. So in low Reynolds number flows, \mathbf{u} quickly reaches the state in which viscous and other forces balance each other, the condition embodied by Equation 3.

When we have fixed boundary conditions for a system, this is then the whole story. **u** rapidly relaxes until Equation 3 holds, in such a way that **u** satisfies said boundary conditions. We have some linear partial differential equations to solve, a procedure that should be extremely familiar by now. But often we are interested in boundary conditions that are not fixed in time – for instance, when we are trying to pull something away from a sticky surface. In this case, we assume that the fluid responds rapidly to our changing boundary conditions, so that at any instance in time $\nabla p - \mathbf{f} = \mu \nabla^2 \mathbf{u}$ holds. This assumption is reasonable, because we know that low Reynolds number flows quickly relax to such a state. In other words, with time-varying boundary conditions we proceed in the following way. We solve $\nabla p - \mathbf{f} = \mu \nabla^2 \mathbf{u}$ given our externally imposed boundary conditions at each point in time. The fluid itself has no memory of what the boundary conditions where in the past - the current flow is entirely determined by the current boundary conditions.

The above property of Stokes flow is know as *instantaneity*. From instantaneity, *time-reversibility* immediately follows. This means that if I apply some set of time-varying boundary conditions and generate a flow $\mathbf{u}(t)$, then applying the opposite boundary conditions in reverse will generate exactly the opposite flow, and we will get back to where we started. As a result, if I'm trying to swim in the low Reynolds number limit, there is no point in using a time-reversible swimming stroke like the opening and closing of a scallop shell (which is like implying time-reversible boundary conditions). If I tried, the net water flow during opening would exactly balance that during closing and I wouldn't move anywhere. Note that this still holds even if I open and close at different rates (provided I remain in the low Reynolds number limit), as the aggregate water flow when opening or closing doesn't depend on the speed with which I change my boundary conditions.