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Course Outline

Lecture 1 – Introduction to simulation.
Lecture 2 – Constant energy Molecular Dynamics.
Lecture 3 – Dynamical simulations in other ensembles.
• Thermostats, Langevin Dynamics, Brownian Dynamics.

Lecture 4 – Introduction to Monte Carlo sampling.
Lecture 5 – More Monte Carlo sampling.
• Other ensembles, Biased move generation.

Lecture 6 – Sampling phase diagrams and accelerating equilibration.
• Thermodynamic integration, Gibbs Ensemble, Umbrella Sampling, Parallel Tempering.

Lecture 7 – Dynamical sampling of rare events.
• Forward Flux Sampling, Transition Path Sampling.

Lecture 8 – Issues with simulation.
• Improving efficiency, finite system sizes, common mistakes and how to avoid them.
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Aims of this course

• To introduce you to the principles behind computer simulation (not all the algorithmic details).

• To put you in a position so that you know what you are doing when running someone else’s
code/a simulation package.

• To put you in a position to start writing your own simulation codes.

• To highlight common issues and pitfalls with simulations.

This course won’t cover:

• The complete statistical mechanical basis.

• How to program.

• Where V(rN) comes from.

• Every last detail of algorithms.

3



Recommended texts
Frenkel and Smit: Understanding Molecular Simulation: From Algorithms to Applica-
tions (Academic Press, 2002).

Allen and Tildesley: Computer Simulation of Liquids (Oxford, 1987).

Tuckerman: Statistical Mechanics: Theory and Molecular Simulation (Oxford, 2010).

Huang Statistical Mechanics (2nd Ed.) (John Wiley and sons, 1987).

Van Kampen Stochastic Processes in Physics and Chemistry (3rd Ed.) (Elsevier, 2007).

Press et al.: Numerical Recipes in ?: The Art of Scientific Computing, (Cambridge).

Krauth: Algorithms and Computations (Oxford, 2006).

Newman and Barkema: Monte Carlo Methods in Statistical Physics (Oxford,1999).

Rapaport: The Art of Molecular Dynamics (Cambridge, 1995).
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Introduction

Why computer simulations?
• Emergent properties of complex systems are a major part of modern science.
• The inevitability of approximations in analytical work

e.g. the motion of three interacting bodies.
• Moore’s law and the increasing power of computers

• The increasing sophistication of computer simulation techniques.
• Wide-spread availability of user-friendly simulation packages.
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What can molecular simulations achieve given a classical potential V(rN)
of a system of particles with rN = (r1, r2, . . . , rN)?
• Dynamics: rN(t), pN(t)

i.e. movies and trajectories.
• Thermodynamics and equilibrium properties: 〈Q(rN(t), pN(t))〉

i.e. ensembles of configurations and averages.

Roles of computer simulations
• Model systems (qualitative or semi-quantitative description of reality)

. As a test for theory.

. Exploring complex systems.

• Realistic models:
. Prediction of experimental properties.
. Direct visualization of molecular configurations.

Limits of computer simulation
• Need the potential energy function V(rN) (GIGO principle)
• Size of system limited (max O(108))
• Time scales relatively short (max O(µs))
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Computer simulation: a new science
1953: Metroplis et al.: First Monte Carlo simulation of a molecular system
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1956 Alder and Wainwright: First molecular dynamics (MD) simulations.

1957 Alder and Wainwright: Hard-sphere debate
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1964 Rahman: First MD with realistic interatomic potential (Ar)

1974 Rahman and Stillinger: First MD with realistic intermolecular potential (H2O)

1977 McCammon et al.: First MD of a protein (BPTI) (500 atoms, 9.2 ps)

2006 Schulten group: MD of complete virus (STMV) (106 atoms, 50 ns)

Thomas Ouldridge, University of Oxford 9



Theoretical preliminaries: Newton’s equations, Lagrangian and
Hamiltonian mechanics [1]

Given a potential V(rN):
∂2ri
∂t2

= − 1

mi

∂V(ri)

∂rN
. (1)

In an alternative formulation due to Lagrange, we define the Lagrangian

L(q, q̇, t) = K(q, q̇)− V(q, t). (2)

In our simple case, q = rN , K = 1
2

∑
imir

2
i and V(q, t) = V(rN). The trajectory

followed by a system is that which minimizes the action

S =

∫ tf

ti

L(q, q̇, t)dt. (3)

It can be shown that this trajectory is given by

d

dt

(
∂L(q, q̇, t)

∂q̇

)
=
∂L(q, q̇, t)

∂q
(4)
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We can also define a ‘generalized’ momentum

p =
∂L(q, q̇, t)

∂q̇
(5)

Hence, due to Eq. 4

ṗ =
∂L(q, q̇, t)

∂q
(6)

As a check, for motion in a 1-dimensional Cartesian coordinate

L(x, ẋ) =
1

2
mẋ2 − V(x), (7)

p =
∂L(x, ẋ)

∂ẋ
= mẋ, (8)

and the equation of motion is

mẍ = −∂V(x)

∂x
. (9)
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Yet another alternative is the Hamiltonian formulation. The Hamiltonian is related to
the Lagrangian by

H(q,p, t) = pq̇− L(q, q̇, t). (10)

Here it is understood that we use p to eliminate q̇ from the RHS.

By comparing the Hamiltonian to the Lagrangian, we can show

∂H
∂p

= q̇ (11)

∂H
∂q

= −ṗ (12)

Note that this formulation gives the equations of motion in terms of two sets of first-
order differential equations, rather than a single set of second-order differential equa-
tions.

When the Lagrangian does not explicitly depend on time, the Hamiltonian is conserved

dH(q,p)

dt
=
∂H
∂p

ṗ +
∂H
∂q

q̇ = −∂H
∂p

∂H
∂q

+
∂H
∂q

∂H
∂p

= 0, (13)

and expresses the conservation of energy.
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As a sanity check, return to our 1-dimensional Cartesian system

H(x, px) = pxẋ− L(x, ẋ) =
p2
x

2m
+ V(x), (14)

and the equations of motion are

ẋ =
∂H
∂px

=
px
m

(15)

ṗx = −∂H
∂x

= −∂V(x)

∂x
. (16)
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Theoretical preliminaries: Statistical mechanics and Ensembles [2]

• We consider systems that can exist in a (very large) number of ‘states’, defined by
rN(t), pN(t). These states are equally distributed in phase space.

• The assumption of equal a-priori probability states that, for an isolated system with total
energy E, all states of energy E are equally probable.

• Now let us construct an isolated system by combining a large system A and a small one B. If
A is thermodynamically large, we can meaningfully talk about its temperature T , pressure P
and chemical potential µ, regardless of B.

Thomas Ouldridge, University of Oxford 14



If A and B are isolated from each other, B is in the microcanonical ensemble.

• B has well-defined volume VB, energy EB and particle number NB.

• All states of B which conform to these values are equally likely.
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If A and B can exchange energy with each other, B is in the canonical ensemble.

• B has well-defined volume VB, temperature T and particle number NB.

• A state of B that has an energy E occurs with probability

P (E) ∝ exp (−E/kBT )) . (17)

Q(N ,V, T ) =
∑
i

exp (−Ei/kBT )) . (18)
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If A and B can exchange energy and volume each other, B is in the isobaric-isothermal
ensemble

• B has well-defined pressure P , temperature T and particle number NB.

• A state of B that has an energy E and a volume V occurs with probability

P (E, V ) ∝ exp (−E/kBT ) exp (−PV/kBT ) . (19)

Θ(N,P, T ) =
1

V0

∫
dVQ(N,V, T ) exp(−PV/kBT ) (20)
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If A and B can exchange energy and particles with each other, B is in the grand
canonical ensemble

• B has well-defined volume VB, temperature T and chemical potential µ.

• A state of B that has an energy E and contains N particles occurs with probability

P (E,N) ∝ exp (−E/kBT ) exp (µN/kBT ) . (21)

Ξ(µ, V, T ) =
∑
N

Q(N,V, T ) exp(µN/kBT ) (22)
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Quite often, people say that the ensembles are “equivalent”. What does this mean [3]?

• Fluctuations are relatively small in a large system (away from phase transitions).

• Quantities that are not fixed by the ensemble have well-defined average values that are repre-
sentative of the thermodynamic state.

• If we studied a canonical system at temperature T and measured energy E, then a micro-
canonical system with energy E would have a temperature T .

. If system B has many interacting degrees of freedom (although still small compared to our
hypothetical reservoir), then we can use any ensemble that is convenient to obtain physically
meaningful results.

. In this case, we can study an NV E (microcanonical) system and measure the temperature
and pressure.

. For small, coarse-grained or discrete systems, ensembles must be considered more carefully.

. The use of the microcanoical ensemble can be particularly problematic.
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Constant energy Molecular Dynamics
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Molecular Dynamics
Molecular dynamics simulations are a method for computing the equilibrium and trans-
port properties of a classical many-body system.

Classical: the nuclear motion of the constituent particles obeys the laws of classical
mechanics, i.e. Newton’s laws.

Classical mechanics is a good approximation for many materials. Fundamentally quan-
tum effects most relevant for light atoms and low temperatures.

We need a potential V(rN) which describes the system as well as possible.

We solve Newton’s (equivalently Lagrange’s or Hamilton’s) equations by integrating
them forward in time to generate a trajectory.
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Basic scheme

1. Initialize the system: choose rN(t = 0) and pN(t = 0)

2. Compute forces.

3. Integrate equations of motion: from t→ t+ δt.

4. Repeat 3 and 4 until trajectory of desired length.

Thomas Ouldridge, University of Oxford 22



Which ensemble?
For an isolated mechanical system the total energy is conserved during the motion.
Proof:

dE

dt
=

d

dt

[
N∑
i

1

2
miṙ

2
i + V(rN)

]
=

N∑
i

miṙi · r̈i +

N∑
i

∂V
∂ri
· ṙi (23)

=

N∑
i

ṙi · fi −
N∑
i

ḟi · ri = 0 (24)

Therefore, it seems that standard molecular dynamics simulates the microcanonical
ensemble (more on this later).

Newtonian dynamics also obeys time reversal symmetry. i.e. if we reverse the velocities
of all the particles, keeping the positions the same, the system will retrace its trajectory
back into the past. More formally,

rN
(
t, rN(0),−pN(0)

)
= rN

(
−t, rN(0),pN(0)

)
(25)

pN
(
t, rN(0),−pN(0)

)
= −pN

(
−t, rN(0),pN(0)

)
(26)
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Integration Schemes
All based on Taylor expansions of position in time.

A simple example. Expand position to third order in time.

ri(t+ δt) = ri(t) + ṙi(t)δt+
r̈i(t)

2
δt2 +

...
r i(t)

6
δt3 +O(δt4) (27)

As ṙi = vi and using Newton’s 2nd law (fi = mir̈i), rewrite as

ri(t+ δt) = ri(t) + vi(t)δt+
fi(t)

2mi
δt2 +

...
r i(t)

6
δt3 +O(δt4) (28)

Similarly,

ri(t− δt) = ri(t)− vi(t)δt+
fi(t)

2mi
δt2 −

...
r i(t)

6
δt3 +O(δt4) (29)

Adding these two equations gives

ri(t+ δt) = 2ri(t)− ri(t− δt) +
fi(t)

mi
δt2 +O(δt4) (30)
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Note that due to the cancellation of odd time derivatives of ri:

• this expression is accurate to third order in time, even though only forces are used.

• velocities do not appear in the expression.

Get velocity, by subtracting Eq. 29 from Eq. 28.

vi(t) =
1

2δt
[ri(t+ δt)− ri(t− δt)] +O(δt2) (31)

This is the Verlet scheme.

An alternative scheme that has identical trajectories to the Verlet algorithm, but a
more convenient expression for the velocity is velocity Verlet.

ri(t+ δt) = ri(t) + vi(t)δt+
fi(t)

2mi
δt2 (32)

vi(t+ δt) = vi(t) +
1

2mi
[fi(t) + fi(t+ δt)] δt (33)
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Example: Motion of a projectile with air resistance
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Chaotic behavior

Systems of many particles with non-linear interactions tend to show chaotic behaviour.

• Trajectories continue without converging to steady states or predictable cycles.

• Without knowledge of the microscopic laws, motion appears to be a random process.

• Trajectories show sensitive dependence on initial conditions.

Thomas Ouldridge, University of Oxford 27



Chaotic behaviour helps make the Ergodic Hypothesis reasonable.

• Time averages of ergodic systems in the limit of trajectories of infinite length are equivalent to
ensemble averages.

• Equivalently, an MD simulation will sample all states of a system with a certain energy.

i.e. Ā = 〈A〉NV E, where

Ā = lim
∆t→∞

1

∆t

∫ ∆t

0

A
(
rN(t),pN(t)

)
dt (34)

〈A〉NV E =

∫
A
(
rN ,pN

)
δ
[
H
(
rN ,pN

)
− E

]
drNdpN∫

δ [H (rN ,pN)− E] drNdpN
(35)

For this to work, we need anharmonic terms in the potential that couple different
degrees of freedom.

• Motion in harmonic potentials can be decoupled into normal modes.

• Energy and entropy barriers can inhibit ergodicity on simulation time scales.
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What do we want from an integrator?
Accuracy? i.e. an integrator that most closely follows the true trajectory.

Important for satellite dynamics, but not for molecular dynamics.

Chaotic effects mean that simulated trajectories soon diverge from “true” trajectories.

⇒ Trying to achieve accuracy in MD is pointless.

New aim: representative trajectory and good statistical properties.

• Trajectories should obey time reversal symmetry.

• Energy should be conserved over long times.

• The integrator should conserve phase space volume (it should be symplectic).

Thomas Ouldridge, University of Oxford 29



Symplectic Integrators
We have already discussed time-reversibility and energy conservation. What does con-
serving phase space volume mean?

• Plot trajectories on a graph where the axes are rN , pN .

• We consider a blob of states occupying some volume, and ask how this blob changes over time.

• For a Hamiltonian system, the blob gets distorted but retains its volume [1].

If the blob tended to shrink or grow in size, the system would tend to deviate strongly
from the microcanonical ensemble, and the deviation would get worse with time.

. Conservation of phase space volume is consistent with equal a-priori probability.
Example – pendulum

Area preservation of flow of Hamiltonian systems
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It can be shown that symplectic integrators conserve a perturbed Hamiltonian [4]

H′(rN ,pN ,∆t) = H(rN ,pN) + ∆H(rN ,pN ,∆t), (36)

where ∆H(rN ,pN ,∆t)→ 0 as ∆t→ 0.

• For short ∆t, deviations in the energy don’t tend to grow systematically with simulation time.

• Verlet is an example of a symplectic integrator (there are others).

• It is more useful for constant energy MD than other integrators (such as RK4) that are typical
“workhorses” of numerical integration and reproduce “true” trajectories more accurately.

Area preservation of numerical flow
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Initialization
Need to provide initial rN and pN .

rN(0) easy if simulating an ordered state with known structure, e.g. crystal, native
state of protein.

If simulating a disordered state such as a liquid, e.g.

• Create random configuration and then minimise the potential energy (so that the potential
energy is less than the total energy that you want).

• Or perform an initial simulation, where a crystal is rapidly heated to melt it, and then cooled
to the desired total energy.

The velocities are assigned from a random distribution (ideally a Gaussian one, so that
they satisfy the Maxwell-Boltzmann distribution).

The velocities are then scaled so that the system has the desired total energy E.
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Measuring temperature and pressure
If the simulated system is large enough, the temperature and the pressure are well
defined.

Temperature can be calculated through the equipartition theorem [5]〈
N∑
i=1

p2
i

2mi

〉
=

3

2
NkT. (37)

Pressure is usually calculated using the virial theorem

P =
NkT

V
+

1

3V

〈
N∑
i=1

ri.fi

〉
, (38)

where fi is the force on i due to the other particles. Note that this doesn’t always work
when periodic boundary conditions are involved.
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Constant temperature Molecular Dynamics
Why do we want to do this?

• Practicality of performing the simulation.

• Practicality of comparing to experiment.

• To capture the fluctuations that are important in small systems.

We have two basic methods:

• Introduce stochastic collisions with a “heat bath” to thermalise the system.

• Introduce a deterministic “non-Newtonian” dynamics that generates the correct ensemble.
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Andersen Thermostat
Coupling to the heat bath is represented by stochastic impulsive forces that occasionally
act on randomly selected particles.

These stochastic collisions move the system between different constant energy shells.

Strength of coupling controlled by ν, the frequency of stochastic collisions.

Algorithm:

• Integrate the deterministic equations of motion normally: rN(t)→ rN(t+ ∆t).

• Check whether any particles are selected to undergo a collision with the heat bath. The
probability that a particle is selected is ν∆t.

• If a particles has been selected to undergo a collision, its new momentum is drawn from a
Maxwell-Boltzmann distribution.
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Proof: the steady state distribution of the canonical ensemble is

ρ0(rN ,pN) =
1

Z(N,V, T )
exp(−H(rN ,pN)/kT ) (39)

What happens if we start an infinite number of simulations, distributed according to
ρ0?

• Deterministic dynamics will preserve the distribution.

• Stochastic changes of momentum will also preserve the distribution, as:
. All momenta are equally likely to be selected for change.
. The new momentum selected is drawn from the distribution itself.

We now evoke the ergodic hypothesis to claim that a single simulation will tend to
sample from such a distribution in the limit of infinite simulation length.

Pros: Simple.

Cons: The dynamics is not realistic for an atomistic simulation.
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Nosé-Hoover thermostat
We use an extended Lagrangian, where the extra degree of freedom acts as a reservoir
and allows energy to flow back and forth between the system and the reservoir.

LNose =

N∑
i=1

mi

2
s2ṙ2

i − V
(
rN
)

+
Q

2
ṡ2 − L

β
ln(s). (40)

L is a parameter and Q is an effective mass associated with s that controls the rate of
temperature fluctuations. The momenta are

pi =
∂L
∂ri

= mis
2ṙi, (41)

ps =
∂L
∂ṡ

= Qṡ. (42)

The Hamiltonian of this extended system is

HNose =

N∑
i=1

p2
i

2mis2
+ V

(
rN
)

+
p2
s

2Q
+
L

β
log(s). (43)
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The partition function of this system of 6N+2 degrees of freedom in the microcanonical
ensemble is

QNose =
1

N !

∫
δ (E −HNose) dps ds drNdpN (44)

It can be shown [6] that, if L = 3N + 1,

〈A(rN ,pN/s)〉Nose = 〈A〉NV T . (45)

The equations of motion are

dri
dt

=
∂HNose
∂pi

=
pi
mis2

(46)

dpi
dt

= −∂HNose
∂ri

= −
∂V
(
rN
)

∂ri
(47)

ds

dt
=

∂HNose
∂ps

=
ps
Q

(48)

dps
dt

= −∂HNose
∂s

=
1

s

(
N∑
i=1

p2
i

mis2
− L
β

)
(49)
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s in fact acts a bit like a scaling of the time, meaning that the physical time associ-
ated with each time step in simulation is actually changing. These equations can be
reformulated in more physical terms, by defining

. p′i = pi/s.

. dt′/dt = 1/s.

. ξ = ps/Q.

The result is

dri
dt′

=
p′i
mi
, (50)

dp′i
dt′

= −
∂V
(
rN
)

∂ri
− ξp′i, (51)

d ln s

dt′
= ξ, (52)

dξ

dt′
=

(
N∑
i=1

p′i
2

mi
− L
β

)
. (53)

In this case, it can be shown that the canonical ensemble is sampled if L = 3N [7].
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Constant pressure Molecular Dynamics
An extended Lagrangian method can also be introduced to generate trajectories in the
isobaric (NPT ) ensemble in an analogous way.

Those interested should refer to [8].
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The Langevin approach
In fully atomistic simulations of dilute solutions, solvent molecules have two particularly
important effects on the solute.

• Solute molecules do not move ballistically.

• Solvent molecules act as a thermal reservoir.

Many simulations are performed using coarse-grained models and implicit solvents. We
can add drag and random noise forces on each momenta of each particle to mimic these
solvent effects

ṗi = Fi(r)− γipi + ηi(t). (54)

We conventionally use an independent gaussian random variable for each ηi(t).
. 〈ηi(t)〉 = 0; 〈ηi(t)ηj(t′)〉 = Γ2

iδ(t− t
′)δi,j.

If we choose Γ2
i = 2miγikT [9], then it can be shown that the particles will sample

the canonical ensemble.

The Andersen thermostat can also be used with implicit solvent to generate diffusive
motion.
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Additional degrees of freedom
So far we have imagined that every simulation particle has only translational degrees
of freedom. However, we may wish:

• To consider molecules.

• To consider electrons within atoms.

If we work with a fully atomistic representation, then can simply treat the atoms within
a molecule in the same way as any other atom.

. Bonds within a molecule are much stiffer than the interactions between non-bonded atoms.

. Stiff interactions will determine the time step, and constrain it to be much smaller than is
necessary for the intermolecular interactions.
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Rigid and stiff molecules
There are several common approaches:

• Treat molecules as absolutely rigid, and describe them using quaternions [10] as well as linear
coordinates.

. Only appropriate in simple cases.

• Treat the molecules as rigid, but have separate forces acting on each atom. Constrain structure
using algorithms such as SHAKE [11].

. These algorithms are fast (approximate) methods to solve for the value of Lagrange
multipliers necessary to preserve distances at each time step.

• Use a multiple time step integration algorithm, e.g. RESPA (reference system propagator
algorithm) [12].
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‘Car-Parrinello’ Approaches

For certain systems, evaluation of the energy requires an optimization of internal degrees
of freedom (e.g. electrons, induced dipoles of polarizable atoms) of the atoms.

As the time scales associated with these internal degrees of freedom are much faster than
those associated with the nuclear motion, it is assumed that they respond adiabatically
to changes in the positions of the atoms. I.e. the electrons are always in their ground
state.

Thus, in a standard molecular dynamics one would need to perform an iterative opti-
mization at each time step.

Problems:

• Computationally expensive

• Incomplete convergence leads to the exertion of a drag on the nuclei.

Car-Parrinello molecular dynamics treats the electrons using density functional theory
in the local density approximation.
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It circumvents these problems using an extended Lagrangian that includes the electronic
density. I.e. there are equations of motion for the electron density that are integrated
in an analogous way to those for the nuclear coordinates.

Although the electron density is not always optimal - instead it fluctuates around this
optimal value - it does not exert any systematic drag on the nuclei.

Optimization of the electron density occurs ‘on-the-fly’, rather than by iteration at each
step.

Note that although CPMD computes the potential energy at each point using electronic
density functional theory (rather than using a potential function) the nuclear motion
is still treated classically.
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Application to polarizable atoms
For a system of polarizable atoms (say with permanent dipoles), the total potential
energy can be written as V = V0 + Vind the induction energy is given by

Vind = −
∑
i

Ei · µi +
1

2α

∑
i

µ2
i (55)

where µi is the induced dipole on atom i, Ei is the electric field at atom i due to the
other atoms, and α is the polarizability.

Minimization of Vind with respect to the µi implies that the induced dipoles must
satisfy

µi = αEi (56)

Calculation of these induced dipoles, and hence the induction energy, requires the
solution of these 3N linear equations, typically by iteration to self-consistency.

To avoid this iteration in an MD simulation, one can use the extended Lagrangian

L
(
rN , µN

)
=

1

2

∑
i

mṙ2
i +

1

2

∑
i

Mµ̇2
i − V

(
rN , µN

)
(57)
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where M is the inertial ‘mass’ associated with the dipoles.

The equations of motion for the dipoles is then

Mµ̈i =
∂L
∂µi

= Ei −
µi
α

(58)

The RHS of this equation represents the forces on the dipoles and is zero when they
take their optimal value (Eq. 56).

Writing µi = µopti + ∆µi, gives Mµ̈i = −∆µi/α.

Therefore, the induced dipoles will oscillate around their optimal values.

To ensure that the dipoles respond rapidly to changes in the atomic positions: M � m

To ensure that the dipoles only exhibit small oscillations about their optimal value:
Tµ � Tr (temperatures defined through kinetic energies)

Latter achieved by two Nosé-Hoover thermostats.
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Monte Carlo
Monte Carlo is a stochastic method to calculate integrals.

Why integrals?

Common in classical statistical mechanics

〈A〉NV T =

∫
A
(
rN ,pN

)
exp(−βE)drNdpN∫

exp(−βE)drNdpN
(59)

1947: von Neumann, Metropolis and Ulam: First computational Monte Carlo applica-
tion. Diffusion of neutrons in fissile material.

1953: Metropolis et al.: First Monte Carlo simulation of a molecular system.

Called Monte Carlo because of its use of random numbers.
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Calculating π by MC

Throwing darts randomly at the target

lim
nthrows→∞

nhits
nthrows

=
π

4
(60)

As an integral
1

nthrows

∑
i

Oi =

∫ 1

−1
O(x, y)dxdy∫ 1

−1
dxdy

(61)

where
O(x, y) =

{
1 r ≤ 1
0 r > 1

(62)
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Buffon’s Needle

dl

The probability of a needle over-
lapping a crack between floor-
boards can also be used to obtain
π.

poverlap =
2l

πd
(63)

First suggested by Comte de Buffon in 1777.

In 1901 Lazzarini claimed an estimate of π = 3.1415929 (355/113), i.e. an accuracy
of 7SF, on the basis of 3408 trials.
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Estimating 1D integrals

10 x

f(x)

MC

10 x

f(x)

Quadrature

MC estimate for the integral

I =

∫ 1

0

f(x)dx ≈ 1

M

M∑
i=1

f(xi) (64)

where M random points xi in the interval [0, 1] have been selected.
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Error analysis: MC
The error in the estimate of I , σI , obeys

σ2
I =

〈
(I − 〈I〉)2

〉
(65)

=

〈(
1

M

M∑
i=1

f(xi)−

〈
1

M

M∑
i=1

f(xi)

〉)2〉
(66)

=
1

M2

〈(
M∑
i=1

(f(xi)− 〈f(x)〉)

) M∑
j=1

(f(xj)− 〈f(x)〉)

〉 (67)

=
1

M2

〈
M∑
i=1

(f(xi)− 〈f(x)〉)2

〉
=

1

M
σ2
f (68)

as the deviation of f(xi) and f(xj) from the mean are uncorrelated unless i = j.
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Error analysis: Quadrature
Integration using the simple trapezium rule gives

I =
1

M

(
1

2
f(0) +

N−2∑
i

f(xi) +
1

2
f(1)

)
+O

(
1

M3

)
(69)

where the xi = i/N are equally spaced.

Thus, for 1D integrals quadrature methods converge much faster than the MC approach.

For higher dimensional integrals using the trapezium rule, the error has the same de-
pendence on the number of points m in each dimension, i.e. O(1/m3). However, as
the total number of points in a d-dimension grid is M = md the error is O(1/M3/d).

The scaling for the MC error is independent of dimension, i.e. σI ∼ 1/
√
M .

⇒ MC scales better than trapezium rule for d > 6.
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Importance sampling
As the Boltzmann weights in the statistical mechanics integrals that we want to evaluate
(Eq. 59) are non-negligible for only a small fraction of configuration space, random
uniform sampling will be of no use.

. If you wanted to estimate the total number of wild baby pandas in the world, a uniform sampling
in space would be a waste of time.

. For 100 hard spheres at the freezing transition, only one in 10260 configurations have a non-zero
Boltzmann weight.

We would like to preferentially sample regions where an integral has the most weight.
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Back to 1D: Sample points from a probability distribution w(x). Estimate of integral
now:

I ≈ 1

M

M∑
i=1

f(xi|w)

w(xi|w)
(70)

where xi|w means that the xi have been drawn from the distribution w(x).

Even though this procedure does not change the scaling of accuracy withM , it’s effect
on the prefactor can be vast, particularly for thermodynamic systems.

A good choice of w(x) can lead to enhanced accuracy.
. For example, we could sample the number of wild baby pandas by biasing according to a

previous measurement of the total density of wild pandas.

The ideal weight function for us would be exp(−βE)/Q. However, we don’t know the
partition function Q.

Metropolis resolved this impasse by using a Markov chain method.

He used a biased random walking which one only requires the relative probabilities of
different configurations.
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Metropolis Monte Carlo
Basic approach

• Start with a configuration o.

• Move to a new configuration n with a transition probability π(o→ n).

• Calculate properties of interest for the current configuration and add to average.

• Repeat to create a trajectory through configuration space.

Note:

• The configuration does not have to change at each step, i.e.

π(o→ o) = 1−
∑
n6=o

π(o→ n) 6= 0 (71)

• The trajectories generated are stochastic.
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Detailed balance
Aim: sample configurations from the Boltzmann distribution P (o) = exp(−βEo)/Q.

• As with the Andersen thermostat, we imagine having a large number of simulations, with initial
states distributed according to the Boltzmann distribution.

• We then ask whether the dynamics of the system will tend to preserve this distribution.

i.e., the net probability flow into and out of every state must balance.

P (o)
∑
i

π(o→ i) =
∑
j

P (j)π(j → o) (72)

This equation can be satisfied, if detailed balance is
obeyed:

P (o)π(o→ n) = P (n)π(n→ o) (73)

Obeying this condition guarantees equilibrium is main-
tained. It does not say if or how equilibrium will be
reached.
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Moves are broken into two parts

• Selecting a given destination state n, with probability pc(o→ n).

• Accepting the trial move o→ n, with probability pa(o→ n).

π(o→ n) = pc(o→ n)pa(o→ n) (74)

As in the original Metropolis scheme, we commonly chose pc to be symmetrical, i.e.
pc(o→ n) = pc(n→ o).

Applying detailed balance implies:

π(o→ n)

π(n→ o)
=
pa(o→ n)

pa(n→ o)
=
P (n)

P (o)
= exp [−β(En − Eo)] (75)
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Metropolis acceptance criterion
Many possible choices of pa(o → n) that satisfy Eq. 75. The form proposed by
Metropolis et al. (and most commonly used) is

pa(o→ n) =

{
P (n)/P (o) P (n) < P (o)

1 P (n) ≥ P (o)
(76)

For the Boltzmann distribution, this is

pa(o→ n) =

{
exp [−β(En − Eo)] En > Eo

1 En ≤ Eo
(77)

Downhill moves are always accepted, whereas uphill moves are accepted with a proba-
bility that decreases with the energy difference.

Summary:
. Metropolis Monte Carlo samples from the Boltzmann distribution.

. We only know relative weights with which states are sampled, not absolute w(x).

∴ We can only calculate ratios of integrals – usually ok (e.g. Eq. 59).
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Integrating out the momenta
You may have noticed that I haven’t been worrying about momenta. This is because
integrals over the momentum coordinates can be easily performed [13].

Q =
1

N !Λ3N
Z (78)

where Λ is the thermal wavelength, and Z is the configurational partition function:

Z =

∫
exp

[
−βV

(
rN
)]
drN . (79)

The N ! term accounts for indistinguishability [14].

Similarly, for quantities that only depend on rN , no point using MC to perform the
integral over the momenta in the average 〈A〉NV T (Eq. 59).

Therefore, in Metropolis MC only rN is considered and configurations are sampled with
probability

P
(
rN
)

=
1

Z
exp

[
−βV

(
rN
)]

(80)

Thomas Ouldridge, University of Oxford 63



Basic step in more detail
To move from step k to k + 1

• Select a particle i at random from rNk

• Add a random displacement to this atom: r′i = ri+∆

• Calculate the potential energy V(rNtrial) for new trial
configuration.

• Accept the move rNk → rNtrial with probability

pa(o→ n) = min
{

1, exp
[
−β
(
V
(

r
N
trial

)
− V

(
r
N
k

))]}
(81)

On acceptance
r
N
k+1 = r

N
trial (82)

On rejection
r
N
k+1 = r

N
k (83)

• Add A(rNk+1) to average.
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Notes on algorithm
Random displacement ∆ can be chosen uniformly from a cube centred on the origin:

∆α = ∆max (ran[0, 1]− 0.5) α = x, y, z (84)

Choice of step size, ∆max:

• If ∆max is too large, most steps will be rejected.

• If ∆max is too small, although most steps will be accepted, the system will only move very
slowly through configuration space.

Optimal step size: Lowest statistical error for given CPU time.

Rule of thumb: approximately 50% acceptance rate reasonable. Don’t take this too
literally!

Optimal step size will vary with conditions. E.g. smaller in dense systems.

How to choose ∆max? One way is to adjust the step size dynamically during the
equilibration period.
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For move selection matrix to be symmetric, i.e. pc(o→ n) = pc(n→ o):

• Choice of atom needs to be random.

• Step choice algorithm (including the step size) must be the same for each step.

Why move only one atom at a time?

Cost of N single-particle moves is similar to that for a single N -particle move. For pair
potential,

V
(
rNtrial

)
= V

(
rNk
)

+
∑
j 6=i

v
(
rtrialij

)
− v

(
rkij
)

(85)

• In a typical thermodynamic simulation, attempted moves are more likely to cause an energy
increase.

• Moving multiple particles simultaneously and independently raises the chance of rejection.

∴ Single-particle move algorithms move more rapidly through configuration space.

Jargon: an MC cycle or sweep corresponds to N single-particle moves.
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Inferring thermodynamic properties
In a large canonical simulation, the pressure is a well-defined quantity. We can calculate
using the virial theorem as given in Eq. 38.

The heat capacity can be calculated from fluctuations in the total energy [15]:

Cv(T ) =
1

kT 2

(
〈E2〉 − 〈E〉2

)
(86)

In principle, the information collected at temperature T0 can be used to infer properties
at any temperature T ′.

• Let us assume we have “binned” our states according to some quantity of interest A and the
energy E, giving p(A,E, T0).

• We can calculate (up to a constant) the density of states Ω(A,E) from the histogram obtained
at T0,

p(A,E, T0) =
1

Q(T0)
Ω(A,E) exp (−E/kT0) . (87)

• As usual, the value of Q(T0) is unknown.
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Ω(A,E) can be used to calculate thermodynamic properties at any temperature, i.e.,

〈A(T ′)〉 =

∫ ∫
AΩ(A,E) exp (−E/kT ′) dEdA∫ ∫
Ω(A,E) exp (−E/kT ′) dEdA

(88)

=

∫ ∫
Ap(A,E, T0) exp ((1/kT0 − 1/kT ′)E) dEdA∫ ∫
p(A,E, T0) exp ((1/kT0 − 1/kT ′)E) dEdA

(89)

This extrapolation is known as single-histogram
reweighting.

. Simplest application is for the energy itself.

. Can be easiest to do it on the fly, rather than saving
p(A,E, T0).

. Only works well for small temperature gaps.

. Multi-histogram approaches use p(A,E, T ) from sev-
eral T to obtain a ‘best’ estimate of Ω(E, T ) [16].
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Constant pressure Monte Carlo
For the isobaric-isothermal ensemble, averages are found as

〈A〉NPT =
1

ΘNPT

∫ ∞
0

V N exp(−βPV )dV

∫
A
(
sN ;V

)
exp

[
−βV

(
sN ;V

)]
dsN

(90)
Scaled coordinates (si = ri/V

1/3) have been used to separate out the volume depen-
dence of the integral over rN .

A NPT MC scheme must sample configurations with the probability distribution:

PNPT
(
sN ;V

)
∝ exp

[
−β
(
V
(
sN
)

+ PV −N ln(V )/β
)]

(91)

and must involve two kinds of moves

• Moves that randomly displace a particle.

• Moves that randomly change the volume V.

For both of these, pc(o→ n) must be symmetric.
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The choice of move type must be random to maintain detailed balance.

For particle moves the acceptance criterion reduces to that for the canonical ensemble.

For volume moves the acceptance criterion is

pa(o→ n) = min

{
1, exp

[
−β
(
V
(
sN ;Vn

)
− V

(
sN ;Vo

)
+ P∆V − N

β
ln

[
Vn
Vo

])]}
(92)

where ∆V = Vn − Vo.

The P∆V term which favours a shrinkage of the volume is opposed by the ln(Vn/Vo)
term and the tendency of particles to repel.

• The relative frequency with which the two move types are chosen should reflect their relative
expense. Generally, a volume move is roughly as expensive as N single-particle moves.

• The average size of the volume move should be optimized to give reasonable acceptance ratios.
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Pressure: virtual volume moves
It is possible to measure the pressure in a large canonical simulation using fake trial
moves that change the volume of the simulation box.

P = −
(
∂F

∂V

)
N,T

= kT

(
∂ lnQ

∂V

)
N,T

≈ kT

∆V
ln
QV ′

QV
, (93)

with F the Helmholtz free energy and ∆V = V ′ − V a small volume change.

For a constant ∆V

QV ′

QV
=

V ′N

Λ3NN !

∫
exp

[
−βV

(
sN ;V ′

)]
dsN

V N

Λ3NN !

∫
exp [−βV (sN ;V )] dsN

(94)

=

(
V ′

V

)N ∫ exp (−β∆V) exp
[
−βV

(
sN ;V

)]
dsN∫

exp [−βV (sN ;V )] dsN
(95)

=

(
V ′

V

)N
〈exp (−β∆V)〉 . (96)
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Grand Canonical Monte Carlo

After integrating over the momenta, the probability distribution that the MC needs to
sample is obtained:

P
(
sN ;N

)
∝ V N

Λ3NN !
exp

[
−β
(
V
(
sN
)
− µN

)]
. (97)

. As the integral over the momentum depends on N it has to be explicitly considered.

. We also have to worry about indistinguishability.

In addition to particle displacement moves, there are two new move types

• Removal of a randomly chosen particle

• Addition of a particle at a random position

These moves should be attempted with equal probability.
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The acceptance criteria are given by

pa(N → N − 1) = min

{
1,

Λ3N

V
exp

[
−β
(
µ+ V

(
sN−1

)
− V

(
sN
))]}

(98)

pa(N → N + 1) = min

{
1,

V

Λ3(N + 1)
exp

[
−β
(
−µ+ V

(
sN+1

)
− V

(
sN
))]}

(99)
Pros of grand-canonical ensemble:

• Direct access to µ

• Natural ensemble for processes, such as adsorption.

Cons

• Insertion probabilities can be very low for dense systems. Biasing techniques need to be used.
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Widom Insertion
We can measure the chemical potential of a large system in a canonical simulation using
Widom insertion.

µ =

(
∂F

∂N

)
V,T

≈ −kT ln

[
QN+1

QN

]
. (100)

Rewriting this in terms of scaled coordinates

µ = −kT ln

[
V

Λ3(N + 1)

]
− kT ln

[∫
exp

[
−βV

(
sN+1

)]
dsN+1∫

exp [−βV (sN)] dsN

]
(101)

= µid + µex. (102)

µid = −kT ln
[
ρΛ−3

]
is the chemical potential of an ideal gas.
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µex = −kT ln

[∫ (∫
exp [−β∆V] exp

[
−βV

(
sN
)]
dsN∫

exp [−βV (sN)] dsN

)
dsN+1

]
(103)

= −kT ln

[∫
〈exp [−β∆V]〉NV T dsN+1

]
, (104)

where ∆V = V
(
sN+1

)
− V

(
sN
)
.

Therefore, the excess chemical potential can be related to the average Boltzmann factor
for inserting an extra particle into an N -particle system. The extra particle is a ‘ghost’
particle whose only purpose is to measure the chemical potential. It is never actually
added to the system.

As with grand-canonical MC the insertion probability can be very low for dense systems
leading to bad statistics.
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Biased moves
In some systems, simple move-generating algorithms can be highly inefficient.

. Fairly dense polymer solutions.

. Systems of strongly interacting clusters

Need more sophisticated means of generating configurations.

Use general Metropolis recipe, but do not choose the generation of trial moves to be
symmetric.

I.e. pa(o→ n) = min{1, χ} and pa(n→ o) = min{1, 1/χ}, where

χ =
Pn pc(n→ o)

Po pc(o→ n)
(105)

E.g. For polymers “configurational bias Monte Carlo” [17] involves regrowing a section
of polymer at each MC step. At each step in the regrowth process a number of directions
for the new chain are explored, and the direction selected is biased towards those with
lower energy.
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Cluster moves

Single particle moves can lead to slow equilibration for
strongly interacting systems.

• Large moves lead to rejection.

• Small moves don’t change the configuration much.

This is a particular problem in self-assembling systems.

We can propose cluster moves that involve simultaneous motion of a number of par-
ticles [18]. Two basic approaches to choosing a cluster:

. Choose a cluster based on the initial state of the system, then choose a trial move independently.

. Choose a cluster based on the initial state and the attempted move.

Both approaches generate trial moves in a biased fashion – acceptance factors are not
the same as in single-particle Monte Carlo.
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Troisi algorithm
An example (simple) cluster algorithm, applicable to
systems with pairwise interactions.

• Randomly pick a particle i as the cluster seed.

• Test all particles j with which i interacts in the initial
state o.

• Add j to cluster with probability Pij = 1 −
exp(βmin{0, Eij}).

• Assign a random translation or rotation to the cluster.

• Calculate new energies.

• Let ∆E+ = E+
n − E

+
o , where the subscript indicates

that only positive contributions to the energy are included.

• Accept move with pa = min{1, exp(−β∆E+)} [19].

The acceptance probability is justified in the notes.
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Association Bias Monte Carlo
Adding explicit cluster association moves and cluster breakup moves could accelerate
convergence.

Cluster association moves:

• Choose a random particle (probability = 1/N)

• Move this particle from ro to a random trial position rn
in Vb, where Vb is the union of all the bonding regions
around each particle. (probability = 1/Vb)

pc(o→ n) =
1

NVb
passoc (106) �������
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Cluster breakup moves:

• Choose a random particle from those that are involved in clusters (probability = 1/Nb)

• Move this particle from ro to a random trial position rn (probability = 1/V )

pc(n→ o) =
1

NbV
pbreakup (107)
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If the probability of performing association and breakup moves are equal, then the
acceptance criteria for cluster association follows from

pa(o→ n) = min

{
1,
NV ob
Nn
b V

exp
[
−β
(
V
(
rn
N
)
− V

(
ro
N
))]}

. (108)

Similarly, the acceptance factor for breakup moves is

pa(o→ n) = min

{
1,
No
b V

NV nb
exp

[
−β
(
V
(
rn
N
)
− V

(
ro
N
))]}

. (109)

. Note, the Vb used is always for the state in which the trial particle is separated from the cluster,
and the Nb is always for the state in which the trial particle is part of the cluster.

In practice determining Vb is not straightforward, but modifications make it simpler
[20].
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Computing Phase Diagrams
One important use of simulation techniques is to calculate phase diagrams.

Tc
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Direct simulation approaches hindered by:

• dynamics of phase transition may be slow

• the effect of the interface between the two phases

The chemical potentials of the two phases are equal on coexistence lines.

Thomas Ouldridge, University of Oxford 83



Thermodynamic Integration
Trick: Compute the difference in free energy between the system of interest and a
reference system for which the free energy is known (e.g. ideal gas, harmonic crystal).

. As free energies are extensive for bulk phases, specific free energies are also equal at coexistence
points.

A path between these states can be defined.

V(λ) = Vref + λ (Vsys − Vref) (110)

The partition function for a given λ is

Q(N,V, T ;λ) =
1

Λ3NN !

∫
exp [−βV(λ)] drN (111)

Hence, (
∂F (λ)

∂λ

)
=

∫
(∂V(λ)/∂λ) exp [−βV(λ)] drN∫

exp [−βV(λ)] drN
=

〈
∂V(λ)

∂λ

〉
λ

(112)
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Integrating gives

F (λ = 1) = F (λ = 0) +

∫ λ=1

λ=0

〈
∂V(λ)

∂λ)

〉
λ

dλ (113)

In practice, simulations at a number of different values of λ are performed and the
above equation integrated numerically.

. The path must be reversible, i.e. not cross a phase transition line.

To locate a single point on the phase boundary, need to compute the free energies of
both phase at a number of different state points, and then locate where they cross. i.e.
lots of work!
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Gibbs Ensemble
Direct simulation of phase coexistence is hindered by the problems of nucleation and
the role of the interface in a small system.

One way round this is the Gibbs Ensemble introduced by Panagiotopoulos, where
separate boxes contain the two phases and particles and volume can be exchanged
between the two boxes.

Gives thermodynamic contact without physical contact.

1N  , V1
2N  , V2
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Standard method for liquid-vapour coexistence.

Partition function for this ‘Gibbs ensemble’

QG(N,V, T ) =

N∑
N1=0

∫ V

0

Q1(N1, V1, T )Q2(N −N1, V − V1, T )dV1 (114)

=

N∑
N1=0

1

Λ3NN1!(N −N1)!

∫ V

0

V N1
1 (V − V1)N−N1dV1

×
∫

exp
[
−βV

(
sN1
)]
dsN1

∫
exp

[
−βV

(
sN−N1

)]
dsN−N1(115)

Hence the distribution we wish to sample is:

P (N1, V1, s
N
1 , s

N−N1) ∝ V N1
1 (V − V1)N−N1

N1!(N −N1)!
exp

[
−β
(
V
(
sN1
)

+ V
(
sN−N1

))]
(116)
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Types of move:

• Random particle displacement.

• Transfer of a randomly selected particle.

• Coupled volume change of the boxes (total volume constant).

Standard Metropolis acceptance criterion for particle displacements. Volume move:

pa(o→ n) = min

{
1,

(V n1 )
N1 (V − V n1 )

N−1

(V o1 )
N1 (V − V o1 )

N−1
exp

[
−β
(
V
(
sNn
)
− V

(
sNo
))]}

(117)
Particle move from 1 to 2:

pa(o→ n) = min

{
1,

N1(V − V1)

(N −N1 + 1)V1
exp

[
−β
(
V
(
sNn
)
− V

(
sNo
))]}

(118)

. A box is selected at random, then a particle from that box randomly selected.
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Problems:

• Particle insertion slow when one system dense (worse for liquid as T is decreased).

• Identity of the boxes can change close to the critical point,

• Magnitude of fluctuations and correlation lengths increase close to the critical point.
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Tracing coexistence curves
Idea:

• First find one point on the coexistence curve.

• Then trace the curve by integrating the Clausius-Clapeyron equation [21]:

dP

dT
=

∆H

T∆V
(119)

. All these quantities can be calculated direct from simulation without further free energy calcu-
lations.

Method often called Gibbs-Duhem integration.

Analogous equations can be derived for tracing the phase boundaries as a function of
other variables, e.g. the parameters of the intermolecular potential.
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Water phase diagrams

Experimental water phase diagram (middle) compared to that for TIP4P (left) and
SPC/E (right) water models.
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Clever tricks to speed up simulations
It is often useful to define a free energy as a function of some internal reaction coordinate
λ(rN).

F (λi) = −kT ln

(∫
drN exp

(
−V

(
rN
))
δλ,λi

)
+ Fc (120)

Free energy barriers that are significantly larger than kT make sampling an equilibrium
distribution with standard simulation techniques tricky.

. Here we discuss techniques for increasing barrier-crossing frequency.
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Parallel Tempering

Barriers that are prohibitively high at low temperature can be easily crossed at suffi-
ciently high temperature.

. Provided barriers are primarily energetic rather than entropic.

Basic idea: maintain equilibrium at low temperature by coupling runs to higher temper-
ature through the occasional swapping of configurations between parallel simulations
at different temperatures.

The partition function for this extended system of M coupled simulations is

Qextended (N,V, {Tk}) =

M∏
k=1

Q(N,V, Tk) =

M∏
k=1

1

Λ3N
k N !

∫
exp

[
−βkV

(
rNk
)]
drNk

(121)
For the swapping moves, chose pc(o→ n) to be symmetric. E.g. by randomly choosing
two of the M systems, and then switching their temperatures.
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The acceptance criterion must satisfy:

pa
({(

rNa , Ta
)
,
(
rNb , Tb

)}
→
{(

rNb , Ta
)
,
(
rNa , Tb

)})
pa
({(

rNb , Ta
)
, (rNa , Tb)

}
→
{

(rNa , Ta) ,
(
rNb , Tb

)}) =
P (
(
rNb , Ta

)
P (
(
rNa , Tb

)
P ((rNa , Ta)P (

(
rNb , Tb

)
=

exp
[
−βaV

(
rNb
)
− βbV

(
rNa
)]

exp
[
−βaV (rNa )− βbV

(
rNb
)] = exp

[
(βa − βb)

(
V
(
rNa
)
− V

(
rNb
))]

(122)

0

potential energy

pr
ob

ab
ili

ty
T1T T2 T3 4

The probability of a switching move will be very low unless the potential energy distri-
butions for the two temperatures being switched have sufficient overlap. ∴ Choice of
temperatures is very important.

Thomas Ouldridge, University of Oxford 94



Umbrella Sampling
Basic idea: Bias the system to sample configurations near the top of the barrier by
modifying the Hamiltonian.

• Let us assume that we have found a good order parameter, λ, that characterises the free-energy
profile.

• Apply a biasing weight to the simulation, W (λ(rN)).

Configurations are sampled with a frequency

PW (rN) ∝W (λ(rN)) exp
(
−βV

(
rN
))

(123)

Equilibrium averages can be found by unbiasing:
. Each sampled configuration contributes to a weighted average with a weight 1/W (λ(rN)).

Another way to think of Umbrella Sampling is that we are introducing a fictitious
potential −kT lnW (λ(rN)).
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Proof:

〈A〉NV T =

∫
A
(
rN
)

exp(−βV
(
rN
)
)drN∫

exp(−βV (rN))drN
(124)

=⇒ 〈A〉NV T =

∫ A(rN)
W (λ(rN))

W (λ(rN)) exp(−βV
(
rN
)
)drN∫

1
W (λ(rN))

W (λ(rN)) exp(−βV (rN))drN
=
〈A/W 〉W
〈1/W 〉W

(125)

. As a rule of thumb, the ideal choice for the biasing distribution isW (λ(rN)) = −F (λ) since
then PW (λ(rN)) is constant.

. In practice, only need a reasonable estimate to sufficiently facilitate passage between the free
energy minima. It can be obtained iteratively.

. In principle, Umbrella sampling allows exquisite control, but this depends on how good your
order parameter is.

. Trivially extended to multiple dimensions.

. Can be used in a “windowed” fashion [22].
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Widom insertion and multiple staging
In the Widom insertion method, the probability of insertion is very low for dense
configurations.

E.g. For hard spheres: One way to improve is to use insertion of a small sphere as an
intermediate.

Stage 2Stage 1

Stage 1: Measure fraction of time that small sphere finds no overlap.

Stage 2: Measure fraction of time that there is no overlap when small sphere is grown
to full size.
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Why is wrong with previous enhanced sampling techniques?
Umbrella sampling and parallel tempering are excellent for equilibrium properties.
They give limited direct information on dynamics.

• Umbrella sampling involves an artificial potential, so the dynamics of simulations will be dif-
ferent from the unbiased case.

• Trajectories from parallel tempering are unbiased, but split into sections at different tempera-
ture. Transitions tend to occur at temperatures that we’re not interested in.

In this lecture we look at two methods which enhance sampling of true reaction path-
ways and allow the calculation of rate constants.
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Formulation of the problem
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Forward Flux Sampling
Calculates the flux of trajectories leaving basin A that reach basin B before returning
to A.

. Given a long simulation in which many transitions are observed, the flux of trajectories from
A to B is ΦAB = NAB/(τfA).

. NAB is the number of times the simulation leaves A and then reaches B.

. τ is the total time simulated.

. fA is the fraction of simulated time for which state A has been more recently visited than B.

Calculate by splitting into stages.

A" B"
λ0" λ2"λ'1" λ1" λ3" λ4"

The use of the additional interface λ−1 is optional.
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ΦAB = φ(λ0)p(λmax|λ0). (126)

. φ(λ0) is the flux of trajectories crossing λ0 for the first some since leaving A (i.e., since
crossing λ−1).

. p(λmax|λ0) is the probability that such a trajectory will reach B (i.e., cross λmax) before
returning to A (crossing λ−1 in the other direction).

We first run a simulation to estimate φ(λ0).

• This generates a set of points on the interface λ0.

A" B"
λ0" λ2"λ'1" λ1" λ3" λ4"
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We then split up p(λmax|λ0) into stages.

p(λmax|λ0) =

max∏
i=1

p(λi|λi−1) (127)

. p(λi|λi−1) is the probability that a trajectory will reach λi before returning to A given that
it has reached λi−1 for the first time since reaching A.

We use the states obtained from the previous stage to successively estimate p(λi|λi−1).

A" B"
λ0" λ2"λ'1" λ1" λ3" λ4"

A" B"
λ0" λ2"λ'1" λ1" λ3" λ4"
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FFS results
The algorithm generates:

• A value for the overall flux.

• A value for the success rate from each interface.

• A set of (branched) trajectories sampled from the true set of transition paths.

By attempting to make progress from each point several times, trajectories are gener-
ated efficiently.

A" B"
λ0" λ2"λ'1" λ1" λ3" λ4"
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Reasons to be careful:

• Technically, you’re interfaces don’t need to be a particularly good choice for the reaction coor-
dinate.

. Interfaces must not intersect (this means you cannot assume a pathway).

. A poor choice will tend to be inefficient.

. It is possible to sample one type of pathway well without sampling another good alter-
native.

• Branched trajectories mean that sampling of later stages is more detailed than earlier stages.
. ‘Rosenbluth’ methods exist to generate unbranched trajectories, involving a slightly

more complicated analysis [23].

• FFS struggles when there are long-lived metastable intermediates.
. In simple cases, one can do FFS to reach the metastable intermediate, then FFS to

determine the flux out of it.

• FFS assumes the system is initially in equilibrium.
. Non-stationary FFS allows this assumption to be lifted [24].

• FFS requires a stochastic component to the dynamics.
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Transition Path Sampling
Generates an unbiased sample of trajectories that start in A at time t = 0 and end in
B at time t = τ .

Algorithm performs a Monte Carlo sampling of these pathways.

• We initially generate a path of length τ between the two basins in whatever way we can.
. For example, push the system half way and let it go.

We perform shooting and shifting moves to sample the trajectories that link the two
basins.
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Shooting moves

• We select a random time along this trajectory from which to generate a new path.

• Generate new forward and backwards trajectories based on this point.
. With deterministic dynamics, we must perturb the state a little.
. With stochastic dynamics, we simply use a different random number seed (perturbing

the state is possible, but introduces more acceptance factors).

• If the forward trajectory is in B at time τ , and the backward trajectory in A at time 0, we
have a transition path.

• Accept this path with a factor that ensures the right statistical weight [25].
. For Newtonian dynamics in the micro canonical ensemble (and symmetric trial pertur-

bations), or stochastic dynamics in the canonical ensemble, if the system is initially
assumed to equilibrated in A, the acceptance probability is 1. Other cases can be more
complex.

fw
bw
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Shifting moves

• We select a random (short) time δt.

• Define a new start point for a trajectory (t = 0) at δt along the old one.
. Moves which shift in the opposite direction must also be included.

• Integrate the end point forward in time by δt to obtain the new end of the trajectory (t = τ ).

• If the forward trajectory is in B at time τ , and the backward trajectory in A at time 0, we
have a transition path.

• Accept this path with a factor that ensures the right statistical weight [25].
. In cases where the initial distribution is the steady-state, this factor is 1.

(a)

(b)
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Results of TPS
The algorithm generates:

• A set of trajectories sampled from the true set of transition paths of length τ .

We didn’t need an order parameter, only the need to distinguish state A and B.

However:
. We need to generate an initial trajectory.

. Calculate of reaction rates is tedious and requires an order parameter [23].

. The algorithm can suffer from ergodicity problems if you have very distinct pathways.

. TPS struggles with metastable intermediates just like FFS.

Thomas Ouldridge, University of Oxford 110



Transition Interface Sampling
TIS is a cross between FFS and TPS for evaluating reaction rates.

As with FFS, we wish to evaluate

ΦAB = φ(λ0)p(λmax|λ0). (128)

. φ(λ0) is estimated in the same way as in FFS (through direct simulation).

. p(λmax|λ0) is split into stages, as in FFS

p(λmax|λ0) =

max∏
i=1

p(λi|λi−1). (129)

. p(λi|λi−1) is calculated using a TPS approach.
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To calculate p(λi|λi−1):

• For each interface i, we begin with a path of length τo that starts at λ0 and ends at λi or λ−1,
having first gone through λi−1.

• Perform a shooting move – obtain a trajectory.

. Generate the new initial point (for
stochastic systems, choose new seed).

. Generate new forward and backward
trajectories. Backward trajectory ended
when λ0 or λi reached, forwards when
λ−1 or λi reached. Trajectory has length
τn.

. Reject any trajectory that doesn’t pass
through λi−1, and any for which the
backward trajectory ends at λi.

. For trajectories that pass through
λi−1, accept with a probability
min{1, τo/τn} [24]. Otherwise reject.
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Results of TIS
We have ended up with:

• A representative set of trajectories for each interface i that start at λ0, reach λi−1 and then
either proceed to λi or return to A.

• This allows direct evaluation of p(λi|λi−1). When combined with the initial flux, we have a
total flux measurement.

• The successful trajectories at the final interface are representative reaction pathways.

However,
. We need to generate an initial trajectory for each interface.

. The algorithm can suffer from ergodicity problems if you have very distinct pathways.

. TIS struggles with metastable intermediates just like FFS and TPS.
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Truncating the interactions
The most expensive part of any calculation is evaluating the energy and its derivatives.

For a pair potential, the cost of evaluating the potential is O(N2), as all pairs of atoms
should be formally considered.

However, the interactions between distant atoms for short-ranged interactions are often
very small, and so the potential can be truncated.

If v(rc) 6= 0 this leads to an error, but this can be approximately corrected for [25]:

V
(
rN
)

=
∑
rij<rc

v(rij) +
Nρ

2

∫ ∞
rc

4πr2v(r) (130)

Jargon: this extra term is called a tail correction.

Tail correction does not converge for v(r) ∝ r−n if (n ≤ 3). Need to use Ewald
summation, which involves computing the long-range interactions in Fourier Space
(where they converge more quickly), or other techniques [28].
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Common ways to truncate the potential

• Simple truncation

v
′
(r) =

{
v(r) r ≤ rc

0 r > rc
(131)

MC: okay, but needs an additional impulsive correction for the pressure.

MD: problems with discontinuity in the potential.

• Truncate and shift
v
′
(r) =

{
v(r)− v(rc) r ≤ rc

0 r > rc
(132)

MD: still a discontinuity in the derivatives.

• Potential can also be ‘tapered’ to zero within a range of the cutoff.
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Code scaling
Truncation reduces the number of interactions that need to be calculated from O(N2)
to O(mN), where m is the average number of neighbours of an atom within the cutoff
distance.

However, O(N2) distances still need to be checked at each step.

To reduce the overall scaling of the algorithm to O(N), two common methods [29]:

• Neighbour list
Store a list of the particles that are within rv of each atom, where rv > rc. Only calculate
the interactions between particles on the neighbour lists. List needs to be updated when atoms
have moved by rv − rc.

• Cell list
Divide the simulation box up into cells. Only calculate the interactions between particles in
the same or neighbouring cells.
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Periodic boundary conditions

Normally, one wants to simulate a bulk system using a simulation of a finite number of
particles.

For small systems, the fraction of particles at any surface is high, e.g. open or hard
boundary conditions.

Therefore, to minimize such effects, periodic boundary conditions are used.
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The simulation cell is treated as the primitive cell of an infinite periodic lattice of
identical cells.

The simulation box is often chosen to be cubic, but other choices are possible.

Vtot =
1

2

∑
i,j,n

v (|rij + nL|) , (133)

where L is the edge length of the (cubic) box, and n is any vector of three integers.

Minimum image convention: an atom only interacts with the nearest image of any
particle.

. If we truncate our interactions at a distance less than L/2, this is natural.
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PBC comes with its own set of problems.

• Momentum is conserved in MD (and something similar in Nosé/Nosé-Hoover [30]) simulations.
. This is a particular problem for Nosé/Nosé-Hoover simulations, which must be per-

formed with zero total momentum [30]. Nosé-Hoover chains can improve this and other
ergodic issues [31].

• Long-range interactions are still problematic.

• Calculation of the virial pressure can be invalid [32].
. Still works fine for 2-body interactions with a cutoff-range smaller than half the simu-

lation cell.

• ...

Such finite-size errors often scale as ∼ 1√
N

or 1/N .

Finite-size scaling (i.e. examining how your property depends on N ) can often be used
to extrapolate to the bulk limit.
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Error analysis

The variance in a quantity measured in an M step simulation is

σ2
M(A) =

1

M

M∑
i=1

(Ak − 〈A〉M)
2

=
〈
A2
〉
M
− 〈A〉2M (134)

If these measurements were independent, the variance in the average would be

σ2 (〈A〉M) ≈ 1

M
σ2
M (135)

However, the configurations generated by trajectories are correlated.

Auto-correlation functions can be used to measure how long it takes a system to lose
“memory” of the state it was in.

CAA(k) =
1

M

∑
k′

(Ak′ − 〈A〉) (Ak+k′ − 〈A〉) (136)
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Correlation functions typically show an exponential decay, i.e.

CAA(k) ∼ exp (−k/nτ) (137)

where 2nτ is a reasonable estimate of the number of steps between independent mea-
surements.

∴ nm = M/2nτ is a measure of the number of statistically independent measurements,
and

σ2 (〈A〉M) =
1

nM − 1
σ2
M (138)
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Block averages
An alternative approach is to use block averages.

Take L partial averages 〈A〉l over blocks of length l = M/L steps.

σ2
L(〈A〉l) =

1

L

L∑
i=1

(〈A〉l − 〈A〉M)
2 (139)

As the block size increases, eventually l > 2nτ and the 〈A〉l become independent. ∴

σ2
L(〈A〉l)
L− 1

≈ σ2(〈A〉M) (140)

Plotting σ2
L(〈A〉l)/(L−1) as a function of L, this quantity will increase with decreasing

L and plateau at the correct variance for L ≤ nM .
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2D Ising model: 40× 40 lattice, kT/J = 1.8.

Another alternative is to actually run N truly independent simulations, and calculate
the variance between these results σ2

sim. The error on your mean is then σsim/
√
N − 1.

. Systematic errors can arise from failure to reach equilibrium.
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2D Ising model: 40× 40 lattice, kT/J = 1.8, H = 0.1.
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Si (141)
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A word on dynamics
Real liquid systems exhibit long-range hydrodynamic effects.

. In Molecular Dynamics simulations, objects will end up feeling their own flow field (either
through reflection or PBC).

When Langevin and Andersen thermostats are used, they destroy momentum transport
within the system.

. Cannot be used to calculate properties like viscosity and diffusion coefficients in systems.

Thermostats such as Dissipative Particle Dynamics [33] allow coarse-grained simula-
tions to capture some long-range hydrodynamic effects.
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Variable step size in Monte Carlo
The efficiency of a Monte Carlo algorithm is strongly dependent on the distribution of
trial moves used.

It can be tempting to allow the maximum step size to vary
. increase move size if success rate is above 50% during the last n moves.

. decrease move size if success rate is below 50% during the last n moves.

This is OK for equilibration (when you’r not collecting data), but the move generation
algorithm must be constant during sampling.

. Detailed balance is violated at the point at which the change is made.

. This violation can systematically differentiate between some states (particularly during self-
assembly).
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Random numbers
The library random number generator tends to be a bit rubbish.

. Lots of correlations, particularly for last few digits.

∴ Safest to use a more sophisticated one (e.g. from ‘Numerical Recipes in ?).

Random number generators need seeding.
. Simple tutorials often suggest that you use ‘time’. This can be problematic on clusters.

Use something else as a seed. Clusters often give each simulation a unique Job ID.

Random number generators can generate zero.
. This happens more often with worse algorithms.

. Simple implementations will generate an integer n between 0 and RAND MAX.

. RAND MAX can be as low as 32767 on C++ generators.

Any Monte Carlo move, no matter how crazy, will be accepted if you test the Boltzmann
factor against n/RAND MAX with n = 0.
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General tips

• Calculate things twice (in two different ways) if possible.

• Compare new code to old code, and original code to analytics.

• Don’t take rules of thumb as gospel.
. Success rates in MC should be 50%.
. The ideal umbrella potential produces a flat landscape.

• Look at pictures and follow trajectories of your system.

• Get a feel for how a number in your code relates to a real physical system.

• Remember that free-energy landscapes F (Q) depend on your definition of Q.

• Have function that outputs the state of your system in full precision, including the state of the
random number generator.
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