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Free Energy

1 Macroscopic Thermodynamics

You briefly met free energy last year, largely in the context of thermodynamics of macroscopic
systems. For macroscopic systems in which only PV work is relevant, the quantities U , T , S, P , V ,
H (enthalpy), F (Helmholtz free energy), G (Gibbs free energy) and Ni (particle number of species
i) are functions of state, in that their values are determined by the state of the system, and not by
its history.

For a macrscopic equilibrium system we can specify the state using a small subset of these
functions of state (for instance, the state of an ideal gas follows from knowing N , P and T – and
indeed many other combinations) and all other functions of state are then specified. The values of
these functions of state are assumed to be well-defined with negligible fluctuations.

2 Statistical Mechanics

If you want a more detailed discussion of the topics I skirt over here, please refer to Huang [1].

2.1 Ensembles and Partition Functions

I find it far more instructive to take the microscopic perspective of statistical mechanics. In this
case, we explicitly sum over the microstates of the system. For any real system in equilibrium, the
volume, number of particles and energy must be limited somehow, and there are two conceptually
different ways to imagine how this might happen.

• The quantity could be absolutely fixed - for instance, a completely isolated system in a rigid
box has fixed volume, energy and particle number.

• The quantity could vary, but be limited by the presence of a large reservoir with which exchange
can occur. For instance, we could imagine a system in contact with a pressure reservoir ( a
piston?) – the volume of the system would fluctuate, but the constant external pressure stops
the volume varying too much.

Different combinations of these restrictions are know as ensembles. Four common ones are:

• microcanonical ensemble: constant V , U and N .

• canonical ensemble: constant V , N and variable U , restrained by the presence of a reservoir of
temperature T .

• isobaric-isothermal ensemble: constant N and variable U & V , restrained by temperature and
pressure reservoirs.

• grand canonical ensemble: constant V and variable U & N , restrained by temperature and
particle reservoirs.

One of the central assumptions of statistical mechanics is that, in the microcanonical ensemble,
all microstates of a given V , U and N are equally likely. One can use this “postulate of equal a-priori
probability” to derive the relative probability of states within the other ensembles.
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• When in contact with a heat reservoir, the probability of being in a microstate of energy U is
proportional to e(−U/kT ). This should be familiar from last year’s stat mech course.

• When in contact with a pressure reservoir, the probability of being in a microstate of volume
V is proportional to e(−PV/kT ).

• When in contact with a bath of particles, the probability of being in a microstate with N
particles is proportional to e(µN/kT ), where µ is the chemical potential of the reservoir.

Note that one must make sure that identical particles are treated distinguishably. The partition
function is constructed by summing over all possible states in the relevant ensemble, multiplied by
their probability, and can be used to derive lots of useful things.

• In the canonical ensemble,
Z(N,V, T ) =

∑
states

e−U/kT . (1)

Where the sum runs over all states of given N and V .

• In the isobaric-isothermal ensemble (note that there is a degree of subtlety in the definition of
the normalizing volume V0 – see the discussion of Corti [2]),

∆(N,P, T ) =
∫
Z(N,V, T )

e−PV/kT

V0
dV. (2)

• And in the grand canonical ensemble,

Ω(µ, P, T ) =
∑
N

Z(N,V, T )eµN/kT . (3)

2.2 Fluctuations

We now think a little about how much a system in one of these ensembles will fluctuate. If a system
is in the canonical ensemble, for example, V , N and T are clearly well defined. The energy, however,
can vary - we can find 〈U〉 and also Var(U) using Z (can you see how to do this?), but, for the
moment at least, we don’t have a clear thermodynamic quantity U . P and µ are even harder to get
a handle on.

In Fig. 1 I consider the two factors that contribute to the probability of being in a microstate of
energy U in the canonical ensemble of a typical system. As you can see, they tend to be in opposition:
the number of states available grows with U , but the probability of being in any single one of those
states is suppressed by the e−U/kT . The results in a peaked distribution of the energy. As the system
gets larger, the width of the peak (standard deviation of U) gets smaller relative to 〈U〉. This follows
from a similar sort of argument to the fact that if you roll a dice 100 times, your average score will
be closer to 3.5 than if you roll it 5 times.

So, for a thermodynamically large system, the fluctuations become negligible. In other words,
〈U〉 = U can be treated as a thermodynamic property of the system. Similarly, in the isobaric-
isothermal and grand canonical ensembles, fluctuations about 〈V 〉 and 〈N〉 become negligible for
thermodynamically large systems.

The net result of this is that whichever ensemble a system is in, if it is thermodynamically large
the quantities U , T , S, P , V and µ are all well defined. So why bother with different ensembles
at all? They are actually at their most useful when we consider splitting up the partition function,
which I will discuss in section 3. Another point to bear in mind is that for systems that are not
thermodynamically large, fluctuations remain important and this equivalence does not hold.
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Figure 1: Schematic representation of the factors contributing to the distribution of energies in
the canonical ensemble. The Boltzmann factor (blue) decreases with U , but the number of states
available at a given energy (red) increases with U . The distribution of energies therefore contains a
peak.

2.3 Free Energies

Last year you defined Helmholtz (F ) an Gibbs (G) free energies for a thermodynamic system.

F = U − TS
G = U − TS + PV

(4)

A second postulate of statistical mechanics is that entropy is a measure of the number of microstates
occupied by the system, quantified by:

S = k
∑
states

pstate ln pstate (5)

You should be able to show that, given this definition, we can infer F = −kT lnZ, and G = −kT ln ∆.
This is how I always think of free energies – logs of partition functions, which themselves are weighted
sums over all states available to the system. In this way they include information about the energy
and entropy associated with the system.

2.4 Chemical Potential

Thermodynamically, the chemical potential of a species is defined as the overall energy change of the
system when a particle is added with the entropy and volume kept constant, i.e.,

µ =
(
∂U

∂N

)
S,V

. (6)

This isn’t actually all that helpful. But, from the relationship between U , F and G, it is easy to
show that:

µ =
(
∂F

∂N

)
T,V

=
(
∂G

∂N

)
T,P

. (7)

So µ is the change in F if a particle is added at constant T, V and the change in G if it is added at
constant T, P . This will be helpful later.
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In biophysics, there tend to be two important contributions to the chemical potential for species
in dilute solution:

µ ≈ µ0(T ) + kT ln(C/C0) + qV. (8)

µ0 depends on external conditions, and in most cases simply cancels out of any calculation. C is
the concentration, measured relative to an arbitrary reference concentration C0. So a system with
a high concentration will have a high chemical potential. The final term takes electrostatic energy
into account: q is the charge per particle and V the Voltage experienced.

3 Splitting-up the Partition Function

3.1 Thermodynamic Systems

Up until now, it has been implicitly assumed that when calculating anything, we included all possible
states of the system in our ensemble. However, it is often useful to consider splitting up the partition
function in a physically useful way, and considering a sum over a limited set of microstates.

Consider a system in the canonical ensemble containing of two species of particles, A and B. A
and B can associate to form the dimer AB. Assuming that, other than during dimerization, the
species are approximately ideal, let us calculate the partition function for the system if we imagine
it is restricted to having a fixed number of dimers NAB. In other words, we sum over states in which
there are NAB dimers, and for now ignore other possibilities. Let us call this reduced partition
function Z(NAB). We could sum up these reduced partition functions to give the total partition
function if we wanted.

Z =
N∑

NAB=0

Z(NAB). (9)

The point of the partition function is that it represents the sum of ‘statistical weights’ (relative
probabilities) of microstates. If we sum over all possible microstates, the quantity is not actually
that helpful directly. However, if we split it up using some ‘order parameter’ – such as NAB – we can
compare Z(NAB) for different possible values of NAB to see which value is most likely. The relative
probabilities are simply given by the ratio of the partial partition functions.

We can also define a free energy as a function of NAB:

F (NAB) = −kT lnZ(NAB). (10)

Therefore the value of NAB that minimizes F (NAB) is the most probable. In the thermodynamic
limit, fluctuations are negligible relative to NAB that minimizes F (NAB), meaning that the value of
NAB that minimizes F (NAB) is the value we see.

So to find the value of NAB, we can differentiate F (NAB). As the separate species are approxi-
mately ideal, and assuming that the total number of A and B is N , we find:

F (NAB) = FA(N −NAB) + FB(N −NAB) + FAB(NAB), (11)

where Fx is the contribution to the free energy from species x. For an ideal mixture, there is no
interaction between different species and hence we can factorize the partition function, meaning that
the free energy splits into additive terms for each species. Looking for the minimum, we find:

0 =
∂FA(N −NAB)

∂NAB
+
∂FB(N −NAB)

∂NAB
+
∂FAB(NAB)

∂NAB
= −µA − µB + µAB (12)

So if we know enough about µ of each species, we can calculate the degree of dimerization. This is
an extremely widely used result, and something I myself use in my own research.

Hopefully now you are seeing the use of calculating the free energy as a function of an internal
order parameter (NAB in our case). What about if we had been in the isobaric-isothermal ensemble?
We would have obtained the same result in the thermodynamic limit, µAB = µA + µB. But there is
a subtlety – the fact that the system is constrained differently (constant P rather than constant V )
means that the state that the system finds this balance in will be different. Think about this for a
while.
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3.2 Other Examples

We can split up the partition function in any way we like - later this year, you will find the magne-
tization of a simple model for a magnet. One way to do this is to consider F (M), the free energy
as a function of total magnetization, and minimize it. Another instructive example is to consider
two boxes containing the same type of particle which can exchange particles. For variety’s sake, let’s
assume they are held at constant T , P . If the total number of particles is N , a sensible reaction
coordinate would be N1, the number of particles in one of the boxes. As an exercise, you should
be able to show that the equilibrium is given by µ1 = µ2 by minimizing the total free energy as a
function of N1: G(N1) = G1(N1) +G2(N2).

This result has an important corollary. Instead of two separate boxes, we could think of our
argument applying to any two regions of a system between which particles are able to move. Our
argument implies that the equilibrium state is one in which µ in these two regions is equal - so
the equilibrium state of a system through which particles are able to move has the same chemical
potential everywhere. This is very important at biological membranes – if we apply a concentration
difference across a membrane, a small flux of particles will set up a voltage difference, allowing µ to
be the same on either side without the concentrations being equal (see Eqn. 8).

3.3 Small Systems

In small systems, we can again split up the partition function using internal reaction coordinates,
and define free energies as a function of these coordinates. The only difference is that fluctuations
are not negligible, and hence we cannot say that the system will spend all of its time at the point
that minimizes the free energy. Instead, if we have two states A and B in m canonical ensemble, the
relative occupation is given by:

PA
PB

= exp (−(FA − FB)/kT ). (13)

You should satisfy yourself that this is true by plugging in the partial partition functions. What can
we say about the relative rates kA→B and kB→A? You should prove that they are given by:

kB→A
kA→B

= exp (−(FA − FB)/kT ). (14)

Note that here NAkA→B gives the flux from A to B, so kA→B is a rate per system in state A. The
argument is essentially the same one used to derive the relationship between Einstein coefficients in
lasers.

3.3.1 Myosin

When we analyzed myosin, we actually split up the partition function in a very complicated way.
First, we had a discrete reaction coordinate which had six states given by differences in what was
bound to myosin.

1. ATP bound to myosin, myosin bound to actin.

2. ATP bound to myosin, myosin not bound to actin.

3. ADP + P bound to myosin, myosin not bound to actin.

4. ADP + P bound to myosin, myosin bound to actin.

5. ADP bound to myosin, myosin bound to actin.

6. no ATP or ADP bound to myosin, myosin bound to actin.
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We then divided these states up using a continuous reaction coordinate, which is the relative z-
coordinate of the myosin linker and the actin filament. So we had a two dimensional reaction
coordinate, and a free energy that looks like Gi(z). Obviously, states 2 and 3 don’t care about the
relative position, so G2/3(z) look flat and the others have a minimum about some preferred binding
orientation. By plotting the free energy like we did, it was possible to analyze how the motor was
applying a force, and elucidate the essential features of the process.

Small technical point – the system we are actually considering is not very well defined. The only
way I can make it rigorous is to consider a single myosin head in a large bath of solution. Within
this solution, ADP and ATP are not equilibriated – so the free energy of the system before step 1
is obtained by only considering states with a fixed number of ATP and ADP. We then analyze the
changes as the system takes one step towards equilibriation as a single ATP is converted into ADP
+ P.

4 Biophysics Technicalities

In biophysics, the distinction between Gibbs and Helmholtz free energies is often fudged. Strictly
speaking, systems are generally at constant pressure, and so the isobaric-isothermal ensemble is
probably appropriate. However, when trying to derive anything, we often treat water implicitly, so
we can focus on the interesting solute. But the majority of pressure in most biological systems is
due to the water, and the volume is relatively insensitive to what the solute does. So in a sense,
the solute molecules see an approximately constant volume ensemble. As a result, the distinction
between the two free energies is not that important and often they are used interchangeably.

The other important thing to remember about biological systems is that they are generally kept
out of equilibrium – that is what being alive is. So all of this equilibrium stuff can be useful in telling
us what is going on, but it often isn’t the whole story. For instance, ions are frequently pumped
across membranes, which means things are out of equilibrium – but our equilibrium calculations can
tell us something about how hard you have to pump to set up a certain non-equilibrium steady-state.
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