NTEC Module: Water Reactor Performance and Safety Lecture 9: Critical flow

> G. F. Hewitt Imperial College London

> > 1

Summary

Define

$$
\frac{c_p}{c_v} = k \quad (\gamma \text{ often also used})
$$

$$
c_p = \frac{kR}{k-1}, \ c_v = \frac{R}{k-1}
$$

Chenge in internal energy du given by dq = heat added per kg (J/kg) $dw =$ work done by system (J/kg) $du = dq - dw$

5

Isentropic processes IV

6

Work done given by Thus Define: Thus: $dw = pdv$ $du = dq - pdv$ $ds = \frac{dq}{T}$ $Tds = du + pdv$

7 Isentropic processes V But $dh = d(u + pv) = du + pdv + vdp$ Thus $ds = \frac{du}{T} + \frac{p}{T}dv = c_v \frac{dT}{T} + R \frac{dv}{v}$ $ds = \frac{dh}{T} + \frac{v}{T} dp = c_p \frac{dT}{T} + R \frac{dp}{p}$ $\therefore Tds = dh - vdp$

• Pressure wave moves at velocity *a* separating fluid moving at velocity *dV* and fluid which

remains stationary

9

15 Isentropic flow II $\frac{d}{dx}(\rho VA) = 0$ Continuity equation (steady flow) or $\rho VA = M = \text{const}$ Differentiating $V\ddot{A}d\rho + \rho VdA + \rho A dV = 0$ or $\frac{d\rho}{dt} + \frac{dA}{dt} + \frac{dV}{dt} = 0$ *A V* ρ $\frac{dP}{\rho} + \frac{dA}{A} + \frac{dV}{V} =$

Isentropic flow VI $\frac{\partial}{\partial x}(\rho VA) = 0$ or $\frac{dV}{V} = -\frac{dp}{\Delta V^2}$ (5) But from the continuity equation Thus equation 4 becomes (eliminating A) $\rho V \frac{\partial V}{\partial x} + \frac{\partial p}{\partial x} = 0$ or $dp = -\rho VdV$ $\frac{dV}{V} = -\frac{dV}{\rho V}$ ρ ρ $\frac{\partial V}{\partial x} + \frac{\partial p}{\partial x} =$ $=$ $-$

19

- A 1100 MW(e) reactor operating at 150 bar is shut down due to a smqll break corresponding to an area of 0.011m2. A short time after the shutdown, the rate of power generation has reduced to 200MW(t).
- The reactor has remained pressurised and the steam generators are
not operating. Heat removal is by "feed and bleed" with water being
injected by the HPIS and the heat being removed in the form of
steam which flows throu
- Assuming that the specific heat ratio k (= cp/cv) is 1.3 for steam and that the steam is saturated at 343 C, calculate the maximum flow rate of steam which could occur. Also, assuming a latent heat of vaporisation of
- The molecular weight of water should be taken as 18 kg/kmole and
the break treated as a nozzle with a discharge coefficient of unity.
The Universal Gas Constant is R_u = 8314 J/kmole K

29

Example of critical flow of steam II

For steam

 $R = \frac{R_u}{M} = \frac{8314}{18} = 461.9$ $p_o = 150$ bar $= 1.5 \times 10^7$ Pa $A^* = CA = 1 \times 0.011 = 0.011$ $T_o = 342 + 273 = 615$ K

30

Example of critical flow of steam IV

 $\ddot{M}_{\text{max}} \times h_{LG} = 206 \times 1000 \times 10^3$ Maximum rate of heat removal $= 206$ MW

(i.e. just sufficient to remove decay heat)

32

Homogeneous equilibrium model (HEM) for two phase flow II

Density of fluid $(\bar{\rho})$ given by

$$
\overline{\rho} = \left[\left(x / \rho_{g} \right) + \left(1 - x \right) / \rho_{l} \right]^{-1}
$$

 $(\rho_i$ and ρ_g and liquid and gas densities)

 $x =$ quality (vapour mass flow as a fraction of total flow)

