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Isentropic processes |

Ideal gas law

R
v=RT R=—%
P M

v = specific volume [: %) (m®/kg)
p = pressure (Pa)
R =gas constant (Nm/kg.K)
T = temperature (K)
R, = Universal gas constant
=8314 (Nm/kmole.K)

M’ = Molecular weight (kg/kmole)

Isentropic processes Il

Definition of specific enthalpy
h=u+pv=u+RT (ideal gas)
u = specific internal energy (J/kg)

Definition of ¢, and ¢,
dh=c,dT
du=c,dT

Thus:
dh=c,dT =du+RdT =c,dT +RdT
¢,—-¢,=R




Isentropic processes Il

Define

(2]

-2 =k (y often also used)

CV
kR R
C,=—, C,=—
P -1 k-1
Chenge in internal energy du given by

du =dq-dw
dg = heat added per kg (J/kg)
dw = work done by system (J/kg)

Isentropic processes IV

Work done given by
dw = pdv

Thus

du =dg- pdv
Define:

_dg

T

Thus:

Tds = du + pdv

ds

Isentropic processes V

But
dh=d(u+ pv) =du+ pdv+vdp
~.Tds=dh—vdp

Thus

Isentropic processes VI

For an adiabatic, reversible (“isentropic") process ds = 0. Thus:

dl+5ﬂ:0 —(1)
T ¢ Vv
E_B%ZO —(2)
T ¢, p

Integrating

c
In p+—21Inv = constant
C

v




Propagation of small amplitude pressure wave |

] p+dp V=0
— 1 -dv  p+dp V=av
T+dT pp T

» Long cylinder filled initially with motionless fluid
« Piston at one end given infinitesmal velocity dV

» Pressure wave moves at velocity a separating
fluid moving at velocity dV and fluid which
remains stationary

Propagation of small amplitude pressure wave Il

Consider frame of reference moving with wave

p+dp a-dV—— — a
p+dp PP T

T+dT
\

Control volume moving with wave
Continuity equation on control volume
ap=(a-dv)(p+dp)
ap=ap+adp—pdV —-dVdp
adp = pdV --(3)
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Propagation of small amplitude pressure wave lll

Momentum equation for control volume:
pA—(p+dp)A=—pa’A+(p+dp)a-dv)’A

Dividing through by A and expanding:
p—p—dp=—pa’+(p+dp)(a-2adv +(dv)?)
=—pa’ + pa® -2 padV +p(dV)2 +a’dp—2advd p+dp(dV )2

Thus
—dp=-2padV +a’dp
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Propagation of small amplitude pressure wave IV

But from equation 3 (continuity), pdV =adp
—dp=-2a’dp+a’dp
2=
dp

For thin region around wave with a disturbance of
infinitesmal amplitude, the process is essentially
ADIABATIC AND REVERSIBLE, hence
ISENTROPIC

{3
dp )
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Propagation of small amplitude pressure wave V

For ideal gas, isentropic process gives

pv* = Lk = constant (X)
0

dp= kak'ldp=£k~kpk'1~dp
P

=k£dp

P
[ip] :kﬁszT
op)s P
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Isentropic flow |

Procedure: Derive continuity
V4 and momentum equations for
element of length dx.
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Isentropic flow Il

Continuity equation (steady flow)

d
—(pVA)=0
o PR
or pVA=M = const
Differentiating

VAd p + pVdA+ pAdV =0
or d—p+%+d—\/=0
AV
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Isentropic flow Il

Momentum equation (steady flow without body or shear forces)

p+£§dxa—deA=( p+1dx ap](dxd—A]
2 2 dx

OX &
pA—“; i‘— pA+ dx%( pA)
VoA o viArdx D (VPA

j VAL Xax(p )

Momentum flux out — momentum flux in
= sum of (pressure) forces on element
16




Isentropic flow IV

vaA+dx3(pv2A)—pv2A
oX

1, 6p], oA 2
=pA Zdx 2 |dx 2 —| pA+dx—( pA
p +l:p+2 XOX} XaX |:p +ax (p ):|

pV2A+dX£(pVZA)—pVZA
OX

oA 1 20p OA OA op

= pA+ pdx—+=(dx)"—-—— pA— pdx— — Adx—

P paxz()axaxppax 2
op

X

3 aay__
dx&(pv A)=-Adx
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Isentropic flow V

3¢ apy A OP
dX&(pV A)= Adxéx

9 (2 o _
or 6X(pV A)+A6X =0
0 op

(V- pVA)+ A= =0
or 6x( L )+ OX

PYR: op
VAL v S (vn) AP 0
ATV AT AL @
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Isentropic flow VI

But from the continuity equation
0
—(pVA)=0
AR
Thus equation 4 becomes (eliminating A)
N, @
ox OX
or dp =-pVdVv
v d
5= - (5)
\Y PV

pV =0

or
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Isentropic flow VII

?/—V also follows from the continuity expression

v __dA_dp
Vv A p
and introducing this into equation 5 we have:

dA dp _ dp

A p  pVv?
2
dA_ dp dp dp{l v }

A~ p pvi opv?

(dp/dp)

20




Isentropic flow VIII
Buta’ =(dp/dp) and V?/a?* = M? where
M is the MACH NUMBER. Thus
p _dA/A
ov: 1-M?

Thus:
Subsonic flow M <1: dp positive if dA positive

~
dp negative if dA negative >

Supersonic flow M >1: dp negative if dA positive ~— —

dp positive if dA negative —

21

Critical flow |

P, P Py Po>P > Py
vV, —»
! /Vf\ When V = M at throat of
M_:a1 nozzle, further decrease in

downstream pressure
does not change velocity
(or mass flux) at throat or
vena contracta or p”.

Hence MAXIMUM or
CRITICAL flow observed
in these conditions.

\

V=a
M=1
(vena contracta)
(b) Orifice 22

Critical flow 1l

Kinetic energy per unit mass of fluid =V?2/2.

First law of thermodynamics:
V 2
h, = constant = h+ -

h, =STAGNATION ENTHALPY

=enthalpy of fluid brought to rest ([ upstream enthalpy if V,, [ a)

h=c,T =L (Slide5)

(k-1)

Thus:
kRT V? kRT,

(k-1 2 " (k1)

23

Critical flow Il

=N

(k-1)

kRT  V? _ kRT,
2

=a=+kRT" then V? =kRT". Thus:

kRT"  kRT™  kRT,

- -

(k-1) 2~ (k-1)

Ifv

Dividing through by kRT" and multiplying through by (k —1)

k-1_T, 1+k
2 T 2

1+

24




Critical flow 1V

To obtainp, / p* we use
pv* = constant = ¢, (isentropic expansion)
pv=RT (ideal gas law)

RT ¥ — constant = c
v

&4
R

. (&)% . {&J(MW
p p

= constant

Tv*? =constant =2 =,

k-D)/k
p( )

Thus p, [ Tn jk/(kfl) - (ﬂ)w(m)
p- \T" 2

25

Critical flow V

Maximum (critical) mass rate of flow

M, = aA =ah'p’ = A'p'VkRT"
\

A" is flow area at which V =a (A" =CA, C = coefficient of discharge)

We express T™ and p” in terms of (known) p, and T,
o2,
k+1

. P .
=—— (ideal gas law
P =qT (ideal g )
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Critical flow VI
2
k41

= ideal gas la
P =ar (ideal gas law)
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Critical flow VII

28




Example of critical flow of steam |

« A 1100 MW(e) reactor operating at 150 bar is shut down due to a
smg]ll break corresponding to an area of 0.011m2. A short time after
the shutdown, the rate of power generation has reduced to
200MW(t).

» The reactor has remained pressurised and the steam generators are
not operating. Heat removal is by “feed and bleed” with water being
injected by the HPIS and the heat being removed in the form of
steam which flows through the break.

« Assuming that the specific heat ratio k (= cp/cv) is 1.3 for steam and
that the steam is saturated at 343 C, calculate the maximum flow
rate of steam which could occur. Also, assuming a latent heat of
vaporisation of 1000 kJ/kg, calculate the maximum amount of heat
which could be removed. Is this sufficient?

* The molecular weight of water should be taken as 18 kg/kmole and
the break treated as a nozzle with a discharge coefficient of unity.
The Universal Gas Constant is R, = 8314 J/gmole K
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Example of critical flow of steam Il

For steam
R, 8314
M 18
p, =150 bar =1.5x10" Pa
T,=342+273=615K

A" =CA=1x0.011=0.011

=461.9
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Example of critical flow of steam Il

k+1

kK ) Tk+1] 20
McritzA*po BT |:;i| (
RT, 2

1.3 ]1/2 y (1.3 n 1)—(1.@1)/2(1.371)
461.9x615 2
=0.011x1.5x10" x0.002139x (1.15)
=206 kg/s

=0.011x1.5%10’ x(

—-3.833
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Example of critical flow of steam IV

Maximum rate of heat removal
=M, xh, =206x1000x10
=206 MW

(i.e. just sufficient to remove decay heat)

32




Homogeneous equilibrium model
(HEM) for two phase flow |

Gas  Temperature T
Velocity u,

Composition §, =Mole fraction of ith component
Liquid  Temperature T,

Velocity u,
Composition % = Mole fraction of ith component
Assumptions:
Tg =T, Applied along
u =u path of flow
o from upstream
¥'s in equilibriumwith X's to throat
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Homogeneous equilibrium model
(HEM) for two phase flow Il

Density of fluid (o) given by

-1
ﬁ=[(x/pg)+(1—x)/p|}
(o and p, and liquid and gas densities)

x = quality (vapour mass flow as a fraction of total flow)
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Homogeneous equilibrium model
(HEM) for two phase flow Il

START
T

L]
Guess pressure p* a critical plane

Method general and applies
to both single component
and multi-component fluids
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Homogeneous equilibrium model
(HEM) for two phase flow 1V

* Caleulate velocity of sound

Ap*

Adjust p* Ap®
BACK TO L
| START l
¥
Check whether energy balance equation is obeyed
NO —

1 =il 2m0
v
\'E.\

Caleulate entical mass flow

M, A*p*a

36




Homogeneous equilibrium model
(HEM) for two phase flow V

Thermodynamic Equilibrium
T,=T
\ \

Yes No
i

Mechanical Equilibrium
u=u
Y

N
Yes No Yes No
| | | |
Phasic Equilibrium
%'s in equilibrium with §;'s
NN N N

Yes No Yes NoYes No Yes No

g

4
HEM Example:
Dispersed Flow Model (DSM) 37
(Lemonier and Selmer Olsen)
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