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Homogenous Equilibrium Model (HEM)

Early approach used in system codes such as RELAP3 was to use 
the HEM which treated steam water mixture as pseudo-fluid with 
phases traveling at same velocity and in thermal equilibrium

Conservation equations derived from those for compressible flow 
of gas mixtures

HEM is a good approximation for high velocity dispersed flow 
regimes where phases are well mixed

HEM not adequate for flows where gas and liquid streams are 
separated (e.g. stratified flows, annular flows, counter-current 
flows) or flows where mean phase temperatures are different  
(sub-cooled boiling, dispersed flow film boiling etc) 
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Two-Fluid 6-Equation Model (TFM)

Requirement to model separated flows or flows where the bulk 
phases were at different temperatures led to the move to the 2-
fluid six equation model in system codes (TRAC-PF1, RELAP5, 
CATHARE)

In the TFM the mass, momentum and energy equations are solved 
for the phases separately, using constitutive equations to specify 
transfer of mass, momentum and energy between the phases and 
between the phases and the duct wall.

Early concern was that some two-fluid equation formulations were 
non-hyperbolic, implying that no solution existed (ill-posedness). 
Found that this was usually due to neglect of physical terms which 
stabilized the equations and rendered them well-posed,  without 
necessarily impacting the solution of most problems
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Finite Difference Methods

Finite Difference Methods have been the methods most commonly 
used in system codes for solving transient equations for steam 
water flows

Challenge for analyst has been to find differencing schemes which 
produce accurate solutions with rapid convergence & acceptable 
computer run times 

Basic finite differencing approach will be described
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Finite Difference Method
Equations first written as quasi linear first order partial differential 
equations:

The dependent variables of the problem yi can be selected in many ways

Equation (1) is written in discretised form on a finite difference mesh

φ is a conserved quantity which is a function of the 
chosen dependent variables yi

c is a sum or terms that depend on the yi and their 
partial derivatives in space and time

(1)
Accumulation term Advection term

Source term
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Finite Difference ‘Staggered’ Mesh (TRAC, 
RELAP, CATHARE)

PW Eew

W, P, E = cell centres for evaluation of scalar quantities (ρ, p, h..)

w, e       = cell centres for  evaluation of vector quantities (u) (=scalar 
cell boundaries) 

Control volume for 
scalar quantities

Control volume for 
vector quantities
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Discretised Equations

0u                   
)()(

*

**0

>=
∆
−

+
∆
−

P

WP

w

PP c
z

u
t

φφφφ

0u                   
)()( *

**0

<=
∆
−

+
∆
−

P

PE

e

PP c
z

u
t

φφφφ

Advection term always derived using properties of cell upstream of 
cell P. Also referred to as donor cell differencing

►Equations (1) are written in discretised form using 
upwind differencing for the advection terms. For a 
scalar variable at mesh point P

(2)
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Explicit  v Implicit Time Advancement

In solving Equation (2) φ* and c* can be defined either at the new  
timestep or the previous timestep

Defining the dependent variables at the previous timestep is 
termed explicit advancement. It is simple to implement 
numerically as the equations can be solved one by one in a single 
step.

Evaluating the dependent variables at the new time level is called 
implicit advancement. It is difficult to implement as it involves 
iterative solution of non-linear simultaneous equations in the 
dependent variables

But an implicit or semi-implicit method turns out to be the only 
practical approach in most cases…
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Problem of Explicit Integration

►To examine the accuracy and stability of the different approaches, consider 
the basic form of equation (2), treating c and the value of φ in the donor cell as 
constants. In the limit ∆t→0: the equation can be expressed as on ordinary 
differential equation in time:
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Timestep Limit in Explicit Integration

Explicit integration requires time steps below Courant limit for stability. 

Penalty in computer time not acceptable for large system codes

Note that terms arise in conservation equations analogous to the advection 
terms but coefficients of order of the transport velocities of sonic or thermal 
waves. Such terms may cause even more restrictive timestep limitations 

General rule is to avoid purely explicit  integration in developing a system code 
although some codes use a mixture or implicit and explicit integration to 
reduce computational effort at each step

Note: Equation (3) confirms that if advection term had been calculated with 
downwind differencing the coefficient a would be negative. Hence solutions 
would diverge for both implicit and explicit method, for all time-steps. Upwind 
differencing is thus necessary for stability

uzt /
max

∆=∆
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Choice of Dependent Variables- Mass Errors
Most obvious choice of solution variables y is the conserved quantities of 
mass, momentum and energy –suggesting dependent variables ρ, (ρu) 
and h. 

This choice is sensible in gas dynamics but does not work well for gas-
liquid flow

Following this approach cell pressure p would have to be derived  from ρ
and h using state equations. When the gas phase disappears from a cell, 
small numerical errors in density in the liquid equation of state can result 
in a large errors in pressure, due to the liquid being largely 
incompressible (water-packing problem)

Therefore p is usually chosen as a solution variable and ρ derived from p 
and h using state equations.

The disadvantage with this approach is that mass conservation errors 
arise due to approximations inherent in state equations. These errors 
must be calculated and maintained at acceptable levels by timestep 
control

Some approaches involve a final solution step in which the density is 
corrected using the conservative form of the mass conservation equation 
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Choice of Dependent Variables- Mass Errors

Forced flow 
boundary 
condition
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Implicit Solution Approaches in System 
Codes
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Approaches to Solving the Finite Difference 
Equations Implicitly

Typical dependent variables set chosen for 6 equation model 
(CATHARE example):  αg, p, ug, uf, hg, hf, Xnc

Conservation equations written in implicit finite difference form, using 
upwind differencing

F(y)= 0 (4)

where F is column vector of equations and y is a the vector of the 
dependent variables

The total number of equations and variables is

(4+Nc) Ns + 2Nv

where

Nc= number of non-condensable gases ; Ns= number of scalar control 
volumes;  Nv= number of vector control volumes
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Method of Successive Substitution
This is the simplest approach. Eq (4) is written as 

H y = b (5)

where H is a square matrix of coefficients and b is a column vector of 
source terms. Each row of H corresponds to a conservation equation for a 
particular cell. The only non-zero coefficients are the cell values and 
those for the small number of connected cells. Hence the matrix is 
sparse. 

A sparse matrix solver can be used to solve (5) for y. Calculated values of 
y can then be used to recalculate H and b and the process repeated until 
convergence is achieved 

The process is equivalent to solving y=g(y) by successive substitution

yk+1=g(yk)  where g=H-1b

However convergence of this process is not guaranteed. Convergence is 
often improved by applying under-relaxation:

where θ is a relaxation parameter (<1 in most problems)

Successive substitution method used in PHEONICS code
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Newton Raphson Method (e.g. CATHARE)

Method uses the generalization of the Newton method to a system on 
equations. The Newton method for a single variable states that if yk is an 
approximate solution to F(y)=0 a better approximation will be given by:
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The Newton method can be generalized to a system of non-linear equations  
F(y)=0

►The matrix Jij=∂Fi/∂yj   is referred to as the Jacobian Matrix. In matrix 
notation (6) can be written:

►The Jacobian elements are derived by numerical differentiation

►Newton method gives rapid convergence but requires an initial guess 
close to the solution

(6)
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Example of discretised form of energy equation  (CATHARE)

Notation

o= scalar cell value

X =vector cell  value

~ = donor (upstream) 
scalar cell value)

n+1=current timestep 
value

n=previous time step 
value
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Semi-Implicit Methods (1/2) 

To reduce computer time associated with iterative solutions of 
large equations systems, some codes carry out a two-step 
iteration on some or all the equations.

Examples are TRAC-PF1 code and RELAP5 codes.

TRAC-PF1 

two step iteration on the momentum equations first used to derive the 
new-time velocities uk+1 using old time densities and estimated new 
time pressures

Equations for mass and energy conservation then solved iteratively 
for new time values dependent variables α, p, Tg, Tf (Newton Raphson 
method)

Final step is to solve for new time density and energy using 
conservative form of the mass and energy equations

Hence mixed/implicit explicit method with only partial iteration
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Semi-Implicit Methods (2/2)  

RELAP5 code 

Mass & momentum equations written in sum and difference 
form 

Dependent variables used: αg, p, ug, uf, εg, εf, Xnc

Two step process used to find new time values

The only equation system solved simultaneously is NxN linear 
equation system for cell pressures (solved with sparse matrix 
solver)

Final step is to solve for new time density and energy using 
conservative form of the mass and energy equations

Solution scheme has been criticized as non-linear equations 
are solved without iteration

Probably OK at small timesteps


