

System Codes for Reactor Licensing – Part 1: Code Applications

Keith Ardron
UK Licensing Manager,
AREVA NP UK

Imperial College - Nuclear Thermalhydraulics Course: February 2014

- Definition of steady state conditions and transients modelled by system codes in EPR safety analysis
- ♦ Typical System Codes used for EPR and their validation
- Analysis results for Design Basis Accidents: Illustration of Thermal-hydraulic Phenomena modelled

EPR Nuclear Steam Supply System (NSSS)

AREVA INF

Imperial College 2014 - p.3

- ♦ Definition of steady state conditions and transients modelled by system codes in EPR safety analysis
- **♦** Typical System Codes and their validation
- ♦ Analysis results for Design Basis Accidents: Illustration of

POSTULATED INITIATING EVENTS

- ► Multiple Initiating Events (IEs) are analysed in the Reactor Safety Report to show that the following basic safety functions can be achieved:
 - Core reactivity control
 - Residual heat removal
 - Control of Radioactivity releases
- ▶ The IEs analysed are grouped in categories:
 - Design Basis Conditions (DBC1 to DBC4)
 - Design Extension Conditions (DECs)
 - Severe Accidents (Core Melt Accidents)
 - Internal and External Hazards

AREVA NP

Imperial College 2014 - p.5

DBCs DEFINED FOR

- ▶ DBC 1 : Normal operational transients Routine events
- ▶ DBC 2 : Anticipated operational transients and occurrences events that might be expected to occur during the life of a unit (1E-2<f<1/yr)</p>
- ▶ DBC 3 : Incidents/infrequent accidents events that might expected to occur during the lifetime of a fleet of similar units (1E-4<f<1E-2/yr)</p>
- ▶ DBC 4 : Limiting Accidents Events that would not be expected to occur during the lifetime of a fleet of similar units (1E-6<f<1E-4/yr)</p>

In defining the DBCs, all reactor operating states must be considered: (at power, hot shutdown, cold shutdown with closed circuit, cold shutdown with open circuit, cold shutdown with fuel removed)

DBC 2 Events: f>10-2/yr

- ► Feedwater malfunction reduction/increase in feedwater temperature
- Excessive increase in secondary steam flow
- Turbine trip
- Loss of condenser vacuum
- Short term loss of offsite power (≤ 2 hours)
- Loss of normal feedwater flow
- Partial loss of core coolant flow (Loss of one reactor coolant pump)
- Uncontrolled rod cluster control assembly (RCCA) bank withdrawal at power & hot zero power conditions
- RCCA rod drop
- Start-up of an inactive reactor coolant loop at an incorrect temperature
- RCV [CVCS] malfunction resulting in boron dilution or increase/ decrease in reactor coolant inventory
- Primary side pressure transient (spurious operation of pressuriser spray, heater)
- Uncontrolled level drop in primary circuit in shutdown
- Loss of one Residual Heat Removal System Train during shutdown
- Spurious reactor trip at power

AREVA NP

Imperial College 2014 - p.7

DBC 3 Events : $10^{-2} > f > 10^{-4}/yr$

- Small steam or feedwater system piping failure
- Long term loss of offsite power (> 2 hours)
- Inadvertent opening of a pressuriser safety valve
- Inadvertent opening of a SG relief train or of a safety valve (state A)
- Small break LOCA at power (not greater than DN 50mm)
- Steam generator tube rupture (1 tube)
- Inadvertent closure of one/all main steam isolation valves
- Inadvertent loading and operation of a fuel assembly in an improper position
- Forced decrease of reactor coolant flow (4 pumps)
- Leak in the gaseous or liquid waste processing systems
- Loss of primary coolant outside the containment
- Uncontrolled RCCA bank withdrawal in shutdown
- Uncontrolled single control rod withdrawal
- Long term loss of offsite power (> 2 hours), fuel pool cooling aspect
- Loss of one train of the fuel pool cooling system or of a supporting system
- Isolable piping failure on system connected to the fuel pond

AREVA NP

DBC 4 Events: 10⁻⁴>f>10⁻⁶/yr

- Long term loss of offsite power in shutdown
- Major Steam system piping break
- Major Feedwater system piping break
- Inadvertent opening of a SG relief train or safety valve hot shutdown
- RCCA ejection accident
- Intermediate and large break LOCA at power
- Small break LOCA <50 mm during shutdown</p>
- Reactor Coolant Pump seizure (locked rotor)/ shaft break
- Multiple Steam Generator tube rupture (2 tubes in 1 SG)
- Fuel handling accident
- Boron dilution due to a non-isolable rupture of heat exchanger tube
- Rupture of systems containing radioactivity in the Nuclear Auxiliary Building
- lsolable break in safety injection system in residual heat removal mode during shutdown

AREVA NP

Imperial College 2014 - p.9

Design Basis Analysis - Acceptance Criteria

- Offsite radiological consequences of DBC2 events must be within limits for normal operation
- Offsite radiological consequences of DBC3/4 events must not require off-site countermeasures (10mSv max dose to person at site boundary)
- No fuel clad failures permitted in DBC2 events and DBC3/4
 Steam/Feed Line Break Events (no DNB)
- Number fuel rods experiencing DNB for other DBC 3/4 events must be < 10%.
- ♦ In LOCAs: peak clad temperature must be< 1200°C, max clad oxidation must be<17% of the clad thickness, max hydrogen generation must be < 1% of maximum from oxidation of active core fuel clad, core geometry must remain coolable etc</p>

- Conservative assumptions applied for initial and boundary conditions and system modelling (aim is >95% confidence that analysis will be bounding). E.g.
 - Initial plant conditions (power, pressure etc) assumed to be at limits allowed by operating rules. (Initial steady state operation assumed).
 - Parameters for dominant phenomena set conservatively to allow for modelling uncertainties (e.g. decay heat, reactivity feedback coefficients etc)
 - Single failure & maintenance principles applied
 - No operator actions from control room claimed within 30 minutes of first indication: no local to plant actions claimed within 60 minutes
 - Loss of offsite power assumed in DBC3/4 events (when pessimistic)

AREVA NP

Imperial College 2014 - p.11

Definition and examples of DECs & Severe Accidents

- ▶ DECs: these are fault <u>sequences</u> involving IE combined with failure of a major safety system, where core melt is averted by use of back-up systems e.g.
 - Station Blackout (Loss of offsite power combined with failure of all 4 Emergency Diesel Generators)
 - Main feedwater failure combined with failure of the 4 Emergency Feed trains,
 - SB-LOCA combined with failure of 4 Medium Head Injection trains
 - SGTR combined with stuck open SG relief valve
- Severe Accidents: these are core melt accident in which a large release of radioactivity to environment is prevented e.g.
 - LOCA with total failure of all Safety Injection Systems (both Medium & Low Head Injection)
 - SBO with failure of all 6 diesel generators (Emergency & Back-up)

DEC Analysis – Acceptance Criteria & Analysis

- **Assumptions**
- Assumptions for DEC more realistic than those applied for design basis event analysis
 - Standard conditions assumed for initial plant operating state (e.g. nominal rated thermal power)
 - Parameters for phenomena modelled defined more realistically
 - Single failure principle not normally applied. Maintenance principle applied on case-by-case basis
 - ♦ No operator actions from control room within 30 minutes: no local to plant actions within 60 minutes – same as DBCs
 - No coincident loss of offsite power assumed
 - Required offsite radiological consequences of DEC events same as DBC3/4 (no off-site countermeasures must be needed)

AREVA NP

Imperial College 2014 - p.13

- ♦ Definition of steady state conditions and transients modelled by
- Typical System Codes and their validation
- ♦ Analysis results for Design Basis Accidents: Illustration of

Main codes & use for EPR Licensing in UK

CATHARE MODEL

- CATHARE code development launched in 1979 by CEA, EDF, FRAMATOME-ANP. Aim was to develop a state-of-the-art bestestimate thermal-hydraulic code for realistic calculations of accident scenarios in LWRs.
- Supported by a comprehensive experimental validation programme including Separate Effects Tests and Integral Effects Tests
- Transients addressed involve limited core degradation (fuel cladding deformation and bursting - core melt events excluded).
- Main Reactor transient applications :
 - LOCAs up to the Double-Ended Guillotine Break of main primary loop pipework
 - All accidents leading to "significant 2-phase conditions" in the RCS characterised by flow stratification in horizontal pipework in main loops
 - Transients involving degraded heat transfer in SG secondary system, due to steam/feed pipe ruptures or system malfunctions (LOFW, SLB, FWLB, SGTR, ...)
 - Modelling of Containment pressure/temperature response due to Mass and Energy Release from the RCS

► Basic assumptions and models :

- 2 fluid / 6 equation model
- 4 non-condensable gas fields
- 32 radiochemical elements
- Fortran 77 (5000 routines, 720 000 lines)
- Finite difference solution scheme
 - First order, staggered mesh space discretization
 - Fully implicit (0D, 1D) or semi-implicit (3D) time discretization
- Hyperbolic system of equations
- Newton-Raphson method for non-linear equation solution

AREVA NP

Imperial College 2014 - p.17

CATHARE MODEL – 6 Equation Model used for 1D Module

MASS BALANCE EQUATION FOR PHASE K

$$A\frac{\partial}{\partial t}\alpha_{K}\rho_{K} + \frac{\partial}{\partial z}A\alpha_{K}\rho_{K}V_{K} = \Gamma_{iK}$$

♦ TRANSPORT EQUATION FOR NON CONDENSABLE GAS

$$A \; \frac{\partial \alpha \rho_G X_i}{\partial t} + \frac{\partial A \alpha \rho_G X_i V_G}{\partial z} = S_i$$

♦ MOMENTUM BALANCE EQUATION OF PHASE K

$$A\,\frac{\partial \alpha_K \rho_K V_K}{\partial t} + \frac{\partial A \alpha_K \rho_K V_K^2}{\partial z} + A \alpha_K\,\frac{\partial P}{\partial z} = A I_{iK} + \chi_F \tau_{WK} \, + A \alpha_K \rho_K g_z$$

♦ INTERFACE RELATIONSHIP

$$\sum_{\mathsf{K}} \mathsf{T}_{\mathsf{i}\mathsf{K}} = 0 \qquad \qquad \sum_{\mathsf{K}} \mathsf{I}_{\mathsf{i}\mathsf{K}} = 0$$

$$\sum I_{iK} = 0$$

$$\sum_{\mathbf{K}} \mathbf{Q}_{i\mathbf{K}} = 0$$

♦ INTERFACE ENERGY TRANSFER

$$Q_{ik} = q_{iK} + \Gamma_{iK} (H_K + \frac{V_i^2}{2}) \qquad \begin{cases} q_{iK} & \text{is the interface to phase K heat flux} \\ \Gamma_{iK} (H_K + \frac{V_i^2}{2}) & \text{is the energy transfer due to mass transfer} \end{cases}$$

CATHARE MODEL – Primary System Nodalisation

AREVA NP

Imperial College 2014 - p.19

CATHARE MODEL – Secondary System Nodalisation

AREVA NP

CATHARE MODEL – Validation against system tests

LOOP	VERT. SCALE	VOLUME SCALE	POWER	PRESSURE MPa	LOOP NB	CORE
LOFT	1/2	1/48	100%	16	2	Nucl
LSTF	1/1	1/48	14%	16	2	Elect
BETHSY	1/1	1/100	10%	16	3	Elect
PKL	1/1	1/134	5%	4	3	Elect
LOBI	1/1	1/700	100%	16	3	Elect
SPES	1/1	1/427	100%	16	3	Elect
PACTEL	1/1	1/305		8	3	Elect
РМК	1/1	1/2070	100%	16	1	Elect

AREVA NP

Imperial College 2014 - p.21

MANTA CODE

- MANTA is an AREVA code used to simulate the transient behavior of a multiple-loop PWRs (non-LOCA) used for:
 - Safety analysis report
 - Equipment design
- Secondary side modelling:
 - Steam line break, excessive increase in steam flow, spurious opening of a valve.
 - Loss of feed water, feedwater system malfunction
- Primary side modelling:
 - Natural circulation, loss of reactor coolant flow, startup of a RCP, locked rotor of a RCP,
 - Spurious opening of a pressuriser relief valve, spurious startup of safety injection,
 - Control rod withdrawal, rod drop, spurious boron dilution,
 - ATWS

MANTA Models

- Fuel to coolant heat transfer model: multiple axial nodes, one radial node per loop, one heat transfer coefficient.
- Neutron kinetics model: Point kinetics (6 groups of delayed neutrons). Is coupled with 3-D neutronics code SMART if neutron power distribution in core is required.
- DNBR calculation using simple model function of core power, reactor coolant flow rate and pressurizer pressure.
- Reactor upper head vessel model:
 - Multi-nodal modelling with pressure gradient & heat losses.
- Pressurizer model:
 - Multi-nodal possible with heat losses and mass transfer.
- Steam generator model
 - Multi-nodal modelling for tube bundle and secondary side (boiler, economiser, separator)
- Control and Protection System Modelled in Detail

AREVA NP

Imperial College 2014 - p.23

MANTA – Thermal Hydraulic Modelling

- Control volume method used
- 5 equation model of two-phase flow
 - Mixture mass conservation
 - Vapour mass conservation
 - Mixture momentum conservation
 - Vapour energy conservation
 - Liquid energy conservation
- 4 radial regions in core corresponding to each coolant loop. Thermal and boron mixing between regions simulated using mixing coefficients
- Algebraic drift flux correlations used to represent the velocity difference between liquid and vapor phases. (Code not used for transients with significant two-phase conditions in primary system)
- Zaloudek/Homogeneous Equilibrium Models used two-phase critical flow though orifices/pipes.

MANTA - Validation

- ▶ Reactor steady state operations : Bugey 4, Paluel 1
- ► Reactor trip at 50% NP Bugey 4 and 100% NP Paluel 1
- ► Primary overpressure transient Bugey 4
- ► Steam generator valves opening transient Paluel 3
- ► RCS natural circulation and void formation under vessel head Gravelines 1
- ► House load operation Gravelines 6
- ▶ Power transients and feed water injection Chooz B1

<u>Transients on Large Scale Mock-ups of Steam Generators</u>

- ► MB2: Steady state, loss of feedwater, steam line break
- ► MEGEVE: steady state, reactor trip

AREVA NP

Imperial College 2014 - p.25

Modelling of Departure from Nucleate Boiling Phenomena

One of the most important tasks in core thermal-hydraulics is the prediction of thermal margin (margin to boiling crisis).

AREVA NP

(DNB, Film Boiling)

To avoid damage to the cladding due to an excessive increase in the temperature, the heat flux Q must not exceed the critical heat flux Q_c. The DNBR (Departure from Nucleate Boiling Ratio) is defined as the ratio of the critical flux to the actual heat flux at any time

$$DNBR = \frac{Critical Heat Flux}{Local Heat Flux}$$

The critical heat flux is determined experimentally. A correlation (or predictor) is established that allows the critical flux Qc to be calculated as a function of the flow and the geometrical characteristics of the channel

DNB risk: rupture of the first barrier

Imperial College 2014 - p.27

FLICA III-F core thermal-hydraulic model

- FLICA III-F is sub-channel code that calculates two-phase flow and heat transfer in the core of a PWR, in steady and transient states:
 - thermal-hydraulic variables: pressure, enthalpy, temperature, quality, mass flowrate
 - critical heat flux
- FLICA applications:
 - thermal-hydraulic design of reactors: determination of core operating limits in regard to DNB phenomenon
 - modelling of accidents such as steam line break, uncontrolled control rod withdrawal,
 - hydraulic design of core e.g. determination of hydrodynamic lift forces on fuel assemblies

FLICA III-F core thermal-hydraulic model assumptions (1/2)

- Core divided radially into channels and sub channels representing individual subchannels or multiple subchannels or one or several fuel assemblies
- Code assumes vertical uplow flow with mass and energy exchange between adjacent channels
- Single and two-phase flow modelled up to CHF location
- ► Incompressible flow assumed
- Counter-current flow and flow reversals not modelled
- 4 equation model of two-phase flow used with slip ratio correlation:
 - Mixture mass conservation equation
 - Mixture momentum conservation equation
 - Mixture energy conservation equation
 - Liquid phase energy conservation equation

AREVA NP

Imperial College 2014 - p.29

FLICA – Radial Mesh used for Steam Line Break Fault Analysis

FLICA III-F core thermal-hydraulic model assumptions (2/2)

Two-phase flow models

- Slip ratio model used for calculating the difference in velocity between the two phases – HTFS correlation
- ◆ Two phase flow friction factor for axial flow HTFS correlation used that takes account void fraction, mass velocity and heat flux
- Condensation coefficient for inter-phase heat transfer correlation from CEA tests on subcooled boiling
- Wall heat transfer coefficients in saturated boiling from Jens-Lottes/Forster-Greif correlations
- Turbulent viscosity and turbulent thermal diffusion modelled for transverse two-phase exchange of heat and mass between subchannels. Mixing coefficients from test data
- Axial thermal conduction and axial turbulent diffusion neglected
- Transverse flow friction factor used in the lateral momentum balance equation

AREVA NP

Imperial College 2014 - p.31

FLICA III-F Code - Validation

- Void fraction measurements in sub-cooled boiling validation of slip ratio correlation and condensation (inter-phase heat transfer) coefficient
- Mass velocity and steam quality measurements in boiling channels and rod bundle geometries – validation of inter-channel mixing model for single and two-phase flow
- Single phase mixing test in rod bundle geometries: validation of mixing coefficients
- Velocity measurements upstream and downstream of spacer grids
- Pressure drop measurements in two-phase flow validation of twophase pressure drop model
- Critical heat flux experiments: validation of CHF correlations
- Benchmarking against previous THINC IV code used for CHF modelling. 3-loop and 4-loop calculations performed for:
 - nominal operating conditions
 - reduced flow
 - overpower operating conditions

- Definition of steady state conditions and transients modelled by system codes in EPR safety analysis
- **♦** Typical System Codes and their validation
- Analysis results for Design Basis Accidents: Illustration of Thermal-hydraulic Phenomena modelled

AREVA NP

Imperial College 2014 - p.33

Loss of coolant accident (LOCA)

Several LOCA transients considered in EPR design basis:

- ◆ DBC-2: Very small LOCA: No requirement for safety injection function
 - Leakage flow is compensated by normal make-up from CVCS
- ♦ DBC-3: Small LOCAs Φ < DN50mm
 - Core uncovery avoided in EPR
 - Safety injection from high head (MHSI) injection system critically important
- ◆ DBC-4: Intermediate/Large LOCA
 - ⇒ Cold Leg Breaks up to double ended break of largest connected line (Safety Injection Line Rupture 225mm ND)
 - ⇒ Hot Leg Break up to double ended break of largest connected line (Pressuriser Surge Line Rupture 335mm ND)
 - Limited core uncovery permitted
 - -Low head, medium head system injection and accumulators injection important

LOCA – Protection Requirements

Automatic Protection

Reactor trip on Low Pressuriser pressure signal

Core cooling

- Safety Injection System signal required to initiate safety injection systems
 - Low pressuriser pressure/ Low Subcooling margin (△Psat)/ Low loop level
- Secondary side cooling is a key requirement for EPR
 - Automatic Partial Cooldown system automatically reduces Steam Generator pressure to 60 bars using MSRT (atmospheric steam dump systems – linear temperature decrease). Necessary in EPR due to reduced head of MHSI
 - Steam Generator feed by EFWS

AREVA NP

Imperial College 2014 - p.35

LOCA – Typical sequence of events

Phase 1: Single-phase depressurisation

- Break opens
- Pressuriser empties
- Primary vessel empties
 - PZR Pressure = MIN2 [135 bar]
 - Reactor Trip
 - Turbine Trip
 - PZR Pressure = MIN3 [115 bar]
 - Automatic Partial Cooldown begins
 - · Safety injection signal generated
 - EFWS Startup (in case of LOOP)
- Natural circulation cooling

Phase 2: Vaporisation and stratification

- ► End of natural circulation
 - SG tubes empty
- Steam condensation in SG tubes
 - Counter-current two phase flow in SG Tubes (riser section)
 - Energy removal by
 SGs dominates in Small LOCAs
 - Energy removal via break dominates in Large LOCAs

AREVA NP

Imperial College 2014 - p.37

LOCA – Typical sequence of events

Phase 3: Manometric phase

- Liquid flow through break
- ► Liquid trapped in the U-Legs
- Manometric balance between water level in Core and U-Leg
- Water level lower in core than downcomer
- Water level remains above top of heated core in EPR design

Phase 3: End of Manometric phase

- U-Leg clears of liquid
- Water level same in core and downcomer
- Steam flow through break
- Core water inventory decreases
- Primary depressurisation rate increases due to transition to steam discharge

AREVA NP

Imperial College 2014 - p.39

LOCA – Typical sequence of events

Phase 4 & 5: Core uncovery and reflood

- Core level initially decreases: break flowrate exceeds SIS injection rate. Possible core uncovery.
- Accumulator injection occurs when primary pressure falls to accumulator tank pressure
 - Core reflooding
 - Cladding temperature recovers to saturation temperature
- Long term stable cooling established using Low Head Injection system in recirculation mode (suction water drawn from In-containment Refuelling Water Storage Tank).
- ▶ In case of cold leg break, steam continues to be vented into containment. Switch to Hot Leg Injection needed to condense steam from core and prevent over-pressurisation of conatinmnet building

► EPR: worst case break size = 80 cm² (DN100, 4", 4500 MW)

AREVA

Imperial College 2014 - p.41

LOCA – Typical sequence of events

► EPR: worst case break size = 80 cm² (DN100, 4", 4500 MW)

► EPR: worst case break size = 80 cm² (DN100, 4", 4500 MW)

LOCA – Typical sequence of events

·	
TIME (s)	EVENT
0.0	Break opening
22	PZR pressure < MIN2 (132 bar)
23	RT signal
23.3	RT (beginning rod drop), TT, RCP trip, loss of MFW flow
104	PZR pressure < MIN3 (112 bar)
105	SI and PC signal
110	Pressuriser emptying
145	Starting MHSI, LHSI pumps
543	Beginning MHSI injection in loop 2 (RCP [RCS] pressure < 85 bar)
≈ 1000	Beginning core heat-up
1033	Secondary side no more needed (RCP [RCS] pressure < SG pressure)
1366	Accumulator injection in loops 1, 2, 3 (RCP [RCS] pressure < 45 bar)
≈ 2000	End core heat-up
2500	End of calculation

Steam Line Break (SLB) - Introduction

Excessive heat removal via the steam generators (SG)

Initiating event

 Limiting case assumed - double-ended steam system line break (2A break) located upstream the main isolation valve (although high integrity argument made)

Limiting event treated as DBC 4: bounds the other overcooling accidents considered for EPR

- excessive increase in steam flow (inadvertent opening of a isolable MSB or MSRT (steam dump) valve)
- main feedwater malfunction (MFWS), leading to a MFWS flow rate increase or a MFWS temperature decrease
- inadvertent opening of a non-isolable MSRT (steam dump) valve or a main SG safety valve

AREVA NP

Imperial College 2014 - p.45

SLB - Key phenomena in accident

AREVA NP

Imperial College 2014 - p.47

SLB – Consequences & limits challenged

- Fuel cladding integrity
 - ♦ Reactivity increase in core due to moderator density increase.
 - Worst case single failure applied is stuck control rod in faulted core quadrant
 - Because of the asymmetry of the accident, high flux distortion might occur, leading to localized DNB risk.
 - Risk of departure from nuclear boiling in core (DNB) & fuel clad damage

SLB – Consequences Departure From Nucleate Boiling

DNBR = Critical heat flux / Actual flux

DNBR < 1 → Heat transfer crisis

Departure from Nucleate Boiling Ratio (DNBR)

Risk of heat transfer crisis

AREVA NP

Imperial College 2014 - p.49

SLB – Consequences Flux distortion phenomenon

One stuck rod assumed in overcooled core quadrant

SLB – Acceptance criteria for accident analysis

- No core damage : no departure from nucleate boiling (departure from nucleate boiling ratio DNBR > 1.12)
- Demonstration of the capability to reach a long term safe shutdown state

AREVA NP

Imperial College 2014 - p.51

SLB - Selection of bounding assumptions (1/2)

- Assumptions selected to maximise RCS over-cooling & reactivity increase
 - assume double ended guillotine (2A) break upstream the main steam isolation valves
 - heat removal via affected SG maximised
 - Maximum initial SG pressure assumed (hot shutdown conditions)
 - Maximum Main Feedwater flow rate & minimum feedwater temperature assumed
 - Reactor coolant pumps assumed to continue running to maximise heat transfer to the SG

SLB – Selection of bounding assumptions (2/2)

Reactivity effects maximised

- One rod stuck in its full withdraw position located in faulted quadrant
- Minimum initial power (10-9), no decay heating
- Minimum shutdown margin (end of life core)
- Maximum moderator coefficient (absolute value)
- Maximum temperature Doppler coefficient (absolute value)
- Minimum safety injection flow rate and minimum boron concentration (assumed to be zero for short term analysis)

AREVA NP

Imperial College 2014 - p.53

Imperial College 2042 - 1.54CS TEMPERATURES

SLB – Typical sequence of events

AREVA

AREVA NP

Imperial College 2014 - p.55

Imperial College 2014 - p.56

SLB – Typical sequence of events

AREVA

SLB – Increase in reactivity (1/2)

► t = pre-criticality

Reactor coolant temperature decreases

> Moderation is more efficient (increase of moderator density)

Leads to the cooldown of the fuel

> Doppler temperature effect increases reactivity

AREVA NP

Imperial College 2014 - p.57

SLB – Increase in reactivity (2/2)

► t = post criticality

Reactor coolant temperature keeps decreasing

Fuel begins to heat up due to the core power generation

>Doppler power effect reduces reactivity

SLB – Summary of Short-term results

SLB – Long-term results

AREVA

▶ t = boron injection in the core (manual EBS actuation)

$$\Delta \mathbf{K} = \Delta \mathbf{K}_{mod} + \Delta \mathbf{K}_{bore} + \Delta \mathbf{K}_{D\ddot{o}ppler} + \Delta \mathbf{K}_{grappes}$$

$$\alpha_{\rho}\Delta \rho \qquad \alpha_{\mathbf{C}b}\Delta \mathbf{C}b \qquad \alpha_{\Delta T}\Delta T + \alpha_{\Delta Q}\Delta Q \qquad \Delta \mathbf{K}_{grappes}$$

$$0^*>0 \qquad \mathbf{<0^*>0} \qquad \mathbf{<0^*<0} \qquad \mathbf{<0^*>0}$$

Steam Generator Tube Rupture (STGR) – Introduction

Defining feature

♦ STGR is a Small break LOCA with bypass of the 3rd barrier (containment)

Initiating event

♦ Leak or complete severance of one or several SG tubes

Categorization of the transient for EPR

DBC-3 : 2A-SGTR
 DBC-4 : 4A-SGTR

Possible causes

Vibrations, stress corrosion cracking, foreign objects in SG

Codes used

CATHARE & S-RELAP (coupled with NLOOP)

AREVA NP

Imperial College 2014 - p.61

Risk of direct release of radioactivity to the atmosphere

SGTR – Introduction

AREVA NP

Examples : SGTR + MSRT stuck open + Primary pressure > 1 bar

⇒ IRWST drains to the atmosphere

3rd BARRIER

⇒ Possible core damage with containment bypass

2nd BARRIER

A AREVA

Imperial College 2014 - p.63

SGTR - Acceptance criteria in accident analysis

- no core damage (fuel cladding integrity to be preserved),
- no opening of SG safety valves (MSSVs) as cannot be isolated,
- leak to be terminated by automatic actions before SG overfilling avoids liquid water discharge to environment

EPR design deeply impacted by SGTR safety goals

- ◆ MHSI pumps: → Delivery head pressure reduced to 85/97 bar (below MSSV set pressure)
- Automatic Partial cooldown of SGs:→ SG pressure 95.5 to 60 bar (T_{sat} ~ 260°C)
- ◆ MSSV → Opening pressure setpoint increased 105 bar abs
 - ⇒ Shutdown margin → sub-critical core at 260°C (N-1 rods)
 - **⇒** SG design pressure → 100 bar abs

SGTR - Selection of the worst case

► EPR transient (Single Tube Rupture)— MAIN RESULTS

Summary of Results – Case 1

Parameter	Case 1	
Leak termination	10070 s	
Approximate contaminated steam release	118.6 tons	
Total SGa VDA [MSRT] steam released	159.2 tons	
Primary coolant liquid transferred to SGa	188.5 tons	
Primary coolant liquid transferred to SGa prior to Turbine Trip	66.7 tons	
Minimum SGa overfill margin	1.8 m	

AREVA NP

Imperial College 2014 - p.69

10 thermalhyraulic phenomena seen in PWR accident modelling

