NTEC Module: Water Reactor Performance and Safety Lecture 13: Severe Accidents II Examples of Severe Accidents

> G. F. Hewitt Imperial college London

Summary

List of LOCA incidents: 3-4

Water cooled reactors 3
Gas & liquid metal cooled reactors 4

The Three-Mile Island Accident 5-21
The Chernobyl accident 22-29
The Fukushima accident 30-37
Solutions to severe accident problem 38
Conclusions 39

2

LOCA incidents: Water cooled reactors

Light water cooled reactors

SL-I: Experimental reactor. Control rod withdrawn. Explosion. (Jan 3, 1961)

Millstone 1: BWR. Seawater ingress into core. (Sep 1,1972) Browns Ferry Fire: BWR. Fire in cabling duct disabled safety systems. (March 22, 1975)

* Three Mile Island: Small break type LOCA. PWR. Serious core failure. (March 28, 1979)

Ginna incident: PWR. Steam generator tube. (Jan 25, 1982)

* Chernobyl: RBMK. Power excursion. (April 26, 1986)

Heavy water reactors

NRX: CANDU. Pressure tube failure. (Dec 12, 1952) Lucens: ${\rm CO_2}$ cooled, ${\rm D_2O}$ moderated. Fuel melt. (Jan 21, 1969)

* More detail later

LOCA incidents: Gas and liquid metal cooled reactors

Gas cooled reactors

Windscale fire: Air cooled, graphite moderated. "Wigner" release. (Oct 7, 1957)

St. Laurent (Magnox): Flow restrictor loaded accidently into channel. Fuel melted. (Oct 17, 1969)

Hinkley Point B: AGR. Problems in fuel loading. Damage to graphite sleeve. (Nov 19, 1978)

Liquid metal cooled fast reactors

EBR-1 meltdown: Fuel element bowing and melting. (Nov 29, 1955)

Enrico Fermi 1: Broken zircalloy plate, blocked channel. Fuel melting. (Oct 5, 1966)

Three-Mile island accident I: The initial cause

4 am on March 28th 1979 an $\underline{\text{UPSET}}$ occurred as follows:

- Condensate pump moving water from condensers stopped (designed-for <u>UPSET</u>)
- Main steam generator feedwater pumps tripped.
- Turbine tripped

Incident should have proceeded benignly to safety. Why not?

5

Three-Mile island accident III: Events in Phase 1

Phase 1: 0-6 minutes (Turbine trip)

- Turbine tripped.
- Steam generators removing less heat.
- Water in circuit heats, expands and pressurises.
 Power-operated relief valve (PORV) opens
- · Reactor trips after 8 seconds.
- At 13s, the pressure falls to closure point of PORV. THE VALVE STUCK OPEN.
- Liquid level in pressuriser continued to rise.
 One HPIS pump SWITCHED OFF.

Three-Mile island accident V: Events in Phase 2

Phase 2: 6-20 minutes (Loss of Coolant)

- 8 min: steam generators found to be dry. Valves inadvertently shut off before incident. Valves from auxiliary feed pumps opened. Steam generators refilled. NOT AS IMPORTANT as first thought.
- 10 min 24 s: second HPIS pump tripped. More water passing out of reactor than pumped in by HPIS. Core uncovered.
- 18 min: activity detected in ventilation. Indicated primary water loss not understood.

9

Three-Mile island accident VII: Events in Phase 3

Phase 3: 20min-2h. Continued depressurisation

- 1h 14min: Loop B pumps tripped due to vibration
- 1h 40min: Loop A pumps tripped due to vibration
- Core begins to be uncovered and heat up as decay heat evaporates remaining inventory

PORV is still stack open!

Three-Mile island accident IX: Events in Phase 4

Phase 4: 2-6 hrs. Heat up transient

- 2hrs 18min: block valve on PORV closed (at last!)
- · 2hrs 55min: site emergency declared
- 3hrs 30min: general emergency declared
- 4hrs 30min 7hrs: attempts to collapse steam voids to allow coolant loops to be operated. Unsuccessful.

13

Three-Mile island accident X: Temperature history: TRAC calculation and 1600 Zirconium steam reacti TRAC calculation Pressurizer Primary ctor scrams Feedwater to steam Por ⊉ ⁸⁰⁰ Equilibrium state Steam formation damage 60 120 Elapsed time (min) 14

Three-Mile island accident XI: Phase 5: Extended depressurisation

Three-Mile island accident XII: Events in Phase 5

Phase 5: 6-11hr. Extended depressurisation

- 7h 38min. PORV block valve opened with objective of depressurisation of circuit to allow ECCS.
- 8h 41min. Pressure 41 bar, therefore accumulations activated. Only small injection.
- 9h 50min. Pressure pulse recorded in reactor building. Hydrogen ignition (H₂ from zirconium/ water reaction). Sprays on.
- Minimum pressure achieved 28 bar. Not enough to activate LPIS.
- PORV block valve closed at 11h 8min.

Three-Mile island accident XIV: Events in Phase 6

Phase 6: 13-16h. Repressurisation and establishment of stable cooling

- •13h 30min. HPIS started to repressurise circuit and fill with water.
- •15h 51min. Loop A coolant pumps restarted and flow through steam generators reestablished giving stable cooling.

[**Phase 7: 1-8 days**: Removal of "hydrogen bubble" from vessel by dissolution. April 28th (1 month later), pumps switched off – natural circulation cooling]

Three-Mile island accident XVII: Post-mortem

- Core uncovered partly or wholly during various phases of accident
- Temperatures enough to cause Zirconium-steam reaction (→ H₂)
- Fuel meltdown did occur. No steam explosion.
- · Krypton and xenon main releases.
- Consequences <1 additional cancer death (out of 200000) in 30 years.
- Engineered safety systems should easily have prevented accident BUT WERE SPECIFICALLY PREVENTED BY OPERATORS.

The serious accident at Chernobyl I: The RBMK reactor

22

The serious accident at Chernobyl II: The planned experiment

- Objective: Could the turbine, disconnected from steam supply and isolated from grid, continue to supply power (e.g. for circulating pumps) for station due to mechanical inertia for 40-50 seconds.
- Problems: Reactor has positive void coefficient. Reactivity has to be controlled by control rods.
- Experiment initiated at 1am on April 26th 1986.

23

The serious accident at Chernobyl III: Before the experiment

- Experiment setup April 25-26th.
- · Many violation of operating rules e.g.
 - ECCS system disengaged
 - Coolant flow higher than allowed
 - Control rods not in safe operating condition:
 Control rods "dipping" into core less than ½ "safe" minimum.
- Control rod situation particularly dangerous since rods take 10 seconds to reinsert if in near fully withdrawn position.

The serious accident at Chernobyl IV: The experiment

- At 01:23:04 on April 26th, experiment initiated by shutting down steam line to a turbine generator.
 Feed water pumps, turbine AND FOUR MAIN CICULATING PUMPS BEGAN TO RUN DOWN.
- Steam generation occurred giving higher voids; therefore, higher power.
- At 01:23:31 power increase noted.
- At 01:23:40 operator attempted manual "scram" of reactor. Not possible.
- · Prompt critical power excursion. Energy into fuel.
- Steam explosion then hydrogen/CO explosion. 25

The serious accident at Chernobyl VI: Actions taken

- Graphite fire initial attempt to cool using auxiliary feed water pumps. Not successful.
- · Solid material dropped on core
 - Boron compounds to stop recriticality
 - Dolomite \rightarrow CO $_2$ to quench fire
 - Lead to absorb heat and provide shielding
- April 27th 10th May: 5000 tonnes of material dropped.
- Entombment: 1m thick concrete shell built around turbine and reactor blocks

The serious accident at Chernobyl VII:
Spread of plume

Fukushima IX: Fate of Reactors

Earthquake caused successful shutdown. Loss of offsite power. Diesel generators activated. Diesel generators swamped by Tsunami Batteries ran down. No power therefore no cooling!

Consequences: Reactor 4: Defuelled at time of accident. OK Reactors 5 and 6 in cold shutdown mode. OK Reactors 1, 2 and 3. Experienced full meltdown

2400 Curies radioactivity released (c.f. 7000 Curies at Chernobyl)

37

Solutions to severe accident problem

- Keep PWR concept but improve design Increase safety features whilst keeping conventional design (EPR) Modify design to reduce reliance on active safety systems (AP1000)
- Design so that fission product heat is removed by natural convection.
 Fused salt High temperature Reactor (FHR)
- Avoid large fission product inventory in core. Fission products processed out of fuelled continuously - low fission product inventory. Fluid fuelled reactors. (FFR). Molten salt reactor (MSR)

38

Conclusions

- Many minor and two major incidents have occurred.
- Such incidents will continue to occur periodically.
 They are typical of incidents in all major industrial projects.
- We must learn the absolute maximum possible from such incident and develop our engineered safety systems.
- Nuclear power is essential for the future and accidents must be seen in proper perspective.