

Use of Microwaves for the Detection of Corrosion Under Insulation: The Effect of Bends

R E Jones ¹, F Simonetti ², M J S Lowe ¹ and I P Bradley ³

¹ UK Research Centre in NDE, Imperial College London
² University of Cincinnati, School of Aerospace Systems
³ BP Exploration & Production Company, Sunbury on Thames

Outline

- Motivation
- Principle of Detection
- Waveguide Excitation
- Water Detection
- Effect of Insulation
- Bends

Corrosion Under Insulation (CUI)

Situation

Imperial College

London

Some pipelines are insulated and this insulation is protected by cladding.

Problem

Damaged cladding allows water ingress

Insulation traps water next to pipe

Accelerated corrosion initiates

Inspection requires insulation removal

The Coaxial Waveguide Idea

An insulated pipeline will act as a coaxial waveguide, supporting electromagnetic wave propagation.

Interested in microwave frequencies because:

- Water has a high dielectric constant at these frequencies
- Insulation is transparent at these frequencies

Steel pipe BNC cable Metallic cladding Microwaves propagate in the layer of insulation, Insulation guided by the two metallic surfaces

R E Jones et al.

Imperial College

London

- Antennas used to excite microwave propagation
- A water patch acts as an impedance discontinuity
- Microwave signal undergoes a partial reflection
- Pulse echo reflections used to locate water

Imperial College London

Dispersion Curves

Imperial College Antenna Array for Pure TEM Excitation

- Use two antennas per wavelength to filter out the non-axisymmetric modes.
- Highest mode from the TE_{p1} family that can propagate in the 6" pipe waveguide is TE_{41} therefore need 8 antennas.

Experimental Setup for a 6" Pipe

Imperial College

London

RONDE

Imperial College London

Experimental Setup

Imperial College RC DE **Time Domain Reflectometry Signal** London 0.6 0.5 Reflection from Reflection Amplitude (A. U.) antenna array from end of waveguide 0.3 SNR = 40 dB0.2 0.1 0 0.5 1.5 2 2.5 3.5 0 3 Distance (m)

R E Jones et al.

Optimal Array Design

Water Detection

Monitor the reflection from a water defect by pouring measured volumes into a tank within the waveguide.

R E Jones et al.

Imperial College

Iondon

Antenna

array

Water Detection

Water Detection

Sensitivity to Water Volumes

R E Jones et al.

Imperial College

RONDE

- Effect of Insulation
- Bends
- Pipe supports
- Shape of water volume
- Inspection range

R E Jones et al.

Simulations of Bends

V/m 185 173 161 150 138 127 115 104 92.3 80.7 69.2 57.7 46.1 34.6 23.1

11.5

Simulation performed in CST Microwave Studio.

Bend angle of 90° and bend radius of four times the pipe diameter (4D bend).

Туре	E-Field
Monitor	e-field (t=010(0.2)) [1(1)]
Maximum-3D	184.531 V/m at 0 / -189 / 1093
Sample	1 / 51
Time	0

168 156 144 132 120 108 95.9 83.9 72.0 60.0 48.0 36.0 24.0 12.0

V/m 192 180

Simulation performed in CST Microwave Studio.

Туре	E-Field
Monitor	e-field (t=010(0.2)) [1(1)]
Maximum-3D	191.882 U/m at 16 / -991.972 / 1671.78
Sample	1 / 51
Time	0

Bend angle of 45° and bend radius of four times the pipe diameter (4D bend).

* M Jouguet, "Effects of the curvature on the propagation of electromagnetic waves in guides of circular cross-section", Cables et Transmission, 1(2), 133-153, (1947).

Imperial College London

Effect of Bend Radius

Imperial College London

Experimental Setup

Experimental Signals

Pulse-echo signal with 90° bend

R E Jones et al.

Imperial College London

Experimental Validation

- Pure mode excitation with a 40dB SNR
- Highly sensitive to water volumes down to 5% cross-sectional area
- Effect of insulation is minimal
- Possible to inspect beyond a typical industrial bend

This project is in conjunction with:

Imperial College London

Research Centre in Non-Destructive Evaluation (RCNDE)

The UK Engineering Doctorate Centre in Non-Destructive Evaluation

Supported by:

Engineering and Physical Sciences Research Council (EPSRC)

Engineering and Physical Sciences Research Council

BP

Imperial College Dispersion Curves for Modes in Bends

