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Abstract 

Most of the techniques to analyse the vibration characteristics of piezoelectric discs are 

one dimensional, which assumes that the piezoelectric disc vibrates in the thickness 

direction only (piston-like motion) and is applicable to discs with either very large 

diameter to thickness ratio (D/T ratio) or very small D/T ratio. However, it cannot predict 

other modes of vibration of the piezoelectric disc, which may affect the transducer 

behaviour in the frequency range of interest, especially for those discs with finite D/T 

ratios. 

Finite element methods and modal analysis techniques have been used to predict the 

vibration characteristics of piezoelectric discs. The modal constant has been employed to 

evaluate the strength of excitation of the modes which can be excited by applying voltages 

across the disc. 

The finite element study of piezoelectric discs shows that many modes including radial, 

edge, thickness shear, thickness extensional, and high frequency radial modes are 

predicted in the frequency range of interest. However, no mode has been predicted having 

piston-like motion assumed by the one dimensional model. The most strongly excited 

modes of the discs are the thickness extensional modes, which are in the frequency range 

of the first through thickness mode predicted by the one dimensional model, and have 

non-zero mean value of the axial displacement over the surface of the disc, and the 

number of thickness extensional modes is reduced with increasing the D/T ratio. It has 

been shown that the thickness extensional modes have much larger modal constants than 

the other modes especially in discs with D/T ratio larger than 5. When the D/T ratio is 

very large, one single thickness extensional mode which has a very large modal constant 

occurs and dominates the response, this is analogous to the one dimensional assumption. 

The finite element model has been validated by the excellent agreement between the 

predicted and measured electrical impedance responses and by the qualitative agreement 

between the predicted and measured mode shapes. 

The predicted transient mechanical displacement over the surface of the piezoelectric disc 

when it is excited by voltage pulses across the two electrodes shows that the disc may 

display piston-like motion over the first few periods of the through thickness mode due to 

high modal density and modal coupling effects. The surface motion then becomes more 

complicated since other lower frequency modes come into effect. Finally the surface 

motion tends to gradually approach that of the first radial mode, which is the last mode to 

be damped out. 
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The application of the three dimensional model to analyse piezoelectric discs with an 

elastic addition and partially electroded discs has demonstrated the potential of the 

techniques for use in the design of transducers of more complicated structure, and 

transducers with non-uniformly distributed electrodes. However, further work is required 

if more practical aspects of transducers, such as backing and interaction with mounting 

structures and the surrounding fluid are considered. 
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CHAPTER 1 

INTRODUCTION 

1.1 Piezoelectricity and piezoelectric transducers 

Piezoelectricity is a phenomenon which allows electric polarisation to be produced by 

mechanical strains in certain materials. This is defined as the direct piezoelectric effect. 

The indirect piezoelectric effect is the inverse process, in which mechanical strain in the 

material may be induced by electrical polarisation. The variables are in linear relationship 

to one another in both direct and indirect processes. 

Piezoelectricity was first found in crystals by the Pierre and Curie brothers in 1880 

(Mason, 1948). The piezoelectric effect is a property of the crystal structure, and a 

necessary condition for the existence of piezoelectricity is a certain type of asymmetry in 

the material. Piezoelectric materials are therefore inherently anisotropic. Three groups of 

piezoelectric materials may be classified as indicated below. 

The first group of materials are crystals, which are usually inherently piezoelectric to 

some extent and whose properties are determined by their crystallographic structure. 

Crystals are characterised by having one or more polar axes. The mechanical strain due to 

any pressure on the crystal can shift the electrically charged elements of the crystal lattice, 

which results in electrical charges appearing on the surface of the material due to the 

asymmetry. When crystals are placed in an electric field, the electrically charged elements 

of the crystal are distorted due to the asymmetry, which results in deformation of the 

crystals. Crystals which exhibit this effect strongly include sodium potassium tartrate 

(Rochelle salt), ammonium dihydrogen phosphate (ADP), and quartz. 

The second group of piezoelectric materials are piezoelectric ceramics, such as barium 

titanate (BaTiO^), lead zirconate titanate (Pb(Zr.Ti)03, trademark PZT) and lead 

metaniobate (PbNb206). Ceramics are initially isotropic materials and are subsequently 

polarised above the Curie temperature by applying strong electric fields to induce 

anisotropy or asymmetry in certain directions. After the ceramic is cooled down within the 

electric fifeld, the anisotropic structure and the polarisation responsible for their 

piezoelectric properties remain even after the electric field is removed. Usually ceramics 

exhibit strong piezoelectric effects, have a high dielectric constant and their properties are 

essentially independent of humidity and temperature (Allocca and Stuart, 1983). 
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Chapter 1 Introduction 19 

Polymers are another group of materials which exhibit piezoelectric effects. However, in 

most polymers the piezoelectric effect is very weak though recently 

polyvinylidenefluoride (PVDF) has demonstrated promising potential; it has comparable 

piezoelectric properties to the conventional materials and and has the advantage of a 

relatively low acoustic impedance. 

Piezoelectric materials are widely used in hydro- and electro-acoustics, electro-optics and 

communications. The piezoelectric transducers, which are the electromechanical devices 

used in transformation of electrical energy to mechanical energy and vice versa, have 

found wide application particularly in underwater sonar, hydrophones, non-destructive 

testing (NDT), medical diagnosis, high power cleaning, mechanical filters and resonators. 

Among the piezoelectric transducers used in NDT, particularly in ultrasonic testing, the 

piezoelectric elements may be made from all the type of material mentioned above, 

including traditional crystals (quartz) and novel plastics, such as PVDF, but the majority 

of transducers are made of piezoelectric ceramics, among which PZT is the type of 

material most commonly used. The geometry of the transducers is varied according to the 

application, and plates, bars, rings, and discs are sometimes used. However, a circular 

disc is the most commonly used geometry (Bond et al., 1982), and this thesis investigates 

the properties of piezoelectric ceramic discs. 

1.2 Vibration modes of piezoelectric discs 

1.2.1 The thickness mode vibration of the piezoelectric disc 

The vibration characteristics of piezoelectric discs can be very complicated, and they 

depend on not only the operational mode in which the piezoelectric transducers work but 

also the deformation pattern when the disc vibrates, i.e, the vibration modes of the 

piezoelectric disc. 

The basic transducer structure, in which the piezoelectric disc is of most interest in this 

thesis, is illustrated in Fig 1.1. The piezoelectric disc, which is usually sandwiched 

between a backing part and face layer (sometimes called matching layer), serves as the 

active element The acoustic impedance of the backing and face are chosen to control the 

signal produced. This entire assembly is then housed in a metal case as shown in Fig 1.1. 

Two electrodes on the top and bottom surfaces of the disc are connected to signal 

generators or signal receivers. 

Piezoelectric transducers may be used to operate in two modes as shown in Fig 1.2; one 

is transmission mode in which an ultrasonic wave is generated by an applied electrical 
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voltage or current and the other is receiver mode in which an electrical signal is generated 

by an incoming mechanical wave. Frequently, in pulse echo testing systems, the same 

transducer is used to perform both functions. 

When an elastic diset which may also be piezoelectric, has a very large D/T ratio, it is 

usually assumed to vibrate only in the thickness direction if subjected to an 

axisymmetrical loading. Therefore the lowest thickness mode frequency of mechanical 

vibration is such that the disc is half a wavelength thick, so 

which gives 

fi = ^ (1.1) 

where % is the wavelength of the resonant mode, T is the thickness of a piezoelectric disc, 

c is the longitudinal wave velocity in the piezoelectric material, and f j is the fundamental 

thickness frequency. 

The frequency defined by (1.1) is usually termed the mechanical resonant frequency of 

the piezoelectric disc since it is a property of elasticity and geometry only. Other vibration 

modes may exist, for example, radial modes (sometimes called radial extensional modes, 

or contour modes), which are negligible in thin discs with large D/T ratios, and high order 

through thickness modes, they are multiples of the first thickness mode determined by 

(Silk, 1984), 

fn = n ^ n = 1,2,3, . . . , integer (1.2) 

It can be seen that the family of the through thickness modes is equally spaced in the 

frequency domain. The mode shapes of the first four thickness modes are shown 

schematically in Fig 1.3(a). It is evident that when the disc vibrates in odd integer modes, 

the upper and lower faces move in opposite directions which results in large strain 

deformation in the through thickness direction, and the whole body vibrates in a so called 

"stretching" or "piston-like" mode to produce a compressional ultrasonic wave if it is 

coupled to other loading media. Fig 1.3(b) shows the piston-like mode shape of the first 

through thickness mode. The modes which are even multiples of the first through 

thickness mode, n = 2, 4,..., in equation (1.2), have in phase deformation for upper and 

lower faces of a disc, and the distance between the faces of the disc remains constant. 
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For discs with piezoelectricity, there is another resonant frequency of the through 

thickness mode due to the piezoelectric coupling effect, which is often called the electrical 

resonant frequency as opposed to the mechanical frequency. The value of this resonant 

frequency is smaller than the one given in (1.1), and the corresponding frequencies of the 

higher order thickness modes are not multiples of the fundamental one as is the case given 

in (1.2). Tiersten (1969) showed that these frequencies of the thickness modes are given 

by the roots of 

^ T = k 2 t a n ( ^ T ) (1.3) 

where kj is the piezoelectric thickness coupling factor, which will be discussed later. 

Equation (1.3) may be solved by plotting the two curves (Onoe et ai, 1963), 

y = ^ T and y = k ^ tan ( ^ T ) 

The intersections of these two curves give the solutions for the electrical thickness mode 

frequencies. It can be shown that the piezoelectric effects are different in different modes, 

the higher order modes being less affected than the lower ones, and when k̂  is small (less 

than 0.1), the first mode approaches f j given by (1.1). The frequency value defined by 

the first root of the equation (1.3) is often specified by manufacturer in terms of the 

thickness frequency constant, N3 j, which is the product of this resonant frequency and 

the thickness of the piezoelectric disc. 

1.2.2 Vibration modes other than the thickness modes 

There have been many experimental reports which show that a variety of vibration modes 

exist in piezoelectric discs (Shaw, 1956; Ikegami et ai, 1974 and Ueha et ai, 1983). The 

experimental studies were usually carried out by measuring the frequency spectrum, 

which is defined as the relationship between the product of resonant frequencies and the 

thickness of the piezoelectric disc (fT) and the diameter to thickness ratio (D/T). 

Ikegami et al. (1974) made extensive measurements of the frequency spectrum with 

PbTiOg piezoelectric discs in the D/T range 5 to 28 as shown in Fig 1.4. It was shown 

that the vibration behaviour of a piezoelectric disc is very complicated. Five groups of 

modes were classified by careful inspection of the measured frequency spectrum. The 

first group is the thickness extensional mode or TE-1 mode, which is the main resonance 

of the response; the second group are the T modes, which exist below the TE-1 mode and 
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are weakly excited, and converge monotonically to the TE-1 mode as the D/T ratio is 

increased; the third group is the edge mode or E mode, which is almost independent of the 

D / r ratio; the fourth group is the radial modes, R-modes, which are strongly dependent 

upon the D/T ratio and exist across the whole frequency spectrum; the final group are the 

high frequency radial modes, A-modes, which are only observed near to and above the 

TE-1 mode, and have stronger D/T dependence than the T-modes. 

Similar experimental results were found by other researchers. Shaw (1956) measured the 

resonant frequencies and mode shapes of vibration of piezoelectric discs of BaTiOg in the 

DAT range 1 to 6.6, as shown in Fig 1.5. The so-called "edge mode" in which large axial 

displacement occurred at the edge of the disc was found, together with the radial modes 

and thickness extensional modes. It was also found that more than two modes can be 

equally strongly excited by a voltage across the disc for discs in the D/T range from 3 to 

6, and neither of them has a uniform displacement over the surface of the disc. 

Ueha et al. (1983) measured the vertical velocity distributions on the surface of the disc 

and the vibration modes as a function of the diameter to thickness ratio (D/T). The 

frequency spectrum was measured with the piezoelectric material Pb(Zr.Ti)03 in the D/T 

range from 2 to 12 as shown in Fig 1.6. Four types of modes were classified by the 

measured vibration patterns of flat discs, which are the thickness extensional mode (TE-1 

mode), the edge mode (E-mode), the radial modes (R-modes) and the high frequency 

radial modes (A-modes). 

It is evident from the above experimental results that the vibration characteristics of 

piezoelectric discs are very complicated. In general, five mode types have been found in 

the frequency range of interest, so it is therefore necessary to analyse the piezoelectric disc 

by using three dimensional methods. 

The vibration characteristics of piezoelectric structures are completely determined fixjm the 

three dimensional equations of linear elasticity, the Maxwell equations, and the 

piezoelectric constitutive equations. Solutions may be obtained from these general 

equations with appropriate boundary conditions. However, even for the simplest 

geometries and isotropic materials the solutions are very complicated. In general, it is 

impossible to solve these equations in a closed form except for the infinite plate. Two 

alternatives are usually employed. One is to use a numerical solution, and the other is to 

derive approximate equations which model the disc's behaviour under certain conditions. 

Techniques available to analyse the piezoelectric transducers are reviewed in following 

sections both in one dimensional and three dimensional. 
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1.3 One dimensional analyses of piezoelectric transducers 

The one dimensional model has been used for almost 40 years in the analysis and design 

of piezoelectric transducers, and is still the most commonly used technique. Since the 

lateral dimension of the piezoelectric disc is usually much larger than the thickness, the 

lateral effects can often be ignored, and the motion of the disc may be considered to be 

one dimensional provided that the ratio of the diameter of the disc to its thickness is large 

enough. A number of approximate methods have been employed to analyse the response 

of transducers using this type of model. 

1.3.1 Single acoustic transn^sion method 

One simple method which was described in detail by Krautkramer (1983) is to ignore the 

piezoelectric effects in the transducer. The distribution of ultrasonic wave amplitudes may 

be used to construct the pulse shape produced by the transducer, which could be 

represented by two stress waves generated at each face of the transducer as shown in Fig 

1.7. The remaining problem is to consider the propagation of ultrasonic waves within the 

layered devices and the wave reflection and transmission at the boundaries of the system, 

such as boundaries between the piezoelectric element and backing, and between 

piezoelectric element and the loading medium. This method may give reasonable pulse 

shapes for materials of weak piezoelectric effect, and when the backing is approximately 

matched, i.e. the acoustic impedance of the piezoelectric element is equal to that of 

backing, but it cannot be widely used. Nevertheless, it has been used to help the 

understanding of the transducer behaviour and in simple ultrasonic transducer design 

(Silk, 1983; Smith and Awojobi, 1979; Low and Jones, 1984), and construct roughly the 

response shape of a transducer-specimen-transducer system (WilUams and Doll, 1982). 

1.3.2 Equivalent circuits 

From the end of 1940s the analogue approach (Barker, 1964) of representing mechanical 

properties by their electrical analogues has been widely used to investigate transducer 

behaviour. In this method an electric circuit analogue of a mechanical system may be used 

to analyse and predict the properties of the mechanical system. For a piezoelectric 

transducer this method is particularly useful since the transducer has both mechanical and 

electrical properties. 
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1. Nbson's model 

Mason (1948) first introduced the equivalent electrical circuit to model the properties of 

the transducer by using the above technique. The transducer was modelled as a three port 

electrical circuit, one pair representing the electrical properties and the other two 

representing the boundary conditions on the two faces of the piezoelectric disc. The 

acoustic wave propagation within the transducer was modelled as a transmission line, 

and an electromechanical transformer (1:N) was used to connect the mechanical and 

electrical properties, see Fig 1.8. However, a negative capacitance had to appear in the 

circuit in order to satisfy the constitutive equations, which does not have an obvious 

physical interpretation. 

2. KLM model 

The KLM model developed by Krimholtz et al. (1970) represented the mechanical 

properties of the piezoelectric element as a lossless acoustic transmission line and the 

electrical properties as a lumped network as shown in Fig 1.9. Each half of the thickness 

of the piezoelectric disc is represented as a transmission line, and they are coupled 

together at their middle point instead of being distributed in the network as in Mason's 

model. The mechanical transmission lines are then coupled to the electrical network via an 

electromechanical transformer (different ratio from the one in the Mason's model). The 

KLM model also provides an easy way to deal with any extra layers such as backing and 

facing attached to the element by adding corresponding acoustic transmission Unes. 

Within the limitations of one dimensional modelling, the equivalent circuit approach (via 

either Mason's model or the KLM model) can provide an accurate prediction of transducer 

performance. However, the negative capacitance in the circuit shown in Fig 1.8, which 

has a significant effect for materials with high piezoelectric coupling, has no obvious 

physical significance. 

The negative capacitance in the equivalent circuit represents the intercoupling effect or 

secondary piezoelectric action between the mechanical and electrical properties. For 

example, when an ultrasonic wave strikes a piezoelectric plate on its front face, an electric 

field will be built up and a resulting voltage across the element will be produced due to the 

direct piezoelectricity. However, this electric field generates another ultrasonic wave 

(Jacobsen, 1960) which propagates within the plate; an extra electric field will then be 

built up, so the resulting voltage form will be modified by this extra electric field. This 

process may be regarded as the intercoupling effect or secondary piezoelectric action 

between the mechanical and electrical properties. This process continues and must be 
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taken into account if the voltage response is to be predicted accurately. Similar phenomena 

occur when a mechanical response is produced by electrical excitation. 

The equivalent circuit model has found wide application by a number of workers. 

Mason's model has been used to analyse the effect of backing and matching on the 

performance of piezoelectric ceramic transducers (Kossoff, 1966). For the mechanical 

response of transducers, the equivalent circuit of the transducer at resonance was used by 

Redwood (1963, 1964) to model the behaviour of transducer, and an Impulse Diagram 

was used to form the shape of response for arbitrary boundary conditions shown in Fig 

1.10. For an applied voltage V, the waves are generated at the boundaries with the 

amplitudes shown in Fig 1.10(a), these waves then propagate inside the piezoelectric 

element, and reflection and transmission occur when the waves reach the boundaries, and 

are decided by the acoustic impedance of the materials, see Fig 1.10(b) and (c). This 

method is essentially the same as the simple wave propagation method shown in Fig 1.7, 

and ignores the negative capacitance, so it is only valid for a material with very weak a 

piezoelectric coupling effect 

Since the KLM transmission line model is very flexible, it has been used to predict the 

effect of some design parameters on the performance of ultrasonic transducers, such as 

the quarter-wave matching layer (Desilets, 1978), backing, bond-line thickness, and the 

thickness of the matching layer (Silk, 1983), cable length and conductive layer thickness 

(Wustenberg et al., 1989), and allowable tolerances in design parameters (Kwun et al, 

1988X 

The electrical equivalent circuit normally represents the frequency behaviour of the 

piezoelectric element and therefore yields solutions in terms of angular frequency co. To 

get the time domain response, either inverse Fourier Transformation has to be used, or an 

analytical method based on the constitutive equation of piezoelectricity must be employed. 

However the former may fail due to the existence of infinite values (poles) in some of the 

equivalent circuit elements at resonant frequencies (Challis, 1983), and the latter may be 

restricted due to the complicated Laplace transform required (Zhang et al., 1983). 

1.3.3 Analytic^ methods 

The Laplace transform has been used to study the transient response of piezoelectric 

transducers when the transducer is excited by mechanical and electrical pulses. Redwood 

(1961) formulated an analytical solution for the transient response of transducers for 

certain basic exciting function by a Laplace transform treatment. This method includes all 

the effects which were incorporated in Mason's equivalent circuit shown in Fig 1.8, 
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including those represented by the negative capacitance in this circuit. It was found that in 

an open circuit receiver, the voltage response of a transducer for a step function of force is 

a decaying repeated ramp function while when a step voltage is applied to the transducer it 

can produce a repeated step force into a load. 

A free piezoelectric plate was investigated by Stuetzer (1967, 1968) and Filipczynski 

(1975) to study the effects of the piezoelectric intercoupling on the response shape. It was 

shown that for a step voltage excitation the stress response of the plate varies 

exponentially with time during each period x, which is the time for an ultrasonic wave to 

travel through the plate, and there is a phase change when t = nx, n integer, see Fig 1.11. 

After a few periods the response approximates to a decaying sine wave with periodic 

sharp pulses. 

Zhang et al. (1983) studied the transient response of a piezoelectric transducer in 

transmitting mode by the method of Laplace transforms, and the negative capacitance in 

the Mason equivalent circuit was interpreted as the acousto-electrical regenerative 

vibration. 

1.3.4 Hayward's systems approach 

Hayward et al., (1981) recently developed a systems approach model which used a 

feedback loop to describe the piezoelectric action on transducer behaviour and more 

clearly interpreted the physical phenomena involved. The piezoelectric coupling effect (or 

negative capacitance) was interpreted as a feedback device in the loop. Originally the 

systems model was one dimensional, but Hossack and Hayward (1987) have recently 

extended it to solve the vibration problem of a piezoelectric bar element used in two 

dimensional array transducers by considering multiple feedback loops representing 

vibrations in different directions. However, the technique is much more difficult to apply 

to piezoelectric discs since they have many more modes than a bar, and the main 

resonances are often high order modes. 

1.3.5 Other methods 

In addition to the conventional equivalent methods mentioned some other techniques have 

also been proposed. The matrix formulation of transducers used by Sitting (1969) is 

particularly useful to analyse composite, multi-layered transducers. A transduction matrix 

relating the input and output of each individual part of the transducer can be formed from 

the fundamental equations of the material. The overall transduction matrix can then be 

obtained by multiplying the individual matrices. The final output is determined by the 
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overall matrix and the given input. The impulse response method (Stepanishen, 1971), 

which assume the piston motion of the transducer, has also been widely used in wave 

propagation and pressure field problem (Hayman and Weight, 1978). 

Challis (1983) developed a Z-transform technique, which can be applied in the same 

manner as a digital filter to a variety of exciting functions. Martin et al. (1975) presented a 

Thevenin equivalent electrical circuit to simulate the thickness mode piezoelectric 

transducer under the condition that the transducer operates near resonance. Banah (1983) 

developed a reentrant transmission line model by Feynman diagrams, which provided a 

significant physical insight into transducer operation. 

1.3.6 Discussion 

All the one dimensional methods mentioned above have made the following fundamental 

assumptions: 

(i) Through thickness vibration: the transducer only vibrates in its thickness direction; the 

motions of other directions are either ignored or restricted. 

(ii) Planar wave propagation in the thickness direction of the transducer and unidirectional 

strain; the stress in the plane perpendicular to the thickness direction is uniform. 

To satisfy the above assumptions, the piezoelectric elements considered must be either 

very thin plate or long rods (bars) (D/T in the region of 20:1 or greater for piezoelectric 

discs (Hayward, 1981)). Otherwise, radial modes are easily observed (Hayward, 1981) 

and can even be strongly excited and used as the operational modes in low frequency 

ultrasonic NDT (Guyott et al., 1986). 

The one dimensional analysis is also restricted to piezoelectric transducers with regular 

geometries and fully electroded surfaces, which may not be the case in complicated 

transducers. 

1.4 Characteristic frequencies and electrical impedance of the piezoelectric transducer 

1.4.1 Hie characteristic frequencies 

The resonant frequencies given by (1.2) and (1.3) are usually defined as one pair of the 

characteristic frequencies of piezoelectric transducers working in the thickness modes 

(Hilke, 1973). The first frequency of the pair is known as the parallel frequency, fp, 
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given by (1.2), and the second frequency is known as the series frequency, fg, which is 

given by the roots of equation (1.3). 

The interpretation of the 'series' and 'parallel' descriptions of these two frequencies can 

be seen from the approximate equivalent circuits of an unloaded piezoelectric disc as 

shown in Fig 1.12(a) (Mason, 1948; Berlincourt et al., 1964), in which Cq is the static 

capacitance of the transducer, accounts for the mechanical loss, Cj and are the 

electrical equivalent components of the mass and stiffness of the disc, which can be 

derived from the first order power series approximation for a thin piezoelectric disc 

(Berlincourt er a/., 1964). 

It can be shown that the branch circuit in which Lj, Rj and Cj are in series shown in Fig 

1.12(a) has a resonant frequency close to the one given by (1.3), and the shunt circuit has 

a resonant frequency given by (1.2). For a one dimensional bar or rod vibrating in the 

longitudinal mode, a similar equivalent circuit can be obtained excepted that a different 

piezoelectric coupling factor, kgg, is used instead of k .̂ 

If the loss is not considered, the electrical impedance of the equivalent circuit shown in 

Fig 1.12(a) can be found as, 

1 
coLi 

Z i — (1.4) 
coCo[coLi - — ( ^ + 0")] 

CO 0 

This is illustrated schematically as a function of frequency in Fig 1.12(b). Z = 0 at the 

series frequency given by f^ = iWOLjCi), and the transducer is then in short circuit, while 

Z = CO at the parallel frequency fp given by fp = V[(l+Ci/Co)/(LiCi)], and the transducer 

is then open circuit. 

There are another two pairs of characteristic frequencies for a piezoelectric transducer; 

fmax' fmin' ^a' fr (Berlincourt et al., 1964; and IRE Standard, 1957), which can be 

interpreted from the impedance circle (Nyquist plot) around the resonance as shown in 

Fig 1.13, and are listed in Table 1.1 for clarity. They should not be confused with the 

usual resonance definitions in vibration analysis. When loss is not considered, f,, f^m 

and f j are the same, as are fp, f^ax and f^. In practice, if the losses are small, these 

assumptions are also sufficient. 
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If vibrations in other dimensions are considered, piezoelectric discs may have many more 

modes in the frequency range of interest, and two sets of the characteristic resonant 

frequencies of piezoelectric transducers, (fp, f ^ ^ , and (f,, 4), are seen at each 

resonant mode. If the modal density is very high, i.e., they may be very close and 

coupled to each other, which tends to make them difficult to identify. 

1.4.2 The electric^ in^pedance 

The electrical impedance of a piezoelectric disc vibrating in the thickness mode can be 

found analytically as (Meeker, 1972; Hilke, 1973), 

z = --^=-(1---^"-}' (15) 
1 COCo 4) cot <]) 

where 

Equation (1.5) can be used to calculate the electrical impedance function of piezoelectric 

discs and plates which work in the through thickness modes. 

1.5 Two and three dimensional analyses of piezoelectric transducer 

1.5.1 Mndlin's plate theoiy 

Extensive efforts have been made by many authors since the 1950s to use classical 

elasticity theory for the analysis of the vibration behaviour of discs with finite D/T ratios. 

Kane and Mindlin (1956) introduced a correction factor to couple the first through 

thickness mode by thin plate theory and the radial extensional modes obtained from plane 

stress theory. Good agreement with Shaw's experiments was obtained as far as the first 

two modes are concerned as shown in Fig 1.14. Mindlin and Medick (1959) extended the 

plate theory and considered coupling between radial extensional, symmetric thickness-

stretch and the first symmetric thickness shear modes. Furthermore Gazis and Mindlin 

(1960) considered the existence of the edge mode and took into account the influence of 

Poisson's ratio. 

The plate theory developed by Mindlin and other authors is based on the power series 

expansion method. The mechanical displacement may be expanded in a power series of 

the thickness coordinate. By applying the variational principle followed by integration 

with respect to the thickness variable, the three dimensional equations of elasticity are 

converted to an infinite series of two dimensional equations, which are then truncated to 
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produce approximate first or second order equations. To correct for the truncation, 

additional constants are obtained by comparing the approximate equations with the full 

three dimensional equations. The number of terms which it is necessary to retain in the 

expansion depends on the problem to be analysed. Therefore, the zero order plate theory 

corresponds to the radial modes in the plate, the first order theory couples the first 

thickness mode and radial modes, and the second order theory takes into account the 

radial modes, the first thickness mode and the first symmetrical thickness shear mode. 

Details of the application of this theory to piezoelectric materials are given by Tiersten 

(1969). The mathematical effort involved in this theory is enormous, and some awkward 

mathematical forms may be encountered for second and higher order theory, which tend 

to obscure the physical interpretation of the solution. 

The second order Mindlin's plate theory has been used by several researchers to compare 

with the measurements on the piezoelectric discs (Gazis and Mindlin, 1960; Ikegami et 

al., 1974, 1976). For example, the lines in the frequency spectrum shown in Fig 1.4 by 

Ikegami et al. (1974) correspond to predictions by the second order plate theory. It can be 

seen that good agreement has been obtained between the experiment and prediction over 

most of the frequency spectra. However, the T-modes and the edge mode were not 

accurately predicted. 

Although good agreement was generally obtained between the frequencies of the different 

modes and those predicted by the plate theory, the plate theory gives no information about 

the amplitude of each mode, so it is not possible to predict which mode is most strongly 

excited when the piezoelectric disc is subjected to, for example, voltage excitation. 

1.5.2 Bogy's plate theoiy 

Recently, Bugdayci and Bogy (1981) developed a two dimensional plate theory for 

piezoelectric layers. The procedure used is identical to Mindlin's plate theory except that 

trigonometric series expansions are used instead of power series expansions. The theory 

has been used to analyse the transient problem of piezoelectric discs subjected to an 

axisymmetrical load (Bogy and Miu, 1982), and a non-axisymmetrical load (Bogy and 

Bechtel, 1982). The first order theory has recently been extended to analyse the 

interaction of a piezoelectric transducer with the test medium, for example, a transducer 

coupled through its bottom surface to the testpiece surface via a viscous liquid (Bechtel 

and Bogy, 1984). 
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1.5.3 Agganval's three dimensional andytical solution 

Aggarwal (1952a, 1952b) studied analytically the vibration of free elastic discs of finite 

thickness. The exact solution of a free disc should satisfy four boundary conditions: zero 

stress normal and tangential to the flat surfaces (major surfaces) of the disc and zero stress 

normal and tangential to the cylindrical surface of the disc. However, analytical solutions 

from the three dimensional wave equation can only satisfy three of them exactly and one 

approximately. Since wave propagation in the axial direction was of most interest, the two 

boundary conditions over the major surface and one over the cylindrical surface were 

used to solve the equation of the elastic disc. Two possible sets of boundary conditions 

were therefore specified: 

Boundary condition set I (BC I): zero stress normal and tangential to the flat surfaces and 

zero stress normal to the cylindrical surface; boundary condition set n (BC II): zero stress 

normal and tangential to the flat surfaces and zero stress tangential to the cylindrical 

surface. 

Two sets of solutions were found corresponding to BC I, and BC II. For example, for 

the solution corresponding to BC I, the following equation was obtained (Aggarwal, 

1952aX 

( 1 - D ) j , ( ! ^ ) = ^ J o ( ^ ) (1.6) 

where d is Poisson's ratio, Jg, are Bessel functions of first kind (zero- and first-order), 

k is the wave number, and D is the diameter of the disc. 

The mode shapes of the modes obtained according to the two set of boundary conditions 

are shown in Fig 1.15. Fig 1.15(a) shows the mode shapes of the first symmetrical 

extensional modes according to BC I, which can be obtained from the lowest four roots 

of k in equation (1.6). The mode shapes of the second symmetrical shear modes obtained 

from BC I are shown in Fig 1.15(b), in which the radial deformation varies greatly along 

the thickness in the disc. Fig 1.15(c) shows the mode shapes for both extensional and 

shear modes when BC 11 is satisfied. 

Although the Aggarwal's analytical solutions were approximate and ambiguous due to the 

fourth boundary condition not being satisfied, they may be useful in understanding the 

physics of the vibration of piezoelectric discs (Ueha et ai, 1983). 
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1.5.4 The finite dement method 

An alternative to the development of approximate analytical solutions is to use a numerical 

solution such as the finite element method. The finite element method (FEM) has been 

well developed and extensively used in structural mechanics. Although the variational 

principle has already been used to analyse the vibration of piezoelectric discs (EerNisse, 

1967b), the general finite element formulation for a piezoelectric material was first given 

by AUik and Hughes (1970). Since then it has been widely used for the vibration analysis 

of many electromechanical devices at both low and high frequencies, such as 

electromechanical filters (Kagawa, 1971), sonar transducers (Smith et al., 1973; Allik et 

al., 1974; Armstrong and McMahon, 1984), surface-wave devices (Kagawa and 

Yamabuchi, 1976a), hydrophones (Winnicki and Auyer, 1977), and array transducers 

(Boucher et al., 1981; Naillon et al., 1983; Lerch and Kaarmann, 1987). 

The finite element method has great flexibility for the analysis of composite structures 

which consist of different geometries and materials, and can also be used to study the 

coupling between the transducer and test structure. Kagawa and Yamabuchi (1976b) 

calculated the vibration modes of a composite transducer (Langevin type) by an 

axisymmetrical two dimensional model. Ostergaard and Pawlak (1986) studied a 

piezoelectric disc sandwiched between two aluminium discs, and calculated the natural 

frequency of the first mode of the structure by a three dimensional model. Smith et al. 

(1973) took into consideration the coupling effects between a piezoelectric structure and 

the loading medium, in this case a sonar transducer in water. 

However, very few authors have used the finite element method to study piezoelectric 

discs, and the studies have been limited to the low order modes or the piezoelectric discs 

with small D/T ratios. Kagawa and Yamabuchi (1976b) studied the natural frequencies of 

a piezoelectric circular rod with height to diameter ratio of 1 to 5 (equivalent D/T of 0.2 to 

1). Jensen (1986) calculated the natural frequencies and mode shapes of the vibration of 

piezoelectric discs. Recently Locke et al. (1987) calculated the frequency spectrum of 

piezoelectric discs of PZT5H in the D/T range 0.2 to 10, in which the radial R modes, the 

edge mode, the thickness shear modes and the thickness extensional mode were clearly 

defined. 

1.5.5 Discussion 

It is evident that the plate theory may give good results as far as the natural frequency of 

the piezoelectric disc is concerned. However, it cannot predict the frequency response 

function when the disc is subjected to an electrical excitation. The finite element method 
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shows great potential for modelling piezoelectric discs with finite D/T ratios, and has great 

flexibility to accommodate the severe demands of the design of complicated advance 

transducers. Three dimensional studies of piezoelectric discs have been limited to the 

classification of the natural frequencies of the disc. The physical interpretation of some 

resonant modes, such as the thickness extensional modes and the edge mode, have not 

been weU clarified. 

1.6 Strength of excitation at resonant frequencies 

An important parameter in modelling a piezoelectric disc's performance is to estimate the 

strength of each resonance when a voltage is applied across the electrodes of the disc. 

From the literature available so far, most investigations have used an electromechanical 

coupling coefficient or piezoelectric coupling factor, k, to estimate the strength of a mode. 

The piezoelectric coupling factor is defined as the ratio of the mutual elastic and dielectric 

energy density to the geometric mean of the elastic and dielectric self-energy density 

(Berlincourt et ai, 1963): 

" UeUd 

where = mutual energy, = elastic energy, and U j = dielectric energy. 

In practice, equation (1.7) is much more complicated than it looks. However, a simple 

expression can be derived for transducers whose motion is one dimensional. In the 

thickness mode this piezoelectric coupling factor can be derived as (Berlincourt et al., 

1964) 

k,: = 1 1 3 3 2 ^ (1.8) 
C33 

where subscript t denotes the thickness mode, h is the piezoelectric coupling constant, 

is dielectric constant, and c^ is the elastic constant. The thickness mode piezoelectric 

coupling factor is a very important parameter for the thickness mode transducer since it 

quantifies the degree of piezoelectricity of different materials. It can vary from 0.1 for 

Quartz to 0.5 - 0.7 for PZT piezoelectric ceramics. 

It is also possible to calculate piezoelectric coupling factors for other simple modes. For 

example, in the longitudinal mode of a piezoelectric bar, the piezoelectric coupling factor 

is given by (Berlincourt et al., 1964) 
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where d^g is the coupling constant, e^^ is the dielectric constant, S33 is the elastic 

constant. 

These coupling factors can also be obtained from the resonance frequency f^ of the 

appropriate mode and the corresponding anti-resonance frequency f^ as (HiUce, 1973) 

= J ^ c o t C j i ^ ) (1.10) 

Equation (1.10) can be approximately written as 

/ f 2 . f 2 

k = ^ (1.11) 

Equation (1.11) is usually used to calculate the coupling factor by measuring the resonant 

frequency and corresponding anti-resonant frequency of the mode. 

In the experimental work on piezoelectric discs with finite D/T ratios by Shaw (1956), the 

electro-mechanical coupling coefficient k^ was used to evaluate the strength of each 

resonance. This was defined as 

km^ = 4 ^ [ 1 + ( 1 — j - ) ^ + - ] (1-12) 

where f ^ is the resonant frequency of the mode and is the difference between the 

frequencies of the resonance of that mode and that of the corresponding anti-resonance. 

It was found that the first radial mode and the thickness extensional modes had the largest 

electro-mechanical coefficients and more than two thickness modes were found with 

similar values of coefficients in the D/T range 3 to 5 (Shaw, 1956). Similar experiment 

were done by Ueha et al. (1983) for piezoelectric discs with the D/T range 2 to 12, and 

same result was obtained by using formula (1.12). 

Naillon et al. (1983) applied the finite element method to a piezoelectric bar used in array 

transducers, and an effective piezoelectric coupling factor similar to that in (1.11) was 

derived to relate to the anti-resonant and resonant frequencies of the piezoelectric 

structure, which was then used to estimate the strength of each mode as, 
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/ f 2 . f 2 
keff = - y " ' (1.13) 

Piezoelectric coupling factors are best used in characterising the piezoelectricity of a 

material, and unidirectional motion of a piezoelectric structure. Therefore, they are widely 

used in the one dimensional analysis of the transducers, and in two dimensional analysis 

of bars provided that the modes are well separated each other. 

Apart from various piezoelectric coupling factors discussed so far, Ikegami et al. (1974) 

used a dynamic range to determine the intensity of each resonance, which was defined as 

the ratio of the maximum admittance to the lowest admittance of the two minima on either 

side of the maximum as illustrated in Fig 1.16. 

However difficulties often arise in determining the above coupling factors or dynamic 

ranges when the frequency separation between successive modes is comparable to the 

typical separation between the resonance and anti-resonance frequencies. In these cases, a 

correction procedure had to be used (Shaw, 1956; Ueha et al., 1983). This also occurred 

in the numerical study of piezoelectric discs by Locke et al. (1987) where the anti-

resonant frequencies of some modes, f^, were predicted to be smaller than the 

corresponding resonant frequencies, f^, due to high modal density, particularly around the 

frequency of the first through thickness mode defined by the one dimensional model. The 

assumption that the resonance frequencies are followed by the corresponding anti-

resonance frequencies may therefore be broken down for discs which have high modal 

density in the frequency range of interest 

It is therefore proposed in this thesis to use a new parameter, the modal constant (Ewins, 

1984), to evaluate the intensity of the resonance. The advantage is that it only requires 

knowledge of the resonant frequencies. More details about the modal constant and its 

derivation will be given later in the thesis. 

1.7 Aims and outline of the thesis 

1.7.1 Limitation of previous research and aims of the thesis 

It is evident from the above review and discussion that previous research has the 

following limitations: 

(i) Although it has been known that the vibration modes of piezoelectric discs are very 

complicated, most modelling techniques have limitations, which result in inaccuracy of 

the predictions. No attempt has been made to predict the influence of the three 
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dimensional effects on the frequency response function and the electrical impedance 

characteristics of a disc. 

(ii) The nature of some resonant modes of piezoelectric discs is not well understood. 

Although the radial modes have been well classified by the analytical approximate solution 

and plate theory, and experiments have shown good agreement with the predictions, other 

modes, such as the edge mode and the thickness shear modes are less well defined. It is 

also not clear whether piston-like motion should occur in three dimensional analyses. 

(iii) There is a lack of parameters to evaluate the strength of excitation of each resonant 

mode in a three dimensional model. Although various electromechanical coupling factors 

and a dynamic range parameter have been used, all these parameters require clear 

identification of resonant frequency and anti-resonant frequency of the mode. This can 

only be obtained in the one dimensional analysis^d in the two dimensional bar structure 

(Naillon et al., 1983). For piezoelectric discs, the approach is problematic both in 

measurements and predictions since the modal density is very high in the frequency range 

of interest (Shaw, 1956; Locke et al., 1987). 

The current thesis attempts to eliminate these limitations. 

(i) A finite element model is developed to analyse the vibration characteristics of 

piezoelectric structures. 

(ii) The vibration characteristics of piezoelectric discs in D/T ratio from 0.5 to 20 are 

predicted, including resonant frequencies and corresponding mode shapes, mechanical 

frequency response functions and electrical impedance response of the discs. The model 

is then used to predict the transient mechanical response of piezoelectric discs with voltage 

excitation. 

(iii) A new method is presented to evaluate the strength of excitation at each resonance by 

using the concept of the modal constant. It is then incorporated in calculation of the 

frequency spectrum of piezoelectric discs by using the finite element model. 

(iv) The application of the FE model is presented to the analysis of the piezoelectric discs 

with elastic additions, and the analysis of piezoelectric discs with partial electrodes. 

A one dimensional analytical method is also used to analyse the effect of backing on the 

behaviour of piezoelectric transducers. 
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1.7.2 Outline of (he thesis 

Following the above introduction of piezoelectricity and transducers, and the review of 

the techniques and previous researches in modelling piezoelectric discs in this chapter, 

this thesis is intended to cover two aspects of the vibration characteristics of piezoelectric 

discs. Since the one dimensional methods are the most commonly used techniques in the 

analysis and design of piezoelectric transducers, a one dimensional analytical method is 

used to calculate the transient response of transducers subjected to excitation with voltage 

pulses of various shapes, and then a degenerate two degree of freedom mechanical mass-

spring system is developed to analyse a piezoelectric disc. 

The three dimensional analysis of piezoelectric discs, which forms the bulk of the thesis, 

is then discussed. The finite element formulation for piezoelectric materials and the modal 

analysis of piezoelectric discs are first discussed in Chapter 3, and the mechanical 

frequency response functions and the electrical impedance function are formed. This is 

then followed in Chapter 4 by detailed numerical and experimental studies of the 

vibration characteristics of piezoelectric discs with D/T ratios between 0.5 and 20. The 

frequency spectrum of piezoelectric discs, and the influence of the piezoelectric effect on 

the different modes are studied in Chapter 5. 

The transient mechanical response of a piezoelectric disc subjected to a voltage pulse 

across the electrodes is treated in Chapter 6, and the mode superposition method is used 

to calculate the surface motion of the disc. Chapter 7 is devoted to the application of the 

three dimensional FE model to analyse the vibration characteristics of other piezoelectric 

discs, such as the piezoelectric disc coupled with an elastic addition, piezoelectric discs in 

connection with an electrical resistor, and piezoelectric discs which are partially electroded 

on the major surfaces. 

Finally, conclusions and suggestions for future work are made in Chapter 8. 
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Characteristic 

Frequencies 

Definition Condition 

fmin Frequency of minimum Z ® = 0 
dco 

fs Series frequency Xi = 0 

4 Resonance frequency Xg = 0 

f 
^max 

Frequency of maximum Z ® = 0 
dco 

Parallel frequency (lossless) IR,=O = -

fa Antiresonance frequency X . = 0 

Table 1.1 The various characteristic frequencies of a piezoelectric transducer 
(where Xj , are reactance and resistance in the series branch; Xg, Rg 
are reactance and resistance of the circuit; and Z is the electrical 
impedance, see Fig 1.12(a)) 
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Case 

Electrodes 

Front face 

Connector 

Backing 

Piezoelectric disc 

Fig 1.1 Basic structure of a piezoelectric transducer 

Wave produced Incoming wave 

Generator 

External impedance 

Receiver Source impedance 

(a) Transmission mode (b) Receive mode 

Fig 1.2 Electrical circuits of transducers as a transmitter and receiver 
(Zc, Zi and Z2 are acoustic impedances of the piezoelectric element, loading 
and backing) 
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-D . 0 - 5 - 0 . 5 0 • 5 

n = 1 n = 2 n = 3 n = 4 

(a) the first four through thickness modes 
(vertical coordinate: normalized displacement; horizontal coordinate: thickness position) 

l 1 
\ 

: 
\ 

H I 

i 
^ 

(b) the piston-like motion of the first through thickness mode 

Fig 1.3 The mode shapes of the through thickness modes of piezoelectric discs 
assumed by the one dimensional model 
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Fig 1.4 Comparison between frequency spectra by the experimental results (circles) 
and Ae plate theory (lines) (From Ikegami et al., 1974) 
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N 

C/5 c/) 
Q) 
I 

g O" 
1900 

£ 

G O O O O 

Fig 1.5 The measured frequency spectrum of BaTi03 discs (From Shaw, 1956) 
(Circle diameters proportional to observed values of the coupling factors) 
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R ' A 3 R B R9 RIO R12 RI4 R15 R18 R19 

SCALE OF E-M 
COUPLING 

10 11 12 13 

Fig 1.6 The measured frequency spectrum of Pb(ZrTi)03 (From Ueha et ai, 1983) 
(Circle diameters proportional to observed values of the coupling factors) 

Z r + Z l 

i 
1 

Z2 
Zc+ Z2 

I 

0 

Z^+Zi 

Zc+ Z2 

Fig 1.7 Ultrasonic wave amplitudes from a simple transmission model 
(Zc, Zi and Z2 are acoustic impedances of the piezoelectric element, loading 
medium and backing) 
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^ = N = Coh33 
P33̂ t 

Xg = Zo cosecC;^, Xb = Zotan(;^ 

Zq = A 
D = 

1:W 

Fig 1.8 Mason's equivalent circuit for a thickness plate (From Silk, 1984) 

Acoustic t ransmiss ion line 

A = Tw, V = v^ = C33 IT 

P 

* = Xi = ZoM2sm(^) 

ZQ = A M = 
COZn 

Fig 1.9 KLM equivalent circuit for a thickness plate and a length bar 
(From Silk, 1984) 
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Loading Z, Piezoelectric element Zc Backing Z 

- Z i 

Zj, + Zj 
hQ)V 

0 

= f 
• 

hQ)V 
Zc+Z2 

hQV 

= b 

-Z2 
Zc+Z2 

hQV 

(a) wave amplitudes generated at front and back interfaces 

1+ra 
rg r j l+ r a ) 

4 ^ t 
r W 
l-ror2(l+ro) 

ra(l+ro) 

- 1 

(b) the wave amplitude at the fi-ont face 

(l-rn) b 

(1-r ) f 

rgr f l-ro)b 

(c) reflections and transmission inside the piezoelectric element 

Fig 1.10 The Impulse Diagram (From Redwood, 1963) 

(Zc, Z \ and Z2 are acoustic impedances of the piezoelectric element, loading medium and 
backing; h, Cq, and V are piezoelectric coupling constant, static capacitance and applied 
voltage; ro, r^ are reflection and transmission coefficients at x = 0 and a; a/v is the time 
for an ultrasonic wave to travel through the element) 
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Fig 1.11 Short circuit mechanical response of a free piezoelectric plate when it is 
excited by a voltage pulse (From Stuetzer, 1967) 
(t = nomadised to Ae time for wave to travel through the plate) 

, 

Ri 

Ci=i= 

Xi 

Ri 

X, 

Re 

Sk?" ^ 

Co = k, = h33 

Ak( 
N - -

T V EJJS C33D 

(a) the equivalent circuit around the resonance 

(b) the electrical impedance of the circuit 

Fig 1.12 Approximate equivalent circuit of a piezoelectric disc 
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f increasing 

max 

Fig 1.13 Nyquist plot of the electrical impedance of a piezoelectric disc around the 
thickness frequency 

Fig 1.14 Normalised frequency spectrum of the first two radial modes as a function 
of D/T (From Kane and Mindlin, 1956) 
Curve I: the first radial mode obtained by generalised plane stress theory; 
Curve II: the first two radial modes by the first order plate theory; 
Dots: Shaw's experimental results obtained 
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(a) the first symmetrical thickness compression modes according to BC I 

(b) the second symmetrical thickness shear modes according to BC I 

(c) the symmetrical thickness modes according to BC n 

Fig 1.15 Mode shapes obtained by applying approximate boundary conditions 
(After Aggarwal, 1952b) 

Y Admittance 

y 
Frequency 

Fig 1.16 Schematic representation of the dynamic range defined by Ikegami 



CHAPTER 2 

ONE DIMENSIONAL ANALYSES OF VIBRATION 
CHARACTERISTICS OF PIEZOELECTRIC TRANSDUCERS 

2.1 Introducdon 

Piezoelectric transducers are commonly analysed by one dimensional theory since the 

piezoelectric element usually has one dimension much different from the others. For 

instance, thin plates and discs which vibrate in their through thickness mode have lateral 

dimensions much larger than the thickness; and long bars and rods which vibrate in their 

longitudinal mode have lateral dimensions much smaller than the length. 

It has been shown in Chapter 1 that a number of one dimensional techniques have been 

developed and they are still the most commonly used techniques in the analysis and 

design of piezoelectric transducers. It is therefore necessary to study the one dimensional 

analysis of the piezoelectric transducer in more detail. 

In this chapter the vibration characteristics of piezoelectric transducers are studied in one 

dimension as a preliminary to further more complex analyses of transducers. The 

piezoelectric elements considered are thin discs. The transient response of the piezoelectric 

transducer is first studied in detail by the Laplace transformation method for open circuit 

and short circuit transducers, and the effect of backing on the response is discussed. A 

one dimensional mechanical model is then developed in which a piezoelectric structure is 

modelled as a degenerate two degree of freedom mass-spring system. The model is then 

applied to analyse the effects of mechanical damping and electric loss. 

2.2 The one dimensional analysis of piezoelectric transducers 

2.2.1 The constitutive equation and wave equations 

The piezoelectric transducer working in the thickness mode is studied in this section. The 

piezoelectric disc is polarised parallel to the thickness direction, i.e., x direction as shown 

in Fig 2.1, and an electric field can exist only along the thickness direction (the wave front 

is an equipotential surface). In the thickness mode, the piezoelectric element dimensions 

in the plane perpendicular to the x axis are assumed to be infinite so that only through 

thickness vibration need be considered, and waves within the transducer propagate 

-48 
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without distortion in the x direction and remain plane whenever reflection and 

transmission occur. 

If there are no magnetic field effects and adiabatic conditions are assumed, the constitutive 

equations which govern the plane compressional wave propagation in x direction 

(thickness direction) in piezoelectric materials are (Berlincourt et al., 1964; Hilke, 1973), 

T = - hD (2.1) 

E = + ^ (2-2) 

where u is the particle displacement in x direction, D is the electrical flux density or 

electrical displacement, T is the mechanical stress field, and E is the electric field, 

denotes the permittivity coefficient measured at constant strain S, c ^ i s the stiffness 

constant at constant charge density, h is the piezoelectric constant. 

Applying Newton's second law to the transducer gives 

(2.3) 

and Gauss' law, if there is no free charge inside the transducer, as for insulating crystals 

or ceramics gives 

d i v { D ) = 0 (2.4) 

Hence, since ^ ^ = 0 from the previous assumptions, 

3 ^ = 0 ( 2 j ) 

Combining (2.1), (2.2), and (2.3) gives 

d^u c^ 3^u h 3D 
p 3x2 p 9x 

Substitution of (2.5) into (2.6) gives 

(2.6) 

(2.7) 

Equation (2.7) is the wave equation governing wave propagation in piezoelectric materials 

in which the polarisation direction is parallel to the direction of wave propagation, and the 

velocity of wave propagation is 

rD 
v2 = (2.8) 

P 
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where = (9T/9S)Q is the elastic stiffness at constant flux density which should be 

distinguished from c^, which is the elastic stiffness at constant electric field. The 

relationship between these two parameters is 

^ h2 
cD = c^ + — (2.9) 

E® 
Hence the effective elastic stiffness increases due to the piezoelectricity; this phenomenon 

is known as stiffening effect of piezoelectricity. 

The wave equation in non-piezoelectric elastic materials is (Auld, 1973), 

d^u .32u 

but 

c E 
v2 = — (2.10) 

p 

Hence, wave equations in piezoelectric and non-piezoelectric materials are identical, but 

the wave velocities are different. The solution of the wave equation can therefore be 

applied to both the piezoelectric element and the attached non-piezoelectric layers provided 

that the appropriate velocities are used. 

2.2.2 Solutions by Laplace transformation 

In order to solve the differential equation (2.7) the Laplace transform method is used in 

which, 

fL(s) = L[f(t)] 

= e - : t f( t) dt (2.11) 

-CO 

where fL(s) is the Laplace transform of f(t) and s is the Laplace operator. Having found 

the solution of the equation, the inverse Laplace transform must be employed to obtain the 

final analytical solution in the time domain. 

The solution of the wave equation (2.7) obtained by applying the Laplace transform is 

UL = A e ' v ® + B e ^ v ® (2.13) 

where A, B are constants to be determined by the boundary conditions. Equation (2.13) 

represents two waves which propagate in opposite directions with amplitude A and B, 
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and is valid for waves both in non-piezoelectric and piezoelectric material. The stress in 

non-piezoelectric materials can be found from the constitutive law and is given by, 

T l = c^ ^ [ - A e " V ® + B e V (2.14) 

The force on the plane perpendicular to x direction is, 

FL = s Z c [ - A e " v ® + B e ^ v ® ] (2.15) 

where is the force applied on the surface, S is the area of the cross section, and 

Zg = pvS (2.16a) 

This is defined as the characteristic acoustic impedance of the material while the specific 

acoustic impedance is, 

Zg = pv (2.16b) 

For piezoelectric materials, an extra term hD is added to the stress due to the piezoelectric 

coupling shown in equation (2.1). Now where Q is the electrical charge on the 

surfaces of the disc. Substitution of this and equation (2.15) into the constitutive equation 

(2.1) and (2.2) gives 
X X 

S . -r» + ~ S FL + hQL = s Z c L - A e ' v ' " + B e " v ^ ] (2.17) 

With reference to Fig 2.1, if the thickness of piezoelectric element is a, the voltage across 

the transducer is 

VL = - [(Va)L - (Vo)iJ = r EL dx (2.18) 
Jo 

Applying equation (2.2) and integrating with respect to x gives 

Vl = -h[(UL).-(UL)„l+§ (2.19) 

e^S 
where Cq = is the static capacitance of the piezoelectric element 

It can be seen that the voltage across the transducer is proportional to the change in 

thickness of the piezoelectric element. 
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2.2.3 Boundaiy conditions 

As shown in Fig 1.1, the piezoelectric element is usually attached to other mechanical 

structures, such as a backing layer on one side, and a loading medium on the other side. 

The boundary conditions applied to the transducer are found by applying displacement 

continuity and force equilibrium on each interface as shown in Fig 2.1, 

("l)o - (^)o' (U2)a = (u)a (2.20) 

and 

(Fi)o+ (F)o = 0 (F2)a+ (F), = 0 (2.21) 

where subscripts 1 and 2 represent the load medium and backing respectively; subscripts 

'0' and 'a' outside the brackets refer to x = 0 and x = a. 

In general, when the two electrodes on the surfaces of the piezoelectric material are 

connected to a electrical network, a current I(t) flowing through the network opposes the 

voltage building up, and an extra equation is therefore added, 

V +1 r = 0 (2.22) 

so 

VL+sQ^r = 0 (2.23) 

where r is the external resistance. For simpUcity, this is not considered here. 

2.3 The transient response of a transducer as a receiver 

2.3.1 TTie fonrulation of the solution 

As discussed in the previous section there should be two waves in each layer travelling in 

opposite directions as shown in Fig 2.1. This can be simplified by considering different 

cases. The transducer is first considered as an open circuit receiver, which is a good 

approximation to practice because of the large impedance of the external device to which 

transducers are usually connected. The loading medium and backing layer are assumed to 

extend indefinitely away from the piezoelectric element, so no wave is reflected from the 

ends. An ultrasonic wave with amplitude Aj coming from the loading medium is incident 

on the transducer. Since no wave comes from the backing, B2 is zero. 

Combining equations (2.13) to (2.19), the voltage response may be obtained as 

V A i h ( l - r o ) [ l - ( l + r J e - s t + r.e-2st] 
-- 1 - ror.e-2:t 

where x is time interval for a wave to travel through the piezoelectric element, thus. 
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^ ^ 

Zg - Z2 , Zg - Z j 
~ Zg + Z2 0̂ - Zg + Zi 

are the reflection coefficients at the back (x = a) and front (x = 0) surfaces of the 

piezoelectric element. The corresponding transmission coefficients are defined as, 

2Z 2Z 
= Zg + % To = 1 + To = 2^ + ' z i 

After expanding the denominator of equation (2.24) by the binomial theorem the final 

form is 

VL = A]^h(l - T q ) f ly (2.26) 

where 

Hy = 1 - S, + So (2.27) 
0 0 

Sa = (1 + r j X (Va)" '^ " m 
n = 1 

0 0 

So = ro(l + r j X ( W " - ! e-2nst 
n = 1 

Ai depends on the input force applied to the front face of the transducer and from (2.15) 

is given by, 

(Fi)L= -AjsZi 

Hence, the transfer function of a transducer as a receiver is 

HL(S) = ( % = (2.28) 

where Cv = - 7 , rj is the amplitude of the response. 
z /g + zyj 

From equations (2.27) it can be seen that in the open circuit receiver the voltage across the 

transducer generated by an incident ultrasonic wave consists of three parts: the unit term 1 

represents the voltage generated at the instant when the incident mechanical force 

impinges on the front face of the piezoelectric element; the second term S^ is the voltage 

generated when the reverberating waves inside the element reach the back face of the 

element; the third term Sq describes the voltage caused when the reverberating waves 

inside the element reach the front face of element. The equation (2.27) is independent of s; 
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it describes only the relative amplitude of the terms at different time intervals e" 

Consequently, the voltage response depends only upon the form of the input force. 

2.3.2 The solution for different forms of input force 

Two kinds of input force, a Dirac pulse and a step function, are discussed, and the 

voltage response of transducers with different boundary conditions is predicted for these 

forces. The piezoelectric disc considered is made of PZT4 with a specific acoustic 

impedance of 345x10^ kg/m^s; its other properties can be found from Appendix A. For 

each force input, the voltage response is calculated for 5 different backing impedances 

14.8x10^, 115x10^, 345x10^, 1035x10^ and 345000x10^, which correspond to water, r^ 

= 0.5, matched backing, r^ = - 0.5 and very rigid backing. In some case the responses for 

a free piezoelectric disc (Z^ = Z2 = 0) are discussed. Two loading media, with acoustic 

impedances of 14.8x10^ (water) and 115x10^ (rg = 0.5), are compared. 

(i) Dirac pulse input Fj = 6(t), and (Fi)l= 1 

By the inverse Laplace transform, the voltage in the time domain is given by, 

V = Cv [ H(t) - (1 + rJH(t - x) + r,(l + ro)H(t - 2x) -...] (2.29) 

where H(t) is the Heaviside Function. 

Fig 2.2(a) - (e) show plots of the voltage response of transducers for the above five kinds 

of backing. It can be seen that a voltage is produced across the transducer at the instant the 

Dirac pulse is applied; the voltage is then constant until the pulse reaches the back face of 

the disc; the voltage then changes phase due to the sign of the reflection coefficient at the 

back face provided that the backing is 'softer' than the disc (the impedance of the backing 

is smaller than that of the piezoelectric disc), see Fig 2.2(a) and (b). This kind of 

reverberation continues until the pulse dies away within the disc due to the transmission 

of waves into the loading and backing. The decay rate depends on the acoustic impedance 

of both the backing and loading; the rate increases as the impedance of backing 

approaches the matched case. If the transducer has no backing and air loading, the 

duration of the 'ringing' is a maximum as shown in Fig 2.2(f), while when the transducer 

has a matched backing, only one voltage pulse is produced, see Fig 2.2(c). If the backing 

is harder (the impedance of the backing is larger than that of the piezoelectric element) or 

rigid, the voltage does not change phase when the wave is reflected from the back face as 

shown in Fig 2.2(d). The front loading has a similar effect to that of the backing. The two 

curves in each figure show that the larger the acoustic impedance of the front loading, the 

less the voltage is obtained. 
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(ii) Step unit function Fj = H(t), and (Fi)l = ^ 

The voltage response is then, 

V = Cv [t - H(t2n.i)(l+r,) ^ (ror,)2n-it2^.i + H(t2n)r,(l+ro) ^ 1 (2.30) 
n = 1 n = 1 

where t̂ n-i = t - (2n - 1)t, and t2n = t - (2n )x, n = 1, 2, 3,... integer. 

Hence the voltage response is proportional to t within each time interval x for an applied 

step force. Fig 2.3 (a) - (f) show the response for different backings. It can be seen that 

when the force is applied to the front face of the transducer the voltage generated starts at 

zero, builds up linearly and then decreases when the wave reaches the back face; it then 

continues to reverberate until it dies away due to the damping effect of the backing and 

loading. Other features of the response are similar to the case of a Dirac impulse, except 

that after a period of reverberations the voltage approaches a constant dc value which is 

given by, 

V = CvT(]l - r.) (2.31) 

2.4 The transient response of a transducer as a transmitter 

2.4.1 The formulation of the general solution 

In this section the transducer is considered as a transmitter whose function is to generate 

an ultrasonic wave when an external voltage is applied across it. The mechanical response 

of the transducer is more complicated than the voltage response, due to the interactive 

coupling of piezoelectricity (which is represented by the negative capacitance in the 

electrical analogue models as shown in Fig 1.8). If this effect is ignored, the mechanical 

response can be derived as an impulse diagram (Redwood 1963, 1964) as shown in Fig 

1.10 of Chapter 1. A general solution has been obtained by Stuetzer (1967) for a free 

piezoelectric plate, which showed that for a step voltage excitation the stress response 

consists initially of alternating exponential pulses which decay to a form similar to a sine 

wave accompanied by a sequence of sharp spikes. This exponential alternation becomes 

more significant as the degree of piezoelectric intercoupling is increased. In this section, 

the general solution for the mechanical response of the transducer is obtained with 

arbitrary mechanical boundary conditions, and the response to different forms of applied 

voltage is discussed. 
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The transducer working in transmitter mode can be considered short circuited since the 

external energy source has very small resistance. The boundary conditions applied to the 

transducer are similar to those for a receiver, as the loading and backing are assumed to 

extend indefinitely away from the piezoelectric element, so no wave can come back, 

which results = 62= 0 in Fig 2.1. 

The input voltage is assumed to be of the form V = V(t), where V(t) describes the input 

form and the amplitude is unity, and its Laplace transform is Vl(s). From equations 

(2.13) to (2.15) the mechanical displacement at x = 0, the front face of the transducer, 

may be shown to be 

(uo)L = C.V,(s) + (2.32) 
K(s - a ) 

where 

_ k,^(To + T.) 

21 

K = 1 + bjC" + b2e" ̂  

C, , , , Cz b j = — — and b2 = k̂  + 
s - a s - a 

c , and C, . + 
T 2% 

K = V a 

Here, a is known as the time factor, and plays an important role in determining the form 

of the response; Qj determines the amplitude of the displacement response; Q , C2, are 

constants in terms of kj, x and the reflection and transmission coefficients rg, r., Tq, T^; 

while bj , b2 and K are related to Laplace operator, s. The denominator K"^ can be 

expanded as follows, 

K-1 = (1 + bie- + bzC- 2^)1 

= 1 - (bie-s^+b2e-2s'c)+(bie-s^+b2e-2sT:)2-(bie-^+b2e-2s^)3+(bie-s^+b2e-25^)4 . . . . 

=1 - bjC"" + (bi^ - b2)e- - (bj^ - 2bib2)e-

+ (bi* - Bbi^bj + b2^)e- - (bj^ + Sb^bz^ + 4bi2b2)e- 5̂ ^ + 
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Combining K-i with [1 - (1 + r,)e- + r^e- 2"] leads to a function n^Cs) in which the 

terms come into effect successively according to the delay factor e" 

riu = 1 

- (b i + TJe-»^ 

+ (bi2 - b2 + T^bi + r j e-

- [b^s - 2bib2 + Ta(bi2 - bj) + r^b J e-

+ [bi*̂  - 3bi^b2 + b2^ + Tg(bi3 - 2bib2) + r^Cbj^ - b2)] e-'̂ ®'̂  

- [bi^ + 3bib2^ - 4bi3b2 + T^Cbj'̂  - 3bi2b2 + b2^) + TgCbĵ  - 2bib2)] e-

+ ... (2.33) 

Hence, equation (2.32) can be written as 

(UO)L = Vi,(s) C , - S L _ ( 2 . 3 4 ) 
s - a 

So the transfer function of the transducer as a transmitter is 

FlW = ^ = C . ^ (2.35) 
s - a 

The mechanical response in terms of force is then given by, 

(PO)l = (uo)LS^I (2.36) 

The physical meaning of equation (2.34) is much easier to see than that of equation 

(2.32). In the amplitude C^, has the dimensions of displacement, and is the static 

mechanical response of the piezoelectric disc when the voltage is applied extremely slowly 

(Silk, 1984); k[ is the piezoelectric coupling factor which represents the effect of 

piezoelectricity and the power transduction; TQ describes the effect of mechanical loading 

on the wave produced at x = 0, i.e the position of the ultrasonic sound source. These two 

factors show the effect of both the electrical and mechanical properties of the transducer 

on the static mechanical response. The remaining terms and the sequence function Ily are 

involved with the transient part of the response. In contrast to the voltage response 

discussed in the last section, the sequence function, ITy, given by (2.33), is very 

complicated and is dependent on both s and a . The terms involving a , Cj and C2 in the 

sequence function 11̂  represent the intercoupling between the mechanical and electrical 

properties, i.e., the secondary action of piezoelectricity (Hayward, 1984) or acoustic 

regeneration (Zhang et ai, 1986). The shape of mechanical response depends not only on 

the input form but also on the sequence function. 

If the coupling factor k^is very small, a , Cj, C2 can be ignored, and equation (2.34) 

reduces to the approximate solution obtained from the Impulse diagram as shown in Fig 

1.10. In the following examples both the general and approximate solutions are used to 

predict the mechanical response of the transducer. 
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2.4.2 The solution for different forms of applied voltage 

Four forms of voltage applied across the transducer are discussed: Drrac, step, sine wave, 

and pulsed sine wave. The complete solution is too complicated to list fully here, only the 

response 0 < t < x, is given in detail, except that for the Dirac input the displacement 

response is listed up to the sixth term as an illustration. However, for all cases responses 

are predicted and plotted up to 10%. The materials used and loading cases are similar to the 

previous section. 

(i) Dirac pulse voltage V = 8(t), and Vl= 1 

The displacement on the front face of transducer, Uq, (0 < t < 5t) is given by 

uo = C, { e"t 

- [ ( T , + CI TI)E«TI] 

+ [(k, + r j + (C2+T,Ci) t2 + ^ Ci2 tz?] e«t2 

- [jTak, + C>(:ik,4.r.(:i4.T.C2) t, 4.;^! (KZiCZz-HT.CZiZitsZ + c:,: b f ] e«'3 

+ [(k;? + lakr) + (:)c^^kT4f.(:2-K2'r.k,(:i) (3<:^34:r4{:22-tr,(:i:4-2Tr.(:i(:2)t42 

(3(:i2(:2+TrjCi3) t , : + c : , * t,*] e*'* 

- [T,k,2+(3Cik,2+2r,k,Ci+2T,k,C2)t5 + ^ (6CiC2k,+2r,CiC2+3T.k,Ci2+T,C22)t52 

(3CiC22+4Ci3k,+r.Ci3+3T,Ci2C2)t534^ (4Ci3C2+T.Ci4) t / + ^ tgS] e*'5 

+ } ' (237) 
where t^ = t - nx > 0 n = 1, 2, 3,..., integer. 

When the piezoelectric coupling factor is small, for example with Quartz, k j= 0.1, the 

intercoupling effect can be ignored, a , and C2 may be neglected compared with other 

terms, and ê ^ = 1 + a t ~ 1, therefore only the first term in each transient term remains, 

and the solution becomes 

uo = CJ l -H( t i )T ,+ H(t2)(k,+r,) - H(t3)T,k,+ H(t4)(k,2+r,k,) - H(t5)T,k,2+...] (2.38) 

where t^ = t - nx > 0 n = 1, 2, 3,..., integer. This is identical to the Impulse diagram 

given by Redwood (1963) as shown in Fig 1.10. 

For a free piezoelectric plate, substituting ro = r^ = 1 into the solution (2.37), leads to 

"o = Qi (e"' 
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- 2 e^ti (1 + at i) 

+ 2 e"'2 (1 + 3at2 + 

- 2 e«'3 (1 + 5at3 + 1 a^t^^) 

+ 2 e«'4 (1 + 7at4 + + 1 a3^3 + i a%4) 

- 2 e^y (1 + 9at5 + 16a2tg2 + 1 Uah^^ + ^ 6a%^ + a^tgS) 

+ ...} (2.39) 

where t^ = t - nT > 0 n = 1, 2, 3,..., integer. This is identical with the solution given 

by Stuetzer (1967). 

Fig 2.4 shows the displacement responses with varying mechanical boundary conditions 

for a Dirac input voltage. In each plot, the two curves show the general solution given by 

(2.37) and the approximate solution by (2.38) or the Impulse diagram as shown in Fig 

1.10 of Chapter 1. It can been seen from these plots that the displacement response of a 

short circuited transmitter is very complicated. When a delta voltage pulse is applied 

across the transducer, waves are immediately generated at both front and back faces of the 

element with amplitudes A, B, and A2. The waves represented by A and B propagate 

within the piezoelectric element, and reflection and transmission occur at each interface, 

and the secondary piezoelectric action takes place to modify the response. Obviously the 

response by the approximate solution (2.38) has no such feature. 

It can be seen that the mechanical displacement generated instantaneously at t = 0 by the 

applied voltage varies exponentially within the first interval, x, due to the effect of 

secondary piezoelectricity. At t = x, a spike appears when part of wave B is transmitted 

into the loading medium. This behaviour is repeated each time when the waves inside the 

element reach the two interfaces, and after several periods the displacement approaches a 

sinusoidal form while the amplitude decays gradually. It was shown by Stuetzer (1967) 

that for a free piezoelectric plate this response may decay to a sine wave; this feature may 

be seen from Fig 2.4(f) in which the piezoelectric element is free from any backing and 

loading. The decay rate depends on the impedances of the loading and backing as shown 

in Fig 2.4(a)-11(e); when the backing is matched, the shortest signal is generated as 

shown in Fig 2.4(c). When the backing has a higher impedance than the piezoelectric 

disc, the response does not change phase when the wave reaches the back interface, 

which can be seen from Fig 2.4(d) and (e). 

(ii) Step function volt^e, V = H(t), t> 0, and Vl= ^ 

The transient displacement response in 0 < t < x is given as 

uo = Q(e«[- 1) (2.40) 
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The responses for five different backing are shown in Fig 2.5(a) - (e), and that for a free 

piezoelectric disc in Fig 2.5(f). It can been seen that at the start, the displacement response 

builds up nearly linearly; after the first interval, it decreases but the relationship with time 

is no longer linear due to the intercoupling effect; the response oscillates with a period of 

2t until it approaches a constant value. The amplitude of the response predicted by the 

general equation is larger than that by the Impulse diagram; the difference between the two 

at the first interval is Cu(e"^ - 1 - ai) . 

The mechanical loading and backing have a similar effect as in the response to a Dirac 

pulse. In the case of matched backing, the response reaches a dc value after time t by the 

Impulse diagram, but the general solution predicts some overshooting as shown in Fig 

2.5(c). For a free piezoelectric disc, the maximum reverberation occurs, see Fig 2.5(f). 

(iii) Sine excitation with V = sin(cil), and Vl= — — — 
S2 + of 

The transient response when 0 < t < x is 

Uq = Cy [ e«t - cos(o)t) - — sin(cot)] (2.41) 

co 
Fig 2.6(a) - (e) compares the general solution with that from the Impulse diagram for 

different backing conditions. The driving frequency is the open circuit frequency defined 

by (1.1). It can been seen that there are significant differences between the two curves; the 

response by the impulse diagram oscillates at the resonant frequency and the amplitude 

tends to infinity, while the response by the general solution has finite amplitude and 

smaller frequency than the driving frequency. This demonstrates that the short circuit 

resonant frequency of a transducer with high piezoelectric coupling factor (0.51 for 

PZT4) is lower than the frequency of the thickness mode at open circuit. Therefore, if a 

transducer with high intercoupling effect is driven by a voltage at the open circuit 

frequency, the mechanical response at the start is dominated by the transient response, 

and after several periods it approaches the steady state response. This phenomenon 

corresponds to that reported by Onoe et al. (1963) in which it was shown that the 

resonant frequency of a thin piezoelectric plate is shifted lower than the thickness 

frequency. 

The rate of increase of the response is affected by the mechanical loading and backing, see 

Fig 2.6(a), (b) and for matched backing the amplitude of the oscillations is constant after 

time x as shown in Fig 2.6(c). When the backing is of higher impedance than the 

transducer, the response no longer tends to infinity; in particular for rigid backing, it 

decreases gradually, see Fig 2.6(d) and (e). 
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(iv) Pulsed sine voltage exdtadon V = sin(cot) (0 < t < T, T = - or — ) 
(0 co 

The responses to sine voltage excitations with duration of a half cycle or one cycle are of 

interest since they are close to the pulse shape used to excite piezoelectric transducers. The 

responses to a half cycle sine voltage for Z2= 115x10^ and 345x105 are shown in Fig 

2.7(a) and (b). It can be seen that with matched backing, the displacement response is 

close to the applied pulse form, see Fig 2.7(b), however, a small reverberation 

(overshooting) is seen in the general solution. The responses to one cycle sine voltage for 

both backings are shown in Fig 2.8. 

2.4.3 Discussion 

It has been shown that the piezoelectric coupling factor has a great effect on the transient 

response. When the coupling factor is large, the amplitude of response is increased and 

the response form is modified, and the difference between the open circuit frequency and 

the short circuit frequency is also increased. When the coupling factor is small, the 

approximate method or the impulse diagram gives good results. 

The mechanical backing is an important factor in the control of the response level and the 

duration of the ringing (sensitivity and bandwidth). When the impedance of the backing is 

smaller than that of the piezoelectric element, the response changes phase each time the 

waves inside the element reach the front and back faces of the element, and gradually 

decreases. However, for the case of free loading and backing, the oscillation would not 

die away in the absence of mechanical damping in the piezoelectric element. When the 

backing impedance approaches the matched case, the response tends to die away rapidly. 

In the case of matched backing, only one signal is produced which is very close to the 

input form. When the backing is 'harder" than the transducer, the response only changes 

phase at intervals of 2t and gradually decreases. When the backing is rigid, the wave is 

completely reflected at the back interface without changing phase. 

2.5 A one dimensional mechanical model of piezoelectric transduceR 

A one dimensional mechanical vibration model of piezoelectric structures is presented in 

this section. It can be used to aid understanding of the mechanism of the vibration of 

piezoelectric transducers, particularly the interpretation of the characteristic frequencies of 

the transducers in the vibration vfewpoirvt, and it may be useful for transducer design when 

both the mechanical damping and the electrical loss are considered. The piezoelectric 
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structure is assumed to vibrate in one dimension only, and the vibration and materials are 

linear. 

The piezoelectric structures considered are mainly discs with large D/T ratios and rods 

with very small D/T ratios although it is also applicable to other structures vibrating in a 

one dimensional manner, such as spheres in pure radial vibration. The electrodes on the 

surfaces are considered to be very thin, and their mechanical properties, such as mass and 

stiffness are negligible. 

2.5.1 A degenerate two degree of freedom mechanical vibration system 

In mechanical vibration analysis a spring and a mass system can be used to model an 

elastic structure which vibrate around resonance. Similarly, a simple mechanical mass-

spring system can be used to analyse the vibration characteristics of a piezoelectric 

structure. The following equations describe the degenerate two degree of freedom system 

in which has only one mass component as shown in Fig 2.9 

m j x'l + Cj Xi + (ki + Tî k2) xj - r|k2 X2 = f j (2.42a) 

-11 k2 xj + k2 X2 = fz (2.42b) 

where m^, k^, Cj are the mechanical mass, stiffness and damping of the piezoelectric 

structure, and x^, f^ are the mechanical displacement and force respectively; k2 is the 

electrical 'stiffness' (dielectric stiffness) which can be determined by the static capacitance 

of the structure, X2 is the electrical displacement, which represents the voltage across the 

electrodes, and f2 is the electrical force, which represents the total electrical charge on the 

electrode; rj is a transformation factor between mechanical and electrical variables, which 

for a piezoelectric disc vibrating in the thickness mode is given by 

=33 
T1 = V (2.43) 

6^3 

where £33̂  are the piezoelectric and dielectric constant in the thickness direction. 

Three cases of the solution are discussed according to excitation manners. 

(i) Electrical excitation 

If the transducer is excited by an electrical signal, and f^ = 0, which is the case when 

transducers are used as transmitters, and if a voltage is apphed across the electrodes of the 

transducer, then assuming harmonic excitation and vibration, xg = X2 e'"', f2 = F2 e''^' 

and Xj = Xj e'™, from equation (2.42a) 
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mi x'l + ci xi + (ki + Xj = Tikj Xj (2.44) 

Since the RHS of the above equation is a known force, the natural frequency of this mass 

spring system is given by 

m f " ' ( 2 « ) 

This is defined as the series frequency of the transducer, so 

X 
'nk2 X2 

ki + r\'^k2 - miCO^ + i CjCO 

This is the mechanical displacement response when the piezoelectric structure is excited 

by applying a voltage, the mechanical frequency response function (FRF) for voltage 

excitation can therefore be written as 

^ = (2.46a) 
^ 2 k j + ^2^2 - m^co^ + i Cjco 

Substituting (2.46a) into (2.42b) gives 

^ 2 ki + r\^k2 - miCO^ + i c^ci) 

which can be written as 

F , ^ k , (k i - mico^ + i CiCD) (2.46b) 

^ 2 ki + ^^kg - miCO^ + i CjCO 

This can be defined as the electrical frequency response function since it is the ratio of 

voltage to electrical charge. 

The mechanical frequency response function for charge excitation can be found by 

dividing (2.46a) by (2.46b) and is given by 

(2.46c) Xi n 

^2 k j - mjCO^ + i CjCO 

where the parallel resonant frequency of the transducer is defined as < = & 

The electrical impedance of the transducer can easily be found from (2.46b) as 

Z ( m ) . k, + T l % 2 - m , ( » 2 + i c , 0 ) (2,48) 

icok2 (kj - m^co^ + i Cjco) 
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Since the electrical stiffness k2 is negative (dielectric property), the series frequency 

defined by (2.45) is smaller than the parallel frequency by (2.47). It can be seen from 

(2.46a) and (2.46c) that if there is no loss at the series frequency the mechanical response 

at constant voltage reaches a maximum, and the mechanical response at constant charge is 

a finite value, while at the parallel frequency, the mechanical response at constant charge 

reaches a maximum and the mechanical response at constant voltage is finite. However, 

the electrical response, which is usually expressed in terms of impedance in (2.48), drops 

to a minimum at the series frequency and reaches a m a x i m u m at the parallel frequency. 

The mechanical stiffness and mass can be obtained approximately by expanding the one 

dimensional analytical solution in a similar way as to obtain the parameters of the 

equivalent electrical circuit as shown in Fig 1.12(a) (Berlincourt et al., 1963). However, 

they may also be obtained by equating (2.45) and (2.47) to corresponding series and 

parallel frequencies obtained from the one dimensional analytical solution defined by (2.3) 

and (2.2). 

(ii) Mechanical excitation 

If the structure is excited by a mechanical force f j , and f2 = 0, which is the case for open 

circuit receivers, and assuming f^ = F^e'™, from equations (2.42) the frequency response 

functions can be found as. 

^ L 
k j - m^cD^ + i c^co 

& _ n 
k j - mjco^ + i c^co 

(2.49a) 

(2.49b) 

It can be seen that the transducer working as a receiver then vibrates at the parallel 

frequency as given by (2.47). The mechanical displacement and the electrical voltage 

reach maxima at the parallel frequency. 

From the vibration point of view, it is evident from both cases that the system behaves 

like a resonator at the series frequency, and acts as an absorber at the parallel frequency. 

This is reasonable since the transducer is used as a transmitter at the series frequency and 

as a receiver at the parallel frequency. 
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(Hi) Resistors 

If the transducer is considered in connection with a voltage source with an internal resistor 

of R, then an extra equation is needed as, 

X2 + Rf2 = Ev (2.42c) 

where Ey is the source voltage. However, this is not treated in the current thesis. 

2.5.2 Application to fliin piezoelectric discs 

In this section some theoretical results are presented by applying the mechanical model to 

a thin piezoelectric disc. 

In the approximate equivalent circuit as shown in Fig 1.12 in Chapter 1 the lumped 

electrical components are found from the first order approximation of the power series 

(Mason, 1948; Berlincourt et al., 1964). Here, the lumped mass and stiffness in the 

mechanical model can be found in a similar way. However, for convenience and accuracy 

they can also be obtained directly from the series and parallel frequencies given by the one 

dimensional analytical method. The electrical impedance, and the mechanical frequency 

response functions at constant voltage and at constant charge defined in (2.48) and (2.46) 

are then computed in the frequency range of interest. 

The prediction is made with a thin piezoelectric disc, PZT5A, a modified lead zircorate 

titanate; the material properties are listed in Table A. 1 of Appendix A with a mechanical Q 

factor of 75. The disc is 40.10 mm in diameter and 2.03 mm thick, giving a D/T ratio of 

20. 

In Fig 2.10(a) the predicted electrical impedance of the disc by the mechanical model is 

shown as a solid line, together with the electrical impedance predicted by the one 

dimensional analytical theory given by equation (1.5) of Chapter 1 which is shown as a 

broken line. It can be seen that excellent agreement is obtained throughout the frequency 

range of interest. Fig 2.10(b) and (c) show the mechanical response function at constant 

voltage and the mechanical response function at constant charge predicted by the one 

dimensional mechanical model. 

The effects of mechanical damping on the behaviour of the piezoelectric disc are clearly 

seen in Fig 2.11 where the mechanical structural damping factor is varied from 0.001 to 

0.1. As expected, with increasing damping, the resonant frequencies shift slightiy lower 

and the amplitudes at the resonant frequencies are reduced. 
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The superposition method can be used to calculate the response over a large frequency 

range which includes other thickness modes. In Fig 2.12(a) the electrical impedance 

response is predicted for the same disc in the frequency range 10 to 6500 kHz, which 

includes the first three through thickness modes (1st, 3rd, 5th thickness modes), and the 

electrical impedance response given by the analytical method is also shown in Fig 2.12(a) 

as a broken line. The structural damping factor of 0.0133 which corresponds to the 

mechanical Q factor of 75 for PZT5A is included in the prediction, so the response 

amplitudes at the resonant frequencies predicted by the mechanical model are finite and 

gradually decrease with increasing frequency. Fig 2.12(b) and (c) are the corresponding 

mechanical FRF at constant voltage and at constant charge respectively. 

Piezoelectric elements are often connected with other electrical components. The electrical 

impedance response has been predicted for piezoelectric discs connected with resistors 

and inductors as shown in Fig 2.13. Fig 2.13(a) shows the response of a system in 

which the disc is in series with resistances of 0,1, 5,10,20, 50 Q. It can be seen that the 

impedance at the resonant frequency increases as the series resistance increases, which 

broadens the bandwidth over the resonant frequency range, while the impedance at the 

anti-resonant frequency remains unchanged. 

Fig 2.13(b) shows the effect of a shunt inductance on the electrical impedance of 

piezoelectric discs as the inductance changes from 1 |iH to 20 p.H. It can be seen that the 

impedance in the low frequency range has been reduced by the shunt inductance. 

In broadband transducers an inductor placed in parallel with the piezoelectric element is 

usually used as a tuning element for the system (O'Donnell et al., 1981) together with a 

series resistor as shown in Fig 2.14(a). The corresponding electrical impedance response 

of such a system for a 10 Q series resistor and a 5 [iH shunt inductor is shown in Fig 

2.14(b). It can be seen that the tuning system reduces the low frequency impedance and 

increases the bandwidth of the resonance. 

It is evident from the above examples that the piezoelectric disc working in the thickness 

mode can be modelled by a simple mechanical mass and spring vibration system, and the 

model can be used to assist the understanding of the operating principles of piezoelectric 

transducers, and mechanical damping and electrical loss can easily be included. 
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2.6 Conclusions 

The one dimensional analyses of vibration characteristics of piezoelectric discs have been 

studied in detail in this chapter in both the transient response and steady state response of 

piezoelectric transducers. 

The transient study by the Laplace transform can be very tedious even for the simple 

cases. It has been shown that the short circuit mechanical response is much more 

complicated than the open circuit electrical response due to the secondary piezoelectric 

effect. The acoustic impedance of the backing has a great influence on the response of the 

transducer?. 

A simple mechanical vibration model of piezoelectric discs, which is based on a 

degenerate two degree of freedom mass-spring system, has been developed. It has been 

shown that the model can give easy interpretation of the characteristic frequencies of the 

piezoelectric transducers. The model has also been used to predict the electrical impedance 

response and the mechanical frequency response functions both with and without 

mechanical damping. Good agreement with the predictions by the analytical method have 

been obtained. 

However, the above analyses are limited to one dimensional motion. To account for other 

vibration modes of piezoelectric discs, three dimensional models have to be used. This is 

discussed in the following chapters. 
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Medium 2 
Zi 

0 a 
Piezoelectric disc Medium 1 

Z2 ^2 

Fig 2.1 Boundary conditions and wave propagation in a transducer 
(V: voltage; A and B are amplitudes of the waves in the piezoelectric 
element, v and Z are corresponding velocity and acoustic impedance; 
subscripts 1, 2 refer to parameters for media 1 (loading) and 2 (backing)) 
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(e) Z2 = 345 xlO^kg/m^s (rigid backing) 
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(f) iiree piezoelectric disc 

Fig 2.2 The voltage response of a piezoelectric transducer when a Dirac force 
pulse is applied at the front face for different backing (Z2) 
(Zc = 345 X 105 kg/m2s (PZT4); front loading, solid lines: Z; = 14.8 
xl05; broken lines: Zi = 115 xlQS; 0 and o are positions at time interval 
= n t j i is time for wave to travel through the disc, n is integer) 
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(c) Z2 = 345 xl05 kg/m2s (matched backing) (d) Z2 = 1035 xlO^ kg/m^s (r, = -0.5) 

Time (10"^ sec) 

O.IER 0.20 D.24 

Time (10"^ sec) 

(e) Z2 = 345 xlO* kg/tn^s (rigid backing) (f) free piezoelectric disc 

Fig 2.3 The voltage response of a piezoelectric transducer when a step force pulse 
is applied at the front face for different backing (Z2) 
(Zc = 345 X 105 kg/m2s (PZT4); front loading, solid lines: Zi = 14.8 
xl05; broken lines: Zi = 115 xl05; o and a are positions at time interval 
= nx, X is time for wave to travel through the disc, n is integer) 
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(a) Zz= 14.8 xlO^kg/m^s (water) (b) 2 2 = 1 1 5 xlO^kg/m^s (r̂  = 0.5) 

Time (1(M sec) Time (lO^̂  sec) 

(c) Zz = 345 xlO^ kg/m^s (matched backing) (d) Zz = 1035 xl05 kg/m^s (r, = -0.5) 
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(e) Zz = 345 xlO» kg/m^s (rigid backing) (f) free piezoelectric disc 

Fig 2.4 The displacement response of a piezoelectric transducer when a Dirac 
voltage pulse is applied across the electrodes for different backing (Z2) 
(Zc = 345 X 105 k^m^s (PZT4); Zi = 14.8 xlQS; solid lines by general 
solution; broken lines by Impulse diagram; o and o are positions at time 
interval = nt, % is time for wave to travel through the disc, n is integer) 
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(e) Z2 = 345 xlOB kg/m^s (rigid backing) (f) free piezoelectric disc 

Fig 2.5 The displacement response of a piezoelectric transducer when a step 
voltage pulse is applied across the electrodes for different backing (Z2) 
(Zc = 345 X 105 k^m2s (PZT4); Zi = 14.8 xl05; solid lines by general 
solution; broken lines by Impulse diagram; = and ° are positions at time 
interval = nx, x is time for wave to travel through the disc, n is integer) 
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(a) Z2= 14.8 xlO^kg/m^s (water) (b) Z2 = 115 xl05 kg/m2s (ra = 0.5) 
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(c) Zz = 345 xlO^ kg/m^s (matched backing) (d) Zz = 1035 xlO^kg/m^s (r, = -0.5) 
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(e) Zz = 345 xlOB kg/m^s (rigid backing) 

Fig 2.6 The displacement response of a piezoelectric transducer when a sine wave 
voltage is applied across the electrodes, for different backing (Zg) 
(Zc = 345 X 105 kg/m2s (PZT4); Zi = 14.8 xl05; solid lines by general 
solution; broken lines by Impulse diagram; o and n are positions at time 
interval = nx, T is time for wave to travel through the disc, n is integer) 
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(a) Z2 = 115 xlO^ kg/m^s (r, = 0.5) 
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(b) Z2 = 345 xlO^ kg/m^s (matched backing) 

Fig 2.7 The displacement response of a piezoelectric transducer when a half 
period of a sine voltage is applied across the electrodes for different 
backing (Z2) 
(Zc = 345 X 105 kg/m2s (PZT4); Zi = 14.8 xl05; solid lines by general 
solution; broken lines by Impulse diagram; o and o are positions at time 
interval = nx, x is time for wave to travel through the disc, n is integer) 
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(b) Z2 = 345 xlO^kg/m^s (matched backing) 

Fig 2.8 The displacement response of a piezoelectric transducer when a period of 
sine voltage is applied across the electrodes for different backing (Z2) 
(Zc = 345 X 105 k^m2s (PZT4); Zi = 14.8 xl05; solid lines by general 
solution; broken lines by Impulse diagram; o and o are positions at time 
interval = nx, t is time for wave to travel through the disc, n is integer) 
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Fig 2.9 A degenerate two degree freedom of vibration model of a piezoelectric 
disc (mi, ki, ci are mechanical mass, stiffness and damping coefficient; 
xi, fi are mechanical displacement and force; k2 is the electrical 
capacitance; X2, f2 are electrical potential and charge; T] is the coupling 
factor) 
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FREQUENCY kHz 
(a) Electrical impedance 

FREQUENCY kHz 
(b) FRF for constant voltage excitation 
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ii 
I i_ 

10 
(c) FRFfor^Smst^&a 

kHz 
arge excitation 

1500 

Fig 2.10 The predicted electrical i m p e ^ c e response and frequency response 
functions of a piezoelectric disc with a D/T ratio of 20 
(broken line: predicted by the analytical method; solid line: predicted by 
the mechanical model) 
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0 ooj) 

FREQUENCY kHz 
(a) Electrical impedance 

1500 

0 . 0 0 5 

O . O S 

FREQUENCY kHz 
(b) FRF for constant voltage excitation 

1500 

-0 Ol 

FREQUENCY kHz 
(c) FRF for constant charge excitation 

Fig 2.11 The effects of the mechanical damping on the electrical impedance and 
frequency response functions of the piezoelectric disc 
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FREQUENCY kHz 
(a) Electrical impedance 

FREQUENCY kHz 
(b) FRF for constant voltage excitation 

6500 

FREQUENCY kHz 
(c) FRF for constant charge excitation 

6500 

Fig 2.12 The predicted electrical impedance response and frequency response 
functions of a piezoelectric disc with a D/T ratio of 20 in ± e frequency 
range 10 - 6500 kHz (broken line; predicted by the analytical method; 
solid line: predicted by the mechanical model) 
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FREQUENCY kHz 

(a) in series with resistors (values in Q) 

FREQUENCY kHz 

(b) in parallel with inductors (values in p.H) 

Fig 2.13 The predicted electrical impedances when the piezoelectric disc is in 
connection with electrical components 
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R = 10 

Piezoelectric disc 

L = 5^lH 

•AAAAA 

(a) The piezoelectric disc is in series with a resistor and then in parallel 
with an inductor 

FREQUENCY kHz 

(b) The electrical impedance of the system shown in (a) 

Fig 2.14 The electrical impedance of the piezoelectric disc in an electrical circuit 
(Broken line: for the disc alone; Solid line: for the circuit) 



CHAPTER 3 

THE FINITE ELEMENT ANALYSIS AND MODAL ANALYSIS OF 
PIEZOELECTRIC DISCS 

3.1 Introduction 

In this chapter, a finite element method for piezoelectric materials is formed in generalised 

variables and coordinates. The solution of eigenvalue problem is then discussed and the 

mechanical response function at constant voltage excitation and the electrical impedance 

characteristic functions are formed. This is followed by the estimation of the strength of 

excitation of the resonant modes of a piezoelectric disc and finally the transient mechanical 

response when a piezoelectric disc is subjected to a voltage pulse across its electrodes is 

obtained. 

The general formulation of the finite element method for piezoelectric structures was first 

given by Allik and Hughes (1970). Here the formulation is obtained directly by the 

minimisation of the total potential energy of a piezoelectric structure. Most of the notation 

used in this chapter follows Zienkiewicz (1971) and Ewins (1984). 

3.2 The formulation of the finite element method 

3.2.1 The constitutive equations of piezoelectricity 

The matrix form of the constitutive equation for linear piezoelectric materials is, 

{T} = [cE]{S}-[e] {E} (3.1a) 

{D} = [ef{S}+ [eS]{E} (3.1b) 

where { } denotes a vector, [ ] denotes a matrix, and superscript T denotes a transposed 

vector or matrix. {S} and {T} are the mechanical strain and stress vectors; {E} and {D} 

are the electric field vector and the electric charge density vector; [c^], [e^] and [e] are the 

elastic constant matrix, dielectric constant matrix at constant strain, and piezoelectric 

constant matrix. 

The E and S superscripts on the constants refer to a particular choice of independent 

variables rather than particular boundary conditions. The material properties of a 

piezoelectric structure depend on [c], [e] and [e] which couples the mechanical and 

electrical variables. An arbitrarily anisotropic (triclinic) material without a centre of 

- 8 2 -
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symmetry has 45 independent material constants (21 elastic constant, 18 piezoelectric 

constant and 6 dielectric constants) (Auld, 1973). However, for poled ferroelectric 

ceramics (with Xg in the poling direction) which is of main interest here, they effectively 

have the symmetry of a hexagonal crystal, i.e, transversely isotropic. A material with this 

type of symmetry is described by 10 independent material constants (5 elastic constants, 3 

piezoelectric constants and 2 dielectric constants). The elastic constants matrix [c], 

piezoelectric constants matrix [e] and dielectric matrix [e], after dropping superscripts for 

convenience, are 

[c] = 

Cll C12 Cl3 0 0 0 -

C12 C22 ^23 0 0 0 

Cl3 ^23 C33 0 0 0 

0 0 0 C 4 4 0 0 

0 0 0 0 C55 0 

_ 0 0 0 0 0 ^66 — 

(3.2a) 

^66 - 2 '-̂ 11 ' C12) 

- 0 0 0 0 651 0 -

[ e f = 0 0 0 642 0 0 (3.2b) 

- ®31 632 G33 0 0 -

0 0 
-

[£] = 0 -E22 0 (3.2c) 

_ 0 0 -E33 

The mechanical terms in equation (3.1) are related by Newton's second law, 

(33) 

where {f} = { u v w j'T is the mechanical displacement vector along the x, y, z axes. 

The strain vector {S} is related to the mechanical displacement vector (f) by 

{S} =[Bf]{f} 

where 

(3.4) 
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[BF] = 

dx ^ 0 0 

0 

d 

- dy 

d 

0 0 

0 ^ dz 

0 

d 

0 

a 

dy 

d 

0 

(3 5) 

The electrical terms in equation (3.1) are related by Gauss' law, assuming that the 

piezoelectric material is an insulating material, and no flow of charge occurs inside the 

transducer, which gives 
V { D } = 0 (3.6) 

The electric field is then related to the electrical potential (j) by 

{E} =-{B^)<|) 

where 

(B*) = ( A & & 
(3^) 

(3 8) 

A linear piezoelectric material may be completely modelled by equations (3.1) to (3.7). 

Any given problem can be solved by applying the associated boundary conditions. The 

electric field is the electrical analogue of mechanical strain so a generalised stress strain 

relationship may be written as 

{a}=[C]e (3.9) 

where {a} = { T D is the generalised stress vector and {e} = { S -E is the 

generalised strain vector. The generalized elasticity matrix is therefore, 

[C] = 

CE 
(3.10) 

The strain-displacement relationship is now, 

{e}=[B]{fG} 

where, {fg} is defined as the generalised displacement vector, and 

{ f o ) = { f ( 1 ) } ' ^ = { u V w ( ] ) I ' T 

(3.11) 

(3.12) 
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The generalized B matrix is, 

[B] = 
Bf 0 

0 B. 
C113) 

The generalised coordinates and variables are used throughout in the formulation of the 

finite element method. 

3.2.2 The FEM formulation of jMezoelectric stnicturess 

The finite element method may be developed from a displacement approach by minimising 

the total potential energy of the system (Zienkiewicz, 1971). If damping is not 

considered, the total potential energy of a structure may be written as 

X = U + W (3.14) 

where, U is the strain energy of the structure, and W is the potential energy of the external 

loads, which may include the kinetic energy in dynamic analysis. 

In a continuous structure the generalised displacement of any point within the structure, 

(fg), may be expressed approximately in terms of the displacement shape function [N], 

and vector {5} containing a finite number of known nodal displacements: 

(fc;) = (3.1:5) 

For a piezoelectric material, if the electrical effects must be considered, the electrical 

potential is then equivalent to the mechanical displacement. An extra degree of freedom, 

the electrical potential, (]), must therefore be considered for each node. For the present 

problem there are therefore four degrees of freedom at each node i. In a three dimensional 

Cartesian system of coordinate (x, y, z), 

{5i} = ( f i 4i)T 

= { Ui Vi Wj ())j F (3.16) 

It should, however, be noted that the extra degree of freedom, the electrical potential, ([), 

has no mass associated with it in dynamic analysis. 

For equilibrium, the total potential energy must be a minimum for admissible variations of 

displacement. Thus, 

= 0 (3.17) 
a{6} 
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By applying equations (3.11) and (3.12), the strain energy of a piezoelectric structure is 

given as 

U = ^ ( e n o l d V 

= j 5{5}W[C] [B]{6}dV (3.18) 

Since {5}, the vector of the nodal displacements is not a function of position, the strain 

energy U is given by 

U = 5{5)T[j^[BF[C][B]dV] {5} 

The stiffness matrix [K], is then defined as 

[K] = f [B]T[C][B]dV (3.19) 
Jy 

and 

U = i{5}T[K]{5} (3.20) 

If the external forces are a concentrated point force vector {R}, distributed forces {p} and 

body forces {y}, then the potential energy of the external loads is equal to the work done 

by external loads but with opposite sign, i.e. 

W = - [{ foF lR} + f {fG}T{p}dV + f {fG)T{y}dV] (3.21) 
Jy Jy 

An extra term due to the inertia force must be included for the dynamic case, 

W = J ( f } T p ? ^ d V - [ ( f Q ) T ( R | + J ^ { f o ) T l p ) d V + £ { f o r { y ) d V ] (3.22) 

It should be noted here that the inertia term is only associated with the mechanical 

displacement f. Substituting the displacement expression (3.16) into the above equation 

gives 

W = [5]T^^j^[NFp[N]dV45F[[N]T{R}+j^[N]T{p}dV+j^[N]T{y)dv] (3.23) 

Applying equation (3.14), the final formulation is 
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[M] 
32(6} 

at2 + [K]{5} = (Rb) + {Rsl + {Rp} (3.24) 

where 

[M] = 
m 0 

0 0 

[m] = f[N]Tp[N]dV 
Jv 

[K] = f [B]T[C][B]dV 
Jv 

{Rg} = [N]^ {y) dV is the force vector due to the body force, 
Jy 

{R^} = [N]T{p}dV is the force vector due to the distributed force, 
Jv 

{Rp} = [N]'r{R} is the force vector due to the concentrated force. 

The forces given above represent the generaUsed forces, which can be mechanical forces 

{F} or electrical charges {Q}. 

Equation (3.24) may be written separately in terms of mechanical and electrical variables, 

and if damping is added, it becomes, 

- Mff 0 - L •Gf 0 • '1 ' + 

- Kff Kf4,-

. 0 0 . 

I'ct)-
. 0 G , u . w - ; F 

Q-

(3.25a) 

(3.25b) 

where, 

[MFF] = J [N]Tp[N]dV 
v 

[Kff] = J[Bf]T[CE][Bf]dV 
v 

[Kf^] = J[Bf]T[e][B^]dV 
v 

[K^$] = J[B^]T[-eS][B^]dV 
v 

In the finite element method, a structure is discretized into a finite number of elements in 

which all the expressions above are applicable to the individual elements (denoted by a 

superscript e). In addition, the compatibility condition between elements must be satisfied 

by means of continuity of nodal displacements across the boundary between elements, 

and the elements being conforming across their boundaries. The total strain energy of the 

system is then the sum of the strain energies of each element. 
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3.2 .3 The axisymmetric piezoelectric element 

The 'Serendipity' 8-node quadratic element described by Zienkiewicz (1971) is shown in 

Fig 3.1, having local coordinates Tj, with its edges being T] = ±1 and % = ±1 . The 

shape function for the comer nodes is 

Ni = (1 + ^ )(1 + Tio)( ^0 + no -1) 1 = 1 , 3 , 6 , 8 (3.26a) 

where tIq = TiHj , ^ . For the midside nodes 

Ni = | ( 1 - ^ 2 ) ( i + t 1 Q ) i = 2,7 (3.26b) 

== 3 (1 So )(1 - n f ) i = 4 ,8 (3.2(x:) 

These shape functions satisfy the condition that, 

Ni = 1 if i=j 

Ni = 0 if (3.27) 

In this case the generalized displacement at any point of the element is given by 

{f(]) == [I<] {iS}* (3.28) 

where 

(S)= = I 5, g; |T 

= { u, v , w, <1, Ug Vg Wg (fig }T (3.29) 

Thus 

U = NjUi + N2U2 + + NgUg = Z N;U; 

(3.:;0) 

(j) = + N2<1)2 + + Ng({)g = L 

By using the above shape functions, the stiffness and mass matrices can be constructed. 

To do this, however, the [B] matrix and the Jacobian matrix [J] must first be formed. 

1 [B] matrix formulation 

The general three dimensional expression for generalised strains in a piezoelectric material 

in Cartesian coordinates (x, y, z) is specified as follows, 
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{£} = < 

Ex 

Ey 

Ez 

Yxy 

Yyz 

Yzx 

-Ex 

-E„ 

> = 

9u 

0 

0 

3v 
5^ 

0 0 
3u 3v 

5^ 

" 0 

0 0 

0 

0 

9u 
5E 0 

0 

9w 
dz 

0 0 
9v 9w 
5z ^ 

9w 

0 0 

0 0 

0 0 

9x 

0 

0 

0 ^ 

0 

9({) 
dy 

8(j) 
9z — 

(3J1) 

which can be 

problem as, 

transformed into cylindrical coordinates (r, z, 6) for the axisymmetric 

{£] = < 

Er 

Ez 

ee 

yrz 

yiQ 

JzQ 

-Er 

-Ez 

V -EG V 

> = 

8u 

0 
u 
r 

au 

dz 
1 3 u 

r 99 

0 

0 

0 

0 

0 
9v 

9z 

0 

9v 

0 

1 9v 

7 ^ 

0 

0 

0 

0 

0 

1 9 w 
r ^ 

0 

9w w 

9r r 
9w 
9z 

0 

0 

0 

0 

0 

0 

0 

0 

0 

9(|) 

1 ^ 
r 98 

C132) 

The expression above can take into account non-axisymmetric harmonic loadings, which 

can be represented as a superposition of Fourier components. For example, if the external 

nodal loading is .. symmetric about the z axis, it can be written as. 
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R = ZRicos(10) 

Z = EZicos(ie) 

T = ZTisin(ie) 

Q = Z cos(18) ( 3 . 3 3 ) 

where, R, Z, T are the nodal forces along the radial, axial and circumferential directions, 

Q is the electrical charge, 1 is the integer harmonic number. The response of an element 

subjected to this I'th loading is. 

û  = NjCos(19) {û }® 

yi = NjCos(19) {v̂ }® 

w^ = NjSin(19) {wi}® 

(j)i = NjCosGG) {(j)'}® 

where, {u'}® is the nodal displacement due to the force of amplitude R^, etc. 

C134) 

On substitution of the above expressions into (3.52), the [B] matrix for each harmonic, 1, 

B'j , can be obtained as. 

3N-

^ a ^ c o s o e ) 

0 
N-

cos(16) 

0 
9N-
- ^ c o s d G ) 

0 

0 

0 

0 

0 

0 

0 

0 

1 

9N- 3N-
-g^cos(18) -gp^cosdG) 

- l ^ s i n ( i e ) 0 

-1 ^ sin(10) 

0 

0 

~ cos(lG) 

0 

N, 

^ c o s ( 1 0 ) 

0 

0 

0 

0 

0 

0 

0 

0 

0 

^ c o s ( l G ) 

^ c o s ( l G ) 

N' 
-1 - f sin(lG) 

(135) 

Since the piezoelectric material is modelled by linear equations, all the element matrices, 

and hence the solution, can be evaluated separately for each harmonic case 1. The total 

response is therefore the sum of the individual response of each harmonic component. 
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2 The elasticity matrix [C] 

The generalised elasticity matrix for a piezoelectric material of class 6 is a 9x9 matrix and 

can be written in Cartesian coordinates as 

[c] = 
c^ e 

e^ -e^ 
(3.36) 

3 Jacobian matrix [J] 

Since the shape functions are evaluated in the local coordinates, while the stiffness and 

other matrices are expressed in the global coordinates, the transformation matrix between 

local and global coordinates must be found. In the isoparametric element, the local 

coordinates are related to global coordinates by the same interpolation function N;, which 

is used in the displacement function. Hence, 

r - X 

z = for i = 1, 2, , 8 C137) 

By the usual partial differentiation, the transformation between local (t], and global 

coordinates (r, z) is 

< 

1 9Ni 

dr 
> 

aNj 
J ^ 3z > 

(3.38) 

where [J] is the Jacobian matrix and is given by. 

[J] = 

Br dz 

as as 

Br dz 

- dr] dr[ 

(3.39) 

On substitution of (3.37) the Jacobin matrix becomes. 



Chapter 3 Finite Element and Modal Analyses 92 

[J] = 

^ 9Nj 9N; 

3NJ ^ 8N: 
(3.40) 

Substituting (3.40) into (3.38) gives the [B] matrix expressed as a function of the local 

coordinates ^ and r\. 

4 The stiffness matrix [K] 

The stiffness matrix of an element may be calculated from (3.19) as 

[Kp = J[B]T[C][B]rdS 
s 

= J[B]T[C][B]rdet[J]d^dTi 
s 

where dS is the area of the element, det[J] is the determinant of the Jacobian matrix given 

by (3.40), r is the coordinate in radial direction, [B] is a function of local coordinates ^ 

and T|. Thus, 

+1 +1 

[K]e = J J [B]T[C][B]rdet[J] d%dn (3.41) 
-1 -1 

This integral is evaluated using 3 point Gaussian integration, details of the appropriate 

abscissae and weighting coefficients may be found in (Zienkiewicz, 1971). 

5 The mass matrix [M] 

In a similar manner the mass matrix of an element can be calculated as, 

+1 +1 

[M]« = p J J [N]T[N]rdet[J] d^dT] (3.42) 
-1 -1 

where p is assumed to be constant within an element. 

6 The damping matrix [G] 

If damping is considered the damping matrix is then added as. 
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+1 +1 

[G]= = J J [B]T[G][B]rdet[J] d^dri (3.43) 
-1 -1 

In a practical piezoelectric transducer system, the piezoelectric disc is excited by a voltage 

from the generator through electrodes on its top and bottom surfaces. Damping in this 

system is from two sources. One is the mechanical damping inherent in the transducer 

structure, and the other is the energy dissipation in the circuit which can be modelled as a 

resistance R, so the damping matrix is 

r Gf 0 
[G] = (3.44) 

0 G(t) j 
where [Gf], [G([)] are the mechanical and electrical damping coefficient matrices 

respectively. However, in current analysis, the generalised damping has not been used, 

and the modal damping is used which is discussed in next section. 

3.3 Modal analysis of piezoelectric discs 

3.3.1 Dynamic equation and boundary conditions 

The governing dynamic equation of piezoelectric materials obtained from the previous 

section may be written in matrix form as follows. 

- Mff 0 • J I Kff Kf* -

1 r + 
0 0 . . K f / K (̂j) . 

F (3.45a) 

(3.45b) 

where {f} = { u v w is the mechanical displacement vector, {(})} is the electrical 

potential vector, [Mg] is the mass matrix, [Kff], [Kf^], and [K^^] are stiffness matrices, 

and {F} and {Q} are mechanical force vector and electrical charge vector. 

Equation (3.45) in fact describes the dynamic behaviour of a raw piezoelectric material 

which is free from any boundary conditions. When a piezoelectric material is fabricated 

into piezoelectric devices, such as the piezoelectric discs used in ultrasonic transducers, 

the surface of the piezoelectric transducer usually consists of two areas, the electroded 

area and the non-electroded area as shown in Fig 3.2. The electroded area is usually 

covered by a thin layer of conducting material and is then connected to external electrical 

circuit. In practice, in the case of the piezoelectric disc, the top and bottom surfaces of the 

disc are usually uniformly electroded. 
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Each electroded area on the surface of a piezoelectric disc forms an equipotential surface. 

If the i'th electroded area has m finite element nodes on it, then the electrical potential and 

nodal charge on the i'th electrode surface have the following relationships, 

<t>l = <t>2 = = <t>m = (Pi 

Qi + Q2 + + Qm = Qi (3.46) 

where, (pj and Qj are the values of potential and total charge of the i'th electrode area. 

A piezoelectric disc usually has only two electroded areas, such as the top and bottom 

surfaces of the disc, and is excited by an applied voltage across its two electrodes, and the 

important parameter is the potential difference between these two equipotential surfaces. 

Therefore the electrical boundary conditions are such that the electrical potential on one of 

the electrodes, for example, the one on the bottom surface, can be set to an arbitrary value 

as a reference. For convenience, this electrode is usually grounded, and the electrical 

degrees of freedom, (|)pg, at the nodes of bottom surface, are then aU fixed to zero as 

% = 0 and 

Qb = 0 (3.47) 

Therefore the equation (3.46) can be written in a simple vector form for the only non-zero 

(top) electrode surface as, 

{4^p) ~ {Ip)(P 3nd 

Q = { I p } T Q p (3.48) 

where {Ip} is a vector in which the components corresponding to the position of the finite 

element nodes on non-zero electrode surface are one and zero elsewhere. 

Taken the above into consideration, equation (3.45) can be further partitioned for a 

piezoelectric disc having two different electroded areas, as 

Mgf 0 0 

0 0 0 

0 0 0 J 

4): 

^f(j)p 

<̂{)i({)p 

- (̂t)p(t)p 

' f ^ ' F ' (3.49a) 

^ = < 0 (3.49b) 

^<t>p' ^Qp, (3.49c) 

where the subscript i denotes the component corresponding to the electrical potential 

degree of freedom of the non-electroded nodes which include the internal nodes and the 

nodes on other non-electroded regions of the surface, while subscript p denotes the 

component corresponding to the electrical potential degree of freedom of the electroded 
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nodes. (t)j is the electrical potential vector corresponding to non-electroded nodes, and <})pis 

the electrical potential vector corresponding to the nodes on the non-zero electrode surface 

since the equations corresponding to zero-electrode nodes can be deleted. 

Appropriate excitation conditions or boundary conditions need to be considered before 

any computation can be carried out. For an ultrasonic transducer working in the 

transmitter mode, the mechanical boundary conditions can be assumed to be stress free. 

However, care must be taken with the electrical boundary conditions. The electrical 

boundary condition on the electrode of the top surface of the disc, cpy, determines the 

vibration modes which a piezoelectric disc can possibly have. Two extreme cases, 

constant voltage excitation and constant charge (current) excitation, are considered below. 

If the electrical potential of the electrode on the top surface of the disc is assigned to a 

known value, which sets the electrical potential difference between two electrodes to a 

constant or zero, the piezoelectric disc is then excited by constant voltage. The resonant 

frequencies calculated by applying this boundary condition correspond to the frequencies, 

denoted as f , ^ , at which the electrical impedance across the piezoelectric disc approaches 

zero. They are similar to the series resonant frequency fg and the resonant frequency fj. 

discussed in the one dimensional model of Chapter 2. 

With constant charge (current) excitation the resonant frequencies calculated by this 

condition correspond to the frequencies, termed as f^iax, which the electrical impedance 

across its two electrodes approaches a maximum. Sometimes they are also called as open 

circuit frequencies. They are similar to the parallel resonant frequencies fp, and anti-

resonant frequency f^in the one dimensional model. 

The eigenfrequencies of piezoelectric discs calculated by a three dimensional model will 

appear in pairs as constant voltage excitation resonant frequency and constant charge 

excitation resonant frequency at each mode. This is similar to the one dimensional case 

discussed in Chapter 2 where two sets of resonant frequencies (f^^^, fg, f^) and (f^ax, fp, 

fa) were identified. However, to find both f^^ , and fj^a,, problems for constant voltage 

excitation and constant charge excitation have to be solved separately, alternatively as in 

this thesis, only the problem for f^j^^ is solved, and f^ax can be found through the 

maximum of the electrical impedance function if it is required. 
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3.3.2 Eigenvalue solution 

The solution of equation (3.49) is usually obtained by using condensation techniques to 

eliminate the equations corresponding to the electrical potential degrees of freedom of the 

non-electroded nodes (AUik et al., 1974; Naillon et al., 1983), which may have the 

advantage of reducing the size of the problem for eigenvalue solution when the structure 

has a large proportion of non-electroded nodes. However, if any condensation process is 

used, the well-banded stiffness matrix is lost and it becomes fully populated. Hence, the 

solution for constant voltage excitation will be solved directiy in this thesis, treating the 

electrical potential degrees of freedom exactiy as mechanical degrees of freedom and 

preserving the well-banded stiffness matrix properties. 

If F = 0, the first two equations of (3.49) can be written as. 

Mg- 0 

0 0 
> + 

Kff : -K f̂(|)p4)p 

. -K(|)i(|)p(|)p 

(3.50a) 

(3.50b) 

For voltage excitation the RHS of equation is a known force, and the eigenproblem (free 

vibration) is then, 

- Mff 0 " J f l Kff 
> + 

0 0 . U i 
= 0 

(3.51a) 

(3.51b) 

which is 

[ M ] ^ ^ + [K] {5} = 0 (3J2) 

Assuming the structure is vibrating harmonically in a form 

{5) = {vl eiG)t (3.53) 

where {ly,) is a time independent amplitude vector of order N, co is the vibrating 

frequency. (3.53) can be written separately according the mechanical and electrical 

components as. 

¥ f 

Vi J 

• gicot 
(3.53a) 

(3.53b) 
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Substituting (3.53) into (3. 52 ) leads to, 

[K]{\i/}= co2[M]{xi/} (3.54) 

Equation (3.54) is a generalised eigenproblem, whose solution may be obtained by 

various eigenvalue solution schemes to give N pairs of eigenvalues and eigenvectors 

(coj^, {\j/}i), (0)2^, {\ | /}2),(0)^2, (vlr), ..., and (0)̂ 2^ (vIn)- The eigenvector 

is called the r'th mode shape vector and cOj. is the corresponding natural frequency of 

vibration. 

For convenience, the eigenproblem solution solution can be expressed in matrix form as 

follows 

[T] = [ {\|/}2, ..., (Ylr , ( v I n I (3.55a) 

im = 

COi 

0)2^ 

(Or 
(3.55b) 

C0n2 J 

where [Y] is the matrix whose columns are the eigenvectors and [Q^] is the matrix 

which has the eigenvalues cOj.̂  on its leading diagonal, and all the off-diagonal terms are 

zero. 

Since the stiffness matrix [K] given in equation (3.54) is non-positive definite, due to the 

negative dielectric terms in the elasticity [C] matrix (3.36), the particular numerical 

procedure to solve the above eigenproblem (3. 54) has to be chosen so that it can 

accommodate a stiffness matrix with a negative determinant IKI. This problem can be 

avoided by static condensation to eliminate the second part of equation (3.50) (Allik and 

Hughes, 1974; Naillon et ai, 1983). However, as stated before, the resulting stiffness 

matrix is then fully populated, which reduces the solution efficiency. Alternatively, some 

matrix transformation must be carried out before the standard eigenproblem solution 

procedure in the finite element package is applied. Here a tridiagonalization of the matrices 

by the Lanczos method is adopted, see Appendix A. The general eigenproblem (3.54) is 

converted to a standard eigenproblem of the form 

1 
{¥*} = [Tn]{¥*) (3.56) 

where {y} = [X][{\j/*} and [TJ is a tridiagonal matrix. 
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Standard solution procedures, such as QR iteration (Bathe, 1982), are then applied to the 

new eigenproblem (3.56). The eigenvector {\j/*} in (3.56) can be related back to the 

original eigenvector {\|/} in (3.54) by the transformation matrix [X] used in Lanczos 

method while the eigenvalues solved from (3.56) are identical to those from (3.54). The 

eigenvectors obtained from this procedure are mass-orthonormalized, which gives 

r F ] T [ M ] m = m 

m T [ K ] m = [Q2] (3.57) 

3.3.3 Steady state response functions 

Having obtained the eigenvectors, the generalized nodal displacement vector, {5(t)}, can 

be expressed in (or transformed into) the generalized modal displacement vector {z(t)} 

{6 ( t ) }=m{z( t ) } (3.58) 

where PF] is the eigenvector matrix and {z(t)} is the modal displacement vector or modal 

participation vector. (3.58) can be written in components as 
N 

{15} = (TCrlZrCt) (3 :59) 
r = 1 

where (Vj.} and Zj.(t) correspond to the eigenvector and the modal displacement in mode r. 

The forced response function can be obtained by pre-multiplying equation (3.50) by 

[Y]^, and using equation (3.58). 

-co2pF]T 
" Mff 0 • 

0 0 _ 
m { z } = - m T 

I Kf(|)p(t)p 

I (̂})i(t)p^p 

(3.60) 

By using the orthogonality (orthonomality) relations (3.57), 

[W 
Mjf 0 

0 0 
m = [ I ] and 

Kff 
m = 

so 

Kf(|)p4)p 1 
( [ Q 2 ] - [ ( o 2 ] ) { z } =-PF]T<| (3 .61) 

. K (̂j)i(j)p^p J 

Due to the orthogonality, the above equations are decoupled, and the modal displacement 

for mode r can be found as. 
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^ ' (0,2 - 0)2 

From (3.59) the generalized nodal displacement vector is therefore 

r = 1 0 ) ^ 2 - 0 ) 2 

Thus the mechanical part of the displacement vector is 

I f , , ^ 
r = 1 0)^2 - 0)2 

Similarly 

, i (3.65) 
r = 1 03^2 - 0)2 

Substituting (3.64) into equation (3.49c) and taking outside of the bracket, gives 

N 

[ S 
- ([KfHiplT - [Kj)ij,p]T[K4ii^|]-'[Kf^i]T)(Vrt) (V,)'^[Kf(|,p Kj),4ijT 

r = 1 0)^2 - 0)2 

+ I4lpl = IQp] (3.66) 

Pre-multiplying equation (3.66) by {Ip}"̂  and using the relation (3.48a) 

r f - (Ipl'^([Kf<|)pr - [Kj,ij,p]T[K|j,i^„l-l[Kfj,jT)(yrf) lV,)T[Kf<[,p K^ij,p]T|lp| 

, . 1 C0,2 - 0)2 

tIp)T([K<Wpl- = Q + 

The electrical frequency response function can then be obtained as 

(p r=l 0)̂ 2 - 0)2 

where 

rA ={Ip)T([Kf<(^]T - [K,t,i4^]T[K$i,|,J-l[Kf^i ]f )(V,f) (V,)T[Kf^ (3.68) 

= (Ip)T([K^p,fpl- 0.69) 
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r^ is defined as the modal constant of mode r in terms of frequency response function Q/cp 

(Ewins, 1984), which couples the external electrical force and the response of the 

systems, and is the static capacitance of the piezoelectric structure. If mechanical 

damping, such as hysteretic (structural) damping is considered, it can be shown that the 

eigenvectors obtained for undamping case are also orthogonal with the damping matrix 

[G], the electrical FRF can be written as 

2 = E — ^ ( 3 . 7 0 ) 
(p r = 1 CO/ - C02 + 1 

where Tij is the loss factor in mode r. In this thesis, is assumed constant for all the 

modes. 

It can readily be shown that 

- [K<,,i4,p]T[K<,,i4,i]->[Kf,|,i]T)(y^) = l v , ) T [ K f ^ K ^ i ^ T ( i p | (3.71) 

and if we define the equivalent nodal force vector as 

{ H F ) = [KF<|^K,|,I^P]T{IP) (3.72) 

and 

H , = {VrFlHp} (3.73) 

rA = H,2 (3.74) 

The electrical impedance response function of the piezoelectric structure can then be 

obtained by differentiating the electrical charge as 

Z(co) = (3.75) 
icoQ 

The frequency response function for voltage excitation at the i'th degree of freedom can 

be obtained from equation (3.64). If is the i'th component of eigenvector of mode r, 

N 

fi = Z Vrf' Zr 

r=l 

^ y Kf^pK<.i<.p FUpl<P 

' h . 0)2 

In terms of the frequency response function, then, 



Chapter 3 Finite Element and Mcxial Analyses 101 

^ _ _ y V r f ^ ( Y , i n K f < ) p K ^ , 4 p ] T ( I p ) 

(p r=l COj.̂  - CÔ  

= - i (3.77) 
r=l COj.̂  - 0)2 

For hysteretic damping case, then 

^ = - X (3.78) 
(p r=l COj.2 - (0^ + i 11̂ (0 

To evaluate the strength of excitation of each mode (or the intensity of each mode), many 

forms piezoelectric coupling factors could be used as reviewed in Chapter 1. However, it 

has been found that it may not always be satisfactory to use piezoelectric coupUng factors 

in the three dimensional analysis of piezoelectric discs since the modal density is very 

high. Locke et al. (1987) found that for some modes of the piezoelectric discs the anti-

resonant frequency predicted by the finite element method f^ was smaller than their 

resonant frequency fj., and it was also very difficult to identify f^ and f̂  of the same mode 

without ambiguity. 

It was therefore decided in this work to use the modal constant defined in equation 

(3.74) to evaluate the strength of the excitation of each mode since it couples the external 

electrical force (voltage) to the response of the system. 

3.3.4 Transient mechanical response when subjected to a voltage pulse 

The transient mechanical response when a piezoelectric disc is excited by a voltage pulse 

can be obtained by using the mode superposition method (Zienkiewicz, 1979) as shown 

in equation (3.58) 

( 8 ( t ) ) = m ( z ( t ) } 

With the eigenvectors being M-orthonormalized, the dynamic equation (3.50) becomes 

^ + [ 0 2 ] (z) = mT{R(t)} (3.79) 

where {R(t)}, the forces vector when voltages are applied across the electrodes is given 

by 
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(R(t)} = [Kf(j)p 

= K^i(J>pF(Ipl^W 

= {Hf}9(0 

and 
[^]T{R(t)}=m'^{HF)9( t ) 

= {Hx}(p(t) 

If damping is neglected, the above equation can be decoupled and 

^ + 01,2%^ = H,(p(t) r = 1,2 Nmax 
(3.82) 

,p(t) can be an arbteary function of time, and by using the Duhamel integral, fte solution 

of the above differential equation is 

y (t) = — f^Hr(p('c)sin[cOr(t-t)]d'c + ArSin((Ort) + B,cos((0,t) (3-83) 

^ 95 
w h e r e / I , Br wc Astemimedfrom a e i n k i d ( x m d i m m s . I f 6 o a n d denoe Ae 

displacement and velocity at t = 0, then, 

Zrlt=o = (V}7[M]5O 

# 1 .0= 

The Duhamel integral can be evaluated numerically, and an analytical solution can be 

obtained for some simple excitations. 

superposition of the response in each mode from (3.59) as, 

N 
{5(t))= X lV)rZr(0 

r = 1 

If the damping can be assumed to be proportional, in which case the eigenvectors are 

identical to undamped case, 

[G] (Vl j - 2C0r^r"rj 
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where, is a modal damping parameter (viscous damping), and is the Kronecker 

delta ( 5j.j =1 for r = j, = 0 for r # j). Therefore, by using (3.85) the eigenvectors {^1^ 

r = 1, 2, 3, ..., N^ax' are also G-orthogonal and the equation (3.79) can still be 

decoupled into the form 

d^z, dz, 
- ^ + 2(0r^j.-^ + (0̂ 2 Zr = (p(t) r = 1, 2 Nmax (3.86) 

In this case, the solution procedure of the dynamic response is the same as when damping 

is neglected except that the response of each mode is obtained by solving the above 

equation. 

3.4 Conclusions 

The formulation of the finite element analysis of piezoelectric materials has been carried 

out. The solution for the eigenproblem, and the formulation of various frequency 

response functions including the electrical impedance characteristic function have also 

been obtained. 

Since the formulation and the solution of eigenvalue problem are carried out using 

generalised coordinates and variables, following the standard finite element analysis 

procedure, the analysis of the vibration characteristics of piezoelectric structures can be 

carried out with a standard finite element package, for example, FINEL, developed in 

Imperial College (Hitchings, 1984). The piezoelectric element is implemented simply by 

adding one extra degree of freedom to the corresponding elastic elements. The generalised 

material constants matrix which includes the elastic constants, the piezoelectric constants 

and dielectric constants must be input rather than just the elastic constants. The problem of 

the non-positive definite stiffness matrix which is caused by the dielectric constants, can 

be solved by transformation of the matrix. The resonant frequencies and the 

corresponding mode shapes of piezoelectric structures for constant voltage excitation can 

then be found by a standard eigenproblem solution scheme. By further manipulation to 

obtain modal constants and static capacitance of the piezoelectric disc, the frequency 

response functions and the transient response for constant voltage excitation can then be 

obtained by the modal analysis method. 



Chapter 3 Finite Element and Modal Analyses 104 

ri = —1 

Fig 3.1 Global and local coordinate systems 

The i'th electroded a i ^ 

Non-electroded area 

Fig 3.2 Electroded areas and non-electroded area over a surface of the piezoelectric 
material 



CHAPTER 4 

THREE DIMENSIONAL ANALYSIS OF VIBRATION 
CHARACTERISTICS OF PIEZOELECTRIC DISCS 

4.1 Introdudion 

In Chapter 3 the formulation of the finite element analysis of piezoelectric structures has 

been presented. The various frequency response functions including the electrical 

impedance response and the mechanical frequency response function when the 

piezoelectric disc is subjected to a voltage excitation have been obtained. 

In this chapter the vibration characteristics of piezoelectric discs are analysed by the three 

dimensional finite element model. To begin with, the possible types of resonant modes of 

piezoelectric discs in the frequency range of interest are discussed, and the natural 

frequencies, mode shapes and modal constants of piezoelectric discs with D/T ratios of 

20, 10 and 0.5 are then predicted. The frequency response functions and the electrical 

impedance frequency responses of these discs are then calculated from these modal 

parameters. 

Experimental results are then presented to verify the predictions from the theoretical 

model. The resonant frequencies and the electrical impedance frequency responses of a 

variety of discs have been measured and some mode shapes of the discs have been 

checked using laser interferometry. 

4.2 Types of vibration modes predicted by the FE analysis 

The resonant frequencies of piezoelectric discs are predicted for constant voltage 

excitation. These correspond to the short circuit resonant frequencies or the frequencies at 

which the electrical impedances of the disc are zero if energy dissipation is not 

considered, as discussed in Chapter 1. The mode shapes at these resonant frequencies are 

also computed. The disc analysed is assumed to be axisymmetric with full electrodes on 

the top and bottom surfaces, and the 8 node quadrilateral axisymmetric piezoelectric 

element developed in Chapter 3 is used. The harmonic number in equation (3.35) is set to 

zero since the forcing is axisymmetric. The FE eigenvalue solution predicted both the 

extensional modes and the flexural modes, however, only the extensional modes can be 

excited electrically in this manner and are presented. 

- 105-
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Since the vibration characteristics of piezoelectric discs are most important around the 

frequency of the first through thickness mode of the piezoelectric disc defined by the one 

dimensional model, the frequency range of interest is in this range, and only the modes 

with frequencies up to approximately one and a half times the first through thickness 

frequency are predicted. 

Good accuracy is ensured by both the eigenvalue solution routine itself and the finite 

element mesh used. The implemented eigenvalue routine in fact calculates about twice the 

number of modes required. This ensures that no mode in the frequency range of interest is 

missed, even though the modes do not always appear in strict rising fr-equency order. 

The mesh density is usually so chosen that there are enough finite element nodes (5 to 7) 

per wavelength of the hightest mode required both in the radial and thickness direction. It 

is possible to maintain good accuracy for high order modes at the expense of the 

computing cost, but it is not necessary for the present work. Restrictions may arise from 

inadequate computing memory, such as that there may not be enough in core memory for 

the fast Lanczos transformation routine. The amount required depends upon the number 

of modes required. 

It was found that there are a large number of modes predicted in the frequency range of 

interest for a piezoelectric disc, as discussed by previous experimental reports (Shaw, 

1956; Dcegami et al., 1974; Ueha, et al., 1983), while no one of them has the piston-like 

motion of Fig 1.3(b) assumed by the one dimensional model. In many experimental 

reports, modes were classified by their characteristics in the measured frequency spectrum 

rather than their deformed pattern (Dcegami et al., 1974). Here, the mode shapes predicted 

by the FE model are examined, and five groups of modes are classified according to their 

mode shapes, which are consistent with the previous reports. These are radial modes (R 

modes), edge modes (E modes), thickness shear modes (TS modes), thickness 

extensional modes (TE modes) and high frequency radial modes (A modes). Typical 

examples of these five types of mode shapes are shown in Fig 4.1(a) to 4.1(e) for a 

piezoelectric disc with a D/T ratio of 20. Since the disc is axisymmetrical, only the half of 

the cross section of the disc is plotted; the left edge is the central axis, and the right edge is 

the cylindrical surface. The broken line shows the finite element mesh itself, and the sohd 

Une represents the deformed shape of the disc at the resonant frequencies. 



Chapter 4 Three Dimensional Analysis 107 

1. Radial modes (R) 

The first group of the resonant modes predicted by the finite element analysis are the 

radial modes, with an example of the mode shapes shown in Fig 4.1(a). It can be seen 

that in radial modes the disc stretches in the radial direction and expands in the thickness 

direction due to the Poisson's ratio effects. The mode shapes of radial modes are 

characterised by large radial displacement at the cylindrical surface of the disc and nodal 

circles over the top and bottom surfaces of the disc at which the displacement in the axial 

direction is zero. The maximum axial displacement occurs at the centre of the surface and 

it approaches zero at the edge of the disc. The number of nodal circles increases as the 

order of the modes increases. Fig 4.1(a) shows a radial mode of 4 nodal circles. 

Since the discs tend to have a large diameter compared with their thickness, the 

frequencies of the radial modes are rather lower than those of the other modes, and as the 

order of the radial modes increases, the frequencies are increased in a manner which are 

close to the roots of a Bessel function defined in equation (1.6) of Chapter 1. 

2. Edge mode (E) 

An edge mode is the mode in which the axial displacement at the edge of the surface of the 

disc is of the same order as that at the middle of the surface, for example, the mode 

shown in Fig 4.1(b). Apart from this difference, the edge mode has similar mode shape to 

the radial modes. It is also observed that the radial modes in the neighbourhood of the 

edge mode have fairly large axial displacement at the edge of the surface. However, only 

the mode which has the maximum axial displacement at the edge is defined as the edge 

mode. 

3. Thickness shear modes (TS) 

The third group of resonant modes are those having large radial deformation inside the 

disc which varies through the thickness but very little at the cylindrical surface as shown 

in Fig 4.1(c). They are characterised by nodal cylindrical rings inside the disc along the 

thickness direction at which the radial displacements are zero. As with the radial modes, 

the number of nodal rings increases with increasing order of the thickness shear modes. 

The mode shape shown in Fig 4.1(c) has 4 nodal rings (including one at the centre and 

one at the edge). The frequencies of the thickness shear modes are very close to the 

second through thickness shear mode defined by the one dimensional model. 
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4. Thickness extensional modes (TE) 

The fourth group of resonant modes shown in Fig 4.1(d) are the thickness extensional 

modes, or the thickness modes in short. They lie in the frequency range of the first 

through thickness mode predicted by the one dimensional model, which is given by 

equation (1.2) with n = 1, and they may be the most interesting and important modes in 

piezoelectric discs. The axial displacement of the surface in the thickness extensional 

modes is similar to that in the radial modes in that it varies with radial position about a 

mean value. In the case of the radial modes, this mean value is zero and therefore the 

points at which the displacement has its mean value are the nodal circles. In the case of the 

TE modes, however, the mean value is non zero, so the axial displacement pattern is 

similar to that of the radial modes, but superimposed on a constant shift (or "dc" offset). 

This shift may be regarded as analogous to the piston-like motion shown in Fig 1.3(b) by 

the one dimensional analysis. The thickness extensional mode therefore has characteristics 

of the high order radial modes and one dimensional through thickness motion. 

5. High frequency radial modes (A) 

The last group of modes are the high frequency radial modes as shown in Fig 4.1(e). The 

axial surface displacement in the high frequency modes (A) is essentially a superposition 

of the displacement in the low order R-modes with that in the high order R-modes. This is 

shown schematically in Fig 4.2. The radial displacement at the cylindrical surface, 

however, is very small. 

It can be seen that the thickness extensional modes predicted by the finite element analysis 

are much more complicated than expected from the one dimensional analysis; not only are 

the mode shapes complicated but also several similar modes in the frequency band 

around the through thickness frequency obtained from the one dimensional analysis are 

predicted. To decide which mode(s) can be strongly excited by an applied voltage, the 

excitation force pattern must be taken into consideration. In order to do this the modal 

constants of the resonant modes must be evaluated as described in chapter 3. 

4.3 Vibration characteristics of a PZTSA disc with a D/T ratio of 20 

In this section the vibration characteristics of a piezoelectric disc are analysed by the 

three dimensional finite element model. The material of the piezoelectric disc is PZT5A, 

which is a modified lead zirconate titanate ceramic. The material constants provided by 
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Vemitron Ltd. are listed in Table A.l. Like other piezoelectric ceramics PZT5A has a high 

charge sensitivity and also a relatively high loss factor with a mechanical Q factor of 75. 

The disc analysed was 40.10 mm in diameter and 2.03 mm thick, the dimensions being 

chosen to correspond with one of the discs which was available for testing. This gives a 

diameter to thickness ratio of approximately 20, which is in the same order as the D/T 

ratio used in many NDT transducers. The disc was labelled P5A20 to denote PZT5A and 

the D/T ratio of 20. Since the disc is fairly thin with D/T of 20 the one dimensional 

analysis is also applicable, and comparison will be made between predictions from the 

three dimensional and one dimensional models. 

The one dimensional theory predicts that the first through thickness mode of this disc had 

a frequency around 962 kHz, and the second through thickness shear mode had a 

frequency of 825 kHz. The frequency range of interest of this disc was therefore set from 

zero to 1500 kHz, and all the modes whose frequency was below 1500 kHz were 

required by the eigenvalue solution programme. A 2x48 mesh of the 8 node quadrilateral 

axisymmetric piezoelectric element described in Chapter 3 was used, which gave 5 nodes 

through the thickness and 97 nodes along a radius. Finer meshes were also used, and it 

was found that the accuracy was improved, but not significantly for those modes of 

interest, while the cost of computing increased drastically. 

4.3.1 The natural frequencies and mode shapes 

Within the frequency range 0 to 1500 kHz, a total of 130 modes were found by the 

eigenvalue prediction. Off these 66 modes were flexural (anti-symmetrical) modes which 

cannot be excited by a voltage applied to electrodes on the top and bottom surfaces of the 

disc, and so do not appear in the computed response functions. To save space only the 

frequencies of the first 48 extensional modes are listed in Table 4.1 which covers the 

frequency range of 0-1200 kHz. The corresponding mode shapes are shown in Fig 4.3. 

The modes listed in Table 4.1 were identified according to their mode shape 

characteristics and their mode types are given in the table. 

It can be seen from Fig 4.3 a large proportion of the modes fall into radial mode group. 

The first 12 modes predicted are the lowest 12 radial modes with increasing numbers of 

nodal circles over the top and bottom surfaces of the disc. The maximum axial 

displacement over the surface occurs at the centre of the disc, and approaches zero at the 

edge of the disc. Their frequencies increase in a manner close the roots of Bessel function 

(Berlincourt et al., 1963), which shows that the radial modes are nearly evenly 
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distributed. Mode 13 at a frequency of 657.7 kHz is the edge mode with very pronounced 

axial displacement at the edge of the surface. Modes 12 and 14 also have a fair amount of 

axial displacement at the edge of the disc, though they are regarded as radial modes. 

Modes 15 to 21 are higher order radial modes. 

Five consecutive modes between 22 and 26 are thickness shear modes; they have very 

close frequencies, 873.2, 876.4, 880.0, 887.0 and 893.2 kHz and have similar mode 

shape characteristics with very strong radial deformation inside the disc along the 

thickness direction. They have very little deformation at the edge of the disc in both 

thickness and radial directions, and the radial deformation on the cylindrical surface 

approaches zero. The number of nodal rings increases with increasing frequency. 

However, the first thickness shear mode predicted at 873.20 kHz has two nodal rings, 

which is not the simplest mode shape of this sort. The mode 27 - 29 are high order radial 

modes. 

Modes 30 to 34 are the thickness extensional modes, or the thickness modes. Their axial 

surface displacement varies along the radial direction but with a non zero mean value. In 

particular mode 32 at frequency of 964.9 kHz has a very large mean value. This makes 

mode 32 similar to the first through thickness mode assumed by the one dimensional 

model. It was subsequently found that this similarity was not so clear for piezoelectric 

discs with lower D/T ratios. 

For the modes above this range, the mode shapes are more and more complicated. Some 

of them are high order R modes, while some are A modes, for example, modes 34, 37 

and 40. It can be seen that A modes have frequencies above those of the thickness 

extensional modes, as reported by Ikegami et al. (1974), and the mode shapes are close to 

those shown in Fig 1.15(c) which were obtained analytically by applying the zero radial 

displacement boundary condition (Aggarwal, 1952b). 

It is evident that the thin piezoelectric disc with a D/T of 20 has many more resonant 

modes than predicted by the one dimensional model, and no one of them has the piston-

like mode shape shown in Fig 1.3(b). For this particular piezoelectric disc with a D/T of 

20, one of the thickness extensional modes, whose frequency predicted at 964.94 kHz is 

very close to the first through thickness frequency at 962 kHz predicted by the one 

dimensional model (less than 0.3% difference), has a very large mean value of the axial 

displacement over the surface of the disc. This mode shape has considerable similarities 

with the through thickness mode assumed by the one dimensional theory. 
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4.3.2 constants 

To evaluate the strength of each mode, the modal constant defined in (3.74) was 

calculated using the equivalent force vector given by (3.72) and the eigenvector (mode 

shapes) obtained in the eigenvalue routine for all the modes predicted (including both 

symmetrical and anti-symmetrical modes). The equivalent nodal force in the axial 

direction on the surface due to the applied voltage is plotted in Fig 4.4 as a function of 

normalised radial position. It can be seen that the equivalent nodal force increases with a 

zig-zag form along the radius. The zig-zag variation between the middle-element nodes 

and the inter-element nodes results from the axisymmetric element used and the nature of 

discretisation of the finite element method. It can be reduced by increasing the finite 

element mesh density, however, this is not necessary for the present work. 

The calculated modal constants of the first 48 modes in the frequency range of 0 to 1200 

kHz are listed in Table 4.1, and the values normalised to the maximum modal constant are 

plotted in Fig 4.5. It can be seen that the modes around the frequency range 900 to 1000 

kHz have very large modal constants, mode 32 having the maximum value of 26010; 

modes 30, 31 and 34 also have very large values, which indicates that these thickness 

extensional modes can be strongly excited. The low frequency radial modes in general 

have relatively small modal constants though the first mode has a slighdy higher value 

than the others while the modes around the edge mode have larger modal constants, 

which suggests that they are more strongly excited than the adjacent radial modes. The 

radial modes above the edge mode and the thickness shear modes have very small modal 

constants, therefore they can only be weakly excited by an applied voltage. The modes 

above the frequency range of the thickness extensional modes, such as high order R 

modes and high frequency A modes have small modal constants, and therefore can be 

only weakly excited. 

The modal constants may be interpreted by considering the equivalent nodal force over the 

surface of the disc and the mode shape of the modes. Since the equivalent nodal forces are 

nearly in linear relationship with the radial position, as shown in Fig 4.4, if the movement 

over the surface of the disc has a non-zero mean value as in the case of the TE modes, the 

terms in equation (3.74) are additive, giving a large sum for the modal constant, while if 

the movement changes sign over the surface of the disc as is the case in radial modes, 

different terms in (3.74) tend to cancel. In the first radial mode, the axial displacement is 

in the same direction over the whole surface of the disc (same sign), giving a high modal 

constant. The value, however, is lower than in the the TE modes since the absolute value 

of the displacement is small compared with the radial displacement. This is the reason 
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why the modal constant of the first radial mode is slightly bigger than the others. The 

modes around Ae edge mode have very large displacement at the edge of the disc and the 

nodal force at Wge of the disc reaches maximum, so this term contributes significantly to 

the modal constants, resulting in the small peak in Fig 4.5. The thickness modes have 

large modal constants since they have non zero mean value of the axial displacement, this 

is particularly obvious for mode 32 at a predicted fi-equency of 964.94 kHz, in which the 

mean value is so large that the displacements over the surface mostly have almost the 

same sign, which results in the largest modal constant of all the modes of the disc. The 

high frequency A-modes have very small modal constants due to the changing sign of the 

motion over the surface of the disc, which is similar to the case in the low order R modes. 

The modal constant can also be used to explain why the flexural modes (anti-symmetrical 

modes) cannot be excited by the voltage applied to the electrodes of the disc, since all the 

modal constants calculated for the flexural modes are almost zero (calculated values lO^o 

less than those of the extensional modes). This is because the dot 'oduct of the 

symmetric force vector with the anti-symmetric mode shape vector is zero. 

4.3.3 The frequency response functions and electrical impedance response 

The electrical impedance characteristics and the mechanical frequency response function 

may easily be obtained by using equations (3.75) and (3.77). The electrical impedance 

response of the PZT5A disc with D/T of 20 is shown in Fig 4.6(a) in which all 130 

modes predicted were included in the calculation, while Fig 4.6(b) shows the 

corresponding mechanical FRF in which the response is the axial mechanical 

displacement at the central point of the disc and the force is the voltage applied across the 

disc. 

As discussed in Chapter 1, the electrical impedance of the disc is given by the static 

capacitance of the disc in parallel with the effective impedance given by the mechanical 

properties coupled with the piezoelectric coupling factor. At low frequency the 

characteristic is dominated by the effective impedance, which is capacitive. Above the 

resonant frequency, the effective impedance becomes inductive and above the anti-

resonant frequency the effective impedance is dominated by the static capacitance of the 

disc. In one dimensional analyses, each resonant mode is followed by a corresponding 

anti-resonant mode at a higher frequency in the electrical impedance response. However, 

this may not be true for the resonant modes whose frequencies are very close to each 

other, for example, around the frequency range of thickness modes in Fig 4.6(a). 
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At the resonant frequencies the electrical impedance should drop to zero while at the anti-

resonant frequencies the electrical impedance should reach infinity if damping is not 

considered. However, in practice finite values are seen due to the finite frequency step 

used in the analysis. For the response shown in Fig 4.6 where damping was not included 

and with a frequency resolution of 1 kHz, very sharp troughs appear at the resonant 

frequencies, and spikes at the anti-resonant frequencies. All the 64 extensional modes 

predicted in the frequency range from 0 to 1500 kHz are present in the plot, though some 

of them are too weak to be seen. 

Structural damping, which is proportional to the stiffness, was introduced in both the 

electrical impedance and the mechanical frequency response function in equations (3.70) 

and (3.78). Fig 4.7 shows the same response as Fig 4.6 but with a structural damping 

factor of 0.013 according to the mechanical Q factor listed in Table A.2. It is evident that 

damping smooths the overall response and gives finite amplitude of response at the 

resonant frequencies and the anti-resonant frequencies. 

It can be seen from Fig 4.7 that the electrical impedance response of this disc is dominated 

by a single mode, mode 32, at a frequency of 964.9 kHz, and it has been already shown 

in Fig 4.5 that mode 32 has the largest modal constant, with a very large mean value of 

the axial displacement over the surface of the disc. This suggests that when the 

piezoelectric disc has a large D/T ratio, or is very thin, the three dimensional prediction 

may give similar results to those given by the one dimensional analysis. 

The mechanical frequency response functions in the axial direction of the centre of the 

surface when voltage excitation is applied shown in Fig 4.6(b) and Fig 4.7(b) have 

amplitude peaks at the resonant frequencies. 

To verify the three dimensional analysis of the piezoelectric disc by the fmite element 

model, experiments were made to measure the electrical impedance response and the 

resonant frequencies of the modes for the P5A20 disc. 

4.3.4 Set up for measurement of electrical impedance response 

Sine wave excitation, which is widely used to measure the frequency response function in 

standard modal testing analysis (Ewins, 1984), was used to measure the electrical 

impedance characteristics of piezoelectric discs. The configuration of the equipment is 

shown in Fig 4.8. The piezoelectric disc was in series with a reference resistor with 

resistance of 100 Q which was used to measure the current through the circuit, and 
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excitation was provided by the function generator in a Solartron 1255 two channel 

frequency response analyser (FRA). The voltages across the electrodes of the 

piezoelectric disc and the resistor were measured simultaneously by the FRA, which can 

analyse signals up to a frequency of 20 MHz. The system was controlled by a micro-

computer to make a sweep measurement in the frequency range of interest by varying the 

frequency of the output voltage from the generator in the FRA. The electrical impedance 

frequency function can then be obtained directly from the FRA output as 

Z(co) = R (4.2) 

where Z(co) is the measured electrical impedance of the piezoelectric disc, R is the 

resistance of the reference resistor, and and V2 are the voltages across the piezoelectric 

disc and the resistor respectively. 

Since the piezoelectric disc shows inductive characteristics above each resonant 

frequency, care must be taken to avoid effects from the external electrical circuit, such as 

the length of the leads. Problems may also be encountered from the shunt capacitance in 

the FRA, which may seriously distort the measured electrical impedance response when 

the static capacitance of the piezoelectric disc is very small or comparable to the shunt 

capacitance in the circuit. 

4.3.5 Experimental results 

The measured electrical impedance response is shown in Fig 4.9 for P5A20, a PZT5A 

disc with D/T ratio of 20, together with the predicted response with structural damping 

factor of 0.013, by the three dimensional model and the one predicted by the one 

dimensional model as given in equation (1.5). Since the electrical impedance of a 

piezoelectric disc drops to zero when it vibrates at a resonant frequency for the undamped 

case, the resonant frequencies may be found by locating the frequencies at which the 

electrical impedance is a minimum. The anti-resonant frequencies can be found in a 

similar way by locating the maxima in the electrical impedance. The smaller the impedance 

at the resonant frequency, the more strongly the disc can be excited at that mode. The 

measured resonant frequencies from the impedance curve are listed in Table 4.1. 

The modal constants may be derived from the experimental data by standard modal testing 

techniques (Ewins, 1984) using MODENT, a software package developed in Imperial 

College. The measured electrical impedance response must first be converted into the 

form of equation (3.70), which can be regard as a receptance FRF, then the various 

modal analysis techniques may be applied. Here a single degree of freedom technique 
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called the Bendent extraction method (Dobson, 1985), see details in Appendix C, was 

used to find the modal parameters. The Bendent method is available in MODENT, a 

software package developed in Imperial College, and has been modified to accommodate 

the electrical impedance.The measured modal constants at resonant modes of this P27r5A 

disc are listed in Table 4.1. Their normalised values to the maximum modal constant are 

plotted in Fig 4.10 as a function of frequency. 

It can be seen from Fig 4.9 that there is excellent agreement between the measured and the 

predicted electrical impedance responses, and several modes can clearly be identified. 

Since the damping of PZT5A is relatively high, a large number of modes which can only 

be weakly excited were not seen, and it was very difficult to correlate all the predicted 

modes with the measured ones. Emphasis was therefore placed on the modes which were 

well separated and those having very distinct features, such as the low frequency radial 

modes, the edge mode, and the thickness extensional modes. 

In the low frequency radial modes range, the resonant modes are weU separated from each 

other with resonances followed by their corresponding anti-resonances. Both the 

predicted and measured response curves show an increase in strength of excitation in the 

edge mode range. However, some shifts occur in the values of resonant frequency of 

high order radial modes. The gradually increasing discrepancy with the order of radial 

modes between the predicted and measured values in resonant frequencies may result 

from several sources. The material constants used in prediction, such as, the elastic 

constants in radial direction, may not be accurate enough, which may affect the accuracy 

of the predicted high order radial resonant frequencies, and may shift the order of the 

modes. Also, the accuracy of the finite element model decreases as the mode order 

increases. 

The predicted electrical impedance response in the thickness frequency range agrees well 

with the measured response both in the amplitude of response and in the values of 

resonant frequencies. The frequencies of the major modes in this range show a difference 

between prediction and experiment of less than 1.5%. The measured resonant mode at 

frequency of 951 kHz, which corresponds to mode 32 predicted at 964.9 kHz, is the 

most strongly excited mode for this disc. It has such a large modal constant that the 

response is dominated by this single mode as expected from the one dimensional model. 

The measured response over the thickness shear modes range and the frequency range 

above the thickness modes shows very small resonant ripples, and the corresponding 

modal constants were too small to be derived from the experimental data, which confirms 

the predicted result that these two types of modes can only be excited very weakly. The 
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measured modal constants of the modes are somewhat different from the predicted ones, 

but the normalised values shown in Fig 4.5 and 4.9 have good agreement in form. 

4.4 Vibration characteristics of piezoelectric discs with D/T of 10 and 0.5 

4.4.1 A PZrSA disc with D/T of 10 

In this section a piezoelectric disc of PZT5A which has a diameter of 19.96 mm and 

thickness of 2.01 mm is considered theoretically and experimentally. The disc, labelled 

P5A10, has a diameter to thickness ratio around 10, and is not as thin as the disc with D/T 

of 20 though the diameter of the disc is still considerably larger than the thickness. 

A 2x32 finite element mesh was used for this disc. The predicted and measured electrical 

impedance responses are shown in Fig 4.11. The measured resonant frequencies of the 

modes and their modal constants are listed in Table 4.2 together with the values from the 

analysis. 

It was anticipated that there would be some discrepancy between the predicted and 

measured resonant frequencies, which may come from a number of sources, such as 

variation in the measurement of dimensions of disc, imperfections of the disc during the 

manufacture (lack of flatness, out of round, etc.), inaccuracy in the material constants 

used in prediction, and the finite element discretisation. However, the discrepancy over 

the thickness frequency modes range was considerablely larger in this disc than in the disc 

with D/T ratio of 20, and varying the FE mesh (a 4x32 mesh) has not improved the 

results, which indicated that the material constants in the thickness direction used in 

prediction were far from accurate. It was therefore decided to check the the longitudinal 

velocity in the thickness direction of the piezoelectric disc by using the ultrasonic 

spectroscopy technique (Pialucha et al., 1989). The longitudinal velocity listed in Table 

A. 1 is 4350 m/s, which is taken from handbook provided by the manufacturer (Vemitron, 

1976). It was found that the measured longitudinal velocity in the disc with D/T ratio of 

20 is 4303 m/s which is only 1.1% smaller than the book value, while the measured 

velocity in the PZT5A disc with D/T of 10 is 4190 m/s which is 4% smaller than the book 

parameter. This is not surprising since the piezoelectric material varies from batch to batch 

so that it is not uncommon that the discrepancy between the measured material constants 

and the book parameters can be as great as 20% in supposedly similar types of 

piezoelectric materials (Smith, 1973). Since it was difficult to measure all the material 

constants of the piezoelectric material used in the prediction, and the main interest was in 

the trend of vibration characteristics of the piezoelectric disc rather than the accuracy of 
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particular resonant frequencies of the disc, no further study of the cause of the 

discrepancy has been undertaken. 

Apart from these shifts in frequencies, good agreement is shown between the electrical 

impedance characteristics predicted by the FE model and the measurement. It can be seen 

that the overall response is no longer dominated by a single mode, which is the case for 

the disc P5A20. Two strongly excited thickness extensional modes at measured 

frequencies of 895.9 kHz and 933.7 kHz are also seen in the predicted curve at 964.7 

kHz and 988.0 kHz (957.5 kHz and 989.6 kHz obtained for 4x32 mesh). The predicted 

mode shapes of these two modes have very large mean values of axial movement over the 

surface of the disc, as shown in mode shape plot in Fig 4.12, but neither of the modes is 

similar to mode 32 of the disc P5A20. The modal constants of these two modes have 

similar values: one is 3072, the other is 3684, which are much greater than those of all 

other modes, as listed in Table 4.2. Another mode at 915.1 kHz which also has a 

relatively large mean value of motion over the surface is also strongly excited. The 

predicted thickness shear mode at 880.6 kHz has one "nodal ring" only. This simple 

shear mode was not seen in the disc studied previously (P5A20) in which the first shear 

mode predicted has two "nodal rings". 

4.4.2 A PZT5A disc with DAT of 0.5 

In this section a piezoelectric disc with D/T ratio of 0.5, labelled P5A005, was studied; 

the disc was 10.07 mm long and 5.00 mm in diameter with the top and bottom end 

surfaces being electroded. Since the disc was essentially a cyUnder, an 8x4 element mesh 

was used in the prediction, which gave 17 element nodes in the thickness direction and 9 

along the radial direction. 

There were six modes predicted over the frequency range of 0 to 600 kHz; the frequencies 

of the modes are listed in Table 4.3, while the mode shapes are shown in Fig 4.13. It can 

be seen that mode l a t a frequency of 133.45 kHz is an extensional mode which has a half 

wavelength through the thickness and is similar to the first longitudinal mode in a long 

bar, the displacements are a maximum over the top and bottom surfaces and are almost 

uniform, and this uniform displacement may also be observed at other cross sections. 

Since the disc still has a finite diameter, some small radial displacement is observed at the 

cylindrical surface. Mode 2 at a frequency of 353.49 kHz has a similar mode shape in the 

axial direction to that in mode 1, but the axial motion varies with the radius, and changes 

sign, giving one nodal circle on the surface of the disc. Mode 3 has one and a half 

wavelengths through the thickness, and the axial motion varies slightiy along the radius 
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with a nodal circle near the edge. Modes 2 and mode 3 may therefore be regarded as 

overtones of the mode 1 in the radial and thickness directions respectively, and the 

motions in the axial and thickness directions are coupled with each other since the disc has 

comparable thickness and diameter. Other modes which have more complicated mode 

shape are higher order modes in the radial or thickness direction, and are not discussed 

any further. 

Mode 1 has the largest modal constant of all the modes as shown in Table 4.3, and is the 

most strongly excited mode by voltage excitation. The predicted electrical impedance 

response is shown in Fig 4.14, together with the one predicted by a one dimensional long 

rod model. Although the one dimensional long rod model is usually only considered to be 

applicable to a piezoelectric disc with D/T ratio less than 0.1, it shows similar electrical 

impedance characteristics to the three dimensional analysis with the first longitudinal 

mode at a frequency of 137 kHz for a disc of thickness of 10.07 mm. 

Since the static capacitance of the disc was only 13 pF as predicted both by the FE 

analysis and the ID model, which was much smaller than the shunt capacitance in the 

frequency response analyser (< 330 pF, given in Solartron 1255 Manual) and the 

electrical circuit, the measured electrical impedance of this disc was incorrect, as shown in 

Fig 4.14. Although the resonant frequencies were not affected, the anti-resonant 

frequencies were significantly reduced, and the amplitude of the response was reduced 

from its true value, which also smeared out the weakly excited modes. To verify the FE 

model, an estimated shunt capacitance of 250 pF was added to the static capacitance of the 

disc. The calculated electrical impedance was shown in Fig 4.15, which in fact represents 

the response of the piezoelectric disc in parallel with the shunt capacitance. It can be seen 

that there is good agreement between the measurement and the prediction using the 

modified model. 

The measured resonant frequencies and modal constants are listed in Table 4.3 together 

with the predicted values. It can be seen that mode 4 has a large difference in values of the 

predicted and measured modal constants. The reason for this is not clear. Apart from this, 

good agreement is obtained in both the frequencies of resonant modes and their modal 

constants, particularly for the first mode. 

4.5 Measurement of mode shapes by laser interferometty 

It has been demonstrated in the previous sections that the finite element analysis of 

piezoelectric discs gives excellent agreement with the measured electrical impedance 
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response and the frequencies of resonant modes. However, the predicted mode shapes of 

the resonances have so far not been verified experimentally, which is necessary to fully 

validate the finite element model. Extensive experimental results are available for the mode 

shapes of piezoelectric disc in the D/T range of 1 to 12 (Shaw, 1954; Ueha et ai, 1983). 

Shaw (1954) measured the surface displacement of a piezoelectric disc of BaTiOg disc in 

the D/T range 1.14 to 6.63 by an optical fringe system. In his report the edge mode was 

confirmed experimentally with a large displacement at the edge of the surface and some 

modes in the frequency range of the first through thickness mode were observed with 

large axial displacement similar to those in the thickness extensional modes predicted by 

the finite element model. Ueha et al. (1983) has measured the vibration velocity 

distributions over the surface of piezoelectric disc of Pb(Zr.Ti)03 in the D/T range from 2 

to 12 by an optical heterodyne technique where the radial modes and the high frequency 

radial modes were extensively measured. 

Although the experimental mode shapes of the piezoelectric disc have been available, it is 

very difficult to correlate them in detail to the predicted mode shapes by the finite element 

model because different material were used. Moreover, no experiment has been reported 

for a piezoelectric disc with a D/T ratio as large as 20. It was decide to measure the mode 

shapes of some important modes, such as the mode shapes of some radial modes, the 

edge mode, and the thickness extensional modes. 

In this section the predicted mode shapes of the resonant modes are checked by laser 

interferometry. The measurements were initially done using a laser interferometer loaned 

to Imperial College for a short time by Ometron Ltd. This laser interferometer was unable 

to work at frequencies higher than 200 kHz, so a phase lock laser interferometer 

developed at AERE, Harwell was then hired for one day to measure the mode shapes of 

some high frequency modes. 

4.5.1 Measurement configuration 

The configuration of the measurement is shown in Fig 4.16, where the piezoelectric disc 

(target) is excited by a frequency generator set to the frequency of interest; the laser 

interferometer system emits an optical beam and receives the reflections from the vibrating 

target. Detailed descriptions of the operation of the interferometers can be found from 

Moss (1980). 

The vibration laser interferometer, Spate, which is a commercial instrument from Ometron 

Ltd., was designed to measure low frequency vibration in large dynamic structures. Since 
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the system was unable to work at frequencies higher than 200 kHz, experiments with this 

system were restricted to the largest disc available, which is 10 mm thick and has a 

diameter of 50 mm. 

The optical "phase locked" interferometer developed at AERE, Harwell, was able to work 

at higher frequencies. However, problems were encountered in using the system during 

the course of the experiments. First of all, this laser interferometer was unable to measure 

the phase of the surface movement, therefore the in-phase and out-phase motion were 

shown in the same direction in the plot (rectified). Secondly the system was very sensitive 

to extraneous noise which seriously interfered with the small vibration signal from the 

displacement of the target, the surface of the disc. This noise generated random spikes in 

the measured displacement pattern. Furthermore, the frequency generator used to excite 

the disc was not sufficiently stable, so the frequency tended to drift during the 

experiments. 

4.5.2 Mode shapes of a piezoelectric disc with D/T of 5 

Due to the frequency limitation of the vibration laser interferometer, Spate, the largest 

piezoelectric disc available with a diameter of 50 mm and thickness of 10 mm was 

chosen, giving a D/T ratio of 5. The disc was made of PZT5H, a modified lead zirconate 

titanate ceramic with the material constants listed in Table A.l. 

Fig 4.17 shows the predicted and measured electrical impedance response over the 

frequency range from 0 to 300 kHz. The predicted and measured resonant frequencies are 

listed in Table 4.4 with the thickness extensional modes lying around frequency range 

from 190 to 220 kHz. It can be seen that there is good agreement between predictions and 

measurements apart from some variation in the frequency range of the edge mode. 

Since the instrument was unable to work in the frequency range beyond 200 kHz, 

measurements were only made on the low frequency radial modes. The first seven 

measured mode shapes (axial surface displacement) are shown in Fig 4.18 in 3D plots. 

The scanning mesh of the laser beam chosen depended on the particular mode of interest 

(finer meshes were used with more complex mode shapes). For the discs, a square mesh 

was used, which means that the number of measurement points in each row is the same as 

the number of rows. The surface displacements of the disc are shown in Fig 4.18, in 

which the measured displacement at each point is plotted, and points on each row are 

jointed by straight lines. 
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Fig 4.19 shows the measured surface displacement along a diameter (i.e., along the 

middle row) and the corresponding prediction by the finite element analysis. Arbitrary 

amplitude scales are used in these plots, and mode shapes are shown in the order of their 

frequencies. It can be seen that there is excellent agreement between the predicted and 

measured mode shapes for the first and second modes which have simple mode shapes. 

Mode 1, predicted at 37.7 kHz and measured at 38.5 kHz, shows that the displacement 

reaches a maximum at the centre of the surface, and then gradually reduces to zero at the 

edge of the disc. There is an apparent small shift to the right in the measured plot since the 

measurement at the beginning was slightly off centre, which is also seen in Fig 4.18. 

Mode 2 measured at 91.0 kHz has two nodal circles (including one at the edge), which is 

perfectly matched to the predicted mode at 90.4 kHz. 

However, there is a large discrepancy between measurement and prediction for modes 3 

and 4. The measured mode shape for mode 3 at 120.5 kHz is the edge mode with two 

nodal circles and large displacement at the edge (the spikes in the response are due to 

noise), and mode 4 at 155.5 kHz is a radial mode with 4 nodal circles (including the 

edge). However, the predicted mode 3 at 121.6 kHz is a radial mode with 2 nodal circles 

and mode 4 at 132.8 kHz is the edge mode with 3 nodal circles. It seems that the 

predicted modes 3 and 4 are in reverse order compared with the experiments. This may 

again be due to the inaccurate material constants used in prediction. 

The measured modes at 162.5 kHz and 180.0 kHz show the radial mode shapes 

corresponding to the predicted mode 5 at 150.0 kHz and mode 6 at 173.2 kHz 

respectively, and good agreement between the measurements and predictions has been 

obtained. The predicted mode 7 is a thickness shear mode, which has a very small modal 

constant, and was not excited experimentally. 

The most interesting result in the measurement may be the last mode measured at 197.5 

kHz. The measured surface displacement of this mode has a non-zero mean value of the 

axial displacement over the surface of the disc. This agrees with the predicted mode 8 at 

195.1 kHz and indicates that the predicted characteristics of the thickness extensional 

modes are correct. 

Since the equipment had a maximum operating frequency of 200 kHz, it was not possible 

to verify another thickness extensional mode which was predicted at 211.3 kHz and 

measured at 202.5 kHz by the electrical impedance response. Nevertheless, the mode 

shapes which have been measured show good agreement in form with those predicted by 

the finite element analysis. 
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4.5.3 Mode shapes of piezoelectric discs with large D/T ratios 

In last section it has been shown that there is a good agreement between measured and 

predicted mode shapes. The disc used had a diameter to thickness ratio of 5.0, and in one 

thickness extensional mode of the disc, the surface displacements showed a non-zero 

mean value along the radius in both measurement and prediction. However, since the "dc 

component" of displacement in this disc is smaller than that predicted for the thickness 

extensional modes in a disc with a D/T ratio of 20, it was decided to measure the mode 

shapes in a disc with a large D/T ratio using the Harwell phase lock interferometer. 

In this case the laser beam was only scanning along a diameter, and the displacement over 

the diameter was recorded. Fig 4.20(a) shows the measured surface displacement of the 

PZT5A disc with a D/T of 20 at a frequency of 50 kHz, and the predicted surface 

displacement of the first radial mode at 49.47 kHz. The predicted surface displacement is 

plotted in a rectified form in order to compare with the measured one which is in the 

absolute value. It can be seen that the measurement shows the same pattern as the 

prediction for this simple mode shape; however, the spikes in the surface displacement 

may cause interpretation difficulties if more complicated modes are considered. 

Apart from the first radial mode, the mode shapes of other modes of the PZT5A disc were 

found to be difficult to measure since PZT5A has a relatively large structure damping 

factor of 0.013, and the displacements which could be excited were too small to be 

distinguished from the noise spikes. Two PZT4 discs which have structural damping 

factors of only 0.002 (mechanical Q factor of 500) were therefore used in these tests, one 

had a D/T ratio of 8.0 (disc P4_08) and the other a D/T ratio of 20 (disc P4_20). The 

material constants of PZT4 can be found from Table A.l. 

Measured surface displacements of the disc by this laser interferometer in the edge mode, 

the fourth radial mode and a thickness extensional mode are shown in Fig 4.20(b) to 

4.20(d). The plots on the left hand side of Fig 4.20 are the measured mode shapes while 

the predicted mode shapes are shown on the right hand side. 

Fig 4.20(b) shows the measured and predicted edge modes of a PZT4 disc with a D/T 

ratio of 8 (disc P4_08), measured at 224.3 kHz and predicted at 227.94 kHz, and it can 

be seen that 9 displacement maxima appear in the measured plot and there is a large 

displacement at the edge. Therefore, 4 nodal circles can be recognised if the rectification 
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effect is taken into consideration. This agrees well with the predicted plot which is also 

shown in the rectified form in Fig 4.20(b). 

The measured and predicted mode shapes of the fourth radial mode of P4_20, a PZT4 

disc with a large D/T ratio of 20, are shown in Fig 4.20(c). It is believed that this shows 

good agreement between the measurement and prediction. Since the fourth order radial 

mode predicted at 316.90 kHz has four nodal circles (including one at the edge), the 

movement over the surface should have 7 peaks if the absolute displacements are plotted 

along a diameter. This is confirmed by the measured displacements at a frequency of 315 

kHz plotted in the left hand side of Fig 4.20(c), though the disc was not exactly centred 

during the measurements and several noise spikes are seen. 

Fig 4.20(d) shows the measured surface displacement of this large D/T disc at 1.033 

MHz, together with the predicted surface motion at 983.49 kHz which is in the thickness 

modes range of this disc. It can be seen that both measurement and prediction show large 

deformation at centre and agree with each other qualitatively. However, the spikes present 

in the experiment curve make it difficult to clarify clearly. 

Although the mode shape measurement by using the high frequency laser interferometry 

were not completely satisfactory due to the difficulties encountered in using the 

equipment, the mode shapes obtained were still representative and agreed qualitatively 

with the predicted ones. The tests verified the theoretical prediction that in the thickness 

extensional modes of the piezoelectric discs with large D/T ratios the surface movement is 

far from uniform as expected from the one dimensional model, but it does have a large 

mean value of the axial displacement. 

4.6 Conclusions 

The vibration characteristics of piezoelectric discs with different diameter to thickness 

ratios have been studied by the finite element analysis and experimental 

measurement 

It has been shown that the resonant frequencies and their corresponding mode shapes of 

piezoelectric discs are veiy complicated. There are a large number of resonant modes in 

the frequency range of interest, which have been classified into five groups according to 

their mode shapes: the radial modes (R), the edge mode (E), the thickness shear modes 

(TS), the thickness extensional modes (TE) and the high frequency radial modes (A). No 

mode has been found having piston-like motion assumed by the one dimensional theory. 
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However, the thickness extensional modes do have non zero mean value of the axial 

displacement over the surface of the piezoelectric disc. The number of thickness 

extensional modes varies with the D/T ratio of the piezoelectric disc. However, when the 

D/T ratio of the piezoelectric disc is around 20 there is a thickness extensional mode in 

which the mean value is so large that it may be analogous to the first through thickness 

mode by the one dimensional model. 

The modal constant has been successfully used to evaluate how strongly the mode can be 

excited by an external electrical force. For a piezoelectric disc excited by applying a 

voltage across electrodes over the top and bottom surfaces of the disc, many modes can 

be excited. It has been shown that the modes which have large modal constants can be 

strongly excited, and the modes having small modal constants can be weakly excited, 

while the modes with null modal constant cannot be excited at all. The thickness 

extensional modes, which have large modal constants, can be very strongly excited. The 

edge mode and low frequency radial modes which have relatively small modal constants 

can be fairly strongly excited. The thickness shear modes and the modes above the 

thickness modes range have very small modal constants, and they can only be weakly 

excited. The flexural modes (anti-symmetrical) have zero modal constants, hence they can 

hardly be excited. 

Since the modal constant depends upon the electrical force pattern and the mode shape of 

the mode, it is suggested that the modal constant can be a very useful parameter in the 

design and analysis of piezoelectric transducers. By changing the modal constant, which 

can be achieved by, for example, varying the pattern of the electrodes on the disc, the 

modes can be selected according to the application requirement. Since the conventional 

methods are often broken down for the case of piezoelectric discs, in which the modal 

density in the thickness extensional modes range is so high that it is not possible to pair 

the resonant frequencies and their corresponding anti-resonant frequencies, it is therefore 

believed that the modal constant offers considerable advantage over the conventional 

methods in both the experiment and prediction to determine the excitation strength of each 

resonance. 

Extensive experiments have been made to verify the predicted vibration characteristics of 

the piezoelectric disc in respect of resonant frequencies, mode shapes, modal constants of 

the modes and the electrical impedance response of the disc. Generally speaking, there is 

very good agreement between the measured results and the finite element predictions, 

particularly in the electrical impedance characteristics. 
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Some discrepancy has been found in the values of resonant frequencies, and sometimes in 

the order of the modes. This is probably mainly because the material constants used in 

prediction are not accurate enough, and the material properties can vary even from disc to 

disc of the same nominal material type. 
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Prediction Measurement 
Mode Frequency Modal constant Mode Frequency Modal constant 
No. (kHz) (F/s2) type (kHz) (F/s2) 

1 49.56 260.3 R 50.20 212.6 
2 128.1 215.5 R 129.9 177.0 
3 201.6 214.1 R 204.8 182.2 
4 272.1 215.9 R 276.7 183.2 
5 338.5 217.8 R 344.6 189.0 
6 399.9 218.1 R 407.4 192.6 
7 455.2 215.9 R 463.7 191.6 
8 503.8 212.1 R 512.8 193.8 
9 545.9 211.3 R 555.5 197.4 
10 582.3 225.2 R 592.8 237.3 
11 614.0 28&7 R 623.2 588^ 
12 640.6 539.6 R 639.2 319.0 
13 657.7 465.4 E 
14 677.6 18.86 R 
15 703.1 4.825 R 
16 729.5 22.07 R 
17 756.3 40.27 R 
18 783.5 63.86 R 
19 811.3 102.5 R 
20 839.4 179.0 R 
21 867.7 360.4 R 
22 873.2 8.618 TS 
23 876.4 6.261 TS 
24 880.0 55.66 TS 
25 887.0 39.52 TS 
26 893.2 410.9 TS 
27 896.6 798.5 R 893.5 616.6 
28 914.1 1188 TS 
29 924.8 1480 R 
30 943.5 4189 TE 936.5 7065 
31 955.9 2368 TE 
32 964.9 26010 TE 951.1 17350 
33 975.5 26.25 R 
34 991.8 2455 TE 972.1 1218 
35 995.2 324.0 TS 
36 1010 49.44 R 
37 1026 635.1 A 1003 589.1 
38 1040 84.07 R 
39 1051 37.04 R 
40 1064 265.0 A 1041 125.9 
41 1081 53.92 R 
42 1102 4.601 R 
43 1108 108.2 TS 1080 41.13 
44 1122 67.16 R 1123 46.98 
45 1145 3.729 A 
46 1166 84.82 R 
47 1167 .004 TS 
48 1187 Z36 A 1170 

Table 4.1 The predicted and measured resonant frequencies and their modal 
constants of the first 48 extensional modes of the PZT5A disc with a D/T 
ratio of 20 (Blank: values are too small to be measured) 
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F*rediction Measurement 
Mode Frequency Modal constant Mode Frequency Modal constant 
No. (kHz) (F/s2) type (kHz) (F/s2) 

1 99.21 262.4 R 98.01 200.8 
2 252.4 221.1 R 250.0 189.0 
3 384.8 220.9 R 382.3 193.2 
4 493.2 214.9 R 490.4 193.0 
5 572.2 219.2 R 572.5 205.0 
6 634.9 370.9 R 625.1 350.3 
7 663.3 252.1 E 
8 703.4 2.108 R 
9 755.9 34.77 R 
10 810.2 88.74 R 
11 864.8 277.1 R 827.1 396.8 
12 880.6 3.293 TS 
13 891.9 198.4 TS 
14 915.1 1308 R 849.9 308.8 
15 938.8 533.0 TS 
16 964.7 3072 TE 895.9 1663 
17 988.0 3684 TE 933.7 5933 
18 1014 64.39 A 969.3 374.6 
19 1042 84.39 TS 
20 1057 376.5 A 1004 563.1 
21 1092 25.24 A 1054 538.8 
22 1136 31.82 R 1088 112.8 
23 1157 49.82 TS 1181 422.0 
24 1174 31.62 A 

Table 4.2 The predicted and measured resonant frequencies and their modal 
constants of the first 24 extensional modes of the PZT5A disc with a D/T 
ratio of 10 (Blank: values are too small to be measured) 

^ediction Measurement 
Mode Frequency Modal constant Mode Frequency Modal constant 
No. (kHz) (F/s2) type (kHz) (F/s2) 

1 133.4 9.393 TEl 134.0 9.229 
2 353.5 .4498 R 
3 389.3 2.099 TE2 405.0 3.210 
4 486.7 3.399 478.6 .7603 
5 535.2 3.217 547.1 3.306 
6 583.9 3355 590.4 1.418 

Table 4.3 The predicted and measured resonant frequencies and their modal 
constants of the first 6 extensional modes of the PZT5A disc with a D/T 
ratio of 0.5 (Blank; values are too small to be measured) 
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Prediction Measurement 
Mode Frequencies Mode Frequencies Mode 
No. (kHz) type (kHz) type 

1 37.7 R 38.5 R 
2 90.4 R 91.0 R 
3 121.6 R 120.5 E 
4 132.8 E 155.5 R 
5 150.0 R 162.5 R 
6 173.2 R 179.5 R 
7 183.1 TS 
8 195.1 TE 197.5 TE 
9 211.3 TE 202.0 -

10 219.2 TS -

11 227.4 R 233.5 -

12 248.1 A -

Table 4.4 Resonant frequencies and their corresponding mode shapes of the first 
12 extension^ modes of the PZT5H disc with a D/T ratio of 5 predicted 
by die FE model and measured by the laser interferometer. 
(Blank; too weak to be measured; - ; not measured due to restriction of 
equipment) 
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Fig 4.1 The five types of mode shapes of a piezoelectric disc with a D/T ratio of 
20 predicted by the finite element analysis 
(a) radial mode (mode 4, 272 kHz) 
(b) edge mode (mode 13, 658 kHz) 
(c) thickness shear mode (mode 22, 873 kHz) 
(d) thickness extensional mode (mode 32, 965 kHz) 
(e) high frequency radial mode (mode 37, 1026 kHz) 



Chapter Three Dimensional Analysis 130 

(a) 

(b) 

(c) 

Fig 4.2 Schematic representation of the high frequency radial modes (A-modes) 
(The mode shape in the A modes, (c), is a superposition of the motion in 
the low order radial modes (a) and the higher order radial modes (b)) 
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Fig 4.3 The predicted mode shapes of the first 48 extensional modes of the 
PZT5A disc with a D/T ratio of 20 
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Fig 4.3 Continued (modes 17 to 32) 
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Fig 4.3 Continued (modes 33 to 48) 
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Fig 4.4 The axial equivalent nodal forces over the surface of the PZT5A disc with 
a D/T ratio of 20 as a function of radius 
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Fig 4.5 The predicted normalised modal constants of the PZT5A disc with a D/T 
ratio of 20 as a function of frequency 
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(b) axial mechanical frequency response function at the central point of the surface 

Fig 4.6 The responses of the PZT5A disc with a D/T ratio of 20 without 
considering damping 
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(a) electrical impedance function 

- 9 0 

- 1 0 0 -

- 1 1 0 
Lu 
Ql 

^120 
i— 
CO 

S - 1 3 1 

cr 

- 1 4 1 -

- 1 5 1 , 

P Z T 5 R 4 0 . 1 0 X 2 . 0 3 ( M M ) D / T = 2 0 
FEM C S T = 0 . 0 1 3 

2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 

F R E Q U E N C Y ( K H Z ) 
1 2 0 0 1 4 0 0 1 6 0 0 

(b) axial mechanical frequency response function at the central point of the surface 

Fig 4.7 The predicted responses of the PZT5A disc with a D/T ratio of 20 with a 
structural damping factor of 0.013 
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Fig 4.8 Apparatus used for measurement of the electrical impedance response of 
piezoelectric discs 



Chapter 4 Three Dimensional Analysis 138 

( 9 0 ) 3 3 N U a 3 d U I 

Fig 4.9 The measured and predicted electrical impedance responses of the PZT5A 
disc with a D/T ratio of 20 by both three dimensional and one dimensional 
models 
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Fig 4.10 The measured normalised modal constants of the PZT5A disc with D/T 
ratio of 20 as a function of resonant frequencies 
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Fig 4.11 The measured and predicted electrical impedance responses of the PZT5A 
disc with a D/T ratio of 10 ( measurement; prediction 
with a structural damping factor of 0.013) 
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Fig 4.12 The predicted mode shapes of the first 24 modes of the PZT5A disc with 
a D/ r ratio of 10 
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Fig 4.12 Continued (modes 13 to 24) 
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Fig 4.13 The predicted mode shapes of the PZT5A disc with a D/T ratio of 0.5 
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Fig 4.14 The measured and predicted responses of the PZT5 A disc with a D/T ratio 
of 0.5 by the three dimensional and one dimensional bar models 
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Fig 4.15 The measured and modified predicted impedance responses of the PZT5A 
disc with a D/T ratio of 0.5 
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Fig 4.16 Schematic representation of apparatus used to measure the surface 
displacement of the piezoelectric discs by laser interferometry 
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Fig 4.17 The measured and predicted electrical impedance responses of the PZT5H 
disc with a D/T ratio of 5 
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mode 3 120.5 kHz mode 4 155.5 kHz 

mode 5 162.5 kHz mode 6 180.0 kHz 

mode 7 197.5 kHz 

Fig 4.18 The measure mode shapes of the PZT5H disc with a D/T ratio of 5 in 3D 
view 
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Fig 4.19 The measure and predicted surface displacement of the PZT5H disc with 
a D/T ratio of 5 (arbitrary amplitudes, left side: measurement; right side: 
prediction) 
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Fig 4.19 Continued 



Chapter 4 Three Dimensional Analysis 149 

50.5 kHz 50.0 kHz 

(a) the first radial mode of the PZT5 A disc with a D/T ratio of 20 

224 kHz 228 kHz 

(b) the edge mode of the PZT4 disc with a D/T ratio of 8 

315 kHz 317 kHz 

(c) the fourth radial mode of the PZT4 disc with a D/T ratio of 20 

1033 kHz 983 kHz 

(d) a thickness extensional mode of the PZT4 disc with a D/T ratio of 20 

Fig 4.20 The measured and predicted surface displacements of piezoelectric discs 
with large DyT ratios in rectified form (Left side: measurement; Right side: 
Prediction) 



CHAPTER 5 

THE FREQUENCY SPECTRUM OF PIEZOELECTRIC DISCS 

5.1 Introduction 

In Chapter 4 the vibration characteristics of piezoelectric discs have been thoroughly 

analysed by finite element predictions and experiments. It has been shown that the 

vibration modes of piezoelectric discs are very complicated, and discs with different 

diameter to thickness ratios can present markedly different characteristics. 

The dependence of the vibration characteristics on the geometry of the piezoelectric disc, 

namely the D/T ratio, is studied by the finite element model in terms of the frequency 

spectrum. The frequency spectrum, which is quite different from the usual definition in 

vibration signal analysis, is defined as the relationship between the product of resonant 

frequencies and the thickness of the piezoelectric disc (fT) and the diameter to thickness 

ratio (D/T). Since the frequency spectrum correlates the vibration characteristics with the 

geometrical properties of the piezoelectric disc, it can be a very important factor in the 

analysis and design of piezoelectric transducers. It has been evident from the review in 

Chapter 1 that the frequency spectrum has been studied extensively by a number of 

authors as a means of studying how three dimensional effects influence on the vibration 

characteristics of piezoelectric discs, both in experiments (Shaw, 1956; Ikegami et ai, 

1974; Ueha et al., 1983) and theoretical studies (Mindlin and Medick, 1959; Ikegami et 

al., 1976; Locke et al., 1987). 

The radial modes were well classified by the analytical approximate solution and the plate 

theory, and the experiments have shown good agreement with the predictions; however, 

the edge mode and the thickness modes were less well defined. Furthermore, the 

parameters used to determine the intensity of the resonance are coupling factors, which 

required the resonant frequency and corresponding anti-resonant frequency of the mode to 

be identified. This was not practical and often gave rise to ambiguity since the modal 

density was high in the frequency range of interest. 

In this chapter the frequency spectrum of piezoelectric discs is predicted by the finite 

element model in the D/T ratio range from 0.1 to 20. The modal constant at each 

resonance, which has been successfully used in last chapter, is incorporated to obtain the 

strength of each resonance in the frequency spectrum. Since the modal constant is only 

- 150-
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involved with the resonant frequencies, the difficulties encountered by the previous 

authors can be removed. The form of the frequency spectrum is then discussed in terms 

of the variation in the mode shapes with D/T ratio. Experimental results are then presented 

from a few piezoelectric discs to verify the predictions. Finally the piezoelectric effect is 

discussed by comparing the frequency spectra predicted with and without electrical 

effects. 

5.2 Frequency spectrum of piezodedric discs 

5.2.1 Predicted frequaicy spectrum by the finite element method 

The eigenvalue solution programme was used again to predict the resonant frequencies 

and corresponding mode shapes of piezoelectric discs in which the top and bottom 

surfaces were fully electroded, and the modal constant of each mode was computed by 

using the predicted mode shape and the equivalent nodal forces. The piezoelectric material 

was PZT5A, which was used in the last chapter, and the material constants listed in 

Appendix A were used in the prediction. 

The D/T ratio was varied from 0.1 to 20 with a step of 0.5 (step of 0.1 from 0.1 to 0.5), 

which is the range over which the piezoelectric discs are often used. The lower end of the 

D/T range was chosen as 0.1 since a disc with this ratio is essentially a long cylinder, and 

the one dimensional model (the length expander model) could be used to analyse the 

vibration characteristics and to compare with the finite element prediction, while the 

upper-limit of D/T ratio was taken as 20 since piezoelectric discs with about this ratio are 

often used in ultrasonic transducers in NDT, and the one dimensional through thickness 

model is also applicable. 

The vertical coordinate of the frequency spectrum is the product of resonant frequencies 

and the thickness of the piezoelectric disc, fT, in kHz.mm, which is same as those in Fig 

1.4 by Ikegami et al. (1974) and in Fig 1.5 by Shaw (1956). They were plotted in this 

form because the vibration characteristics are a function of frequency thickness product 

rather than frequency alone, so the spectrum was obtained in discs with different 

thickness and diameter. Since the frequency range around the first through thickness 

mode defined by the one dimensional model is most interesting and most important, the 

frequency range chosen was from zero to 1.5 times the first through thickness frequency. 

For instance, in PZT5A, the first through thickness mode (frequency thickness product) 

is around 1950 kHz.mm; therefore, only the modes from 0 to 3000 kHz.mm were 

predicted and plotted. Although it is possible to predict the modes beyond 3000 kHz.mm 
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by the same technique, the accuracy of the high order modes would be reduced or the 

mesh would have to be refined and the computing cost would increase significandy. 

An alternative vertical coordinate of the frequency spectrum, Q, has sometimes been used 

as shown in Fig 1.6 (Ueha et al, 1983; Locke et al., 1987). This is the ratio of the 

frequency of the resonant mode to the frequency of the second through thickness shear 

mode (or the first symmetrical thickness shear mode) defined by the one dimensional 

model. The frequency thickness product of the second through thickness shear mode for 

PZT5A material is 1650 kHz.mm. In this thesis the frequency thickness product, fT, is 

used, though the transformation from one to the other could readily be made. 

Since the frequency spectrum covered a large range of D/T ratios and the frequencies of 

the modes were within the range 0 - 3000 kHz.mm, the finite element meshes used for 

discs with different D/T ratios had to be varied. For the present study the 8-node 

quadrilateral axisymmetrical piezoelectric element defined in Chapter 3 was used 

throughout. An 8x4 mesh, i.e., 8 elements in thickness and 4 elements in radius, was 

used for the cylindrical types of disc while a 2x48 mesh was used for discs with large D/T 

ratios, which gave 2 elements in the thickness and 48 elements along the radius. Some 

other meshes, such as 2x32, and 4x8 were also employed for discs with medium D/T 

ratios, as shown in Table 5.1. In general, the mesh for each disc was chosen to ensure 

that there were sufficient (5 to 7) finite element nodes per wavelength for all the modes of 

interest. 

The predicted frequency spectrum is plotted in Fig 5.1. The predicted modal constant of 

each mode was normalised to the largest one for that disc, and each mode is indicated 

with a circle centred on the appropriate fT value whose diameter is proportional to the 

normalised modal constant value. The normalised modal constants of many modes are too 

small to appear larger than dots in the plot. The centres of the circles corresponding to 

modes of the same order at different D/T ratios are joined in the plot. 

The overall pattern of the predicted frequency spectrum is similar to the measured 

frequency spectra produced previously by other authors. Several features are clearly seen 

in the frequency spectrum as shown in Fig 5.1. Three "terraces" are seen across the 

whole frequency spectrum. The first 'terrace' in the low frequency range is the edge mode 

terrace and appears around fT = 1350 kHz.mm; the second 'terrace' is the thickness shear 

modes terrace band around 1770 to 1820 kHz.mm, and with increasing of D/T ratio the 

number of modes on this terrace band is increased and the frequencies of the modes 

gradually converge; the third 'terrace' is the thickness extensional modes terrace around 
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1960 kHz.mm in which all the modes have very large modal constants. At low D/T ratios 

the modes with large modal constants spread over a significant fT range. As the D/T ratio 

is increased, this range reduces and one mode tends to dominate. However, the thickness 

extensional modes terrace is only seen clearly because of the large values of modal 

constant of the modes in this region, characterised by the large "modal constant" circles in 

Fig 5.1. If the frequency spectrum is plotted without drawing the "modal constant" circles 

as shown in Fig 5.2, the thickness extensional modes terrace tends to be less pronounced 

than that in Fig 5.1. 

As the D/T ratio approaches 0.1, the first mode of the disc approaches a constant 

frequency thickness product of 1375 kHz.mm; this is almost identical to the first 

longitudinal mode predicted by the one dimensional piezoelectric rod model at 1380 

kHz.mm. In fact the second and third extensional modes (symmetrical) of this cylindrical 

type of disc predicted by the three dimensional model are also very close to the third and 

fifth modes of the piezoelectric rod given by the one dimensional model as shown in 

Table 5.2 (the predicted flexural modes (anti-symmetrical) which cannot be excited 

correspond to the even numbered modes predicted by the one dimensional model). The 

mode shapes of the first three symmetric modes predicted by the FE model are shown in 

Fig 5.3, which are very close to those shown in Fig 1.3(a) assumed by the one 

dimensional model, though some small displacements in the radial direction are observed 

in the higher order modes. It is therefore evident that there is excellent agreement between 

the three dimensional prediction by the finite element model and the analytical solution by 

the one dimensional model, and the one dimensional piezoelectric rod model is therefore 

fairly accurate for the disc with a D/T ratio around 0.1. 

At high D/T ratios, the vibration modes of the disc with D/T ratio of 20 are much more 

complicated as discussed in detail in the previous chapter. The first mode of the disc is the 

fundamental radial planar mode, which has maximum radial displacement at the edge of 

the disc, and smooth displacement over the disc surfaces with null axial displacement at 

the edge. The frequencies of the higher radial modes increase in an inharmonic manner 

which are given by a Bessel function as discussed in Chapter 1. The mode shapes of 

those radial modes shown in Fig 1.16 by the approximate analytical solution are similar to 

the predictions by the FE analysis. It can be seen that the smooth variation of the 

frequency thickness product of the radial mode with the D/T ratio is distorted to form the 

edge mode terrace around 1350 kHz.mm. This is also seen in the results of Ueha et al. 

(1983) shown in Fig 1.6. 
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As the D/T ratio of piezoelectric discs changes from 0.1 to 20, the geometry of the disc 

changes drastically, and the effective boundary conditions of the free disc change from 

plane stress to plane strain; the first order mode of the disc which is the first longitudinal 

mode at D/T = 0.1 becomes the fundamental planar radial mode at D/T = 20 and the 

thickness extensional and shear modes which do not exist in the low range of D/T ratio 

come into play. 

The radial modes (R-modes), edge mode (E-mode), thickness shear modes (TS-modes), 

thickness extensional modes (TE-modes) are easily distinguished in the predicted 

frequency spectrum. The high frequency radial modes (A-modes) discussed in the 

previous chapter also exist, but are mixed together with radial modes in the region above 

2000 kHz.mm. 

5.2.2 Kscussion of form of frequency spectrum 

Lamb wave modes in a plate may be used to help the understanding of the vibration 

modes of piezoelectric discs (Furgason and Newhouse, 1973). The symmetric modes of 

the Lamb wave equation in an isotropic plate can be written as (Auld, 1973), 

Tan(KT^ 1 - C f f ) 4 1 - - ( y f 
(5 1) 

where c is the phase velocity of the Lamb wave modes, c^ and C2 are the longitudinal and 

shear wave velocity respectively, and k is the wavenumber. 

The roots of the above transcendental frequency equation may be plotted as dispersion 

curves. Each root of the equation forms a dispersion branch, which represents a certain 

group of modes in the plate. Since piezoelectric ceramics are orthotropic materials, the 

above equation do not apply exactly, but can be used to analyse roughly the Lamb wave 

characteristics in piezoelectric plates. The dispersion curves can be plotted in terms of the 

Lamb wavenumbers (k) or phase velocity (c) as a function of the frequency thickness 

product (fT). For PZT5A with c^ = 3784.4 m/s and C2 = 1650.0 m/s, the dispersion 

curves in both forms are plotted in Fig 5.4. 

Strictly speaking the dispersion curves are only valid for infinite plates. However, when a 

disc has a large diameter, they can be used to analyse the vibration modes, and the 

different groups of vibration modes in the frequency spectrum of the disc can be assigned 
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to each branch of the dispersion curve shown in Fig 5.4. For example, within the 

frequency range of interest (below 3000 kHz.mm), SQ, gives the R-mode series; S^, 

which has a cutoff frequency at the second thickness shear mode by the one dimensional 

model (1650 kHz.mm), represents the thickness shear modes group (TS), and S2, which 

has a cutoff frequency at the first through thickness mode (1892.2 kHz.mm), gives the 

thickness extensional modes and high frequency radial A modes. Since the disc has finite 

thickness and diameter, the different modes can be coupled, which has been shown in the 

mode shapes discussed in the previous chapter, such as Fig 4.3. 

The T-modes series in Fig 1.4 defined by Ikegami et al. (1974) may in fact correspond to 

the thickness shear modes (TS-modes) in the frequency spectrum as shown in Fig 5.1. 

Although Ikegami et al. (1974) measured the frequency spectrum of discs with D/T ratios 

up to 28, no mode shape was provided to clarify the nature of the vibration modes. 

Nevertheless he assigned the measured T modes to the theoretical shear modes predicted 

by the plate theory though they were not in very good agreement. 

Unlike other modes, the edge mode cannot be simply explained by the dispersion curves 

shown in Fig 5.4. Gazis and Mindlin (1960) used the second order plate theory and 

suggested that edge modes may be associated with the complex wavenumbers in the low 

frequency range. They may come from the radial modes at the particular frequency 

reflected on the free edge boundary. However, the predicted frequency values of the edge 

modes by the second order plate theory were always much lower than the measured ones 

(Gazis and Mindlin, 1960; Ikegami et al., 1974). 

The edge mode may in fact be characteristic of the finite disc with free boundary 

conditions on the cylindrical surface. It can be seen from the frequency spectrum shown 

in Fig 5.1 that the frequency thickness products of edge modes are independent of the D/T 

ratio with fT around 1350 kHz.mm, which indicates that the edge modes depend on the 

thickness of the disc only. This frequency thickness product roughly coincides with the 

first longitudinal mode of the rod by the one dimensional theory at 1375 kHz.mm 

Fig 5.5 shows the axial surface displacements of the edge mode and some adjacent modes 

at D/T ratios from 2 to 20, together with the first mode of discs with D/T ratios of 0.1 and 

0.5. It can be seen that in the edge mode the displacements at the edge and at the centre of 

the discs are comparable, but that the phase of the edge displacement relative to that of the 

centre varies as the D/T ratio is increased. The edge mode may be associated with the first 

longitudinal mode of the rod, they both have similar mode shapes, and have 

approximately same frequency thickness products. 
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The thickness extensional modes, however, are quite remarkable as shown in both Fig 

5.1 and Fig 5.2. In the frequency spectrum with "modal constant" circles shown in Fig 

5.1, the thickness extensional modes "terrace" is broad around a D/T ratio of 5 and then 

gradually converges to a single mode when the D/T ratio approaches 20. However, the 

"terrace" for the values of the frequency thickness product shown in Fig 5.2 is not so 

obvious, and the frequency spectrum in the range of thickness modes becomes reasonably 

flat only when the D/T ratio exceeds 12. This agrees in form with the prediction by the 

second order plate theory for a material with Poisson's ratio larger than 1/3 (Ikegami et 

al., 1976). 

5.2.3 Measurements of the frequency spectrum 

Measurements of the frequency spectrum shown in Fig 5.1 would be very tedious if 

piezoelectric discs with all the D/T ratios were tested. Since extensive experimental 

measurements on the frequency spectrum of piezoelectric discs have been reported in the 

literature for various piezoelectric materials: BaTiOg (Shaw, 1954), PbTiO^ (Ikegami et 

al., 1974), and Pb(Zr.Ti)03 (Ueha et al., 1983) and these spectra show qualitative 

agreement with the FE predictions made here, only 8 PZT5A discs were used to verify the 

predicted frequency spectrum. The discs tested have D/T ratio of 20, 10, 5.0, 3.0, 2.5, 

2.0, 1.0, 0.5, which covers most of the D/T range of the predictions; since the frequency 

spectrum is plotted as fT vs D/T, some discs with different thickness could be used. The 

experimental procedure was the same as in Section 4.2.3. The electrical impedance 

response functions of these piezoelectric discs were first measured, and then they were 

used to find the resonant frequencies and the modal constants of each mode by the modal 

analysis technique. 

The measured frequency spectrum for these discs is shown in Fig 5.6, together with the 

predicted form shown in Fig 5.2. The measured modal constant of each mode is 

normalised to the largest one of that disc, and then plotted as a circle; the circle diameter is 

proportional to the normalised value of the measured modal constant, but many of them 

can not be seen since their values are too small. It can been seen that good agreement is 

obtained between the experiments and the predictions. 

The measured radial modes and thickness modes are generally in good agreement with the 

predictions as expected. From the frequency spectrum shown in Fig 5.6 and the detailed 

study in the previous chapter, it seems that a good correlation between the measured 

frequency of the edge mode and the predicted one by the FE model is obtained, which 



Chapter 5 Frequency Spectrum 

was not the case by using the plate theory. This can be understood since the numerical 

prediction by FE analysis satisfies all the boundary conditions of a free disc explicitly 

while the plate theory or other approximate analytically solution always have certain 

implicit assumptions. 

5.3 The influence of piezoelectric effects on tiie spectrum 

Piezoelectric materials exhibit coupling between the elastic and the electric (dielectric) 

properties. The piezoelectric coupling has a stiffening effect on the elastic properties of the 

material. However, sometimes the resonant frequencies and mode shapes of a 

piezoelectric disc can be obtained fairly accurately even when the piezoelectric effect is 

ignored (Guyott et al., 1986). EerNisse (1967b) compared the frequency spectra of 

BaTiOg in the D/HT ratio range 1 to 6 both neglecting the piezoelectric properties and taking 

them into account. He found that the resonant frequencies with piezoelectric properties 

were in general higher than those neglecting the piezoelectric effects. 

In the present study the frequency spectrum of PZT5A discs was predicted in the D/T 

range of 0.1 to 20 by the finite element method without considering the electrical effect. 

The computation procedure and the finite element mesh used in the previous section were 

used except that an 8-node elastic axisymmetric element was used instead of the 

corresponding piezoelectric element. 

The predicted frequency spectrum without considering the piezoelectric effect (or electrical 

properties) is shown in Fig 5.7. It has not been overlaid on the piezoelectric frequency 

spectrum shown in Fig 5.2 to avoid complication. It can be seen that the overall patterns 

of these two frequency spectra are similar. As expected, the values of the frequency 

thickness product of each mode for a purely elastic material are smaller than those for a 

piezoelectric material, which is due to the piezoelectric stiffening effect. However, this 

stiffening effect varies for discs with different D/T ratios and for different modes of the 

same disc. 

Generally the piezoelectric effect produces more difference in frequency values for discs 

with lower D/T ratios. This can be demonstrated by the comparison of the first mode 

frequency between piezoelectric discs and elastic discs as a function of D/T ratio as shown 

in Fig 5.8. The difference caused by the piezoelectric effect is largest at small D/T ratios, 

and then gradually decreases as the D/T ratio is increased. Above a D/T ratio of 6, the 

difference can hardly be seen. 
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Fig 5.9 compares the predicted resonant frequencies of a disc with and without 

piezoelectric properties. The disc has the properties of P5 A20, which is the PZT5A disc 

with a D/T of 20 studied in detail in the previous chapter. It can be seen from the plot that 

the piezoelectric property has little effect on the frequencies of the first few modes, and 

the frequency difference gradually increases with the order of the modes. However the 

frequency difference reaches a maximum in the frequency range of the thickness 

extensional modes and remains approximately constant after this. 

The above phenomena may be interpreted by considering the electrical properties of the 

piezoelectric disc. From the equations discussed in Chapter 3 the stiffening effect actually 

comes from the non-electroded regions in the piezoelectric structure, so the mechanical 

displacement here is more important if the piezoelectric coupling effect is taken into 

consideration. Since piezoelectric discs are usually poled in the thickness direction, the 

piezoelectric property has a much more pronounced effect in the vibration modes having 

strong deformation in the thickness direction than in the modes having large radial 

deformation. If the D/T ratio of the disc is very small, such as 0.1, the disc is essentially 

cylindrical and very large deformation in the thickness direction occurs for the first mode 

of the disc. The piezoelectric stiffening effect is therefore very significant and large 

differences in the frequency values result as shown in Fig 5.8. As the D/T ratio increases, 

the first mode of the disc gradually has less deformation in the thickness direction and 

more radial deformation, the piezoelectric effect is then reduced and the frequency 

difference is reduced. When it finally approaches the fundamental planar mode, in which 

deformation in the radial direction dominates, the piezoelectric effect therefore has very 

little influence on the value of the resonant frequency. Similarly, for different modes of 

the same disc as shown in Fig 5.9, the first few modes are lower order radial modes 

which have relatively small deformation in the thickness direction, so the piezoelectric 

properties have littie effect. With increasing mode order the deformation in the thickness 

direction increases, the stiffening effect is therefore more important, and relatively large 

differences in frequency result, particularly in the frequency range of the thickness 

modes. 

The mode shapes predicted are very similar for both the piezoelectric and elastic cases. 

This is why the elastic theory developed in 1950s was often used to analyse the measured 

vibration characteristics of piezoelectric discs, and the theoretical analysis on elastic discs 

was verified by experiments on piezoelectric discs. 



Chapter 5 Frequency Spectrum 

5.4 Conclusions 

The geometrical dependence of the vibration characteristics of piezoelectric discs has been 

studied by means of the frequency spectrum in the diameter to thickness ratio 0.1 to 20. It 

has been found that the vibration characteristics of the piezoelectric disc change drastically 

with D/T ratio. 

It has been shown that the modal constants of the thickness extensional modes of the 

piezoelectric discs are the largest of all the modes, and with increasing D/T ratio, the 

thickness extensional modes which have the largest modal constants converge to a single 

mode. This suggests that the modal constant can be a very useful parameter in analysis 

and design of piezoelectric transducers since it is also directly related to the excitation 

force and the vibration pattern. 

The predicted frequency spectrum has been verified by measurement on a limited number 

of discs, and good agreement has been obtained. The predicted frequency thickness 

products of edge modes show similar values to that of the first longitudinal mode of a 

piezoelectric rod, and the edge mode shows similar mode shape characteristics to that of 

the first longitudinal mode. This suggests that the edge mode, in which the displacement 

is maximum at the free boundary may be associated with the longitudinal mode of a rod. 



Chapter 5 Frequency Spectrum 160 

D/r ratios 
No. of elements 

in thickness 
No. of elements 

in radius 

0.1 - 1.0 8 4 

1.0 - 2.5 4 4 

2.5 - 5.0 4 8 

5.0 - 10.0 4 16 

10.0 - 15.0 2 32 

15.0 - 20.0 2 48 

Table 5.1 The finite element mesh used for piezoelectric discs with different D/T 
ratios 

Mode No. 
Predicted by the FE model 

(kHz) 
Predicted by the ID model 

(kHz) 

1 136.57 137.29 

2 534.99 537.76 

3 907.30 909.55 

Table 5.2 The resonant frequencies of the first three modes of a PZT5A disc with a 
D/T ratio of 0.1 (D = 1 mm, T = 10.07 mm) 
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Fig 5.1 The predicted frequency spectrum of PZT5A discs with modal constants 
(Circle diameters proportional to the normalised modal constants, some 
are too small to be seen) 
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Fig 5.2 The predicted frequency spectrum of PZT5A discs 
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MODE 1 
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MODE 3 
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Fig 5.3 Mode shapes of the first three extensional modes of a piezoelectric disc 
with a D/T ratio of 0.1 (D = 1.00 mm, T = 10.07 mm) 
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Fig 5.4 Dispersion curves of the symmetrical modes of Lamb wave 
(ci = 3784.4 m/s, C2 = 1650 m/s) 
(The curves marked * do not extend to zero wavenumber and the cut-off frequency 
because they were derived from Fig 5.4(a) in which the dispersion curves are only 
calculated up to phase velocity of 10 km/s) 
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Fig 5.5 The axial surface displacement of the edge modes and their adjacent 
modes as a function of D/T ratios 
(Values corresponding to FT values in the frequency spectrum) 
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Fig 5.6 The measured and predicted frequency spectra of PZT5A discs with 
measured modal constants (circle diameters proportional to the measured 
normalised modal constants, some are too small to be seen) 
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Fig 5.7 The frequency spectrum of PZT5A discs predicted without considering 
electric^ properties 
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Fig 5.8 The first mode of PZT5A discs as a function of D/T ratios predicted with 
and without electrical properties 

E 
E 
N 

1500 -I 

h 
1000 -

cn 
s 
c 

u 
c 
3 
2 

u. 

5 0 0 -

5 
1 

1 0 

D/T Rat io 

0 Piezoelectric 

X Elastic 

1 5 20 

Fig 5.9 The first 48 modes of the PZT5A disc with a D/T ratio of 20 predicted 
with and without electrical properties (D = 40.10 mm, T = 2.03 mm) 



CHAPTER 6 

THE TRANSIENT RESPONSE OF THE PIEZOELECTRIC DISCS 

6.1 Litroducdon 

The steady state responses of piezoelectric discs, including the electrical impedance 

function and the mechanical response function when the disc is subjected to voltage 

excitation across the electrodes of the discs, have been studied in detail in the previous 

chapters. It has been shown that the piezoelectric discs have many vibration modes in the 

frequency range of interest and none of these modes has the mode shape assumed by 

the one dimensional theory. 

However, in the analysis of the performance of the transducers the transient response is 

also very important. The transient response can be solved in two ways by the finite 

element analysis (Bathe, 1982). One solution is to integrate the dynamic differential 

equation in Chapter 3 directly for each time step, the advantage of this method is that it is 

efficient when the structure is very large and the response at a limited number of time 

steps is required. The alternative is to use modal analysis techniques (or mode 

superposition), which require the modal parameters, including the resonant frequencies 

and corresponding mode shapes and modal constants to be found and then to 

superimpose the contribution from all the modes in the frequency range of interest; the 

advantage of this method is that little extra work is required if the eigenproblem has 

already been solved. However, the method is very costly at the eigenvalue solution stage 

if the structure to be analysed has many modes in the frequency range of the excitation. 

In this chapter the mechanical transient response function of the piezoelectric disc is 

studied by the modal analysis technique. Since all the necessary modal parameters have 

already been found in the eigenvalue solution routine, the mechanical transient response at 

any degree of freedom can be obtained easily. 

6.2 Axid surface displacement of a piezoelectric disc when the disc is excited by 

various volt^e pulses 

6,2.1 A PZT5A disc with a D/T ratio of 20 

The PZT5A disc analysed is the same as the one in Chapter 4 with a D/T ratio of 20; it is 

assumed to be excited by voltage pulses across the electrodes on the top and bottom 

- 1 6 9 -
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surfaces of the disc. Since the normal displacement over the surfaces of the disc is of 

most interest, the axial displacement at each nodal point over the surface of the disc can be 

computed as a function of time. The formulation for the transient mechanical response of 

the disc in the axial direction at any nodal point has already been found by using the 

Duhamel integral as equation (3.83) in Chapter 3, 

ZfCt) = — ^ jHr(p('c)sin[cOr(t -1)] dx + ArSin((Ort) + Brcos(c0j.t) (6.1) 
tt>r 0 

where A ,̂ Bj. are determined from the initial conditions, r denotes modal parameters at 

mode r, Hj is a function of equivalent nodal force and the mode shape of mode r; (p(x) is 

the applied voltage, which can be an arbitrary function of time. The Duhamel integral can 

be evaluated numerically, but some simple inputs are used here in which an analytical 

solution can be obtained. The displacement can then be obtained by superimposing the 

above expression over aU the modes which have been predicted. 

The modal solution includes all the modes up to 15(K) kHz for this disc. This is well 

beyond the first through thickness mode at 962 kHz predicted by the one dimensional 

model which is of most interest. The simple analytical inputs used here (Dirac, rectangular 

pulses and single cycle sine wave) do have some energy above 1500 kHz. However, the 

response of the disc to this energy is not included in the modal solution. This is not a 

significant problem since in practical excitation pulses applied to discs with a 1.0 MHz 

thickness frequency also have only very limited energy above around 1.5 MHz. 

In modal solutions the time step taken in the transient analysis depends only on the 

highest frequency of the mode predicted, i.e., 1500 kHz here, and the problems which 

may be encountered in the direct time integration scheme, such as aliasing and instability, 

are therefore removed. A time step of 0.1 |is is used here, which is believed to be 

sufficient. 

Following are responses corresponding to three simple forms voltage excitation pulses: 

the Dirac pulse, rectangular pulse, and one single cycle sine wave. 

1. ESrac pulse 

Since only the modes up to 1500 kHz are considered, the spectrum of the Dirac 

pulse has a cut-off frequency at 1500 kHz. Fig 6.1 shows the transient axial mechanical 

displacement response at the central point of the surface of the piezoelectric disc when the 
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disc is excited by a Dirac voltage pulse. The transient response is plotted in the range 0-20 

|i.s and 0-200 )is separately in Fig 6.1(a) and (b) in order to obtain a clear view of the 

crucial initial portion of the response, and linear amplitudes normalised to a maximum 

value of unity are used in these and the following figures. Since the structural damping 

model, which assumes harmonic motion, is invalid for the modelling of transient 

responses, the modal damping included in the transient analysis is viscous damping, with 

a damping coefficient % of 0.007, which corresponds to a Q factor of 75 for PZT5A = 

^ ) , and the decaying response is seen in Fig 6.1(b). 

It can be seen from Fig 6.1 (a) that although the response at the beginning shows the 

presence of more than one mode, the dominant period of the oscillation is about 1 |is. 

This is believed to be due to mode 32 predicted at 965 kHz which is the most strongly 

excited mode for this disc. However, the response becomes complicated after 10 |is, and 

many modes including the low frequency radial modes appear in the response. 

Fig 6.1(b), which records the response over a larger range of time from 0 to 200 [is, 

shows that the general response is very complicated since all 64 modes predicted in the 

frequency range of interest are superimposed in the response. The high frequency modes 

are damped out quickly with time, and the response in the time range around 200 [is is 

dominated by the low order radial modes, and it can be observed that the oscillation has a 

period of about 20 [is, which corresponds to the first radial mode with a resonant 

frequency predicted at 50 kHz. 

In order to see clearly how the piezoelectric disc responds with time when the voltage 

pulse is applied, the surface axial displacement of the disc, i.e., the axial displacements at 

all surface nodes, are calculated as a function of time. These "snap shots" of the surface 

of the disc are then plotted for selected time instants. 

Fig 6.2 shows snap shots of the surface of the disc, from 0.1 to 4 |is in steps of 0.1 |is. 

It is very interesting and surprising that the displacement response over the surface of the 

disc shows remarkable flatness within the first 2 p.s since it has been shown in Chapter 4 

that there is no mode having a mode shape close to the piston-like motion suggested by 

the one dimensional model. Since the first through thickness frequency assumed by the 

one dimensional theory is 962 kHz, and the most strongly excited mode predicted by the 

three dimensional FE model is 965 kHz, the period of the one dimensional through 

thickness mode and that of the most strongly excited mode is about 1 |J.s. 
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The piston-like motion of the disc predicted for the first few microseconds after the 

excitation is applied is due to the superposition of contributions from all the modes of the 

disc. In particular, there are many modes in the thickness frequency range which have 

some "dc" component of displacement over the surface of the disc as well as a component 

which varies along a diameter. When the contribution from the different modes are added 

together, the "dc" components tend to add while the v^uying components tend to cancel, 

giving a roughly constant displacement over the surface, other than close to the edge. 

To verify the above explanation, the transient surface displacement responses due to the 

contribution from different mode components are calculated in time from 0.1 to 2.0 |is 

and are shown in Fig 6.3. Fig 6.3(a) shows the surface response due to a single mode 

(mode 32) at 965 kHz, which is in fact identical to the mode shape shown in Fig 4.3; Fig 

6.3(b) shows the response including mode 32 and the first five radial modes from 0.1 to 

2.0 (is; and Fig 6.3(c) shows the response including mode 32 and the other high 

frequency thickness extensional modes from 880 kHz to 1080 kHz. It can be seen that the 

contribution of radial modes shown in Fig 6.3(b) is not responsible for the piston-like 

motion, while the result shown in Fig 6.3(c) is close to that of Fig 6.2 in which the disc 

has a relatively uniform surface motion. 

Fig 6.4 shows the surface deformation of the disc in the time range 10-12 [i-s. Since the 

high frequency thickness extensional modes become weaker due to the damping effect 

and the contribution from the radial modes is increased in the response, the surface 

motion becomes more and more complicated. 

Fig 6.5 shows the axial surface displacement of the disc in the time range 200-240 jis. It 

can be seen that the high frequency modes are almost damped out, the low frequency 

radial modes dominate the transient response. Mode 1 at 50 kHz and mode 2 at 110 kHz 

are both seen in the response at 2(X) |is, while it can be shown that only the first radial 

mode at 50 kHz (period 20 (is) remains at around 300 (is. 

It is evident that the transient surface displacement of this PZT5A disc with a D/T ratio of 

20 has three different phases when it is excited by voltage pulses. At the initial stage, the 

disc vibrates at a frequency close to the most strongly excited mode at 965 kHz, but 

exhibits almost piston-like motion due to mode coupling with other adjacent high 

frequency modes. At the second stage, the disc vibrates in a very complicated manner 

since all the modes including radial modes contribute to the response. The third stage is 

that the high frequency modes are damped out, only the low order radial modes are still in 

the response, and the first radial mode is the last mode in the response to die away. 
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2. Rectangular pulse 

Similar computations were made for the response to a rectangular voltage pulse excitation, 

since it is easily generated in experimental studies. The pulse was assumed to have a 

duration of 0.2 jis. Since the pulse is relatively short, the frequency content is believed 

similar to that of Dirac pulse in the frequency range from 0 to 1500 kHz. 

The transient axial mechanical response at the central point of the surface of the disc is 

shown in Fig 6.6 over the periods 0 to 20 jis and 0 to 200 |is. It can be seen that the 

response is very similar to that for the dirac pulse shown in Fig 6.1. 

Snap shots of the surface movement of the disc within the first 2 jis are shown in Fig 6.7. 

Again the results are similar to those obtained with Dirac pulse excitation. 

3. One cyde sine wave 

The transient response was also calculated for a one cycle sine voltage wave excitation 

applied to the piezoelectric disc. This is of interest since many practical excitation pulses 

have an approximately zero mean value. Therefore, the response to a single cycle sine 

wave will have features seen with these practical pulses. 

Fig 6.8 shows the transient response of the disc at the central point of the surface to a 

single cycle of 1 MHz sine wave voltage. It can be seen that the high frequency 

components, in particular, mode 32 at 965 kHz, clearly dominates the response at the 

initial stage of the response. This is then followed by the low frequency radial modes. 

The snap shots of the surface movements of the disc, shown in Fig 6.9 for this case from 

0 to 2 |is, also exhibit the piston-like features seen with the previous pulses. 

The above results, particularly the transient surface movement of the disc in the first 

phase, may be significant. It indicates that the disc initially (over about 2 periods of the 

through thickness resonance by the ID theory) is able to vibrate in a form close to the 

piston-like motion due to mode superposition of the thickness extensional modes when 

the disc is excited by voltage pulses. Since the transient response may be damped out after 

the first few periods of the through thickness resonance by other damping sources, such 

as the backing of the transducers, this result can be very encouraging. It explains that 

although there are many modes in the piezoelectric disc, and the mode shape of any one 

thickness extensional mode is quite different from the piston-like motion assumed by the 
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one dimensional theory, the superposition of the contributions from these many thickness 

extensional modes does produce motion close to a piston-like pattern in the transient 

response over the first few periods of the through thickness resonance. 

6.2.2 A PZT5A disc with a D/T ratio of 10 

It has been shown in Chapter 4 that the PZT5A disc with a D/T ratio of 10 has two 

equally strongly excited modes, one at ^SS'kHz and the other at 986 kHz. It is therefore 

of interest to see whether the piston-like motion obtained for the previous disc with a D/T 

ratio of 20 which had a single dominant mode is also seen with this disc. 

The axial mechanical response at the central point of the disc is shown in Fig 6.10 from 0 

to 20, and from 0 to 200 |is. The corresponding surface displacement from 0.1 to 4 

microseconds are plotted in Fig 6.11. It can be seen that from these "snap shots" that the 

piston-like motion is also seen at the start of the response. However, the motion is much 

less well defined than that in the previous case shown in Fig 6.2, particularly after 1.5 jiis. 

6.2.3 A PZrSA disc with a D/T ratio of 0.5 

The PZT5A disc with a D/T ratio of 0.5, which has been analysed in the previous 

chapters, is now discussed. Although the disc has six modes in the frequency range from 

0 to 600 kHz, it has been shown in Chapter 4 that only the first mode at 133 kHz can be 

strongly excited by the voltage excitation since it has a much larger modal constant than 

those of the other modes. 

Fig 6.12 shows the transient response by using the modal analysis technique, all six 

modes obtained in the eigenvalue solution being included in the calculation. It can be seen 

that the transient response shows almost purely sine oscillation though slight distortion is 

observed due to the effects of other modes. This demonstrates the dominance of a single 

mode in the response of the disc. 

6.3 The measured transient voltage response of piezoelectric discs when various 

voltage pulses are applied 

6.3.1 The measurement set up 

Since it is very difficult to measure the transient surface displacement of piezoelectric 

discs when a voltage pulse is appUed across the electrodes on the top and bottom surfaces 

of the disc by conventional techniques, and the advance measurement techniques, such as 
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laser interferometry (Krammer, 1989), were not always available, a direct comparison 

with the computed mechanical response of the disc is not sought at moment. It was 

decided to measure the induced voltage response of the piezoelectric disc when the disc is 

excited by a voltage pulse (Ying et al., 1979), and to analyse the frequency content of the 

response by ultrasonic spectroscopy (Kalucha et al., 1989). 

Fig 6.13 shows the measurement set up, which is slightly different from the one used to 

measure the electrical impedance as shown in Fig 4.8. A pulse generator (4001, Global 

Specialties Corporation) having an output impedance of 50 O, which is capable of 

generating a rectangular pulse with a duration as short as 0.1 |is and a single cycle sine 

wave up to a frequency of 20 MHz, is used to excite the piezoelectric disc. When a 

voltage pulse is applied to the disc the transient voltage response induced across the disc 

is picked up and recorded by a digital oscilloscope (LeCroy 9400). This voltage signal is 

then sent to a FFT analyzer (B&K 2033) to obtain the frequency spectrum of the 

response. The peaks in the spectrum correspond to the resonant frequencies of the 

vibration present in the response. 

6.3.2 The experimental results 

1. A PZTSA disc with a D/T ratio of 20 

Fig 6.14 shows the excitation and the transient response of the PZT5A disc with a D/T 

ratio of 20, in which Fig 6.14(a) is the induced transient voltage response across the disc, 

and the voltage excitation pulse of duration 0.1 p.s is also shown in the top of the right 

hand side of Fig 6.14(a). The sampling frequency used is 25 MHz, which is sufficiently 

high to avoid aliasing (Randall, 1977). Before the response in Fig 6.14(a) was sent to the 

FFT analyzer the excitation pulse shown in the response trace was gated out and then a 

Hanning window was applied to the response to avoid leakage (Randall, 1977); the 

corresponding spectrum of the voltage response was then obtained and is shown in Fig 

6.14(b). 

The spectrum shows the vibration modes which have been excited by the voltage pulse. 

Each peak in the spectrum represents a mode in the response, and the value of frequency 

corresponds to the resonant frequency of the mode. Table 6.1 lists the measured resonant 

frequencies by locating the peaks in the FFT spectrum of the transient response and those 

measured by the minimum of the electrical impedance in Chapter 4. It can be seen that 

there are a large number of modes which have been excited by the pulse. This verifies the 

result obtained in the previous chapters. 
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If the pulse generator has a very small output impedance, the electrical boundary 

conditions of the disc can be assumed to be short circuit after the disc is excited by the 

applied voltage pulse, and the peaks in the FFT spectrum should correspond to the 

resonant frequencies of the modes (or the frequencies at constant voltage). However, the 

pulse generator used here has a finite output impedance of 50 O, which violates the ideal 

electrical boundary conditions. Some discrepancy between the values of resonant 

frequencies measured by the electrical impedance and those measured by the FFT 

spectrum are therefore expected, particularly in the frequency range of the thickness 

extensional modes. This explains why the resonant frequencies measured by the transient 

method shown in Table 6.1 are all higher than those measured from the impedance plot. 

Similar results have been obtained for a single cycle sine voltage of 1.0 MHz which was 

applied to a PZT4 disc with a D/T ratio of 20 (PZT4 has a Q factor of 500). The transient 

response from 0 to 200 |is is shown in Fig 6.15(a), and corresponding spectrum is 

shown in Fig 6.15(b). It can be seen that in this case the radial modes in the low 

frequency range are much less strongly excited than with the previous rectangular pulse 

due to the different frequency content of the pulse. 

2. A PZTSA disc with a D/T ratio of 0.5 

It has been shown in Chapter 4 that the first mode of the PZT5A disc with a D/T ratio of 

0.5 can be excited much strongly. This can also be shown by the pulse excitation of the 

disc. 

Fig 6.16(a) shows the transient voltage response across the disc when a rectangular pulse 

with a duration of 3.5 p.s shown on the top of the right hand side of the figure is applied 

to the disc. The small distortion which occurs in the first few cycles and disappears soon 

afterwards indicates that there are some very weak high frequency components in the 

response. The response then essentially becomes a decaying sine wave. The form of the 

oscillation and the small distortion are very similar to the computed mechanical response 

shown in Fig 6.12. The FFT spectrum of the response is shown in Fig 6.16(b), the peak 

frequencies of the spectrum correspond to the resonant frequencies of the modes of the 

disc, and the first peak frequency in the spectrum is 134 kHz which is very close to the 

one measured by the impedance method at 133 kHz. 
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6.4 Conclusions 

The transient mechanical response of piezoelectric disc when it is excited by a voltage 

pulse has been studied by the modal analysis technique. 

It is evident from Chapter 4 (both prediction and measurement of frequency response 

functions and mode shapes) that the piezoelectric disc cannot vibrate in the piston-like 

motion suggested by the one dimensional theory at any single frequency. However, the 

transient study in this chapter has shown that it is possible for piezoelectric discs to 

vibrate in a form close to piston-like motion due to high modal density and mode 

superposition effects. The mechanism producing this simple motion has been explained. 

The induced transient voltage response across piezoelectric discs when a voltage pulse is 

applied to the discs has been measured, and its corresponding spectrum has been 

computed. It has been shown that the measured resonant frequencies have close 

correlation with those measured by the steady state excitation (electrical impedance 

response). However, it would be very interesting to be able to measure the transient 

surface motion of the disc when it is excited by voltage pulses. 
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Fl Fl Fl F2 

(kHz) (kHz) (kHz) OcHz) 

50 51 826 829 

130 131 836 841 

204 206 856 860 

275 278 872 875 

343 346 895 899 

405 408 

461 464 

510 514 936 942 

552 557 951 972 

590 594 972 1000 

620 626 1004 1041 

698 700 1041 1082 

730 733 1080 1126 

764 768 

798 803 

Table 6.1 The measured resonant frequencies of the PZT5 A disc with a D/T ratio of 
20 by sweep sine and transient tests 
Fl: measured at the minimum electrical impedance in sweep sine test 
F2: measured at the maximum of FFT spectrum in transient test. 
(Blanks: modes in these ranges are too weak to be excited) 
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Fig 6.1 The predicted transient axial displacement at the central point of the 
surface of the PZT5A disc with a D/T ratio of 20 when the disc is excited 
by a Dirac voltage pulse 
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A 

Fig 6.2 The predicted axial surface displacement of the PZT5A disc with a D/T 
ratio of 20 when the disc is excited by a Dirac voltage pulse 
(0.1 to 4.0 lis) 
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Fig 6.2 Continued (2.1 to 4.0 |is) 
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(a) Mode 32 at 965 kHz only 

Fig 6.3 The predicted axial surface displacement of the PZT5A disc due to 
different mode components from 0.1 to 2.0 |is 
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(b) Mode 32 + The first 5 radial modes 

Fig 6.3 Continued 
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(c) Mode 32 + High frequency modes from 880 to 1080 kHz 

Fig 6.3 Continued 
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Fig 6.4 The predicted axial surface displacement of the PZT5A disc with a D/T 
ratio of 20 when the disc is excited by a Dirac voltage pulse 
(10.1 to 12.0 lis) 
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Fig 6.5 The predicted axial surface displacement of the PZT5A disc with a D/T 
ratio of 20 when the disc is excited by a Dirac voltage pulse 
(201 to 240 ^s) 
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Fig 6.5 Continued (221 to 240 jis) 
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Fig 6.6 The predicted transient axial displacement at the central point of the 
surface of the PZT5A disc with a D/T ratio of 20 when the disc is excited 
by a rectangular voltage pulse of 0.2 [is 
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Fig 6.7 The predicted axial surface displacement of the PZT5A disc with a D/T 
ratio of 20 when the disc is excited by a rectangular voltage pulse of 0.2 
|is (0.1 to 2.0 lis) 
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Fig 6.8 The predicted transient axial displacement at the central point of the 
surface of the PZT5A disc with a D/T ratio of 20 when the disc is excited 
by a single cycle 1 MHz sine wave voltage 
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Fig 6.9 The predicted axial surface displacement of the PZT5A disc with a D/T 
ratio of 20 when the disc is excited by a single cycle 1 MHz sine wave 
voltage (0.1 to 2.0 |i.s) 
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Fig 6.10 The predicted transient axial displacement at the central point of the 
surface of the PZT5A disc with a D/T ratio of 10 when the disc is excited 
by a Dirac voltage pulse 
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Fig 6.11 The predicted axial surface displacement of the PZT5A disc with a D/T 
ratio of 10 when the disc is excited by a Dirac voltage pulse 
(0.1 to 4.0 |is) 
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Fig 6.11 Continued (2.1 to 4.0 |is) 
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Fig 6.12 The predicted transient axial displacement at the central point of the 
surface of the PZT5A disc with a D/T ratio of 0.5 when the disc is excited 
by a Dirac voltage pulse 
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Fig 6.13 Configuration of the apparatus used in pulse excitation 
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Fig 6.14 The transient response of the PZT5A disc with a DyT ratio of 20 to a 
rectangular pulse with duration 0.1 |is 
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Fig 6.15 The transient response of the PZT4 disc with a D/T ratio of 20 to a single 
cycle 1.0 MHz sine voltage 
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Fig 6.16 The transient response of the PZT5A disc with a D/T ratio of 0.5 to a 
rectangular pulse with duration 3.5 [is 



CHAPTER 7 

THE APPLICATION OF THE THREE DIMENSIONAL MODEL TO 
OTHER PIEZOELECTRIC DISCS 

7.1 Introduction 

The vibration characteristics of piezoelectric discs have been studied in the previous 

chapters. The natural frequencies and mode shapes of the vibration modes have been 

predicted by the eigenvalue solution, the frequency response function and the electrical 

impedance of the disc have been calculated by the modal analysis techniques, and the 

transient mechanical response of the disc when a voltage pulse is applied across the disc 

has been calculated. 

In this chapter the analyses are extended to some other aspects of the piezoelectric disc. 

The damping sources of a piezoelectric transducer which include mechanical damping and 

electrical loss are discussed first. Piezoelectric discs with an elastic addition are then 

studied in order to see the effects of the addition on the vibration characteristics of the 

disc, which may help the understanding and modelling of the backing of piezoelectric 

transducers. Furthermore, the three dimensional model is applied to predict the vibration 

characteristics of some other piezoelectric discs, such as the discs which are partially 

electroded on the top and bottom surfaces. 

7.2 Analysis of damping sources in piezoelectric transducers 

The damping effect is very important in the performance of ultrasonic transducers. In 

linear vibration theory it is often modeled in idealised forms, such as viscous damping 

and structural or hysteretic damping. The damping in piezoelectric transducers is very 

complicated since there are many damping sources in the transducers. Generally they can 

be classified as mechanical damping and electrical damping. 

7.2.1 Mechanical danping 

One source of mechanical damping in transducers is material damping in the piezoelectric 

elements, which has already been modelW successfully as proportional damping in the 
r 

previous chapters, i.e., in terms of structural damping factors in steady state analyses and 

in terms of viscous damping in transient analyses. The other sources of mechanical 

- 199-
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damping include loss in the bonding layers between the piezoelectric element and backing, 

and between the element and matching layer, etc. However, if the bonding layer can be 

assumed to be perfect and negligibly thin, the effects of these damping sources are not 

very significant (Silk, 1983). 

The main damping source in ultrasonic transducers is the backing of the transducers, 

which is designed to remove reflections from the back face of the disc, or to reduce 

vibration of the disc to such extent that the oscillation of the piezoelectric disc only lasts a 

very few cycles. 

A backing block which has the same acoustic impedance as that of the piezoelectric disc is 

called matched backing, and it usually has a very high loss factor. From the wave 

transmission point of view, when an elastic wave reaches the boundary between the disc 

and a matched backing, the wave is completely transmitted into the backing part from the 

piezoelectric disc due to the matched impedance, and the transmitted wave is then heavily 

absorbed when it propagates through the backing due to the high loss nature of the 

backing material, which results in very little energy coming back to the piezoelectric disc. 

From the vibration point of view, it is known that the high lossy extra mass can damp out 

the vibration level of the disc and shift the resonant frequencies of the original structure; 

however, it is not very clear how exactly this backing affects the vibration characteristics 

of the disc, such as the resonant frequencies, mode shapes and corresponding modal 

constants of the different types of vibration modes. 

Backing was not intended to be analysed in this thesis; however, in Section 7.3 some 

brief studies are carried out to investigate the effect of an elastic addition on the vibration 

characteristic of piezoelectric discs, which may assist the understanding and further 

modelling of transducers. 

Apart from the damping inside the ultrasonic transducers, there are other sorts of 

mechanical damping, such as the loss from interaction with surrounding fluids when the 

transducers are operated in immersion mode, or the damping from the contact gel when it 

is operated in contact with specimens. 

7.2.2 Electrical damping 

Another source of damping in piezoelectric transducers is electrical losses. The electrical 

loss may come from the internal dielectric loss of the piezoelectric material, i.e., the 
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tangential loss (Hilke, 1973). This part is usually very small and negligible for most of 

materials, and can be modelW as the imaginary part of the material constants. 

The electrical damping may be increased by an electrical resistor in the electric circuit 

(O'Donnell et al., 1981). In real transducers there are frequently electrical components 

inside transducer housing, such as resistors in series with the piezoelectric disc and 

inductors in parallel with the piezoelectric disc which form a matching network between 

transducers and generators. The series resistor is designed to increase the minimum 

impedance of the transducers and to match to the output impedance of the electrical 

sources, the bandwidth of the vibration modes is therefore increased significantly. 

Fig 7.1(a) illustrates the predicted electrical impedance of the PZT5A disc with a D/T ratio 

of 20 in series with resistors as the value of the resistor varies from 0 to 5, 20 and 50 Q.. 

Fig 7.1(b) shows the corresponding measured impedances of such a system. It can be 

seen from both the measurements and the predictions that the minimum values of the 

impedance of the piezoelectric discs have been increased significantly around the 

resonances, and the corresponding bandwidths are increased. 

The actual effect of the electrical damping due to the series resistor is that the real part of 

the impedance of the piezoelectric disc is increased. Fig 7.2(a) and (b) show the predicted 

real and imaginary parts of the impedance of a piezoelectric disc alone with a D/T ratio of 

20 respectively. The added series resistors increase the real part of the impedance shown 

in Fig 7.2(a) and the overall impedances are changed. 

However, in all case, the damping improves the bandwidth of the transducers at the 

expense of the sensitivity of the response. 

7.3 Analyses of vibration characteristics of piezoelectiic discs with an addition 

In this section piezoelectric discs with an elastic addition are studied by the finite element 

model and the modal analysis method. 

Two types of material were used as the addition of the piezoelectric disc, one is perspex, 

which has a very,small mass density. Young's modulus, and small loss factor. The other 

addition is epoxyjwith titanium filler, which has a large mass density, and has a large loss 

factor. The material of all the additions is assumed to be isotropic. The material properties 

of the PZT5A, perspex and epoxy with titanium filler are listed in Table 7.1. The loss 

factors of the two additions were obtained from ultrasonic measurements (Ugayr, 1979). 



Chapter 7 Applications 202 

The acoustic impedances of the above materials were calculated and are also listed in 

Table 7.1, which are defined as 

Z = p c 

where p is the mass density of the material and c is the longitudinal velocity in the 

material. For PZT5A, the acoustic impedance is very high, 33.7 xlO^ kg/m^s. The 

perspex has a relatively small acoustic impedance compared to that of the PZT5A, only 

3.22 xlO^kg/m^s, while the epoxy has a comparable acoustic impedance of 9.91 xlO^ 

kg/m^s due to the dense titanium filler, and a high loss factor of 0.S8. This was intended 

to simulate the sort of material which is likely to be used as the backing of the 

piezoelectric transducers. The bonding line between the disc and addition is assumed to be 

perfect and infinitely thin, and the mechanical effect of the bond layer is negligible. 

It can be seen from Table 7.1 that the damping factors for piezoelectric disc and elastic 

additions are different, particularly between PZT5A and epoxy addition. Since non-

uniform damping is not considered in the eigenvalue routine programme, and uniform 

damping is assumed when the frequency response functions and the electrical impedance 

are calculated by the modal analysis method, some discrepancy is expected. The damping 

factor used in the modal solution calculations is a compromise taking into account the 

damping factors of the disc and the addition (in between these two values), and was tuned 

to obtained the best agreement with the experimental measurements. The structural 

damping factors used in calculating the electrical impedances are 0.01 for the disc with 

perspex addition, and 0.035 for the disc with epoxy addition. 

Due to the added mass of the elastic addition to the piezoelectric disc, the number of 

vibration modes which need to be computed in the eigenvalue routine is increased 

drastically if the frequency range of interest in the composite structure is still from 0 to 

one and a half times the through thickness frequency of the piezoelectric disc itself. This 

may be restricted by the computer core size and by the cost. In order to limit the mesh size 

required, a small disc 10 mm in diameter and 2.01 mm thick giving a D/T ratio of 5 was 

used in these tests. 

The numerical and experimental studies were carried out on the PZT5A discs with two 

different elastic additions. Both additions had the same diameter as the piezoelectric disc 

but with a length of 6 mm for the perspex and a length of 10.54 mm for the epoxy, as 

listed in Table 7.2. The specimens were prepared by bonding the piezoelectric discs and 

additions together, and the two leads contacting the top and bottom surfaces of the disc 

are connected with the voltage source as illustrated in Fig 7.3. 
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Fig 7.4(a) to (c) show respectively the predicted electrical impedances for the PZT5A disc 

alone with a D/T ratio of 5, the disc with the perspex addition and the disc with the epoxy 

addition. The normalised modal constants, which evaluate the strength of excitation at 

resonances, are plotted in Fig 7.5(a) to (c) for each case. 

As has been shown by the predicted frequency spectrum in Fig 5.2 of Chapter 5, there 

can be more than one mode which is strongly excited by voltage excitation of a 

piezoelectric disc with a small D/T ratio. Among 16 modes predicted for the PZT5A disc 

with a D/T ratio of 5 in the frequency range of interest from 0 to 1500 kHz, two thickness 

extensional modes at 956.9 kHz (mode 8) and 1018 kHz (mode 9) are most strongly 

excited and have almost equal strength of excitation, together with the first radial mode at 

195.2 kHz which is relatively strongly excited. The axial surface displacements of these 

three modes are plotted in Fig 7.6(a), and the predicted electrical impedance of the disc is 

shown in Fig 7.4(a). 

For the disc with an addition as light as the perspex the general form of the electrical 

impedance response shown in Fig 7.4(b) remains more or less similar to the response for 

the single disc in Fig 7.4(a) though there are many more modes predicted in the frequency 

range of interest. The two modes which are most strongly excited in this composite 

structure are modes at 958.6 kHz and 1029.2 kHz. Their surface displacement patterns 

shown in Fig 7.6(b) are similar to those of modes 8 and 9 of the disc alone shown in Fig 

7.6(a). The first radial mode at 195.2 kHz for disc alone shown in Fig 7.6(a) is now 

predicted at 199.2 kHz with a similar surface displacement pattern. It is therefore evident 

that for the disc with a perspex addition, the deformed shape of the free surface for the 

most strongly excited modes have not been changed too much, while their corresponding 

resonant frequencies are increased slightly, indicating that the perspex is contributing 

more stiffness than mass in these modes. 

For the disc with an addition of large mass density. Young's modulus and loss factor, 

such as the epoxy addition with titanium filler, the predicted impedance response shown 

in Fig 7.4(c) is extremely complicated not only because of the large number of the 

resonant modes predicted in the frequency range of interest but also because no single 

mode has a much larger modal constant than the others. Therefore no single mode 

dominates the frequency response. The discussion below concentrates on the frequency 

region of the first radial mode of the disc and the frequency range around the thickness 

frequency of the disc. 
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In the frequency range from 150 to 250 kHz, there are 9 modes predicted for the disc with 

the epoxy addition, and they all have approximately the same modal constants, however, 

the mode having maximum modal constant among them is at frequency of 186.1 kHz, 

which has same type of surface motion shown in Fig 7.6(c) as the first radial mode of the 

disc alone, though its frequency is lower than the 195.2 kHz for the disc alone and 199.2 

kHz for the disc with a perspex addition. 

In the frequency range of 948 to 977 kHz, there are 4 modes which are strongly excited. 

The mode at 967.5 kHz has the largest modal constant among aU modes of the composite 

structure, and the mode at 948.2 kHz has the second largest modal constant. Their surface 

displacements are shown in Fig 7.6(c), and it can be seen that the both modes have a 

similar pattern to mode 9 at 1019 kHz of the disc alone shown in Fig 7.6(a). The mode at 

967.5 kHz has a particularly large "dc" component of displacement across the surface of 

the disc. 

Another mode at 1039 kHz has a relatively large modal constant, and its surface 

displacement is shown in Fig 7.6(c). It seems that the surface displacement of this mode 

is similar to mode 9 of the disc alone, but the "dc" component of the surface displacement 

is lower. 

It is therefore clear that for the titanium addition, many more modes are predicted and their 

corresponding resonant frequencies are reduced for the modes which have similar surface 

displacement patterns to those of the disc alone. This is because the addition has such a 

high mass density. 

Fig 7.7(a) to (c) show the corresponding measured electrical impedances for the 

piezoelectric disc alone, the disc with a perspex addition and the disc with an epoxy 

addition. In general it can be seen that the predictions and measurements for the additions 

agree qualitatively well with each other; in particular there is very good correlation 

between the prediction and measurement for the disc with the perspex addition. The 

prediction and measurement for disc with the epoxy addition show good agreement in the 

low frequency range, and agree reasonably well in the form of the response throughout, 

but significant discrepancy occurs in the first through thickness frequency range. This 

may be because the titanium loaded epoxy has much higher damping than the disc itself so 

the damping in the system is highly non-uniformly distributed where the modal analysis 

assumes uniformly distributed damping. 
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It is evident that additions have significant effects on the vibration characteristics of 

piezoelectric discs and changes depend on the material properties of the addition, such as 

mass density, Young's modulus and and the loss factor. The effect on the vibration 

characteristics of the disc is rather small for a disc with an addition which has small mass 

density and acoustic impedance; although many extra modes arise in the impedance 

response, their strength of excitation is very small, and the modes which can be most 

strongly excited have similar surface displacement patterns to those modes which are 

strongly excited for the piezoelectric disc alone. However, the effect is quite severe for the 

addition of a high mass density; a large number of modes are predicted, but no single 

mode dominates the response, and many modes which have similar strength of excitation 

cluster in the same frequency range and are coupled with each other. 

The high loss factor of the addition reduces the amplitudes of the response at resonant 

frequencies and couples modes with each other. The increased modal density and mode 

coupling effect due to the addition with high loss factors may spread the energy over a 

larger frequency range, and the frequency bandwidth is therefore increased. 

The current modelUng for the elastic addition to the piezoelectric discs seems rather crude 

for accurate analyses of transducers with backing, which inherently has a loss factor 

much different from that of the disc. More accurate results would be obtained if the finite 

element analysis had accommodated non-uniform damping. 

7.4 Application of the FE model to piezoelectric discs with varying pattern of 

electrodes 

The finite element analysis and modal analysis techniques may be particularly useful and 

flexible for the analysis of the vibration characteristics of piezoelectric structures with 

complicated geometries and boundary conditions, such as piezoelectric discs with curved 

surfaces (Vopilkin, 1987), discs of non-uniform thickness (Hutchins et al., 1987), 

tapered transducers (Barthe and Benkeser, 1987), piezoelectric structures with an 

inhomogeneous electric field (Kazhis and Lukoshevichyus, 1976; Brittain and Weight, 

1987) and discs with irregular distribution of electrodes. These advanced transducers 

which were previously studied by experimental methods and simple analyses can now be 

possibly analysed much more accurately. 

In this section the vibration characteristics of partially electroded discs are studied as an 

example of the application of the three dimensional model. The two discs analysed have 

identical geometries to the fully electroded disc studied in Chapter 4. They are PZT5A 
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discs with D/T ratio of 20, having diameters of 40.10 mm and thickness of 2.03 mm. One 

disc has electrode layers only on the outer half of the top and bottom surfaces and the 

other has the inner half of the surfaces electroded. They are illustrated in Fig 7.8. The 

finite element analysis of these two discs was carried out using the method described in 

Chapter 4 apart from a slight change in the electrical boundary conditions. 

Table 7.3 lists the predicted first 48 resonant frequencies of the discs with inner and outer 

half electroded surfaces together with the result previously obtained for the fully 

electroded disc. Since the static capacitances of these discs are quite different, the 

corresponding modal constants of these modes are normalised to the maximum of the disc 

and are also listed in Table 7.3. It can be seen that the predicted resonant frequencies of 

the partially electroded discs are higher than those of the fully electroded disc due to the 

increased piezoelectric stiffening effect from the extra non-electroded area. 

With partial electrodes on the top and bottom surfaces, the piezoelectric discs are only 

excited by the electrical voltage on the electroded area. The equivalent mechanical forces 

on the surface of the discs for both inner and outer half electroded discs are therefore 

different from that of the fully electroded disc. The equivalent nodal force is only applied 

in the electroded area, while the non-electroded area is in free boundary condition. The 

static capacitance of the piezoelectric disc is also reduced due to the reduction of the 

electroded area. 

Due to the change of electrode pattern, the strength of excitation of each mode, i.e., the 

modal constant of each mode is also changed. The modal constant normalised to the 

maximum for any mode in each disc is therefore used to compare modes for the different 

discs. It can be seen from Table 7.3 that the most strongly excited mode for the inner half 

electroded disc is mode 32 at 976.8 kHz, and for the fully electroded disc the most 

strongly excited mode is mode 32 at 965 kHz; however, there are differences in their 

corresponding mode shapes. 

The mode shapes of mode 32 and other modes of the inner half electroded disc which can 

be relatively strongly excited are shown in Fig 7.9. It can be seen that mode 32 is 

markedly different from those modes described in the fully electroded disc. The inner 

third of the disc has a very large and almost uniform axial displacement over the surfaces; 

in the middle third of the surface, the axial displacement decreases linearly along the radial 

direction accompanied by considerable radial deformation; while in the outer third of the 

disc, there is almost no radial or axial motion at all. The other two modes, which are also 

excited relatively strongly, are mode 24 at 888 kHz and mode 36 at 1029 kHz. They have 
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a similar type of deformation pattern to mode 32, with large displacement both in the axial 

and radial directions in the inner part of the disc and almost no deformation in the outer 

part of the disc. This sort of mode has not been found before for the fuUy electroded discs 

and has not been reported elsewhere. 

There is no single dominant mode for the outer half electroded disc. Mode 32 at 974.1 

kHz and mode 33 at 990.3 kHz of the outer half electroded disc are the modes which are 

most strongly excited, and several other modes at frequencies of 917.1, 928.4, 945.5, 

and 958.0 kHz are also excited relatively strongly. The mode shapes of these modes are 

shown in Fig 7.10, and they are similar to the modes described in Chapter 4. 

One PZT5A disc with D/T ratio of 20 which was originally fully electroded was used to 

measure the electrical impedance of the inner half electroded disc. The outer half of the 

electroded surfaces were removed by rubbing with an abrasive cloth and the electrical 

impedance was obtained using the procedure described in Chapter 4. 

Fig 7.11 shows the predicted and measured electrical impedance of the inner half 

electroded disc. It can be seen that there is generally good agreement between the 

measurement and prediction, particularly in the low frequency range where mode 4 in 

both the prediction and measurement is excited very weakly and mode 6 is not excited at 

all in comparison to the result shown in Fig 4.9 for the fully electroded disc. And in the 

frequency range of the first through thickness mode, i.e., around 970 kHz, both the 

prediction and the measurement show single mode domination, and agree very well apart 

from a slight shift in the values of the resonant frequencies. 

However, some discrepancy is observed over the frequency range of the thickness shear 

modes, i.e., between 870 kHz to 910 kHz in Fig 7.11. The only major difference 

between the predictions and the measurements is that mode 24 at 888.2 kHz which was 

predicted to be excited relatively strongly, does not appear in the measured impedance 

curve. The reason for this is not clear. 

Fig 7.12 shows the predicted electrical impedance of the outer half electroded disc. It can 

be seen that unlike the single mode domination in the fully electroded disc shown in Fig 

4.9 and the inner half electroded disc shown in Fig 7.11, the response has two modes 

which are excited roughly equally strongly at 974.1 kHz and 990.3 kHz. 
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7.5 Conclusions 

The sources of mechanical damping and electrical loss in piezoelectric transducers have 

been discussed in this chapter, together with analyses of piezoelectric discs with an 

addition and discs with partial electrodes on the top and bottom surfaces. 

The brief study on the addition to the piezoelectric discs shows some useful features for 

the understanding the mechanism of the backing on the transducer. It is believed that the 

addition of backing increases the modal density, and also the extent of mode coupling due 

to the high loss factor, so the frequency bandwidth of the transducer is increased. For the 

more accurate modelling of backing, however, the non-uniform damping should be taken 

into account in the finite element analysis. 

The three dimensional model has been further applied to analyse the vibration 

characteristics of partially electroded piezoelectric discs. The impedance measurement of 

the inner electroded disc has shown good agreement with the prediction from the FE 

analysis. It has been shown that the electrode pattern has a significant effect on the 

vibration characteristics of the piezoelectric discs. By changing the electrode pattern, the 

natural frequencies and mode shapes of the disc can be changed together with the strength 

of the excitation at different modes. This has demonstrated the flexibility of the finite 

element method and modal analysis techniques in analysis of piezoelectric discs with 

complicated boundary conditions. 
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Mass 
density 
(kg/m3) 

Young's 
modulus 
(GN/m2) 

Acoustic 
Impedance 

(106 kg/m^s) 

Loss 
factor 

PZT5A(appx.) 7.750 111.0 33.7 0.0133 

Perspex 1.180 6.324 3.22 0.008* 

Epoxy(+titanium) 6.064* 16.21* 9.91* 0.380* 

Table 7.1 The material properties of perspex and epoxy with titanium filler. 
(*by measurement, others are book values) 

Diameter Thickness 
(mm) (mm) 

The PZT5A disc 10.0 2.01 

The perspex addition 10.0 6.00 

The epoxy addition 10.0 10.54 

Table 7.2 The geometries of the piezoelectric discs and their elastic additions. 
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Fully Inner half Outer half 
electroded disc electroded disc electroded disc 

Mode Freq(kHz) RA Freq(kHz) RA Freq(kHz) RA 
1 49.56 .010 53.74 .0070 54.87 .015 
2 128.1 .0083 140.6 .0061 138.5 ^ 6 2 
3 201.6 .0082 215.8 .0085 216.9 .023 
4 272.1 .0083 295.5 .0019 295.0 .0030 
5 338.5 .0084 364.5 .012 363.4 .042 
6 399.9 .0084 431.6 0. 433.0 .052 
7 455.2 .0083 491.2 .010 488JZ .0057 
8 503.8 .0082 539.6 .0027 541.2 .020 
9 545.9 .0081 585.4 .0034 583.2 .056 
10 582.3 .0087 618.7 0. 617.5 .0029 
11 614.0 .011 651.0 .0035 645.4 .042 
12 540.6 .021 675.8 .0035 660.3 .052 
13 657.7 .018 700.1 0. 680.5 0. 
14 677.6 0. 718.8 0. 702.8 .0044 
15 703.1 0. 728.8 0. 725.0 .0023 
16 729.5 0. 748.2 0. 747.0 0. 
17 756.3 .0015 770.9 0. 770.8 .0027 
18 783.5 .0025 795.9 0. 794.8 .011 
19 811.3 .0039 821.5 0. 820.5 .015 
20 839.4 .0069 848.4 0. 846.7 .017 
21 867.7 .014 874.4 .012 873.3 .0130 
22 873.2 0. 876.1 0. 879.8 .055 
23 876.4 0. 881.4 .0020 883.3 .047 
24 880.0 .0021 888.2 .15 893.7 .11 
25 887.0 .0015 894.9 .0020 894.3 .016 
26 893.2 .016 899.8 0. 899.7 .027 
27 896.6 .031 904.8 0. 901.9 .046 
28 914.2 .046 918.1 .0013 917.1 .084 
29 .057 934.0 0. 928.4 .16 
30 943.5 .16 948.7 0. 945.5 .22 
31 955.9 .091 964.2 .0010 958.0 .18 
32 964.9 1.0 976.8 1.0 974.1 1.0 
33 975.5 .0010 987.6 0. 990.3 .94 
34 991.8 .094 997.8 0. 996.4 .011 
35 995.2 .012 1022 0. 1014 .015 
36 1010 .0019 1029 .081 1035 .0087 
37 1026 .024 1043 0. 1047 .018 
38 1040 .0032 1057 0. 1057 .0013 
39 1051 .0014 1078 0. 1077 .0010 
40 1064 .010 1084 0. 1085 0. 
41 1081 .021 1101 .0024 1103 .0092 
42 1102 0. 1110 .0013 1109 .0056 
43 1108 .0042 1120 .0026 1121 0. 
44 1122 .0026 1139 .0055 1139 ^ 2 2 
45 1145 0. 1155 .0022 1154 .0049 
46 1166 .0033 1175 0. 1175 0. 
47 1167 0. 1182 0. 1183 1^88 
48 1187 0. 1196 0. 1196 .0087 

Table 7.3 The resonant frequencies of the vibration modes and corresponding 
normalised modal constants of piezoelectric discs with fully and partially 
electrodes (RA: normalised modal constants). 
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Fig 7.1 The predicted and measured electrical impedance responses of a 
piezoelectric disc in series with resistors 
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Fig 7.2 The predicted real and imaginary parts of the electrical impedance 
responses of a PZT5A with a D/T ratio of 20 
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Fig 7.3 The configuration of the piezoelectric disc with an elastic addition 
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Fig 7.4 The predicted electrical impedance response of a PZT5A disc with a D/T 
ratio of 5, the disc with perspex addition and the disc with epoxy addition 
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Fig 7.7 The measured electrical impedance response of a PZT5A disc with a D/T 
ratio of 5, the disc with perspex addition and the disc with epoxy addition 
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(a) fully electroded disc 

(b) inner half electroded disc 

(c) outer half electroded disc 

Fig 7.8 Configuration of piezoelectric discs with fully and partially electroded 
surfaces 
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CHAPTER 8 

CONCLUSIONS AND FURTHER WORK RECOMMENDED 

8.1 Conclusions 

The vibration characteristics of piezoelctric discs have been studied thoroughly in this 

thesis. It includes a review of available techniques to analyse the performance of 

transducers and previous studies of piezoelectric discs. This has been followed by a brief 

study on the transient responses of piezoelectric transducers by a one dimensional 

analytical method and detailed study of vibration characteristics of piezoelectric discs by a 

model using finite element analysis and modal analysis. Finally, the model has been 

applied to analyse discs with an addition and discs with partial electrodes. 

The review has shown that there are many techniques used in modelling piezoelectric 

transducers, and most of them are one dimensional. However, two and three dimensional 

techniques would be preferable if piezoelectric discs with finite diameter to thickness 

ratios are of interest, and the analysis of complicated transducers is required. The 

experimental results by the previous researchers have shown that the vibration modes in 

piezoelectric disc could be very complicated, and accurate analyses are necessary 

The brief study of transient responses of transducers by the one dimensional analytical 

model (Laplace transform method) has shown the effect of the backing on the response of 

the ultrasonic transducers, and that matched backing or backing with close values of 

acoustic impedance to that of the piezoelectric element are preferably in most applications. 

It has been shown that when the transducers are excited by voltage pulses, the short 

circuit mechanical response of the transducer is very complicated due to piezoelectric 

intercoupling effects. 

The finite element method and modal analysis techniques have been used to analyse the 

vibration characteristics of piezoelectric discs with finite D/T ratios. The analysis uses a 

direct eigenvalue solution scheme treating the electrical potential of each node of 

piezoelectric structures exactiy as an extra conventional displacement degree of freedom, 

and avoids the fully populated matrices which could be caused by the mass condensation 

scheme used by previous researchers (Allik and Hughes, 1970; Naillon et ai, 1983). 

- 2 2 1 -
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A thorough investigation of piezoelectric discs with D/T ratios of 20, 10 and 0.5 has 

shown that vibration characteristics of piezoelectric discs are very complicated. There are 

many modes predicted in the frequency range of interest. Five types of modes, radial 

modes, edge modes, thickness shear modes, thickness extensional modes and high 

frequency radial modes, which were reported by previous experimental works (Shaw, 

1954; Ikegami et al., 1974; Ueha et ai, 1983), have been predicted by the finite element 

model. The mode shapes of these modes predicted by the FE model have shown that 

none of the modes predicted has the sort of piston-like motion pattern assumed by the one 

dimensional model. However, one of the thickness extensional modes for a disc with a 

D/T ratio of 20 has a resonant frequency very close to that of the first through thickness 

mode assumed by the one dimensional model, and it has a very large mean value (or "dc" 

value) of axial displacement over the surface of the disc. This mode is excited much more 

strongly than the other modes. 

Although there is no single mode predicted by the finite element method which has the 

sort of piston-like motion assumed by the one dimensional model, the predicted transient 

mechanical response of piezoelectric discs by the modal solution has shown that it is 

possible for piezoelectric discs with large D/T ratios to vibrate with almost uniform 

surface displacement over the first couple of cycles of the first through thickness mode 

when voltage pulses are applied across the discs. This has been shown to be due to high 

mode density in the thickness frequency range and mode coupling effects among these 

thickness extensional modes. 

A new parameter, the modal constant (or mode participation factor) (Ewins, 1984), has 

been defined and used to evaluate the strength of excitation at each vibration mode. It is 

believed that the modal constant is superior to the electromechanical coupling factor in 

evaluating the strength of excitation for discs having many vibration modes and having 

high modal density. The modal constant has been used to predict the frequency spectrum 

of piezoelectric PZT5A discs with D/T ratios from 0.1 to 20, and it has been shown that 

the most strongly excited modes by an applied voltage across the top and bottom surfaces 

are the thickness extensional modes, and the number of these thickness extensional modes 

that piezoelectric discs can have depends upon their D/T ratios. 

The measurements of electrical impedance responses of piezoelectric discs have shown 

excellent agreement with the predicted ones. The measurement of the mode shapes of 

some modes by laser interferometry has also shown good agreement with the prediction 

for the lower order modes which have simple mode shapes, and qualitative agreement for 
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the thickness extensional modes. These measurements show that the finite element model 

has high accuracy for the three dimensional analysis of piezoelectric discs. 

The application of the model to piezoelectric discs with an addition has shown that the 

addition has significant effects on the vibration characteristics of the piezoelectric discs, in 

particular a large number of extra modes are predicted. The effect of the addition depends 

very much on its material properties compared with those of the piezoelectric disc, such as 

mass density, stiffness, acoustic impedance, and loss factor. 

The flexibility of the finite element method and modal analysis has been demonstrated by 

the application of the model to partially electroded piezoelectric discs. This has shown that 

the three dimensional model has potential to provide an invaluable tool for the accurate 

analysis and design of piezoelectric transducers with complicated structures. 

8.2 Further worti recommended 

The current work could be extended to the analysis of complete piezoelectric transducers, 

including the piezoelectric disc, backing, matching layer, etc., and also the interaction 

with the coupling fluid. 

The major damping source in transducers is the backing. The damping included in the 

current model is modal damping. An analysis with uniform damping is justified for 

piezoelectric discs alone, and for discs with an addition of low loss factor. However, to 

analyse accurately damping effects in real transducers, non-uniform damping must be 

taken into account in the finite element analysis. If the damping is included in the 

eigenvalue solution, complex matrices must be introduced, and complex eigenvalues and 

eigenvectors are obtained. This could make the solution procedure complicated and 

require larger storage. 

The other source of damping of piezoelectric transducers is the interaction with fluid. The 

fluid effect can be modelled by acoustic radiation loading, which adds a specific acoustic 

matrix to the dynamic equation (Smith et al., 1973). The dynamic problem of structure-

fluid interaction has been solved by many authors, for example, Wilson and Khalvati 

(1983), Olson and Bathe (1985a, 1985b), and Sharan and Gladwell (1985). Usual solid 

elements are used to model the solid structure in terms of displacement, while the fluid is 

divided into two regions; one is the region surrounding the transducer which could be 

modelled by fluid finite elements in terms of velocity potential, and the other is the region 

further from the transducer which could be modelled by so called infinite elements 
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(Zienkiewicz et al., 1982; Bettess and Bettess, 1984). The dynamic equation of the 

problem can therefore be written as (Olson and Bathe, 1985b) 

-M,, 0 - U's - 0 c , r "si 
' + \ + 

. 0 -Mg _ - Cfs - Q . 

x:,: 0 
(&i) 

- 0 -Kff-Ki J [ (()j J 10 

where û  is the nodal displacement of the solid, (()f is the velocity potential in the fluid, 

[MjJ and [Kĝ ] are mass and stiffness matrices of the solid, [Mff] and [Kg] are mass and 

stiffness matrices of the inner region of the fluid, [Kj] and [CJ are stiffness and damping 

matrices which account for the fluid remote from the transducer and [C&] is the matrix 

coupling the fluid to the solid. 

By using piezoelectric elements in the solid in the above equation, piezoelectric structure-

fluid interactions can be solved. Recently Friedrich et al. (1989) has applied these 

equations to a piezoelectric bar vibrating in water, and the comparison between the 

prediction and the experiment showed the damping effect of the fluid on the vibration of a 

piezoelectric array. However, the dielectric effect in water must be considered if accurate 

modelling and comparison with experiments are sought. It would be very interesting to 

see the effects of fluid on the vibration characteristics of piezoelectric discs since they 

have many more modes than that of a bar. 

For both modelling of backing and fluid interaction with discs, a direct time integration 

solution for transient response and step by step frequency sweeping for the frequency 

response solution are preferable since they can more efficiently deal with structures which 

have very large number of vibration modes in the frequency range of interest. 

The other parts of piezoelectric transducers, such as the matching layer, wear plate, and 

bonding layer between discs and backing, and between discs and wear plate, together 

with the electrical components in matching network may also be taken into account. The 

sound field of the transducers, which has not been dealt with in this thesis, is also very 

important, this can be calculated by wave propagation theory in elastic solids and fluids 

by taking the source predicted by the accurate finite element model. 

The further modelling of transducers may involve modelling whole ultrasonic testing 

systems (Ludwig and Lord, 1988). The whole testing process must be taken into 

consideration, including the elastic wave generated by applying voltage pulses across the 

transmitter, the interaction between the transducer and solid (Hsu et al., 1987), and in 

some cases the interaction between the transducer and wedge (Atalar and Koymen, 1987), 
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the wave propagation and reflection in the testing medium, and the electrical signal output 

by the receiver when the wave comes back. 

Work on the piezoelectric discs alone can be extended to analyse other piezoelectric discs 

with irregular geometries and properties, many of which have been claimed to be 

wideband even without any backing, for example, discs with one curved surface 

(VopiDdn, 1987). Other work includes analysis of piezoelectric discs with non-uniform 

excitation pattern, such as discs with non-uniform polarization field or the novel edge-

wave-only transducer (Brittain and Weight, 1987), and discs with non-uniform electric 

field (Kazhis and Lukoshevichyus, 1976). 



APPENDICES 

A Material properties of piezoelectric ceramics 

Piezoelectric ceramics are transversely isotropic materials. Table A.l lists the material 

properties of the ceramics used in this thesis, PZT4, PZT5A and PZT5H. The subscripts 

11, 22 and 33 represent the x, y and z directions, 44, 55, 66 represent the planes 

perpendicular to x, y and z. If z is taken as the thickness direction, and piezoelectric discs 

are polarised along the thickness direction, then 11=22,44=55, 13=23. 

Notations for material constants listed in Table A.l are 

E electric field (or potential gradient), V/m 

D charge density (or displacement), C/m^ 

Eq Dielectric constants of free space, = 8.854 x 10-̂ ^ F/m 

relative dielectric constant, free 

e V e q relative dielectric constant, clamped 

tan 5 dissipation factor at 1 kHz, low electric field 

e piezoelectric constant, stress/electric field at constant charge, N/(mV); 

or charge density/strain at constant electric field, C/m^ 

h piezoelectric constant, electric field/strain at constant charge, V/m; 

or stress/charge density at constant strain, N/C 

c^ Elastic stiffness, N/m^ 

Qm Mechanical quality factor 

k piezoelectric coupling factor 

fr'equency constant of a thin bar, resonant frequency x length, Hz.m 

Ng[ frequency constant of a thin plate, resonant frequency x thickness, Hz.m 

p density kg/m^ 

V3 velocity of a compressional wave parallel to polar axis, m/s 

V4 velocity of a shear wave parallel to polar axis, m/s 

2 2 6 -
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Constants PZT4 PZT5A PZT5H 

£33/60 1300 1700 3400 

^3/^0 635 830 1470 

En/Eo 1475 1730 3130 

Eii/Eo 730 916 1700 

tan 5 0.004 0.02 0.02 

Cji (IQio N/m2) 13.9 12.1 12.6 

4 (IQio N/m2) 11.5 11.1 11.7 

ĉ 2 (1010 N/m2) 7.78 7.54 7.95 

% (1010 N/m2) 7.43 7.52 8.41 

(1010 N/m2) 2.56 2.11 2.30 

Cgg (lOio N/m2) 3.06 Z26 2.35 

V3 (m/s) 4600 4350 4560 

v j (m/s) 2630 2260 2375 

V4 (m/s) 1850 1650 1750 

631 (C/m2) - 5.2 - 5.4 - 6.5 

633 (C/m2) 15.1 15.8 23^ 

ei5 (C/m2) 12.7 12.3 17.0 

h3i (108 V/m) - ( \ 2 - 7.3 - 5.05 

h33 (108 V/m) 26.8 21.5 18.0 

hi5 (108 V/m) 19.7 15.2 11.3 

kp - .58 - .60 - .65 

^31 - .33 - .34 - .38 

^33 .70 .70 .75 

kl5 .71 .68 .67 

K .51 .48 .50 

Qm 500 75 65 

Ni (Hz.m) 1650 1400 1420 

N3t (Hz.m) 2000 1890 2000 

p (103 kg/m3) 7.5 7.75 7.5 

Table A.l Material properties of PZT4, PZT5A and PZT5H (From Venitron Ltd.) 
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B Lanczos method 

The Lanczos method was originally proposed for the tridiagonalization of matrices 

(Bathe, 1983). Once the coefficient matrices of the generalized eigenproblem have been 

tridagonalized, the eigenvalues and vectors can be calculated effectively using the standard 

techniques for eigenproblems, such as vector iteration. 

Consider the generalized eigenproblem as follows, 

[K]<1) = >.[M](j) (B.l) 

where [K], [M] are stiffness and mass matrices, X, and <{) are eigenvalue and eigenvector. 

Let {x} be an arbitrary starting vector, and let this vector be normalized with respect to the 

matrix [M] to obtain {x)i, 

{ x } i = and Y = V { x } T [M] { x } (B.2) 
T 

In the Lanczos algorithm the vectors X2, Xg, x^, are then calculated using the 

following equations for i = 2,3, , q 

[K] Xj = [M] xj.i 

" i - i = [M] Xj.i 

Xi = xj - ai.i Xi.i - Pi.i Xi.2 (B.3) 

Pi = 

- I 
where = 0. 

The sequence of vectors Xj, i = 1, 2, q, generated using the above relationship are 

M-orthonormal and the matrix [X] = [ Xj, Xj, Xq ] satisfies the following 

relationships 

[X]T [M][X]=I 

[X]T ([M][K]-i[M]) [X] = [T]q (B.4) 

where [T]Q is a tridiagonal matrix of order q, 
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[T]a = 

P2 

P2 Ct2 P3 

Pq-1 ®q-l Pq 

ttn J 

03 5) 

Using (B.4) the eigenvalues and vectors of Tq can be related to the problem of (B.l). 

When q = n, (B.l) can be written as 

^[M](t) = [M][K]-1[M] <t) 
A 

and using the transformation matrix [X] = [ x ,̂ X2, x^ ] 

(B.6) 

4) = [X] o' (B.7) 

(B.6) can be written as 

i[X]T[M][X]())* = [X]T([M][K]-i[M])m 0* 
A, 

Substitution of (B.4) into the above equation, gives 

= m „ < f (B.8) 

Hence, (B.l) has been transformed into (B.8), which is a standard eigenvalue problem. 

The eigenvalues of [T]^ are the reciprocals of the eigenvalues of the problem [K]({) = 

>t[M]{{), and the eigenvectors are related as given in (B.7). 
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C Bendent method to extract modal constants from the experiments data 

A short description of the Bendent method and its application to extract modal constants 

from the measured electrical impedance of the piezoelectric discs is appended here. 

Detailed accounts can be found from Dobson (1985) and Ewins (1984). 

A frequency response function in terms of receptance (displacement response/force 

excitation) between the j'th and k'th degrees of freedom is defined as 

I. 
where Xj is the displacement response at the j'th degree of freedom; fĵ ^ is the force 

excitation at the k'th degree of freedom; cô  is the natural frequency of the r'th mode; co is 

the excitation frequency, T|̂  is the loss factor for the r'th mode; N is the total number of 

degrees of freedom and j(A+iB)jî  is the complex modal constant for the r'th mode. 

Around the frequency band of the r'th mode, (C.l) can be written as a summation of a 

single term corresponding to the dominant r'th mode and a residual constant representing 

the contributions of the remaining modes, 

ocjk = ,(/^iB)jk residual (C.2) 
CO/ -0)2 + 1 ri^co/ 

The receptance at a selected frequency, Q, within the frequency band from 0)^ to co^ 

around cOj. as shown in Fig A.l, can be written as 

tto = T(A+iB)̂ ^ ^ residual (C.3) 

0)̂ 2 -Xl2 + i TlrCOr̂  

Then the residual term can be eliminated by 

a • an = (A+iB) [ — - i - - ' . - ] (C.4) 
COr - Co2 + 1 TlrO)/ CO/ - + 1 Tl̂ CO/ 

which can be rearranged as 

co2-n2 A-iB 

A=-
a - a ^ 

The quantity A is a linear function of cô , with real and imaginary parts. 
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Re(A) = niRCÔ  + CR 

Im(A) = nijCo2 + Ci (C.6) 

where the slopes are given by 

+ BTi,C0r2] 

mi = x f l ^ A 7 i , c o , 2 - B(CO,2 - 02)] (C.7) 

By selecting (or sweeping) a series of "fixing" frequencies within the defined frequency 

band, a family of linear curves are obtained. These curves intersect at specific points 

defined by 

mR = nRQ2 + (JR 

mj = njQ2 + (jj (C.8) 

where the slopes and intercepts are: 

% = a t t b ? 

% = ''R (C.9) 

Therefore modal parameters (A, B, (O,., ) can be extracted from the above set of 

equations. 

For the measured electrical impedance of piezoelectric discs, the response can be first 

converted into a receptance form as shown in (C.l), then the above procedure can be 

applied. From equation (3.70), 

where, Q, (p is the electrical charge and potential across the electrodes respectively, jA is 

the modal constant (real part only); the static capacitance term in (C.ll), can be 

regarded as an extra residual term. 

The above receptance can be related to the measured electrical impedance as 

ay = (C.12) 
i C0Z((0) 
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An example for extracting modal constants of the electrical FRF is shown in Fig A.2. The 

electrical frequency response function of the PZT5A disc with a D/T ratio of 20 in the 

frequency range 10 to 510 kHz was converted from the corresponding measured electrical 

impedance response and is plotted as dotted line in Fig A.2, together with the regenerated 

curve by using the extracted modal parameters. The excellent agreement between the 

measured and regenerated curves indicates that the analysis is very accurate. Fig A.3 

shows the real and imaginary parts of A (delta) around resonant frequency of the first 

mode at 50 kHz as a function of cô . 

frequency 
increasing 

w equally spaced 
frequency points 

Fig A. 1 Nyquist plot of the receptance around the frequency band of the resonance 
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Fig A.2 The measured electrical receptance of a PZT5A disc with a D/T ratio of 20 
from 10 to 510 kHz and the regenerated curve by using the extracted modal 
parameters (Dotted Une: measured; Solid line: regenerated) 

Bcndcnt Metnoo Hn&iyei! 
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Fig A.3 The real and imaginary parts of Delta ( as in (C.6)) as a function of ofi 
around the first resonant frequency at 50 kHz of the PZT5A disc with a 
D/T ratio of 20 
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