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Abstract

Guided waves are interesting for Non-destructive Testing (NDT) since they offer

the potential for rapid inspections of a large variety of structures. Analytical meth-

ods are well known for predicting properties of guided waves such as mode shapes

and dispersion curves on regular geometries, e.g. plain plates or cylindrical struc-

tures. However these methods cannot be used to study guided wave propagation

in waveguides having irregular cross-sectional geometries, such as railway lines, T-

shape beams or stiffened plates. This thesis applies and develops a Semi-Analytical

Finite Element (SAFE) method, which uses finite elements to represent the cross-

section of the waveguide and a harmonic description along the propagation direction,

to investigate the modal properties of structures with irregular cross-section. Two

attractive applications have been investigated with the SAFE method, and the re-

sults are encouraging.

The first application relates to fluid characterization. Guided torsional waves in a

bar with a non-circular cross-section have been exploited by previous researchers to

measure the density of fluids. However, due to the complexity of the wave behavior

in the non-circular cross-sectional shape, the previous theory can only provide an ap-

proximate prediction; thus the accuracy of the measurement has been compromised.

The SAFE method is developed to model accurately the propagation velocity and

leakage of guided waves along an immersed waveguide with arbitrary non-circular

cross-section. An accurate inverse model is then provided to measure the density

of the fluid by measuring the change of the torsional wave speed. The model also

enables the optimization of the dipstick sensor by changing the material of the dip-

stick and the geometry of the cross-section. Experimental results obtained with a

rectangular bar in a range of fluids show very good agreement with the theoretical

predictions.

The second application relates to the inspection of large areas of complex struc-

tures. An experimental observation on a large welded plate found that the weld

can concentrate and guide the energy of a guided wave traveling along the direc-
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tion of the weld. This is attractive for NDE since it offers the potential to quickly

inspect for defects such as cracking or corrosion along long lengths of welds. The

SAFE method is applied to provide a modal study of the elastic waves which are

guided by the welded joint in a plate. This brings understanding to the compression

wave which was previously observed in the experiment. However, during the study,

a shear weld-guided mode, which is non-leaky and almost non-dispersive has also

been discovered. Its characteristics are particularly attractive for NDT, so this is

a significant new finding. The properties for both the compression and the shear

mode are discussed and compared, and the physical reason for the energy trapping

phenomena is explained. Experiments have been undertaken to validate the exis-

tence of the shear weld-guided mode and the accuracy of the FE model, showing

very good results. The sensitivity of compression and shear weld-guided modes to

different types of defects close to the weld is investigated, by both finite element

simulations and experiments. Due to similar reasons for energy trapping, the fea-

ture guiding phenomena also exists in a wide range of geometries. This thesis finally

discusses feature guided waves on lap joints, stiffened plates and interconnected heat

exchanger tube plates, and their potential applications.
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Chapter 1

Introduction

1.1 Motivation

Conventional Non-Destructive Testing (NDT) techniques such as ultrasonics [1–3]

and eddy current [4,5] are mainly based on point-by-point inspection systems, thus

are time-consuming and tedious. Ultrasonic guided wave testing is an attractive

alternative for large-area inspection since it offers the potential for rapid screening

from a single transducer position and remote inspection of physically inaccessible ar-

eas of the structure. Compared to bulk waves, guided waves exist only in waveguides,

such as plates and pipes, in which they continually interact with the boundaries of

the material, therefore they are confined and allowed to propagate over long dis-

tance. However, guided wave inspection is complex because there are many modes

in plates and pipes and they are in general dispersive (their velocity is a function

of frequency). Therefore understanding the properties of guided waves, such as the

dispersion curves, through-thickness mode shapes and attenuation, is essential for

choosing proper modes and frequencies for inspection.

For waveguides defined by simple geometries (flat plates or cylindrical structures),

analytical methods are used to determine the solutions of dispersion equation. For

a multi-layered structure, more general solutions can be obtained using methods

based on the superposition of bulk waves, including, for example, the transfer ma-
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1. Introduction

trix method [6], the global matrix method [7] or the surface impedance matrix

method [8]. A software package named DISPERSE [9] was developed in the NDT

laboratory at Imperial College, which provides a tool to quickly evaluate the proper-

ties of guided waves. It applies the global matrix method to model regular structures

such as plates or cylinders made of homogeneous or multilayered, isotropic or trans-

versely isotropic materials, immersed in a fluid or embedded in a solid. Based on

the analytical solutions for guided waves, screening systems for pipeline inspection

have been commercialized and applied in industry [10–13]. Developments for using

guided waves to inspect plate structures are also advanced [14].

However guided waves propagation on irregular cross-sectional geometries, such as

railway lines or T-shaped beams cannot be solved by analytical methods. For

such cases the Semi-Analytical Finite Element (SAFE) method has been developed,

which is also called the ”spectral element”, ”strip element”, or ”waveguide finite

element” method. This uses a finite element representation of the cross section

of the waveguide, thereby enabling arbitrary definitions of shapes, together with a

harmonic description along the propagation direction. Thus only a two-dimensional

discretization of the cross-section is needed, with considerable computation saving

compared to a three-dimensional discretization of the waveguide. Research on the

SAFE method has been undertaken for many years to investigate guided wave prop-

agation on thin walled shells [15], rails [16, 17], wedges [18] and bars with complex

shape [19]. However most of the work in literature requires specific programming

inside a Finite Element (FE) code. In addition, little study has been done to address

problems where some of the energy leaks from the waveguide into the surrounding

fluid or solid medium of infinite extent, because the guided waves then attenuate,

needing a complex description of their propagation. Such cases are important, par-

ticularly for two practical problems which have motivated this thesis.

The first motivation is related to fluid density measurement. Conventional ultrasonic

measurements of density use the time of flight and reflection coefficient methods,

however for these methods the liquid compressibility has to be known and measure-

ments have to be carried out in a test cell. An ultrasonic ”dipstick” sensor is an
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attractive alternative without the need for accurately machined test cells. The idea

is that an ultrasonic wave which propagates in a solid waveguide structure can sense

the presence and nature of the adjacent fluids. As it is shown in Fig. 1.1, when a

torsional wave pulse propagates along a waveguide submerged in a fluid, it interacts

at the boundary with surrounding fluid. As a result, the boundary layer of the fluid

is alternately accelerated and decelerated. If the waveguide has a non-circular cross

section, normal forces are exerted on the surrounding fluid, and fluid will have to

be displaced as the cross section rotates back and forth. This mechanism effectively

adds some of the mass of the fluid to the waveguide and changes its inertia. The

change in inertia is reflected in a change in torsional wave velocity of the wave in

the waveguide. Hence by measuring the speed of propagation of the torsional wave,

the density of the fluid can be estimated. Bau [20] suggested an approximate theory

to relate the speed of the torsional wave to the density of the surrounding fluid,

with a calculation of a two-dimensional, inviscid flow field of the fluid. However,

the accuracy of the approximate inversion of the measurements to infer the density

of the fluids has been compromised due to the complexity of the wave behaviour in

the noncircular cross-sectional shape.

Transducer

x1

Waveguide

(non-circular bar)

Immersion depth 
in fluid

Torsional wave

Cross section 

(eg. rectangular)

Figure 1.1: Schematic of a torsional ”dipstick” sensor.
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The second motivation is related to large area inspection of plates with features.

An experimental study [21] was undertaken by Dr Jeff Sargent of BAe Systems,

working at Imperial College, on the detection of defects in a welded plate, which

revealed a strong received signal at positions close to the weld when the transmitting

transducer was placed with appropriate orientation upstream and close to the weld.

This implies that there existed ’weld-guided’ modes which can propagate along the

weld and concentrate the energy in and around the weld. Similar trapped modes

have also been demonstrated subsequently by Postnova and Craster [22] from an

analytical calculation on a welded plate structure based on the long-wave theory.

Fig. 1.2 schematically shows the propagation of a feature-guided wave on a welded

plate from a pulse excitation, which excites an in-plane displacement parallel to

the weld. As can be seen from the figure, due to the geometry change, part of the

energy is trapped in and around the weld and propagates along the weld. This is

very attractive for NDE as we know defects frequently occur preferentially in or

near the weld, and the same is true for other geometric features, such as joints and

stiffeners. Therefore, instead of seeing the features as a problem, it may be possible

to exploit them as waveguides to focus the energy of the guided wave, which offers

the potential to quickly inspect for defects such as corrosion along long lengths of

features on plate-like structures.

In order to exploit this feature-guided wave, it is necessary to understand its nature

and propagation characteristics. Juluri et al. [23] performed a three dimensional time

step finite element simulation on an idealized welded plate geometry, and demon-

strated the existence of the compression weld-guided mode (similar to the Lamb S0

mode in the plate), which had been experimentally detected [21]. However these

simulations are very time consuming, and can only model the chosen frequency and

wave mode, thus they are not sufficient to investigate the guided wave properties

over ranges of parameters and feature geometries. In order to further understand

how the guiding is affected by the geometry and frequency, it is therefore necessary

to perform a modal study of the welded-plate, in order to fully predict the properties

of the waves which are guided by the features. Such a model may then also create

the possibility of finding other feature-guided modes which could be candidates for
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Figure 1.2: Schematic of the propagation of a feature-guided wave on a welded plate from

a pulse excitation.

inspection but have not yet been discovered.

It can be seen that both problems require models which can address cases of leaky

guided waves from an arbitrary cross-sectional geometry. This thesis aims to provide

a generic tool to predict the properties of guided waves propagating along waveguide

structures of arbitrary cross-section, including the possibility of energy partially

leaking into the attached adjacent material. It will be useable on all such kinds

of wave guides including welds, bends, stiffeners and other attached features, lap

joints, tubeplates, railway lines, beams, and immersed or embedded waveguides.

The model will predict the dispersion curves (frequency-velocity relationships for

the possible guided wave modes), the rate of attenuation by leakage of energy into

the adjacent material, and the mode shapes (distributions of stress and displacement

across the section of the waveguide).
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1.2 Outline of Thesis

The thesis can be generally divided into three parts. Chapter 2 describes the theory

and development of the Semi-Analytical Finite Element (SAFE) method, which

will be used throughout the thesis to modally investigate the guided wave modal

properties in structures with irregular cross-sections. Two applications based on

the method are presented in the following parts of the thesis. Chapter 3 presents

the study on the torsional dipstick, while chapters 4-6 describe the application to

feature guided waves. Specifically, subsequent to the introductory remarks in this

chapter, the thesis is structured in the following way.

Chapter 2 first reviews the background of the guided waves and their properties on

simple geometries such as plates and cylinders based on analytical solutions. Since

this is well documented in literature, it will be restricted to explanations which are

essential for the comparison with the FE modelling. Then the SAFE method is

described for the prediction of wave properties on irregular cross-sectional shapes.

The model is validated by comparing the results with the analytical model on two

cases of a solid bar immersed in a perfect and a viscous fluid respectively.

Chapter 3 applies the SAFE method to model accurately the propagation veloc-

ity and leakage of guided waves along an immersed waveguide with arbitrary non-

circular cross-section. An accurate inverse model is provided to measure the density

of the fluid by measuring the change of the torsional wave speed. Experimental

results obtained with a rectangular bar in a range of fluids show very good agree-

ment with the theoretical predictions. The potential to use the model for sensor

optimization is also discussed in this chapter.

In Chapter 4, the SAFE model is applied on a geometry of a real welded plate

and provides modal investigation on the properties of feature guided waves and the

physical reason for the energy trapping effect. Significantly, during the modal study,

another interesting shear mode, which is similar to the SH0 mode in the plate, has

been discovered. The particle displacement of this mode is perpendicular to the

plane of propagation and therefore it is expected to be more sensitive than the
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compression mode to the fatigue cracks that are typically aligned along the weld in

the heat affected zone. In addition this shear mode has no leakage to the side plates

and is almost non-dispersive, thus it is very interesting as a candidate mode for

industrial inspection. Experiments have been set up to demonstrate the existence

of this shear weld guided mode and the accuracy of the SAFE model, showing very

good agreement.

Chapter 5 presents the study on the interaction of weld-guided modes with different

type of defects, including cracks perpendicular or parallel to the weld and circular

holes, in the heat affected zone next to the weld. The results are obtained from

both Finite Element simulations and experimental measurements, showing good

agreement. The sensitivity of the two welded-guided modes to different defects has

been discussed and suitable choices of frequency to detect these defects for each

mode have been suggested.

Chapter 6 applies the SAFE method on three geometries: lap joints, stiffened plates

and heat exchanging tubes, in which similar feature guided waves are discovered.

The properties of the discovered modes and potential applications of detecting de-

fects on these geometries are discussed.

Chapter 7 summarizes the findings in the thesis and discusses the potential for future

work.
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Chapter 2

Guided Waves

2.1 Background

This chapter introduces the fundamental concept of ultrasonic waves propagation

in unbounded media and guided ultrasonic waves propagation in waveguides with

both regular(eg. plate, cylindrical structure) and irregular geometries.

In unbounded, infinite, elastic media, only two types of waves can exist, the lon-

gitudinal (also named as compression) waves and shear (also named as transverse)

waves, their velocity being constant with frequency. However in bounded media

such as plates, rods and pipes, different modes of guided waves can propagate which

is the result of the interaction of compression and shear waves at the boundary. For

the waveguides with regular geometries analytical methods have been well developed

to predict the properties of guided waves, while for waveguides with irregular cross-

sectional geometry finite element methods seem necessary. The following character-

istics of guided waves such as their dispersion properties which describe the relation

between velocity and frequency, and the mode shapes which are the distribution

of field variables over the cross-section of the wave guide, will be discussed in this

chapter.
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2. Guided Waves

2.2 Wave Propagation in Bulk Media

As the theory of elastic waves propagation in unbounded media is well documented

in many text books [24–27], only the principal equations are outlined in this section.

Combining Euler’s equation of motion and Hooke’s law yields Navier’s differential

equation of motion for an isotropic elastic medium:

µ∇2u + (λ+ µ)∇∇ · u = ρ
∂2u

∂t2
, (2.1)

where u is the particle displacement vector, ρ is the material density, λ and µ are

the Lamé constants and the ∇2 is the three dimensional differential operator. Eq.

2.1 is a compact expression which can be expanded in its three spatial components

x,y,z:
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,

By means of the Helmholtz decomposition, u can be expressed as a sum of the

gradient of a compressional scalar potential ∇φ and the curl of an equivoluminal

vector potential H:

u = ∇φ+∇×H, (2.3)

where H has zero divergence:

∇ ·H = 0, (2.4)

By substituting these potential functions in the Navier’s equation 2.1, the equation

of motion can be separated into two independent equations for two potentials

∂2φ

∂t2
= c2l∇2φ, (2.5)
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∂2H

∂t2
= c2s∇2H, (2.6)

where cl and cs are the velocities of longitudinal and shear waves in the infinite

isotropic medium which can be expressed as

cl =

√
λ+ 2µ

ρ
, (2.7)

cs =

√
µ

ρ
. (2.8)

A general solution to Eq. (2.5) and (2.6) is

φ = φ0e
i(klz−ωt), (2.9)

H = H0e
i(ksz−ωt), (2.10)

where φ0 and H0 are arbitrary initial constants, z is the spatial coordinate of the

wave propagation direction, t is the time variable, ω = 2πf is the angular frequency

and kl,s are the longitudinal and shear wavenumbers from which it follows that

k2l,s =
ω2

c2l,s
(2.11)

2.3 Guided Waves Propagation in Waveguides with

Regular Cross-sections

2.3.1 Guided waves

An ultrasonic guided wave is a wave whose energy is concentrated between the

boundaries, and is guided along a structure (waveguide), similarly as light in an

optical fibre. It can be thought as a superposition of bulk waves that propagate in

a structure and get reflected back and forth between the boundaries. The ampli-

tudes, directions and phases of the partial waves must be determined such that the

boundary conditions at the boundaries of the waveguide are satisfied.

In general, guided waves can be described by expressions for the field variables such

as stress and displacement. For example, in a flat plate structure, the displacement
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field can be written as

u(x, y, z, t) = u(y)ei(kz−ωt), (2.12)

where u(y) is a displacement distribution function, k is the wavenumber of the guided

wave mode, z the propagation direction, y the direction normal to the propagation

direction, ω = 2πf the angular frequency and t the time variable. In a cylindrical

system, the displacement field can be expressed as:

u(r, θ, z, t) = u(r)eiνθei(kz−ωt), (2.13)

where ν is the angular wavenumber, u(r, θ, z, t) is a radial distribution function of

the displacement in r, θ and z directions, respectively. Since only propagation in

the direction of the axis of the cylinder is considered, and the field variables such as

displacements and stresses must be continuous in the angular direction, ν must be

a whole number. It is commonly referred to as the circumferential order.

The wavenumber k can be complex if the waveguide is embedded or immersed in

another medium, which extends infinitely, the partial waves may be transmitted

across the interface, thus bulk waves may be excited in the embedding or immersing

medium, leaking away from the waveguide.

The waveguide can also consist of a number of layers itself. In order to determine the

guided waves in arbitrary multilayered system, a general purpose software package

DISPERSE was developed in the laboratory by Lowe [7] and Pavlakovic [9,28]. This

is based on the ’global matrix method’ proposed by Knopoff [29], later refined by

Schmidt and Jensen [30]. The global matrix method involves the construction of a

single matrix equation, which describes the displacement and stress fields associated

with a harmonic wave propagating along the whole multilayered structure. The size

of the matrix is determined by the number of layers and the number of partial waves

needed within each layer.

Initially, the magnitudes and phases of the partial waves are not known, and they

have to be found by considering the boundary conditions. A set of fields for the

whole collection of layers requires the stress and displacement to be consistent at
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all of the interfaces between the layers, and appropriate boundary conditions must

also be satisfied at the extreme surfaces of the structure. For example, in the simple

case of a hollow pipe, the normal stresses at the inner and outside surfaces of the

pipe must be zero. It follows that all the partial bulk waves are totally reflected

within the waveguide. The calculations then consist of searches to find solutions

when all of these boundary conditions can be satisfied simultaneously. The set of

boundary conditions is expressed in a global matrix [G], which relates the partial

wave amplitudes to the physical constraints of the whole system and solves

[G] {A} = 0 (2.14)

where {A} is a vector of the partial wave magnitudes and phases. The above equa-

tion is satisfied when the determinant of the global matrix vanishes, and solutions

are sought in the wavenumber-frequency space. For a particular structure, there

is an infinite number of solutions to satisfy the above equation, which makes it

possible for many guided wave modes to coexist. Each mode has its own phase

velocity-frequency relation (dispersion) and a corresponding mode shape, which can

be calculated by the algorithms described by Lowe [7].

2.3.2 Dispersion curves

The phase velocity is the rate at which the phase of the wave propagates in space.

It is given in terms of the wavelength λ and frequency f :

cp = λf (2.15)

Or, equivalently, in terms of the wave’s angular frequency ω and wavenumber k by

cp =
ω

k
(2.16)

Another commonly used concept is the group velocity which describes the speed at

which a wave packet (or envelope) travels. This rate is determined by how quickly

the energy of the wave will propagate down the structure and will always be smaller

than the fastest bulk wave present in the system. The group velocity is related
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to the phase velocity through the following equation (see [24] and [27] for more

details)

cg =
dω

dk
= cp + k

dcp
dk

(2.17)

Guided waves are generally dispersive, which means their phase velocity, group ve-

locity and attenuation varies with frequency. The dispersion of guided modes results

in the distortion of the shape of a multi frequency wave packet that propagates for

long distances. In order to select the suitable guided modes and frequency for in-

spection, it is therefore important to understand the dispersion curves of guided

modes.

(a) (b)

Figure 2.1: Phase velocity (a) and group velocity (b) dispersion curves for a steel plate

in vacuum. Longitudinal modes are plotted in solid lines (—), flexural modes in dashed

lines (- - -), and shear horizontal modes in dotted lines (· · ·).

Typical dispersion curves of a steel plate are shown in Fig. 2.1 for phase velocity

and group velocity respectively, which are generated by DISPERSE. Since the fre-

quency axis may be scaled with the plate thickness, the scale is plotted as frequency-

thickness for generality. There are three families of guided modes: longitudinal,

flexural and shear horizontal modes. Each family comprises an infinite number of

modes. In a plate system they can also be labeled conventionally as S mode (sym-

metric), A mode (antisymmetric) and SH modes respectively, the numbers following

indicating their harmonic order. As it can be seen from the figure, more modes exist
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at higher frequency. Except the SH0 mode, which is completely nondispersive, all

the other guided wave modes have different characteristics at different frequencies.
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Figure 2.2: 5 cycle Hanning windowed toneburst signal at excitation(a) and a prediction

by the DISPERSE software of the signal after 0.5 m propagation distance as S0 mode (b)

and SH0 mode (c) on a 1mm thick steel plate.

To illustrate the dispersion effect, Fig. 2.2 compares (calculated by DISPERSE) a

5 cycle Hanning windowed toneburst signal of the S0 and SH0 mode propagation

with center frequency of 2 MHz monitored after 0.5 m. It can be seen that the

S0 mode at this frequency suffers from strong dispersion: the wave-packet becomes

distorted and the amplitude decreases. The further it propagates, the more it will

disperse out. On the other hand, the SH0 mode has no dispersion, and thus the

signal remains the same shape as the excitation. Practically it is more convenient

to work with modes that have no or very little dispersion for long range testing,
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although compensation methods [31, 32] can be applied if a dispersive mode has to

be used.

2.3.3 Mode shapes
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Figure 2.3: Displacement mode shapes of the (a) S0 mode, (b) SH0 mode, (c) A0 mode

at frequency thickness 0.2 MHz mm in a steel plate, and (d) shows the coordinate system.

The mode shapes of the mode are the distribution of the field quantities (displace-

ments, stresses, power flow etc.) across the cross section of the waveguide. The

different mode families are best distinguished by considering the components of

their displacement mode shapes. Fig. 2.3 (a-c) show as an example, the displace-

ment mode shapes of the three fundamental plate modes at a frequency-thickness

product of 0.2 MHz mm, and Fig. 2.3 (d) shows the coordinate system. It can

be seen that the mode shape of the S0 mode at this frequency-thickness product
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is dominated by the in-plane displacement uz; there is only little displacement in

the y direction and no displacement in the x direction. The mode shape of the SH0

mode has in-plane displacement ux only, and propagates at the bulk shear velocity

of the waveguide. The A0 mode is dominated by the out-of-plane displacement uy,

and also has a linear variation of the less strong in-plane displacement uz across the

thickness.

2.3.4 Leaky guided waves

If the wave guide is surrounded by an infinite medium, the energy from the guided

waves may be transmitted across the interface. Thus bulk waves are excited in the

surrounding medium, radiating away from the waveguide. Thereby, the guided wave

which is propagating along the axial direction has attenuation due to the energy

leaking out from the waveguide. Fig. 2.4 shows a schematic of the leaky guided

wave. The leakage angle θ is determined by the Snell’s law [33], via the relationship

sin θ =
c1
cp
, (2.18)

where c1 is the bulk velocity of the surrounding medium and cp is the phase velocity

of the guided mode. The rate of the leakage depends on both the material properties

of the waveguide and the surrounding medium. Generally, the smaller the difference

in the acoustic impedance of the materials, the higher is the attenuation due to the

large transmission coefficient of the bulk waves across the interface.

θ

waveguide

Embedding material

guided wave

Figure 2.4: Schematic showing a leaky waveguide, which leaks bulk waves at an angle θ.

Eq. (2.18) is not valid if the phase velocity of the guide mode is smaller than the
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bulk velocity of the surrounding medium. In these cases, the bulk waves propagate

parallel to the interface, causing the energy being trapped to the waveguide surface.

Therefore, these guided modes are non-leaky, for example the Scholte wave [27,34].

An example calculation of the leaky guided wave has been carried out on a cylindri-

cal system, in which a 1 mm radius steel bar is immersed in water. The dispersion

curves of the phase velocity are traced using the DISPERSE software, which are

shown in Fig. 2.5. The notation of a cylindrical system has been adopted after Silk

and Bainton [35]. Letters L, T, F stand for longitudinal, torsional and flexural wave

respectively. The first number in the bracket indicates the circumferential order, be-

ing zero for both longitudinal and torsional modes as they are both axial-symmetric,

whereas the second number in the bracket is a counter in order to distinguish be-

tween the modes of one family. There are an infinite number of circumferential

orders and an infinite number of modes for each of these circumferential orders. In

the figure we present dispersion curves for the longitudinal, torsional and flexural

modes up to the 3rd order.
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Figure 2.5: Phase velocity dispersion curves for a 1mm radius steel bar immersed in

water. Longitudinal modes are plotted in solid lines (—), flexural modes in dashed lines

(- - -), and torsional modes in dotted lines (· · ·).

Fig. 2.6 shows the attenuation dispersion curve for the three fundamental modes
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L(0,1), T(0,1) and F(1,1). The attenuation of these guided modes is caused by the

energy leaking away into the water while the guided wave is propagating along the

bar. It can be seen from the figure that the attenuation of the L(0,1) mode is very

small at low frequencies and increases at higher frequency. The T(0,1) mode has

no attenuation at all. The F(1,1) mode does not attenuate at low frequencies, and

then its attenuation increases with the increasing of frequency.
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Figure 2.6: Attenuation dispersion curves for a 1mm radius steel bar immersed in water.

Only fundamental longitudinal modes (—), flexural modes (- - -), and torsional modes

(· · ·) are plotted.

These phenomena can be explained by their mode shapes. The L(0,1) mode has

attenuation since it has surface displacement in the radial direction (out of plane

displacement). As the frequency increases, the radial displacement of the longitu-

dinal mode increases with respect to the axial displacement, so that more energy

couples to the water, thus the attenuation increases. For the T(0,1) mode, the dis-

placements are entirely in the angular direction, which are in-plane displacement at

the surface. Since only compression bulk waves can propagate in water, the in-plane

displacement on the surface of the circular bar does not couple into the water, thus

there is no leakage. For the F(1,1) mode, it has no attenuation at low frequency since

the phase velocity is lower than the bulk velocity in water. Thus there is no energy
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leaking according to the Snell’s law. The attenuation increases with the increasing

of frequency due to the increasing of the proportion of the radial displacement.
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Figure 2.7: Displacement mode shapes of the (a) L(0,1) mode at frequency radius 0.2

MHz mm, (b) L(0,1) mode at 1 MHz mm, (c) T(0,1) mode at 0.2 MHz mm and (d) F(1,1)

mode at 0.2 MHz mm.

2.4 Semi Analytical Finite Element (SAFE) method

In the above sections, we have revisited analytical solutions to the bulk wave prop-

agation in unbounded media and the guided wave propagation in regular shaped

structures such as plates and cylinders. In irregular geometries, such as railway

lines or T-shaped beams, guided waves also exist due to partial waves reverberating

between boundaries of the structures, however analytical methods are not able to
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solve these problems. For such cases, it becomes necessary to introduce another ap-

proach, such as the finite element method, to predict the guided wave propagation

on a geometry with irregular cross-section.

2.4.1 Literature review

There are two commonly-taken finite element approaches. One is named the Semi-

Analytical Finite Element (SAFE) method, which is also called the spectral element,

strip element, or waveguide finite element method. This is the method to study

uniform waveguides of arbitrary cross sections. Fig. 2.8(a) shows the schematic of

the SAFE method. In the SAFE method, only the cross-section, which is normal to

the direction of wave propagation, needs to be meshed by finite elements. The waves

are assumed to propagate harmonically. The other approach is called the periodic

finite element method, whose schematic is shown in Fig. 2.8(b). In this method,

the waveguide is assumed to be a periodic chain of the given guide section over

one element depth, repeating this cell along the guide using periodicity conditions.

A review of this method can be found in Ref. [36]. Based on a general theory

presented by Mead [37] some periodic FE approaches and procedures have then been

developed−see, for instance, Refs. [38–41]. However, in the applications discussed

in this thesis, the cross-section will always be constant, therefore only the SAFE

method will be investigated.

(b)(a)

Figure 2.8: Schematic of the SAFE method (a) and periodic finite element method (b).

The SAFE method was first demonstrated in 1972 for dispersion solutions of solid
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waveguides of arbitrary geometries [42]. Later, Damljanovic and Weaver [43] have

developed the model to calculate both propagative modes and nonpropagative,

evanescent modes (complex wavenumbers) for anisotropic cylinders. More recently,

SAFE methods confined to obtaining the propagative solutions were applied to

thin-walled waveguides [15], rails [16,17], wedges [18], nonhomogeneous anisotropic

beams [44] and rods [17]. Bartoli et al [45] extended the SAFE model to allow

for viscoelastic material damping, so that the solutions are necessarily complex,

the damping of the guided waves being represented by the imaginary part of the

wavenumber.

A drawback of these models is that they all need to be developed in specific FE

codes. Wilcox et al [46] have implemented an approximation of the SAFE method

in a standard finite element package (in this case FINEL/FE77 [47]) by imposing a

cyclic axial symmetry condition. It works by defining an axially-symmetric model

with a very large radius compared to the dimensions of the cross section. For a

specific cyclic order, the finite element eigensolver generates a chosen number of

eigenfrequencies and eigenvectors, i.e. the vibration solutions of standing waves

in the ring. The cyclic order of the standing wave corresponds to the number

of wavelengths of a guided wave mode around the axisymmetric body, with the

eigenvector being its displacement distribution or mode shape at the corresponding

eigen frequency. However, this model can only describe the waveguide with stress-

free exterior boundaries.

Predoi et al [48] have implemented the SAFE method in a commercial finite element

package (COMSOL [49]) by reorganizing the SAFE equations in a standard Finite

Element eigenvalue formalism which can be solved by commercial software. He also

introduced the periodic boundary conditions in the SAFE method, which allow the

modelling of infinitely wide guides with periodic changes in geometry or material

properties along the width. Castaings and Lowe [50] have developed this model to

address the leaky wave problem in which guided waves propagate along an elastic

waveguide with arbitrary cross-section and radiate into a solid of infinite extent.

This has been achieved by using an absorbing region to absorb the leaking waves
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thus simulating an infinite extent of the solid medium. In our work, we have done

a further development of the modelling capability, addressing the problem of leaky

waves propagating along solid waveguides immersed in fluids, which will be described

in the following sections.

2.4.2 SAFE method in solids

The mathematical model of the SAFE method in solids is based on the three dimen-

sional elasticity approach. The differential equations of motion in an elastic domain

of mass density ρ and elastic constants Cijkl are

3∑
j,k,l=1

[Cikjl
∂2Uj
∂xk∂xl

] + ρω2Ui = 0; i = 1, 2, 3 (2.19)

In the SAFE modelling, the displacement along the wave propagation direction (x3

in Fig. 2.8(a)) are assumed to be harmonic, which can be written as:

ui(x1, x2, x3, t) = Ui(x1, x2)e
I(kx3−ωt), I =

√
−1 (2.20)

in which k is the wavenumber, ω = 2πf is the angular frequency, f being the

frequency, t is the time variable and the subscript i = 1, 2, 3. Consequently, the

wave modes are considered to be ’prismatic’ in that the cross sectional distribution

propagates according to a complex exponential function. This allows the equilibrium

equation to be expressed in a two-dimensional eigenvalue problem that could be

solved for wavenumber k in the propagation direction. After some intermediary

transformations, Eq. 2.19 can be written in the following form:

Cikjl
∂2Uj
∂xk∂xl

+ I(Ci3jk + Cikj3)
∂(kUj)

∂xk
− kCi3j3(kUj) + ρω2δijUj = 0 (2.21)

with summation over the indices j = 1, 2, 3 and k, l = 1, 2. The coefficients Cijkl

are the stiffness moduli and δij is the Kronecker symbol. In the commercial FEM
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code [49] used in this study, the formalism for eigenvalue problems has the general

expression:

∇ · (c∇U + αU − γ)− β∇U − aU + λdaU − λ2eaU = 0 (2.22)

in which all matrix coefficients are given by Predoi et al [48].

The nature of the solution is thus to find eigenvalues of complex wavenumber k

for chosen values of angular frequency ω. Each solution at a chosen frequency will

reveal the wavenumbers of all of the possible modes at that frequency. The full

dispersion curve spectrum can be found by repeating the eigenvalue solutions over

the desired range of frequencies, and combining modes with the most similar mode

shapes after each frequency step. The SAFE method is able to calculate guided

wave modes in both isotropic and anisotropic materials, however, in this thesis only

isotropic materials are considered.

2.4.3 SAFE method in perfect fluids

The equation of dynamic equilibrium in a perfect fluid can be written:

∇ · (Kf∇P ) + ρω2p = 0 (2.23)

in which p is the pressure of the fluid, and Kf is the compressibility coefficient of

the fluid.

When the surface of the fluid is in contact with a deformable solid, we have the

boundary equation at the interface:

~n · (Kf∇p) = ρω2Kf~n · ~u(solid) (2.24)

where ~n is the outward unit vector of the fluid domain on the interface and ~u(solid)

is the displacement of the interface calculated in the solid domain. For the solid
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waveguide, the boundary condition involves the pressure p in the fluid by writing

that the stress vector is −p~n, ~n being the outward unit vector of the solid.

For wave propagation along the Ox3 direction, the pressure of the fluid can be

written as:

p(x1, x2, x3, t) = p(x1, x2)e
I(kx3−ωt), I =

√
−1 (2.25)

By combining Eq. (2.23) and Eq. (2.24) and comparing with Eq. (2.22), the pressure

can be chosen as the finite element variable and the coefficients become:

c = Kf , a = −ρω2, da = α = β = γ = 0, ea = Kf (2.26)

2.4.4 SAFE method in viscous fluids

A viscous fluid can be modeled as a hypothetical solid [51–53] with appropriate

bulk longitudinal velocity, shear velocity and attenuation. The elastic modulus of

the solid-like material can be related to the properties of the viscous fluid by the

following equations:

c11 = c22 = c33 =
3Kf + 4iωη

3
(2.27)

c12 = c13 = c23 =
3Kf − 2iωη

3

c44 = c55 = c66 = iωη,

where cij, (1 ≤ i, j ≤ 6) are the elastic stiffness constants from the stress-strain law

(Hooke’s Law) [26], Kf is the compressibility coefficient of the fluid, η is the shear

viscosity, ω = 2πf is the circular frequency. The shear velocity of the viscous liquid

can be expressed:

cs =

√
2ηω

ρ
, (2.28)
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and the shear attenuation can be calculated as:

αs =

√
ωρ

2η
. (2.29)

The longitudinal velocity of the viscous fluid is expressed in the same way as for the

non-viscous fluid:

cl =

√
Kf

ρ
, (2.30)

The longitudinal attenuation is assumed to arise entirely from the shear viscosity

and can be derived as:

αl ≈
2ω2η

3c3l ρ
, (2.31)

The SAFE model can therefore be considered to be the same as that for a solid

waveguide which has been investigated previously [48,50].

It has been discussed that the group velocity is calculated by cgr = dω/dk (where ω

is the angular frequency and k is the wave number in the propagation direction). It

will only be valid if the k is real, which stands for the non-attenuating waves [54].

Therefore when the fluid has viscosity, strictly the group velocity calculation is not

valid. However it is reasonably accurate if the attenuation is small and only the real

part of the wavenumber is used for calculation. When the attenuation is large, the

group velocity calculation may yield non-physical solutions, in this case an accurate

alternative is to calculated the energy velocity. It is the velocity at which the wave

carries its potential and kinetic energy along the structure. The energy velocity can

be calculated by the following equation:

Ve =

∫
S

(Pz/(Ec + Ep)) (2.32)

in which S is the cross section of the whole geometry; Pz is the power flow density

(Poynting vector) in the propagation direction; Ec and Ep are the kinetic and strain

energy density respectively. The details of their expressions can be found in [26]

and [55].
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2.4.5 Absorbing region

In order to solve the problem of a solid waveguide immersed in an infinite fluid, an

exterior absorbing region is needed to model the surrounding medium [50]. This

region, shown in Fig. 2.9, has the same mass density as the fluid but has damping

properties which increase with the distance away from the central axis of the sys-

tem. To achieve this, the imaginary part of its compressibility coefficient gradually

increases according to the following law:

Kfa = Kf [1 + Iα1(
|r − ra|
La

)3], I =
√
−1 (2.33)

where Kf represents the compressibility of the liquid, ra is the inner radius of the

absorbing region, La is its radial length, and r is the radial position in this absorbing

region. α1 is a coefficient that defines the proportion of the damping at the outer

limit of the absorbing region.

Solid waveguide

Surrounding fluid

Absorbing  Region

ar aL

Figure 2.9: Schematic of the FE model used for a circular bar immersed in a fluid.

By introducing the imaginary part of the compressibility, the propagation wave
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numbers, which are eigen solutions of the system, become complex (k = k′ + Ik′′).

The imaginary parts (k′′) represent the attenuation due to leakage from the bar to

the infinite fluid. In the previous studies of a leaky waveguide surrounded by a solid

of infinite extent [50], the length of the absorbing region was recommended to be

2 to 3 times the biggest wavelength of any radiated wave in the whole frequency

range. However, according to our numerical testing results here, we found that if

the surrounding material is fluid, the length of the absorbing region can be much

shorter. The reason is because the leaking energy carried in the fluid is much smaller

than the energy carried in the solid waveguide. Therefore the relative amount of

fluid-borne energy that is reflected back to the waveguide is very small, which can

be further reduced by a short absorbing region, and won’t affect the eigen solutions

of the system. In our numerical testing, the length of the absorbing region was

proved to be efficient by a convergence check. When the length was increased we

still obtained the same solutions for the propagating modes in the waveguide.

2.5 SAFE Method Validation

2.5.1 Solid waveguide immersed in a perfect fluid

This study is to validate the SAFE method for waveguides immersed in perfect

fluids. A 1mm radius steel cylinder bar immersed in water is used, the results of

which have already been studied by DISPERSE and shown in Sec. 2.3.4. The

geometry of the system is shown in Fig. 2.9. The steel bar is 2mm in diameter and

the surrounding water is modeled by a 4mm thick ring having an inner diameter

of 2mm. The absorbing region is modeled by a 5mm thick ring having an inner

diameter of 10mm. The material properties are chosen to be the same as they were

used in DISPERSE. The whole geometry is meshed by 7563 triangular elements

of 1st order (each element has 3 nodes), which are automatically generated by the

software used [49]. The number of degrees of freedom is 14912. A typical calculation

of one SAFE model presented here takes approximately half a minute on a Pentium
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4 PC with 1 Gbyte memory.

The system is solved using the SAFE method to find values of the wavenumber k at

different frequencies. For each frequency, several solutions are obtained. For each

solution, the amplitude of normal stress in the radial direction Trr is calculated at

each nodal position in the solid domain and the pressure p is calculated at each

nodal position in the fluid domain and in the absorbing region. These quantities are

equal at the border between the solid and fluid according to the imposed boundary

condition. Solutions which have higher values of Trr in the solid domain than −p in

the fluid domain generally represent modes guided along the bar and radiating in

the water, while other solutions represent resonances of the whole system and are

unwanted.

Fig. 2.10 shows SAFE solutions at 500 kHz. There are three propagating modes

existing at this frequency: the L(0,1) mode which is shown in Fig. 2.10(a), the

T(0,1) mode which is shown in Fig. 2.10(b), and the F(1,1) mode which is shown

in Fig. 2.10(c). Fig. 2.10(d) shows an unwanted solution that corresponds to a

resonance of the absorbing region. From the figure, it can be seen in the longitudinal

mode that the radial normal stress is concentrated in the center of the bar and some

energy is radiating to the water; in the torsional mode the radial normal stress is

almost zero (theoretically it should be zero, but there is a very small value due to the

numerical approximation); in the flexural mode the radial normal stress is symmetric

with respect to a diameter of the bar and energy is radiating to the water. It can be

seen that the mode shapes of three fundamental modes agree with the DISPERSE

prediction shown in Fig. 2.7.

In order to compare the dispersion curves over a range of frequencies, the system is

then solved for 71 frequencies from 100 kHz to 1500 kHz, and solutions which repre-

sent the propagating modes are sought according to the above rule. The mode shape

information (displacements in each direction) is recorded at each nodal position for

each sought eigensolution. By comparing these mode shapes, all the solutions can

be classified into the different modes. Fig. 2.11 presents the dispersion curves of

wave modes propagating along the steel bar and eventually radiating energy in the
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Figure 2.10: Cross-section distribution of normal stress in solid and pressure in fluid

at 500 kHz for example modal results: (a) L(0,1) mode (b) T(0,1) mode and (c) F(1,1)

mode; (d) mode resonating in the absorbing region.

infinite water from 100 to 1500 kHz, showing the phase velocity, real wave number,

group velocity and attenuation. The real wave number and the attenuation can be

obtained from the eigensolutions directly, while the phase velocity can be calculated

by Cph = ω/k′ and the group velocity is obtained by doing a numerical derivation

Cgr = dω/dk′. Plain lines are predictions made with the DISPERSE software, while

circles represent the SAFE solutions obtained with the model.
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(a)
(b)

(c) (d)

(a)

Figure 2.11: Dispersion curves of phase velocity (a), wavenumber (b), group velocity (c)

and attenuation (d) of 1mm radius circular steel cylinder bar immersed in water, predicted

by the SAFE method (◦) and DISPERSE (—).

From the figure it can be seen that the SAFE predictions have good agreement with

DISPERSE results at most of the frequencies. The only disagreement appears at

250 kHz - 400 kHz of the F(1,1) mode on the group velocity and attenuation curves,

which is a result of inefficiency of the absorbing region at these frequencies. As

it has been introduced in Sec. 2.4.5, an efficient length of the absorbing region is

dependent on the longest wavelength projecting to the radial direction. In water,

only the bulk wave can be radiated, thus only the angle of the radiation decides the
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maximum radiated wavelength in the radial direction. This can be derived using:

λrad =
λwater
cosθ

(2.34)

Where λwater is the radiation wavelength in water and λrad is its projection in the

radial direction. θ is the radiation angle illustrated in Fig. 2.4 which has been

decided by Eq. (2.18). If the phase velocity of the guided mode is lower than the

bulk velocity of water, there will be no radiation.

From Fig. 2.11(a), it can be seen that the phase velocity of the F(1,1) mode at 250

kHz to 400 kHz is just above the bulk velocity of water, therefore leaky waves have

large angles of radiation θ, so that λrad is very large, thus the absorbing region does

not perform well in such cases according to the previous studies [50]. By increasing

the length of the absorbing region, the inaccurate frequency range can be reduced,

however it will be much more time consuming to solve the model.

2.5.2 Solid waveguide immersed in a viscous fluid

The second validation model is a solid waveguide immersed in a viscous fluid. A

1mm radius steel cylinder bar is chosen, and the fluid used in the model is glycerol,

whose density is (1258kg/m3) and dynamic viscosity is assumed to be 1 Pa s. (The

dynamic viscosity is sensitive to the temperature, and is around 1.2 Pa s at 20◦C.)

Since the fluid has shear viscosity, the geometry of the model as well as the mesh

has to be chosen carefully. The size of the model needs to consider the possible

radiation from the longitudinal waves in the viscous fluid, and the wavelengths and

the angles of radiation will condition the size of the absorbing region. Meanwhile,

since the shear waves in the viscous fluid have extremely small wavelengths, thus

very fine meshing will be required in the region of the viscous fluid. However the

fine mesh could not be applied over the whole geometry, as it would exceed the

modelling capacity of the software. A special meshing technique which only used

fine mesh at the boundary between the solid and the liquid but regular mesh at
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other part of the geometry, was carried out and it will be described in the following

paragraph.

The surrounding glycerol is modeled by a 1 mm thick ring having an inner diameter

of 2 mm. The absorbing region is modeled by a 13 mm thick ring having an inner

diameter of 4 mm. Quadratic elements, which contains 6 nodes, are used in the

model. The geometry was first meshed automatically over the whole region, which

produces small elements in the center around the solid bar and elements with grad-

ually increased size towards the border of the geometry. The length of absorbing

region has been decided after some trials, in order to model properly the leakage

and its absorption at infinity. Then the mesh along the boundary between the bar

and the glycerol is refined in order to accurately present the shear viscosity of the

fluid. The resulting maximum size of element is about 0.4 mm within the fluid and

about 0.03 mm along the bar-fluid border. The mesh consists of 15666 elements,

and the number of degrees of freedom is around 189000, which makes it a quite large

model but still solvable. The FE model took around an hour to solve at one sin-

gle frequency on a more powerful computer (2× Dual-Core 2.6GHz AMD Opterons

workstation, with 16 GB memory) than previously used.

The model was first run at a single frequency. Wave modes which have higher en-

ergy (power flow) in the bar than in the fluid were picked up, as they correspond

to the modes that propagate along the bar and radiate into the fluid. Three modes

were found at 1200 kHz in the calculation, and the solutions (wavenumber) of the

propagation modes are listed in Tab. 2.1. The real part of the wavenumber relates

to the phase velocity of the mode while the imaginary part describes the attenu-

ation. Meanwhile, this model can also be solved by DISPERSE. The results from

DISPERSE are also listed in the table, which show good agreement with the SAFE

prediction.

Then the system is solved for 11 frequencies over the range from 500 kHz to 1500 kHz,

and solutions which represent the propagating modes are sought according to the

above criterion. As for the method introduced previously, by comparing the mode

shapes between two neighbouring frequencies, it is possible to get the dispersion
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Table 2.1: Comparison of SAFE solution and DISPERSE prediction of the guided modes

on a 1mm radius steel cylinder immersed in glycerol.

Real wavenumber (rad/m) Attenuation (Np/m)

SAFE DISPERSE error SAFE DISPERSE error

L(0,1) mode 1561 1560 0.06% 29.446 29.8 1.18%

T(0,1) mode 2318 2316 0.08% 5.261 5.3 0.73%

F(1,1) mode 2720 2722 0.07% 45.367 45.3 0.14%

curve for different modes existing in the frequency range. The whole process took

over 14 hours to complete on the workstation introduced above. Fig. 2.12 presents

the phase velocity and attenuation dispersion curves of wave modes propagating

along the steel bar and eventually radiating energy in the glycerol, from 500 to

1500 kHz. Circles present the SAFE results, while plain lines are predictions made

with the DISPERSE software. The figure shows good agreement between SAFE

predictions and results from DISPERSE in the frequency range. Comparing with

Fig. 2.6, it can also be noted that the attenuation of the waves in the bar immersed

in viscous fluid is much higher than for the one in perfect fluid, and the T(0,1) mode

starts to have attenuation.

(b)(a)

Figure 2.12: Dispersion curves of phase velocity (a) and attenuation (b) of 1mm radius

circular steel cylinder bar immersed in glycerol, predicted by the SAFE method (◦) and

DISPERSE (—).
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2.6 Summary

In this chapter, the fundamental concepts of bulk ultrasonic waves propagating in

infinite media and guided waves propagating in waveguides with regular geometry

have been revisited. In an unbounded elastic medium, there are two modes of prop-

agation: longitudinal and shear modes, and the velocity of these waves is constant

with frequency. In waveguides, partial bulk waves continuously interacting with the

boundaries of the waveguide superpose to form a guided wave propagating along

the structure. The properties of guided waves are usually dispersive, i.e., velocities

depends on frequency; and mode shapes also vary with frequency.

For waveguides with regular geometry such as plates or pipes, analytical methods

such as the global matrix method reviewed in this chapter can be applied to study the

properties of guided waves propagating in these structures. The dispersion curves

and mode shapes of guided waves on a plate system have been analyzed. When

a waveguide is immersed or embedded in another medium, the guided wave may

be attenuated, with the energy leaking away from the waveguide while propagating.

An example of a cylindrical bar immersed in water has been presented and discussed

in the chapter.

For waveguides with irregular cross-sectional shapes, the Semi-Analytical Finite

Element method has been introduced, which uses a finite element representation

of the cross section, together with a harmonic description along the propagation

direction. In this chapter, the work on the SAFE method has been recalled and

then extended for a solid waveguide immersed in fluids. This extension enables

the SAFE method to address the problem of leaky guided waves in fluids. Two

validation cases have been carried out, which have studied the problems of solid

cylindrical waveguides immersed in non-viscous and viscous fluids. The solution

from the SAFE method as well as the analytical method have been obtained and

compared, showing good agreement.
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Chapter 3

Dipstick for Ultrasonic Density

Measurements

3.1 Background

This chapter presents an application of guided wave propagation on a waveguide with

irregular cross section in measuring the density of a fluid in which the waveguide

is immersed. The density is an important bulk property of any material and its

measurement is very important in many disciplines such as material characterization,

quality or process control. Ultrasonic density measurement is an attractive idea for

the rapid non-destructive evaluation of a material’s density.

Conventional ultrasonic density measurements can be carried out by determining the

time of flight of an ultrasonic wave between an emitting and a receiving transducer;

this is a measure of the speed of sound in the material. Since the speed of sound in

any medium is dependent on the bulk modulus (compressibility) and the density of

the medium only, the density of the medium can be determined if the bulk modulus

is known and the speed of sound is measured:
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3. Dipstick for Ultrasonic Density Measurements

ρ =
K

c2
(3.1)

where c is the speed of sound in the material, K is the bulk modulus and ρ is the

density of the material.

Graff [24] gives a good account of waves in infinite media and their properties. A

further approach to measure ultrasonic density can be by means of the amplitude of

the reflection of an ultrasonic wave by an interface between a known material and an

unknown material (also described by Graff). The reflection coefficient (ratio of the

amplitude of the reflected wave over the amplitude of the incident wave) depends on

the ratio of acoustic impedances of the known and unknown materials. The acoustic

impedance is defined by: Z = ρc, where Z is the acoustic impedance, ρ is the density

of the material and c is the speed of sound in the material. The reflection coefficient

for normally incident waves (travelling at 90 degrees to the plane of the interface)

is given by the equation:

RC =
Z1 − Z2

Z1 + Z2

, (3.2)

where Z1 is the impedance of material 1 that the wave is travelling in and Z2 is the

impedance of material 2 that forms the interface with material 1 from which the

wave is to be reflected. This shows that if the reflection coefficient is used to deduce

the density of the material that the wave is reflected from, some further information

has to be known about material 2, namely its speed of sound.

A disadvantage of the ultrasonic determination of density using the time of flight

and the reflection coefficient methods is the need to know the compressibility of

the medium in order to calculate the density from the measurement results. A

further disadvantage is the need for accurate positioning of sending and receiving

transducers relative to the sample. Especially for fluid samples this means that the

measurement has to take place in a carefully designed test cell of tightly controlled
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dimensions. For accurate measurements it is also important to ensure that trans-

ducers are mounted with parallel surfaces. This can be impractical if measurements

have to be carried out in the field.

Recently several ultrasonic ”dipstick” techniques have been developed in order to

measure fluid properties ultrasonically. The idea is that an ultrasonic wave which

propagates in a solid structure can sense the presence and nature of the adjacent

fluids. For example, Fig. 3.1 shows two dipsticks which were developed by Vogt

et al [56] to measure fluid viscosity and by Cegla et al [57] for fluid bulk velocity

measurements.

(a) (b)

Figure 3.1: (a) Dipstick for fluid viscosity measurement [56], (b) dipstick for fluid bulk

velocity measurement [57] .

Fig. 3.2 shows the dipstick sensor designed by the author to measure fluid density,

which contains a rectangular bar and two shear transducers at one end. When a

torsional wave pulse propagates along the bar submerged in a fluid, it interacts at

the boundary with the surrounding fluid. As a result, the boundary layer of the

fluid is alternately accelerated and decelerated. As the waveguide has a non-circular

cross-section, normal forces are exerted on the surrounding fluid, thus some fluid will
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be trapped at the corners of the cross-section and will affect the propagation of the

torsional wave. This mechanism can be attributed to the inertia of the surrounding

fluid and is characterized by the density of the fluid [20,58]. Hence by measuring the

speed of propagation of the torsional wave, the density of the fluid can be estimated.

Shear transducers
Rectangular bar

Torsional wave

Figure 3.2: Dipstick sensor designed for fluid density measurements. .

Lynnworth [59] made the first application of such a torsional wave sensor to measure

fluid densities. Later, Bau [20] presented a simple quantitative theory to relate the

speed of the torsional wave to the density of the surrounding fluid, with a calcu-

lation of a two-dimensional, inviscid flow field of the fluid. Based on this theory,

various researchers made further applications [58,60,61]. Kim and Bau [58] analyzed

waveguides with various types of cross-sections in order to optimize the performance

of the sensor. Shepard et al [60] measured the density and viscosity in a variety of

fluids, including fluids with high concentration of suspended solids. Smit et al [61]

made use of a continuous excited torsional wave to allow large cross-sectional di-

mensions for density measurements. However, due to the complexity of the wave

behavior in the non-circular cross-sectional shape, the accuracy of the inversion of

the measurements to infer the density of the fluids has been compromised. These

authors [20, 60, 61] have reported deviations of the measured velocity of torsional

waves and theoretical predictions of over 20%. Therefore better theoretical predic-
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tions are required to improve the accuracy of the sensors. In this chapter, the SAFE

model is applied to predict accurately the wave propagation along a solid bar with

a non-circular cross-section immersed in a fluid. Then a more precise inverse model

relating the group velocity of the torsional wave and the density of the surrounding

fluid can be provided.

This chapter starts with a review of the approximate theory [20]. The SAFE method

is then applied to model a torsional wave propagated along a waveguide with a

rectangular cross-section that is immersed in a fluid. The velocity change of the

torsional wave can be obtained as a function of the density of the fluid, and therefore

an accurate inverse model for the density measurements can be provided. In Sec. 3.4

experiments are designed to validate the inverse model, showing excellent agreement.

General discussions on the optimization of the sensor are presented finally in Sec.

3.5.

3.2 Previous Theory of Torsional Dipstick

Bau’s approximate theory suggests that the speed of propagation of torsional waves

in a solid, elastic waveguide with a non-circular cross section is inversely proportional

to the density of the fluid adjacent to the waveguide [20]. However in this theory,

two assumptions have to be made to achieve the conclusion. The first one is the

first-order approximation to the two-dimensional flow field calculation, with which

the torsional wave speed c in a solid waveguide can be presented as [20]:

C

C0

= (1 +
ρfIf
ρsIs

)−1/2 (3.3)

where Is and If are the polar moment of inertia [62] of the solid waveguide and

the adjacent liquid respectively, which need to be overcome by the torsional pulse,

C0 = K(G/ρs)
1/2 is the torsional wave speed for a waveguide in vacuum, G is the

shear modulus of the solid, K = (D/Is)
1/2 is a “shape” factor, D is the torsional

rigidity of the cross section, and ρs and ρf are the densities of the solid and adjacent

fluid respectively.
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Kim and Bau [58] have obtained the values of If/Is and K from finite element

computation of the flow field around a non-circular cross-section. Then a second

assumption, (ρfIf )/(ρsIs)� 1, has been made to get the linear relationship:

C

C0

≈ 1− ρfIf
2ρsIs

(3.4)

Thus the density of the fluid ρf can be calculated from Eq. (3.4). However, when

If/Is is large or when the density of the solid is close to the density of the fluid, the

calculation becomes inaccurate. This can be seen easily, for example, in the case

of an aluminum bar with a diamond-shaped cross-section which has an aspect ratio

1:3 immersed in alcohol. In this case If/Is ≈ 3, which can be obtained from Kim’s

calculation [58]. Thus (ρfIf )/(ρsIs) ≈ 1, and this makes the second assumption

invalid.

In addition, any dispersion characteristics of the waves are excluded from this theory,

but torsional waves in a geometry with a non-circular cross section are always slightly

dispersive, which make the group velocity measured from a pulse-echo experiment

slightly different from the phase velocity of the theoretical prediction. This can also

lead to deviation between the theory and the experimental measurements [20,60,61].

In the following sections of this chapter, an accurate semi-analytical finite element

model of waves propagating along a non-circular bar immersed in a fluid will be

provided, and the dispersion curve (relating frequency and group velocity) of the

torsional mode in a certain fluid can be obtained from the model. Therefore, more

explicit correlation between the group velocity of the torsional mode at certain

frequency and the density of the fluid can be established.
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3.3 Modal Study of Rectangular Bar Immersed

in a Perfect Fluid

3.3.1 Model description

As was shown in Chapter 2, by the SAFE method one can accurately predict the

propagation and leakage of guided waves along an immersed waveguide. Therefore,

by performing accurate predictions, such as are undertaken here, it should be possi-

ble to construct an inverse relationship so that measurements of the torsional wave

could be used to infer the density of the fluid.

The schematic of a model is shown in Fig. 3.3 using the example of a rectangular

aluminium bar immersed in a alcohol. A rectangular bar of 1.1mm × 2.2mm was

modeled, corresponding to the measured dimensions of a real bar which was used for

experiments. The material properties are shown in Tab. 3.1. In order to suppress

the reflections from the outer border of the alcohol region, an absorbing region was

modeled. This had the same density as the alcohol but increased damping with

distance away from the center. The length of the absorbing region was chosen to be

10 mm, which was proved to be efficient by a convergence check. When the length

was increased in a trial the same solutions were still obtained. The geometry was

meshed by 8376 triangular elements of 1st order. These elements are automatically

generated by the software used [49],and are finer in the bar than in the adjacent

fluid. The number of degrees of freedom was 17282.

The model system was solved using the SAFE method to find values of the wave

number k at different frequencies. For each frequency, several solutions were ob-

tained. For each solution, the amplitude of normal stress in the radial direction Trr

was calculated at each nodal position in the solid domain and the pressure p was

calculated at each nodal position in the fluid domain and in the absorbing region.

These quantities must be equal at the border between the solid and fluid according

to the imposed boundary condition. Solutions which have higher values of Trr in

the solid domain than -p in the fluid domain generally represent modes guided along
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Wave Guide

Alcohol

Absorbing  Region

ar aL
(inviscid fluid)

Figure 3.3: Schematic of the FE model used for the rectangular aluminium bar immersed

in alcohol .

the bar and radiating into the fluid, while other solutions represent resonances of

the whole system and so are unwanted.

Table 3.1: Mechanical properties for materials used in the SAFE modelling.

Density Bulk longitudinal velocity Bulk shear velocity

(kg/m3) (m/s) (m/s)

Aluminium 2700 6320 3130

Copper 8900 4700 2260

Steel 7932 5959 3260

Magnesium 1700 5770 3050

Water 1000 1500

Alcohol 800 1168
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3.3.2 Fundamental modes at single frequency

Fig. 3.4 shows the four fundamental propagation modes of guided waves propagating

on the rectangular bar immersed in alcohol at 70 kHz, which are the longitudinal

mode (a), the torsional mode (b) and two flexural modes (c) and (d). The radial

stress in the bar and in the fluid is displayed as a grey scale. From the figure, it can

be seen that the longitudinal mode and two flexural modes leak energy from the bar

into the fluid, however the torsional mode does not have any attenuation.

Fig. 3.5 shows a zoom of the bar and nearby fluid in the torsional mode, as it is

the most interesting mode for fluid density measurement. The displacement in the

fluid and in the cross-section of the bar is plotted by arrows. It can be clearly seen

that the fluid is trapped by the corners of the bar, thus it is to be expected that the

propagating speed of the torsional mode along the bar should be influenced by the

fluid. It should be noted that there is no radial component of the waves in the fluid,

even though the fluid loads the bar and there is some local movement, so that the

torsional mode on such a rectangular bar is a non-leaky mode.

3.3.3 Dispersion curve of the torsional mode

The dispersion curves can be generated by repeating the SAFE solution over a

desired range of frequencies, and the fundamental torsional mode can be traced

by comparing the mode shapes of all the propagating solutions at each frequency.

Fig. 3.6 presents the phase velocity dispersion curve of the fundamental torsional

mode of the aluminum rectangular bar immersed in alcohol, from 50 kHz to 90

kHz. For comparison, the phase velocity of the fundamental torsional mode of the

same rectangular aluminum bar in vacuum is also plotted in the figure (line), also

generated by the SAFE method but omitting the fluid [48]. It can be seen that the

torsional speed of the waveguide with the rectangular cross-section decreases when it

is immersed in the fluid. In addition, it is observed this particular mode has almost

no dispersion over this frequency range, and is therefore useful for measurements.
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Figure 3.4: Theoretical prediction of mode shape of four fundamental modes of aluminium

bar with rectangular cross-section (1.1mm× 2.2mm) immersed in alcohol, at 70 kHz: (a)

Longitudinal mode (b) Torsional mode, (c) flexural mode 1 and (d) flexural mode 2. The

radial (with respect to the center of the bar) stress in solid and pressure in fluid is displayed

in a grey scale .

From the calculation, we also confirmed that the attenuation of the torsional mode

of the aluminum rectangular bar immersed in alcohol is zero, which means there is

no leakage from the bar to the fluid in the above frequency range. Therefore, the
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(a) (b)
2

1

0

-1

-2

30 mm

1 mm

Figure 3.5: A zoomed picture of torsional mode of aluminium bar with rectangular cross-

section (1.1mm× 2.2mm) immersed in alcohol at 70 kHz. The radial (with respect to the

center of the bar) stress in solid and pressure in fluid is displayed in a grey scale. Arrows

indicate displacements in cross-section of fluid and the bar .

group velocity is identical to the energy velocity [54], the latter being the quantity

which was actually measured in the experiments; the experiments will be discussed

shortly.

3.3.4 Inverse model for density prediction

From the above modelling demonstration it can be seen that the properties of the

propagation of the torsional mode on a rectangular bar immersed in a fluid can be

calculated precisely. Therefore a precise inverse model relating the group velocity

of the torsional wave and the density of the surrounding fluid can be established,

by calculating the group velocity of the torsional mode in different fluids. The

group velocity is easily obtained by doing a numerical derivation Cgr = dω/dk′.

Fig. 3.7 shows the inverse model relating the group velocity of the torsional waves

of the immersed rectangular bar and the density of the fluids. A number of inviscid

fluids with densities from 0.8g/cm3 to 1.5g/cm3 with a step of 0.1g/cm3 has been

modeled, and their corresponding group velocities are shown in the figure as circles.
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Figure 3.6: Phase velocity dispersion curves of aluminium bar with rectangular cross-

section (1.1mm×2.2mm) immersed in alcohol (circles) and in vacuum (line) predicted by

the SAFE method .

A linear relationship between the group velocity and the density of the fluid can

be discovered from the figure, which agrees with the previous theory [20]. In the

experimental measurement, the group velocity of the propagating torsional wave on

a bar can be practically measured, hence the density of the fluid can be obtained

via the inverse model. The comparison of this model with the experimental results

and previous approximate theory will be shown in the next section.
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Figure 3.7: Inverse Model relating the group velocity of the torsional wave of the im-

mersed rectangular bar and the density of the fluids .

3.4 Experiment

3.4.1 Experimental setup

An experimental setup was designed to validate the model by exciting the torsional

mode in an aluminium rectangular bar immersed in a fluid and measuring its energy

velocity (group velocity). Fig. 3.8 shows a schematic of the apparatus. The bar was

450mm long with rectangular cross-section (1.1mm× 2.2mm), which had the same

properties as were used for the model. A vessel containing a fluid sample was placed

beneath the bar on a table of variable height. By changing the height of the table,

the bar could conveniently be immersed in the fluid to different depths; the angle

between the fluid surface and the axis of the bar was 90 degrees.

The signal was sent and received by a pulse generator and receiver unit (Macro

Design Ltd.), a LeCroy 9400A Storage Oscilloscope was used to store the signal and

data was then transferred to a computer for processing. A pair of standard shear

66



3. Dipstick for Ultrasonic Density Measurements

90

Figure 3.8: Experimental setup .

transducers made by Guided Ultrasonics Ltd. [63] was used to excite the torsional

mode with a 5 cycle Hanning windowed tone burst. The signal was reflected from

the end of the bar and traveled back to the transducer. It was then recorded after

50 averages to reduce the noise.

A typical time trace of this bar partly immersed in alcohol is displayed in Fig. 3.9(a)

and for comparison the signal in air in shown in part(b). The first and second bar

end reflections and reverberation in the fluid are clearly visible. ∆T is the flight

time of the wave packages propagating twice the length of the bar, which can be

determined by calculating the shift of the Hilbert envelope (shown in figure 3.9)

of the measured signals. The phase of the measured signals is inverted after each
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Figure 3.9: Time trace at 70 kHz with aluminum rectangular bar immersed in alcohol at

170mm (a) and in air (b) .

reflection because one end of the bar was clamped by the two transducers. Data for

tone bursts at different centre frequencies and two different immersion depths were

collected. The group velocity Cgr was extracted from the measured signals using:

Cgr =
2(x2 − x1)

(∆T2 −∆T1) + 2(x2−x1)
Ca

(3.5)

where x2 > x1 are two different immersion depths, ∆T1 and ∆T2 are the flight

time of the wave packages propagating twice the length of the bar with different

immersion depths respectively. Ca is the group velocity of the torsional mode of

the bar in air (which is considered to be a good approximation for group velocity in

vacuum C0).
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3.4.2 Results

Alcohol

This first experiment was chosen to validate the dispersion curve using pure alcohol

and the frequency range from 50 kHz to 90 kHz. The density of a sample of alco-

hol (800kg/m3) was measured by a conventional measurement (by measuring the

weight and volume of the liquid) and the aluminium bar properties were evaluated

experimentally ρ = 2700kg/m3, Cl = 6320m/s,Cs = 3130m/s. The temperature

was recorded to be 25◦C. Results were extracted from the time traces as described

in subsection 3.4.1. Fig. 3.10 shows the measured group velocity of the torsional

mode as a function of frequency, and the theoretically predicted curve by the SAFE

method; this was obtained by doing a numerical derivation Cgr = dω/dk′ as was de-

scribed in Sec. 3.3. From the figure we can see that the measured results agree very

well with the theoretical predictions. There are small variations in the predicted

curve of group velocity. They are due to the numerical differentiation and could be

smoothed by fitting with a differentiable analytical function if higher resolution is

required.

Density measurements

The second experiment was chosen to validate the inverse model for density pre-

diction. A few fluid samples with density from 0.8g/cm3 to 1.1g/cm3 were chosen,

the variation being achieved by changing the concentration of alcohol and salt with

water. The centre frequency of the tone burst signal was selected to be 70 kHz.

Fig 3.11 depicts the ratio (Ca−Cgr)/Ca as a function of the fluid density; these axes

are chosen to match those used in the earlier published work in the approximated

theory. The solid line shows the SAFE model results while the stars are the experi-

mental results. The previous approximate theoretical prediction [20] (dashed lines)

according to Eq. (3.3), is also shown in the figure. It can be seen that the SAFE

method predictions agree very well with the measurements, and that this represents

a substantial improvement with respect to the approximate model.
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Figure 3.10: Measured (stars) and theoretically predicted (line) group velocity of alu-

minium bar with rectangular cross-section immersed in alcohol .

3.4.3 Error analysis

In order to further exploit this dipstick technology for the fluid density measurement,

the sources of errors in the measurement need to be discussed. There are several key

elements for the accuracy in the measurement. Firstly, the greatest error is believed

to be introduced in the measurement of the immersion depth. In our experiment,

the immersion depth was determined visually by means of a ruler, which suffered an

accuracy of ±0.5mm, about 1% of the immersion depth. For future construction of

an improved measurement, it is recommended to determine the immersion depth as

accurately as possible. For example to shield the unimmersed part of the bar from

the liquid by a cover could be one of the solutions.

The second error comes from the measurement of flight time in Eq. (3.5). The
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Figure 3.11: Measured (stars) and theoretically predicted (line) group velocity of alu-

minium bar with rectangular cross-section immersed in different fluids compared with pre-

vious theory prediction (dashed line) .

noise in the received time domain signals could cause shifting in the location of

peak amplitude in the time domain signals, thus would affect the accuracy in the

detection of flight time. The sampling frequency of the digitizer would cause another

uncertainty of the measurement by limiting the temporal resolution of the signal

recorded. However since the signal to noise ratio and the sampling frequency are

both high in all measurements, the errors in the measurement of flight time were

small.

The third error comes from the uncertainty in the properties of a solid bar, i.e.

the density, mechanical properties as well as dimensions. The rectangular bar was

produced by cutting a narrow strip from a plate and then bending it to be a straight

bar. The material properties of the bar were measured on the plate, which could be

slightly different from the material in the bar due to the bending procedure. The

dimensions of the bar may also have errors in the FE modelling, for example it may
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not be strictly constant along the bar. However the influence of the properties of

the bar to the torsional speed was tested to be small, so that good accuracy can still

be obtained from the inverse model.

3.5 Potential for Sensor Optimization

With the SAFE method, one can easily predict the torsional wave speed along bars

with any arbitrary cross-sections immersed in fluids. Thus the model can be used

as a powerful tool to optimize the sensitivity of the dipstick by changing aspect

ratio, geometry of the cross section, and material properties of the bar. Compared

to the previous simple theory, this cannot only improve the accuracy of the density

prediction, but can also include the dispersion information. Therefore one can choose

ideal shapes as well as frequencies for measurements according to the calculation.

Fig. 3.12 shows some examples of torsional mode on bars with different cross sections

immersed in alcohol, which are the square shape, diamond shape, elliptical shape

and hollow rectangular shape respectively. The displacements of the bars and the

adjacent fluid are shown in arrows, which indicate the trapping of the fluid by the

corners of each geometry. The group velocity of the torsional mode will be affected

by the attached fluid, so that they can all be used as sensors of the fluid density.

Fig. 3.13(a) shows the measurement sensitivity of aluminum rectangular bars with

aspect ratio from 1:1 to 1:4. Similar inverse models as shown in Sec. 4.6 were made

by calculating the ratio (Ca − Cgr)/Ca as a function of the fluid density. From the

calculations, it was found that (Ca−Cgr)/Ca is almost linear with density, therefore

the sensitivity can be presented by the slopes of the lines. From the figure it can be

seen that the sensitivity increases as the aspect ratio increases, thus it would seem

desirable to operate with as large an aspect ratio as possible. However, the aspect

ratio cannot be increased without limit. Fig. 3.13(b) presents the group velocity

dispersion curves of these aluminum rectangular bars immersed in alcohol from 10

kHz to 100 kHz. It can be seen that as the aspect ratio increases the torsional

mode becomes more and more dispersive, thus for bars with large aspect ratios
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Figure 3.12: Torsional mode on bars with different cross section immersed in alcohol:

(a) square shape, (b) diamond shape, (c) elliptical shape and (d) hollow rectangular shape.

The radial (with respect to the center of the bar) stress in solid and pressure in fluid is

displayed in a grey scale .

measurement are not practical at some frequencies. This conclusion has also been

mentioned in the previous work by Kim and Bau [58]. With the SAFE method the

dispersion characteristics of the waves can be accurately quantified, which helps to

design the most practical aspect ratio.

For a given ratio, the sensitivity can also be optimized by the choice of geomet-

rical configuration for the cross-section [58]. Fig. 3.14 compares the sensitivity of
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(a) (b)

Figure 3.13: (a) Measurement sensitivity comparison for aluminum rectangular bars with

aspect ratio from 1:1 to 1:4. (b)Dispersion comparison for aluminum rectangular bars with

aspect ratio from 1:1 to 1:4 .

0.8 0.9 1 1.1 1.2
0.1

0.2

0.3

Density (g/cm3)

Δ
C

/C
a

slope= 0.108

slope= 0.124

slope= 0.181

slope= 0.188

Figure 3.14: Measurement sensitivity comparison for aluminum bars of rectangular,

elliptical, diamond-shaped and hollow rectangular cross-sections with aspect ratio of 1:3 .
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aluminum bar of rectangular, elliptical and diamond-shaped cross sections with the

same aspect ratio of 1:3. In addition the sensitivity of a rectangular waveguide

(1mm × 3mm) with a rectangular hole (0.5mm × 1.5mm) in the middle is also

shown in the figure. The results show that the diamond-shaped cross-section out-

performs the elliptical one, and the elliptical one has better sensitivity than the

rectangular cross-section. The hollow rectangular waveguide has similar sensitivity

to the diamond-shape cross-section with the same aspect ratio.
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Figure 3.15: Measurement sensitivity comparison for bars which are made of copper,

steel, aluminum and magnesium of diamond-shaped cross-sections with aspect ratio of 1:3.

The sensitivity also changes when different materials of the bar are chosen. Fig. 3.15

compares the sensitivity of bars with diamond-shaped cross-sections (with axes 1mm

and 3mm) which are made of copper, steel, aluminum and magnesium. The param-

eters of the materials are shown in Tab. 3.1. It can be seen that the measurement

becomes more sensitive when the density of the solid bar is closer to the fluid, which

can also be explained by Eq. (3.4) from the approximate theory.
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3.6 Summary

There are several ways to measure density ultrasonically. Conventional measure-

ments use the time of flight and reflection coefficient methods. However for these

methods the liquid compressibility has to be known and measurements have to be

carried out in a test cell. For rapid field measurements ”dipstick” sensors can be an

alternative without the need for accurately machined test cells. A further advantage

of ”dipsticks” is the separation of the fragile transducer element from the measure-

ment region so that fluids in harsh environments (high temperature, high radiation,

corrosive etc.) can be tested.

The torsional mode of a non-circular dipstick waveguide has previously been em-

ployed in fluid density measurements but the accuracy was compromised by the lack

of an accurate model. In this chapter, the semi-analytical finite element method has

been applied for the study of solid waveguides immersed in fluids in which the guided

waves propagate along the bar and are influenced by the fluid. The prediction of the

model may include modes which attenuate by leakage of energy into radiating waves

in the fluid. This has been achieved by using established absorbing region modelling

techniques in order to absorb the leaking waves and thus simulate an infinite extent

of the surrounding fluids. The method has been validated by studying a cylindrical

bar immersed in water and comparing with analytical results. An accurate model

has thus been developed to enable velocity measurements to be used to determine

the density of the fluid. Experiments have been carried out to verify the model

on a variety of fluids, showing very good agreement. This model also enables the

optimization of the dipstick sensor by changing the material of the dipstick and the

geometry of the cross section.

It should also be noted that only inviscid fluids were considered in the presented

model. In practice, lots of fluids may have viscosity, which will undoubtedly affect

the propagation of the torsional mode on an immersed solid waveguide. The SAFE

method can be applied to predict guided modes in the solid bars immersed in viscous

fluid, as it has been shown in Chapter 2. However it was challenging to develop an
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inverse model. The main reason was that the velocity of the torsional mode was

determined by both the density and the viscosity, thus it was required to solve

a large number of SAFE models with different parameters to get the relationship

between the velocity and two of the fluid properties. However, as it was shown in

Chapter 2, the SAFE model for a solid bar immersed in a viscous fluid was very

time-consuming to solve, therefore it was not practical to run many cases within the

current computing capability.

77



Chapter 4

Investigation on feature guided

waves

4.1 Discovery of the Feature Guided Wave

In the following three chapters, the discovery and exploitation of feature guided

waves will be presented, applying the SAFE method as a tool for modal analysis.

As it is known, guided waves are interesting for large area inspections since they offer

the potential for rapid screening from a single transducer position. Several successful

applications have been made on one dimensional structures such as pipelines [11]

and rails [64, 65]. Research work has also been carried out to study the possibility

of applying the guided wave inspection to two dimensional plate-like structures such

as storage tanks, pressure vessels and airframes [66–68], although this has resulted

in little commercialization so far. This is mainly because in a two dimensional

structure waves can propagate in an infinite number of directions from a single

transducer position. In each direction the energy of the spreading wave decays with

the distance away from the source, so that the inspection over a large area becomes

difficult. Another challenge to inspect real plate-like structures is that there always

exists some features such as welds and ribs which may cause extra coherent noise

which interferes with the inspection signal.
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Flat bottom hole

Weld cross section

Compression transducer

2 m 

2 m 

6 mm 

Figure 4.1: Experimental discovery of feature guided wave.

However, a recent experimental observation [21] on a large welded plate revealed that

there existed ”weld-guided” modes which can propagate along the weld and concen-

trate the energy in and around the weld. The experiments [21] were conducted by

Dr. J. Sargent of BAe System, working in the NDT Laboratory of Imperial College.

The tests were carried out on a 2m× 2m× 6mm thick steel plate with a butt weld

in the middle, as shown in Fig. 4.1 . A flat bottomed part through thickness hole 20

mm in diameter was formed at a distance of 1.5 meters from the lower edge in the

picture, and in a region adjacent to the weld. A single transducer (Ultra 200kHz, or

a Panametrics 100 kHz - 500 kHz wide band transducer) was mounted on the edge

of the steel plate in a number of locations, to excite an in-plane compression wave

with a 20 cycle Hanning window tone burst with a center frequency of 200 kHz. The

transducer was working in pulse-echo mode, and reflections from the hole and the

far edge of the plate were monitored. It was observed that the reflection from the

20 mm hole was stronger and slightly delayed when the transducer was attached at

the edge of the weld. This implied that a new wave mode was propagating along
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the weld with energy concentrating close to the weld. This mode has a similar mode

shape to the S0 mode in the plate but has slower velocity.

A simple explanation of this phenomenon is that the difference in the weld and

plate thickness and material properties causes slower propagation velocities in the

weld compared with the plate, therefore part of the energy is trapped in the weld

and causes the weld to act a waveguide, which is analogous to that found in optical

waveguides [69]. An illustration is shown in Fig. 4.2 but more details and a physical

explanation of the trapping phenomenon will be discussed later in this chapter.

weld
(slower medium)

plate
(faster medium)

Source

Figure 4.2: Illustration of the trapped wave due to different propagation velocities in the

weld compared with the plate .

This is an attractive discovery as we know defects frequently occur preferentially

in or near the weld due to the changes in microstructure, weld imperfection and

presence of residual stress, and the same is true for other geometric features, such as

joints and stiffeners. Therefore, instead of seeing the features as a problem, it may

be possible to exploit them as waveguides to focus the energy of the guided wave.

This offers the potential to quickly inspect for defects such as corrosion along long

lengths of features on plate-like structures.
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4.2 Time Step Finite Element Simulations

In order to exploit this feature-guided wave, it is necessary to understand its na-

ture and propagation characteristics. Time step finite element simulations have

been commonly used to illustrate the guided wave propagation on large and com-

plex structures. Juluri has applied this method to demonstrate the trapped mode

on an idealized weld (square bar) between two plates, which is a helpfully simple

approximation to the actual welded plate [23,70].

The model was simulated by FE analysis in the general three-dimensional domain

implement using the commercial package ABAQUS [71]. The schematic of the model

is shown in Fig. 4.3. The model plate was assumed to be 6mm thick and was

connected by a rectangular bar with 12mm in width and 10mm in height.

Source

2 m

1 m

6 mm plate

6 mm plate

Cross section
2 mm

2 mm
6 mm

Rectangular bar

12 mm

Figure 4.3: Schematic of time-step finite element modelling of guided wave propagation

on an idealized welded plate [23] .

Fig. 4.4(a) shows a snapshot of propagation of the weld-guided waves at 100 kHz [23].

The image in the figure is a plain view of the plate with the model weld running

top-to-bottom at the centre. The image shading denotes the amplitude of motion

of the surface of the plate at some selected time after a tone-burst signal has been

injected at the lower end of the weld. Thus the shading shows wave crests of the

propagating signals. The signals labelled ”Spreading S0 wave” and ”Spreading SH

wave” are those which would be expected from a localized source in a simple plate
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(a)

Spreading S0 wave

Weld-guided wave

Spreading SH0 wave

Source

Plate PlateWeld(b)

Figure 4.4: Snapshot of propagation of the weld-guided waves at 100 kHz (a) and 500

kHz(b) [23].

without a weld. The wave of particular interest, labelled ”weld-guided wave” can

clearly be seen to propagate strongly along the weld, with a speed slightly lower

than the S0 wave (it has not travelled quite as far as S0 in this time). From the

figure, it can be seen that the weld-guided wave in the thicker region of the weld

runs more slowly than the S0 wave in the plate, and is then partially trapped, and

so can propagate long distances with relatively little attenuation. There remains

some attenuation in this example because the weld-guided wave is still faster than

the SH0 shear wave in the plate and so can leak some energy into it. This can be

seen as a wave spreading behind the weld-guided wave in the figure.

Fig. 4.4(b) shows the snapshot of propagation of the same mode at a higher frequency
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of 500 kHz [23]. In this case the wave is found to be slower than the SH0 wave in

the plate and so does not leak any energy into the adjacent plate. These two figures

have clearly shown that a weld-guided wave exists and how it is guided.

However a major limitation of this 3D finite element model is its big size so that

the simulations are always very time consuming. Therefore it is difficult to apply

this method to investigate the properties of feature guided waves over a range of

parameters and feature geometries.

4.3 SAFE Modelling

In order to further understand how the guiding is affected by the geometry and

frequency, it is therefore necessary to perform a modal study of the welded-plate to

fully predict the properties of the waves which are guided by the features. Therefore

the Semi-Analytical Finite Element (SAFE) method, which uses finite elements to

represent the cross section of the waveguide, plus a harmonic description along the

propagation direction, becomes an ideal tool. It is a two dimensional model since

only the cross-section which is normal to the direction of the wave propagation has

to be meshed by finite elements and the wave is assumed to propagate harmoni-

cally. A typical calculation (calculation of all the propagation wave numbers at one

frequency) in the model presented here only takes approximately one minute on a

Pentium 4 PC with 2Gbyte memory, while it takes several hours to calculate one

specific mode propagation at one frequency in the 3D time step FE model on the

same computer. Therefore the SAFE model is much more convenient to obtain the

dispersion curve of the weld guided mode, and is more flexible to study different

geometries and parameters.

4.3.1 Model description

The schematic of the model is shown in Fig. 4.5, in which the profile has been

measured from the welded steel plate shown in Fig. 4.1. Stress free conditions are
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imposed at the outer limit of the system. Both the plate and the weld are assumed

to have the same material properties (steel) as the adjacent plate. In order to model

the wave propagation along the weld and leaking into the side plates, an absorbing

region has been attached at each side of the plate to avoid reflections from the

edges [50]. This region, shown in Fig. 4.5, has the same mass density and elastic

properties as the side plate, but its damping properties gradually increases with the

distance away from the central axis of the system. To achieve this, the imaginary

parts of its viscoelastic moduli gradually increase according to the following law:

Cija = C ′ij[1 + Iα1(
|r − ra|
La

)3], I =
√
−1, (4.1)

where C ′ij represents the elastic stiffness of the side plate (coefficient in the strain-

stress law [26]), ra is the distance between the inner border of the absorbing region

and the central axis, La is the length of the absorbing region, r is the position in

the absorbing region with respect to the central axis, and Cija are the resulting

viscoelastic moduli of the absorbing region. α1 is a coefficient that defines the

proportion of the viscoelasticity at the outer limit of the absorbing region.

6 mm

Absorbing regionAbsorbing region Steel PlateSteel Plate Weld

400 mm800 mm 800 mm

2 mm

12 mm

ar r

1x

2x
3x

aL

2 mm

Figure 4.5: The schematic of the two dimensional SAFE model of a welded plate.

By introducing the imaginary part of the stiffness moduli, the propagation wave

numbers, which are eigen solutions of the system, become complex (k = k′ + Ik′′).

The imaginary parts (k′′) represent the attenuation due to the leakage from the weld

to side plates.
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The length of the absorbing regions has been chosen to be 800 mm, which is twice

the biggest wavelength of any radiated wave in the whole frequency range [50], and

was proven to be efficient by a convergence check: when the length was increased the

same solutions for the propagating modes in the waveguide was still obtained. The

total width of the cross section is 2 m, including the absorbing region. The whole

geometry is meshed by 1072 triangular elements of the first order, with sidelengths

comprised between 1 and 6 mm. These elements are automatically generated by the

software used, and are finer in the welded zone than in the adjacent plates. The

number of degrees of freedom is 15882.

The system is solved using the SAFE method to find values of the wave number

k at different frequencies. For each frequency, several solutions are obtained. For

each solution, the axial component of the energy flow (Poynting vector) is calculated

at each nodal position of the mesh, and the quantity is expressed by the following

formula [26]:

Px3 = −Re[(Iω
2

)(u∗1σ31 + u∗2σ32 + u∗3σ33)], (4.2)

Where σ31, σ32 and σ31 are the axial stress components; u∗1, u
∗
2 and u∗3 are the complex

conjugate of the vertical, horizonal and axial displacements respectively. Solutions

with higher axial component of the energy-flow in the weld cap than in the side

plates generally represent modes guided along the weld and possibly radiating in

the plates, while other solutions represent resonances of the whole system and are

unwanted.

4.3.2 Mode shapes at single frequencies

The first task of the investigation was to study the weld-guided compression (S0-

like) wave which had been observed as described earlier in the chapter. The mode

was identified by its mode shape. This is shown at 100 kHz in Fig. 4.6, with the

eigenvalue k = 115.486 − 3.034 × 10−2i /m, from which the corresponding phase

velocity is: Cph = 5440.6 m/s and the attenuation is: α = 0.263 dB/m. A snapshot

85



4. Investigation on feature guided waves

of the axial component of energy flow is shown in Fig. 4.6(a), which indicates that

the energy is concentrated in and close to the weld. The mode shape of this mode

in the center of the weld along x2 is shown in Fig. 4.6(b). From the figure it can

be seen that the mode guided along the weld is dominated by axial displacement u3

with respect to the vertical displacement u2 and horizontal displacement u1 , which

is similar to a S0 (compression) Lamb wave in a plate. Thus this mode is named

the compression weld guided mode.

According to the Snell-Descartes’ law [26], only modes of the lateral plates having

smaller phase velocities than that of the compression weld-guided mode could be

radiated into the side plates. Thus the S0 mode, with its phase velocity of 5441

m/s [9] in a 6-mm-thick plate, cannot radiate, while in principle the other two

fundamental modes, A0 and SH0 could. However, since this compression weld-

guided mode is symmetric with respect to the mid-plane of the plates and weld, the

A0 mode, which is anti-symmetric, cannot be launched. Therefore, the SH0 mode

is the only mode that can be leaked into the plates at 100 kHz, and is radiated at

an angle equal to θleak = sin−1(3260/5440.6) ≈ 36.8◦, with respect to the direction

normal to the plates-weld interface. The axial displacement u3 which dominates

this compression weld guided mode in the center of the plate along x1 is shown in

Fig. 4.6(c). From the figure it can be seen that the axial displacement quickly decays

with distance away from the center, which indicates the energy is concentrated in

and around the weld. The oscillation of u3 represents the leakage of the SH0 wave in

the plate. It can be seen that the separation distance of the oscillation peaks agrees

with the projection of the wavelength of the leaky SH0 wave along the x1 direction,

using λproj = λSH0/cosθleak = 40.7 mm.

Fig. 4.7 shows zoomed energy flow snapshots for the compression weld guided mode,

from frequency 50 kHz to 300 kHz. It can be seen that the lateral extent of the weld

guided mode decreases as the frequency increases. At lower frequencies, the weld

guided mode propagates along both the weld and the heat affected zone, thus it offers

potential to inspect the heat affected zone by choosing a frequency lower than 150

kHz. However the sensitivity decreases exponentially as the lateral distance of the
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Figure 4.6: Compression weld guided mode at 100 kHz: (a) snapshot of the axial compo-

nent of energy-flow (white=high energy-flow, black=low energy-flow), (b) the mode shape

in the center of the weld along x2 (u1, u2, u3 represent displacements of x1, x2 and x3

respectively) (c) the axial displacement in the center of the plate along x1.

defect from the weld increases. At frequencies higher than 200 kHz, the compression

weld guided mode exists only inside the weld and the energy concentrates on the

surface of the weld cap as the frequency increases, which suggests that the sensitivity

of this mode to small surface breaking cracks on the weld cap should increase.

4.3.3 Dispersion curve

The dispersion curves can be obtained by repeating the eigen calculations over a

desired frequency range and the various modes identified by comparing the mode

shapes as shown in Chapter 2.
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200 kHz

250 kHz 300 kHz

150 kHz

100 kHz50 kHz

Figure 4.7: Energy flow snapshots for the compression weld guided mode from frequency

50 kHz to 300 kHz.

Fig. 4.8 shows the phase velocity and attenuation dispersion curve of the compres-

sion weld guided mode from 50 to 500 kHz produced by the SAFE method. The

phase velocity dispersion curves of simple flat plates with 6 mm and 10 mm thick-

ness are also plotted in Fig. 4.8(a) for comparison, confirming the similarity of the
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weld guided mode to the S0 Lamb mode in the plate. As discussed earlier, this

compression mode leaks the SH0 wave in the side plates when the phase velocity of

this mode is higher than that of the SH0 wave in the plate; however, according to

the Snell-Descartes’ law, after 410 kHz it becomes a non-leaky mode when its phase

velocity is lower than that of the SH0 wave in the plate, thus the zero attenuation

after 410 kHz in Fig. 4.8(b) can be expected. In the attenuation dispersion curve in

Fig. 4.8(b), there can be seen two peaks at 200 and 350 kHz and a dip at 250 kHz.

A similar phenomenon has also been observed by Castaings and Lowe [50], who

showed that it can be explained by studying the normalized energy-flow through

the weld-plate interface which shows a similar curve.

(b)(a)

Figure 4.8: Phase velocity (a) and attenuation (b) dispersion curve of compression weld

guided mode predicted by SAFE method.

4.4 Discovery of Shear Feature Guided Wave

The SAFE method calculates all the propagation modes at one frequency, thus it

creates the possibility of finding other feature-guided modes which could be can-

didates for inspection but have not yet been discovered. During the modal study,

another interesting mode, which has particle displacement perpendicular to the plane
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of propagation, has been discovered. The schematic of this new mode is shown in

Fig. 4.9. As can be seen from the figure, the mode shape of this newly discovered

mode is very similar to the SH0 mode in the plate, this mode is therefore named

the shear feature guided mode.

It is believed that this mode has not been observed before, and it is very interest-

ing for long distance inspection since it is found to be non-leaky and almost non-

dispersive. The properties of this mode will be discussed in detail in the following

paragraphs.

Propagation

direction

Particle displacement

Figure 4.9: Schematic of the shear weld guided mode.

4.4.1 Mode shapes of the shear mode at single frequencies

The shear mode at 100 kHz is shown in Fig. 4.10 with the eigenvalue k = 194.86−

1.3 × 10−7i /m. The imaginary part of the eigenvalue is numerical error which is

effectively zero. This shows that the attenuation of this mode is zero, which means

there is no mode leaking to the lateral plates. The phase velocity can be calculated

from the real part of the eigenvalue: Cph = 3224.5 m/s. A snapshot of the axial

component of energy flow is shown in Fig. 4.10(a), which indicates that the energy

is concentrated in the weld. The mode shape of this shear mode in the center of the
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weld along x2 is shown in Fig. 4.10(b). From the figure it can be seen that the mode

guided along the weld is dominated by horizontal displacement u1 with respect to

the vertical displacement u2 and axial displacement u3, which is similar to a SH0

wave in a plate. Fig. 4.10(c) shows the horizonal displacement u1 in the center of

the plate along x1, which indicates that the energy is concentrated in the weld, but

this mode has no leakage and thus no oscillation in the adjacent plates.
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Figure 4.10: Mode shape of shear weld guided mode at 100 kHz: (a) snapshot of the axial

component of energy-flow (white=high energy-flow, black=low energy-flow), (b) the mode

shape in the center of the weld along x2 (u1, u2, u3 represent displacements of x1, x2 and

x3 respectively) (c) the horizontal displacement in the center of the plate along x1 .

Fig. 4.11 shows zoomed energy flow snapshots for the shear weld guided mode, from

frequency 50 kHz to 300 kHz. As it can been seen from the figure, similarly as the

compression weld guided mode, while the frequency increases the energy becomes

more and more concentrated in the weld. This suggests that at lower frequency the
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shear weld guided mode is more sensitive to defects in the heat affected zone, but

the sensitivity decreases as the frequency increases. At higher frequency, the mode

becomes more sensitive to defects inside the weld.

200 kHz

250 kHz 300 kHz

150 kHz

100 kHz50 kHz

Figure 4.11: Energy flow snapshots for the shear weld guided mode from frequency 50

kHz to 300 kHz.
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4.4.2 Dispersion curve of the shear weld guided mode

Fig. 4.12 shows the phase velocity dispersion curve of the shear welded-guided mode

from 50 to 250 kHz. As is known, the SH0 mode in a plate is a non-dispersive mode,

thus the phase velocity is constant at all frequencies, which is shown by the dashed

line in the figure. From the figure it can be seen that the shear weld-guided mode

has lower phase velocity than the SH0 mode in the plate at all values of frequency.

Also, this mode is very much less dispersive than the compression weld-guided mode,

which is another advantage for applying this mode to long range weld inspections.

The imaginary part of the wavenumber of this mode stays zero at all frequencies

which confirms that this mode is non-leaky.
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Figure 4.12: Phase velocity dispersion curve of shear weld guided mode predicted by

SAFE method.

From the discussion above, it can be seen that the non-leaky and almost non-

dispersive characteristics of the shear weld guide mode are particularly attractive for

NDE, so this is a significant new finding. In addition, the particle displacement of

this mode is perpendicular to the plane of propagation and therefore it is expected

to be more sensitive than the compression mode to the fatigue cracks that are typ-
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ically aligned along the weld in the heat affected zone. The sensitivity of this mode

to different type of defects will be discussed in the next chapter.

4.5 Energy Trapping Effect

In order to explain the reason for the energy trapping effect of the weld guided

mode, the geometry has been separated into two parts, which are the steel weld

and a 6-mm-thick steel plate. The fundamental propagation modes in these two

geometries have been calculated separately.

The dispersion curves and the mode shape of the propagation modes in the weld can

be calculated by the SAFE method while in the plates they can be calculated by

well-established analytical methods [7,9]. There are four fundamental modes which

may exist in the weld, and the displacements in the cross section (mode shapes) at

100 kHz are plotted in Fig. 4.13. It can be seen from the figure that at low frequency

the torsional mode is dominated by the circumferential displacement; flexural modes

1 and 2 are dominated by the horizontal and vertical displacement respectively. The

longitudinal mode is dominated by the axial displacement. Comparing the mode

shapes of these four modes in the weld and the fundamental modes in the plate, it

can be found that the longitudinal mode and flexural modes 1 and 2 have similar

mode shapes as the S0, SH0 and A0 modes in the plate respectively, while the

torsional mode does not have any similar modes in the plate.

The phase velocity dispersion curves of the fundamental propagation modes in the

weld are shown in Fig. 4.14 by the solid lines, and compared with the dispersion

curves of the S0, SH0 and A0 modes of a 6-mm-plate, which are shown in dashed

lines. From the figure, it can be seen that the phase velocity of the longitudinal

and flexural mode 1 are slower than their similar modes in the plate, which are

the S0 and SH0 mode respectively. The Snell-Descartes’ law [26] would impose the

condition that, when the weld and plate are joined up, the waves must have the

same axial velocity in both parts. The combined axial velocity should be expected

to be something between the velocity in the weld and that in the plate. Thus, if the
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Longitudinal mode Torsional mode

Flexural mode 1 Flexural mode 2

Figure 4.13: Mode shapes of four fundamental propagation modes of the weld at 100

kHz. Arrows indicate displacements in the cross section.

velocity in the weld mode is less than its similar mode in the plate, the combined

velocity should be less than the plate velocity. It is also known from the Snell-

Descartes’ law [26], that if a wave is constrained by the boundary conditions at an

interface to have a slower phase velocity than that in the adjoining medium, then

it can propagate energy only along the interface, not away from it. Therefore while

the combined mode, which could be the compression mode or the shear mode, is

propagating along the weld, the energy of the mode will be trapped in and around

the weld. The phase velocity of the flexural mode 2 is higher than its similar mode

(A0 mode) in the plate, thus it cannot be trapped.

95



4. Investigation on feature guided waves

Therefore it can be summarized that the condition of the trapping effect should

follow the rule: the propagation modes in the weld should have similar mode shapes

to the corresponding modes in the plate, but have slower phase velocity. It should be

noted that the geometry of a weld could be less regular than that which is discussed

in our model and the material of a weld could be different from the adjacent plate.

However, the weld guided modes can always exist as long as the phase velocity of

those modes in the weld are slower than their similar modes in the plate, so that

the energy is trapped in the welded zone.
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Figure 4.14: Phase velocity dispersion curves of the fundamental propagation modes in

the steel weld and in the 6-mm-thick steel plate.

From the physical explanation of the energy trapping effect, it is known that the

feature guiding phenomenon is geometrically oriented, therefore it is necessary to

discuss how the change of the weld geometry (the height or the width of a weld)

effects the energy distribution of a weld guided mode. In order to describe it quan-

titatively, a concept of Full Width Half Maximum (FWHM), which is also called

the 6 dB Width (W6dB), is borrowed from imaging theory [72]. It can be described

graphically by Fig. 4.15, which shows a zoomed energy flow snapshot for the shear

weld guided mode on a geometry shown in Fig. 4.5 at 100 kHz, and the axial energy
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distribution along the center line of the cross-section. The FWHM is marked in

the figure, which is measured by identifying the points on the curve which are half

the maximum value. The smaller the value of the FWHM is, the more energy is

concentrating in and around the weld.
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Figure 4.15: The FWHM of the shear weld guided mode at 100 kHz.

Fig. 4.16 discusses the change of the energy distribution with the variation of the

weld geometry. Fig. 4.16(a) shows that the energy of the shear weld guided mode

becomes more and more concentrated to the weld when the height of the weld

increases. (Here the weld is assumed to be symmetric with respect to the center

of the plate, while the non-symmetric case will be discussed in the next chapter.)

Fig. 4.16(b) suggests that the width of the weld has less influence in the energy

distribution of a weld guided mode than the height of the weld.
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Figure 4.16: The energy distribution (FWHM) with different height (a) and width (b) of

the weld.

4.6 Experiment on the Shear Guided Mode

4.6.1 Experimental setup

An experimental setup was designed to validate the shear weld guided mode since

it is particularly attractive for NDE. In order to achieve an accurate experimental

validation with low noise, a machined 600 mm by 1200 mm aluminum plate (ρ =

2700kg/m3, Cl = 6474m/s,Cs = 3051m/s, at temperature 20◦C) was used instead

of using the actual welded plate. The plate was originally 10 mm thick, and was

machined to be 3 mm thick with a 10 mm by 10 mm square bar in the center.

Although it was not a welded plate, this simple idealized geometry enables the same

principle of the energy trapping effect to be examined as a validation. A picture of

the experimental setup is shown in Fig. 4.17.

A wide-band piezoelectric shear transducer(Panametrics V154) was attached on the

top of the bar at the edge, as shown, to excite the shear mode with a 5 cycle Hanning

windowed tone burst. Its orientation was such to impose its oscillation force in the

horizontal direction in this view (lateral to the bar). The signals were generated

using a Wavemaker (Macro Design Ltd, UK) instrument. A laser interferometer
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(a)

Figure 4.17: Experimental setup. (a) plan view, (b) side view .

(Polytec OFV 2700, with dual differential fiber optic lines) was used to pick up the

horizontal displacement at positions along two monitor lines. One was along the

center of the bar 200 mm to 500 mm from the source, and the other was across

the bar 300 mm from the source, as shown in the figure. A LeCroy 9400A Storage

Oscilloscope was used to store the time trace of the signal and the data was then

transferred to a computer for processing.
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4.6.2 Validation of group velocity and attenuation

The group velocity Cgr can be extracted from the measured signals by Cgr = ∆S/∆T

at any chosen frequency. Here ∆T is the flight time of the wave packets propagating

along the bar at two different locations on monitor line one, which can be determined

by calculating the shift of the Hilbert envelope of the measured signals, and ∆S is the

distance between the different locations. The accuracy of the results was enhanced

by measuring at several different locations and taking averages.

A similar SAFE model as described in Sec. 4.4 but with different geometry and

material was developed to compare with the experimental results, and the shear

guided mode which was measured in the experiment was picked up.

Fig. 4.18 shows the dispersion curve of the group velocity measured in the exper-

iment, and the theoretically predicted curve by the SAFE method, which was ob-

tained by doing a numerical derivation Cgr = dω/dk′ of the SAFE phase velocity

results. From the figure we can see that the measured results agree very well with

the theoretical predictions.

Fig. 4.19 shows the displacement amplitude measured at different locations along

monitor line one normalized by the displacement amplitude at 200 mm from the

source at 120 kHz. For comparison, the beam spreading wave on a plane plate

from a point source is also plotted in the figure, following the well known amplitude

decay of approximately 1/
√
r [73]. From the figure it can be seen that the measured

shear weld-guided mode has slight attenuation, which might come from scattering

or material damping, although theoretically the attenuation should be zero, but this

is very much less than the attenuation of the beam spreading wave.

4.6.3 Validation of energy concentration effect

In order to validate the trapping effect of the weld guided mode, a series of points

on line two, shown in Fig. 4.17, 300 mm from the source, were monitored, and

the maximum amplitude of displacement of these points at 120 kHz was recorded
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Figure 4.18: Measured (stars) and theoretically predicted (line) group velocity dispersion

curve of the shear weld-guided mode.

and plotted in Fig. 4.20. From the figure it can be seen that the amplitude of

displacement quickly decays with distance away from the central axis of the bar.

Comparing to the displacement distribution of a beam-spreading wave from a point

source on a plane plate without a weld, which is a circular crested wave [26] and

appears to be straight in the figure because it is a long way from the source, it can

be confirmed that the energy is concentrated in and around the weld region in the

weld guided mode. The SAFE prediction is also plotted in the figure which shows

near-perfect agreement with the experimental data.

4.7 Summary

Feature guided waves are interesting for large area inspections, and the particular

case of a compression wave in a weld has previously been found experimentally, and

also theoretically, by time step FE simulations. In this chapter, the Semi Analytical
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Figure 4.19: Normalized displacement amplitude measured at different locations along

monitor line one (stars) and comparison with the beam spreading wave from a point source

on a plate (dashed line).

Finite Element method has been applied to study the wave propagation along the

weld and possibly leaking into the surrounding plates. Also a non-leaky and almost

non-dispersive mode, named the shear weld-guided mode, has been discovered during

the modal study and compared with the compression weld-guided mode observed

earlier. It can be explained that the propagation mode can be trapped in the weld

when it has a similar mode shape as in the side plates but with lower phase velocity.

Experiments have been undertaken to validate the existence of the shear weld-guided

mode and the accuracy of the FE model, showing very good agreement.
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Figure 4.20: Measured (stars) and theoretically predicted (solid line) normalized am-

plitude of displacement monitored along monitor line two, 300 mm from the source, and

comparison with the beam spreading wave from a point source on a plate (dashed line).

The width of the bar is also shown.
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Chapter 5

Scattering of Weld Guided Modes

from Defects Located Around the

Weld

5.1 Background

The conventional ultrasound inspection of a long length of weld is very time con-

suming and expensive as it requires scanning point by point over the whole length

of the weld. Chapter 4 demonstrated that there existed weld guided modes which

could concentrate the energy in or around the weld, and propagate along the weld

with no or little attenuation. This kind of wave may be reflected by some defects

when they are located on the path of the propagation. Thus it is possible to use a

simple pulse-echo arrangement with a single transducer which is aligned to generate

waves along the weld then receive reflections from any defects in or around the weld.

In this case further knowledge regarding to the scattering of weld guided waves from

different types of defects needs to be obtained, in order to exploit the idea of using

weld guided waves as a screening tool to inspect long lengths of welds.

The interaction of guided waves with defects on a regular geometry such as a plate
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has been widely studied by researchers. Several methods have been developed to

understand the reflection and transmission of the guided waves when incident at

defects. For example, Alleyne and Cawley have used finite element simulations and

experiments to study the interaction of the A0, S0 and A1 modes with a surface

breaking notch, emphasizing on establishing the transmission coefficient [74]. Lowe

et al have studied the reflection of the S0 [66] and A0 [75] mode from cracks and

notches, assuming a plain strain two-dimensional domain. The reflection behavior

has been studied in terms of a frequency domain ratio of the resultant displacement

of the reflected signal to that of the incident signal. Besides the Lamb modes, the

shear horizontal mode is also interesting for inspection, especially because it is a

non-dispersive mode and it is unaffected when the plate is loaded by fluids. Ra-

jagopal and Lowe [76] have applied a plane stress assumption on a two-dimensional

domain to study the SH0 wave scattering when normally incident at a finite crack.

Ratassepp [77] et al have extended the study to address cracks which are aligned

in the propagation direction of the mode. Three dimensional models have also been

applied to study cracks with part-through thickness [78] and flat-bottomed circular

holes [79].

The procedure to study the interaction between the weld guided modes with de-

fects in or next to the weld was similar to the study mentioned above. A three

dimensional model was required and reflections of the weld guided waves from the

defects were studied in the frequency domain. There were also some differences. For

example there is no need to consider the beam spreading effect as the energy of the

weld guided waves is concentrated in and around the weld, not spreading away. In

contrast, the amplitudes of guided waves on simple plates decay cylindrically away

from the source, which needs to be compensated before calculating the reflection

modulus. Moreover, the properties of the weld guided modes such as mode shapes

and group velocity are frequency dependent, thus it is necessary to choose a proper

operation frequency.
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5.2 Experiment

5.2.1 Experiment preparation

In order to demonstrate the guiding effect of the weld guided wave, and its interac-

tion with different defects, it is important to choose a weld which has a relatively

smooth weld cap, so that the coherent noise level from the scattering on the surface

of the weld cap can be kept low. The welded plate in our experiment was provided

by Dr. Norrie McPherson from BVT Surface Fleet Ltd. [80]. His kind support

for our project is highly appreciated. In the production process, two large plates

with dimensions of 2400mm × 800mm × 6mm each were welded together by the

submerged arc welding technique, which provided a relatively constant weld cap on

both side of the plate. The weld was measured to be 19-21 mm wide, 1.5-2.5 mm

high on one side of the plate and 15-17 mm wide, 2-3 mm high on the other side.

The welded plate was cut into three pieces with equal weld lengths of 800 mm each

for three different types of defects.

In our study, the artificial defects were all chosen to be close to the weld, in the

region which is commonly named the heat affected zone (HAZ). This was done not

only because they are easier than defects inside the weld to be introduced experi-

mentally in the lab, but also because in reality defects such as cracks or corrosion

are commonly located in the HAZ due to the heat from the welding process and

subsequent cooling causing the change of the properties and microstructure in this

area. Three types of defects were introduced in the experiment, which were located

2 mm away from the edge of the weld on the plates: through thickness slits with

different lengths parallel to the weld; through thickness slits with different lengths

perpendicular to the weld; 10 mm diameter flat-bottom hole with different depths.

The slits were 2 mm wide cut by a milling machine; this was at least 10 times smaller

than the wavelength of the incident wave for all of the frequencies used. Therefore

they can approximately be considered as cracks [81].
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5.2.2 Experimental setup

Fig. 5.1 shows a photograph of the experimental setup. A shear transducer was

clamped on top of the weld cap. Two types of transducer were used in the ex-

periment for different frequency ranges. One was a wideband piezoelectric in-plane

transducer (Panametrics V301, 0.5 MHz center frequency) which worked properly

in between 80 kHz to 150 kHz, and the other was a specially designed low frequency

shear transducer by Guided Ultrasonics Limited [63], which worked well at lower

frequencies between 40 kHz to 80 kHz. The transducer was coupled to the weld cap

through a thin and small (3mm diameter) brass disc, so that the excitation can be

assumed as a point-like source. The excitation signal consisted of a several cycles

Hanning windowed toneburst which was generated by a Wavemaker (Macro Design

Ltd., UK).

Laser interferometer

Monitor

Shear transducer

Defect

Figure 5.1: Experimental setup .

The defects were located at 600 mm away from the transducer, and the signal

was monitored at 300 mm away. The monitoring point was more than 6λshear

(wavelength of the shear guided modes at the center frequency of the toneburst

signal) from both the generator and the defect so that it can be considered as far
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field. The S0 wave was also generated in the side plates, however this signal could

be time gated out by the choice of the defect location.

The monitoring of the incident signal and the detection of the reflected signal was

achieved using a laser interferometer with dual differential fiber optic lines (Polytec

OFV 2700). The two laser beams were on the same spot, but aligned at an angle of

60 degrees to the surface of the plate, so that the difference between the two signals

gave the in-plane displacement. The mode shape of the shear weld guided mode is

dominated by the horizontal displacement which is perpendicular to the edge of the

weld; figure 5.1 shows the set up. A thin reflective tape was attached to the surface

of the weld cap to enhance the optical backscatter. The signal was recorded after

500 averages to improve the signal to noise ratio.

The aligner holding the optical fibers was rotatable, thus it can also measure the

compression mode which is dominated by the axial (parallel to the weld) displace-

ment by turning it 90 degree to the current position. However it is not practical

to measure the compression weld guided mode, because the wavelength of the this

mode is twice that of the shear mode (the wavelength of the compression mode at

60 kHz is around 90 mm). Thus with the current length of the plate (800 mm), it

would be impossible to find a location for the defect to avoid the near field effect.

5.2.3 Typical results

Fig. 5.2 shows a typical measured time trace of the signals of a 5-cycle toneburst at

100 kHz and a 3-cycle toneburst at 60 kHz respectively. The defect was a 30 mm

slit parallel to the weld and 600 mm away from the location of the transducer. From

the figure, the incident wave directly from the source and the reflection signal from

the defect can be clearly seen. It can also been found that another toneburst signal

appears after the defect reflection. This was the reflection of the S0 wave from the

edge of the plate, as this wave was generated simultaneously in the side plates with

the current setup. The last signal in the time trace corresponds to the reflection

from the end of the plate.
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Figure 5.2: Time trace of the shear weld guided mode monitored at 300 mm away from

the source at 100 kHz (a) and 60 kHz (b) .

The reflection behavior of the defect was studied in terms of a frequency domain

ratio of the displacement of the reflected signal to that of the incident signal. Fig.

5.3 shows the experimental results from 40 kHz to 135 kHz. It can be seen that

the amplitude of the reflection generally decreases with increasing of the frequency.

Some oscillations can also be seen in the figure, and the reason will be discussed

later in detail in Sec. 5.4.

5.2.4 Calibration experiment

The welded plate will later be considered to have a constant cross-sectional shape in

our modelling for simplicity, however in reality the weld cap has slight variations in

the geometry as shown in Sec. 5.2.1. In order to use the finite element simulations

to compare the results with the experimental data, it is necessary to choose the

most representative geometry of the weld. Therefore a calibration experiment has
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Figure 5.3: Experimental results of the reflection ratio spectrum of the shear weld guided

mode obtained from 30 mm slit parallel to the edge of the weld.

been carried out to measure the properties of the weld guided mode propagating

along the weld. As it was discussed in chapter 4, the shear mode is non-leaky and

has little dispersion, therefore its mode shapes as well as group velocities on this

geometry were measured for calibration.

The same experimental setup as described above was used. A 5 cycle toneburst

signal at 100 kHz was generated on the edge of the weld by a shear transducer, and

was monitored at two different lines (shown in Fig. 5.4(a)): one was along the center

of the weld cap 150 mm to 400 mm away from the source; the other was across the

weld at 300 mm away from the source. The work was similar to the experiment

described in Chapter 4, but on this different geometry.

Fig. 5.4(b), (c) and (d) show the measured mode shapes (the signal amplitude

across the weld), group velocity dispersion curve and the attenuation in terms of

the signal amplitude along the weld respectively. It can be seen that the shear wave

propagating along the weld is almost non-dispersive in this frequency range, and has

very little attenuation compared to the beam spreading plane wave on a simple plate.

The mode shapes in terms of displacements across the weld quantitatively presents

the concentration of the energy to the center of the weld, and can be considered to
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represent the geometry of the weld, thus they will be compared with the FE results

to find the most similar geometries.

(a) (b)

(c) (d)

Figure 5.4: Calibration experiment setup (a) and the results of group velocity dispersion

curve (b), attenuation (c) and displacement mode shapes (d).

5.3 Finite Element Modelling

5.3.1 SAFE modelling

SAFE models similar to those described in chapter 4 were carried out, in order to

find the most representative cross-section. The geometry of the model is presented

in figure 5.5. It is assumed that the material of the weld is steel (shown in Tab. 3.1),

111



5. Scattering of Weld Guided Modes from Defects Located Around the
Weld

which is considered to be the same as the plate. These models all have the same

width of the weld cap (20 mm on one side of the plate and 16 mm on the other side),

because it was measured to be fairly constant, and the small variation of the width

has been tested in the models to have very little influence on the properties of the

propagation mode. The height of weld, on the other hand, significantly influences

the mode shapes of the weld guided mode, therefore it needs to be calibrated with

the experimental results. In each of the models, the height of the weld cap varied

from 1.5-2.5 mm on one side (h1) and 2-3 mm on the other side (h2).

6 mm

h1: 1.5~2.5 mm

h2: 2~3 mm

19 mm

16 mm

Figure 5.5: Schematic of the calibration modelling using the SAFE method .

In order to suppress the unwanted reflections, an absorbing region has been modeled

at each side of the steel plate, in a similar manner as in the case in Chapter 4. In

these models, the maximum possible wavelength of leaky waves is that of the SH0

wave at the lowest frequency of the investigated frequency range, i.e., ≈ 80mm at 40

kHz. Since the geometry of the weld is not symmetric with respect to the mid-plane

of the plates and weld, it is possible for the A0 mode to radiate, but its wavelength

is smaller than the wavelength of the SH0 wave. The length of the absorbing region

was therefore set equal to 800 mm, which allowed good absorption of all the possible

radiating SH0 and A0 modes at almost any possible angles between 0◦ and 84◦, in

the frequency range of interest, which was chosen from 40 to 150 kHz.

The models were meshed and solved in the same way as shown in Chapter 4. The

modes which have higher energy flow in the weld than in the side plates corresponded

to the weld guided mode, thus were picked up. At 100 kHz, the mode shape of the

shear weld guided mode, which is the maximum displacement across a line on the
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Figure 5.6: Mode shapes in terms of displacement monitored in a line across the center

of the weld for different geometries, predicted from the SAFE method (lines) and measured

from the experiment (stars).

surface of the weld cap and the plate, was obtained and plotted in figure 5.6. Three

curves with different height of the weld cap have been shown in the figure, and it can

be discovered that the curve with h1 = 2.5mm,h2 = 2.5mm agrees the best with the

experimental data, thus the above profiles can be considered to be representative.

Fig. 5.7(a) shows the variation of the group velocity and the attenuation dispersion

curve at frequency from 50 kHz to 150 kHz of the shear mode on the representative

weld geometry found above. The experimental results of the group velocity measured

between 70 kHz to 150 kHz are also presented in the figure, showing good agreement.

Fig. 5.7(b) shows that the shear mode on this geometry has some attenuation,

due to the leakage of A0 mode on the side plates. However the amplitude of the

attenuation is very small, almost negligible. This is confirmed by the calibration

experiment which is shown in Fig. 5.4(c).

Since the defects investigated in this work were all located in the HAZ close to the

113



5. Scattering of Weld Guided Modes from Defects Located Around the
Weld

50 70 90 110 130 150
3

3.2

3.4

3.6

3.8

4

Frequency in kHz

G
ro

up
 v

el
oc

ity
 in

 m
/m

s

50 70 90 110 130 1501

2

3

4

5
x 10

-3

Frequency in kHz

A
tte

nu
at

io
n 

in
 N

p/
m

(a) (b)

Figure 5.7: (a) SAFE predictions (−) of the group velocity dispersion curve of shear

weld guided mode on the geometry with h1 = 2.5mm,h2 = 2.5mm and compares with

experimental results (∗); (b) SAFE predictions (−) of the attenuation velocity dispersion

curve.
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Figure 5.8: The spectrum of the FWHM from 50 kHz to 150 kHz.

weld, the energy distribution of weld guided modes across the weld is important

to understand their interaction with defects. Fig. 5.8 shows the spectrum of the

FWHM of the shear mode from 50 kHz to 150 kHz. It can be confirmed that while

the frequency increases the FWHM decreases which means the energy concentrates
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more and more in the centre of the weld. Therefore it should be expected that the

sensitivity of the weld guided mode to defects located in the heat affected zone will

decrease while the frequency increases. This will be shown by examples later in this

chapter.

5.3.2 Time step finite element simulation

The two dimensional SAFE method assumes that the wave propagates on a geom-

etry with constant cross-section, thus it is not capable of modelling discontinuities.

Therefore in order to numerically study the interactions of the weld guided mode

with different types of defects, it is necessary to apply a three-dimensional time step

FE simulation. In our work, it was performed by the commercial software package

ABAQUS/Explicit [71].

The schematic of the model is shown in Fig. 5.9, the profile of geometry is the same

as the one in the SAFE method calibrated by the experiment. The mesh of the

center of the cross-section is also shown in the figure. The model uses a standard

three-dimensional spatial discretisation composed of linear cubic shaped 3D brick

elements (C3D8R), where each node has three degrees of freedom with respect to

displacement. The elements used in the modelling have two sizes. The ones in the

region of the plate are 2mm in the x (width) and z (length) direction, and 1 mm in

the y (thickness) direction; Others in the region of the weld are shown in Fig. 5.9;

they have smaller dimensions to achieve a better representation of the shape of the

geometry.

The wavelength of the shear weld guided waves at 100 kHz is around 32 mm, and

the wavelength of the S0 wave propagating on the side plate is around 54 mm.

Therefore the element size along the z direction guarantees that there are more than

15 elements per wavelength of the propagation, in order to minimise erroneous wave

propagation distortions and inappropriate dependence of wave speed upon direction

of propagation. The time step was chosen to be 1 × 10−7s in order to satisfy the

guidelines given by [10].
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Figure 5.9: Schematic of the three-dimensional time step simulation.

This three-dimensional modelling with large size of the plate is very time consuming

to solve. One way to reduce the model size is to define a relatively small region for

the steel plate and apply an absorbing region around the plate (shown in figure

5.9). This is a modelling technique named ALID (Absorbing Layers with Increasing

Damping) which has been recently introduced into the time step FE simulations [82].

Since the energy of the weld guided modes exists only in a small area around the

weld, and our study focused on the interaction with defects in this area, it was

possible to model only a short width of the plate with the weld in the center and

apply the absorbing region outside the plate; thus we assumed the infinite width of

the plate but significantly reduced the calculation time.

Three types of defects were introduced in the model 600 mm away from the source,

including cracks normal or parallel to the weld and flat-bottomed holes. All of

the defects were located in the Heat Affected Zone (HAZ) close to the weld, as in

the experiment. The cracks introduced in the FE model were made simply by dis-

connecting adjacent elements representing zero-stress; this method has been widely

applied in the previous FE studies of guided wave interactions with defects [76,77].

The holes with different depths were achieved by defining partitions of the geometry
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in the direction of the thickness, and mapping the elements. Since the elements of

the 6 mm-plate had dimension of 1 mm in the y (thickness) direction, it was more

convenient to define the holes with six different depths varying from 1 mm to 6 mm

(through thickness).

A 3 cycle Hanning windowed toneburst signal was applied as an in-plane force on

a single node on top of the weld cap, which is assumed to be a point source as

in the experiment. This generates mainly the shear mode with the displacement

direction perpendicular to the weld (x direction), or the compression mode with the

displacement direction parallel to the weld (z direction).

(a) (b)

(c) (d)

S0 mode

S0 mode

Shear guided mode
defect

Absorbing region Absorbing region
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Reflected shear mode
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Figure 5.10: Time snapshots of the shear weld guided mode propagation along the weld:

(a) and (b) show the incident wave; (c) and (d) show the reflected wave.

Fig. 5.10 presents typical time snapshots of the contour of the magnitude of resultant

displacement from the FE simulations. Fig. 5.10(a) shows an instant soon after the

excitation: the S0 wave on the plate is also generated and propagates mainly in the

x direction while the shear guided mode travels towards the crack. Fig. 5.10(b)

shows the snapshot after the wave propagates for a distance before it meets the

defect. Small leakage of the A0 wave due to the non-symmetric geometry of the

weld can be seen from the figure. The S0 wave which propagates towards the edge
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of the plate has been completely damped by the absorbing region. Fig. 5.10(c)

shows the mode interaction with the crack. The local interaction is very similar to

the SH0 wave scattering from a axial crack [77]. The scattered field consists of the

diffracted SH0, S0 wave on the plate and the reflected shear and compression weld

guided mode along the weld. Fig. 5.10(d) shows the snapshot of the reflected signal

which is also guided by the weld. The reflected energy is dominated by the shear

weld guide mode, although a weak compression weld guided mode can also be seen

in the figure.

(a)

(b)

Figure 5.11: (a) Time trace of a 3 cycle toneburst signal monitored at 100 mm and 400

mm away from the source. (b) Zoomed picture of the reflected waves.

The signal was monitored at several locations on the surface of the weld cap. Fig.

5.11(a) shows the monitored 3 cycle toneburst signal at 100 kHz center frequency at

100 mm and 400 mm away from the source. Both the incident wave directly from

the source and the reflected wave from the defect scattering are shown in the figure.

Due the performance of the absorbing layers, the reflections from the edge of the

plate as well as from the end of the weld were damped in the absorbing region, thus

do not appear in the figure. It is noted that the amplitude of the incident signal at
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100 mm away from the source is larger than that at 400 mm. This is because 100

mm is only about three wavelengths of the shear weld guided mode at 100 kHz, thus

it is in the zone of near field and has larger signal amplitude. Fig. 5.11(b) presents

a zoomed picture of the reflected signal, which can confirm that the reflected signal

does not decay much during propagation due to the weak attenuation characteristics

of the shear weld guided mode. Moreover the shape of the reflection signal almost

remains the same in the propagation, which confirms that the propagation mode

has little dispersion. Therefore it can be suggested that the shear weld guide mode

is an ideal candidate mode for screening defects along the weld.

5.4 Interaction of Shear Weld Guided Mode with

Defects Around the Weld

The scattering of the shear weld guided mode by cracks parallel to the weld has

been qualitatively investigated in Sec. 5.3.2 of this chapter. In order to further

exploit this mode for the selection of different types of defects, and suggest the best

frequency range for inspection, it is necessary to quantitatively study its reflection

behavior. This can be done in terms of a frequency domain ratio of the reflected

signal by the incident signal. Experimental results on the same type of defects are

also shown in this section and compared with results from FE simulations.

5.4.1 Cracks parallel to the weld

The first study considers cracks aligned parallel to the weld, which is a very common

concern in industry.

In order to calculate the reflection coefficients over a range of frequencies, the model

has been excited with tonebursts with different center frequencies. Cracks were

assumed to be zero width, and located 2 mm away from the edge of the weld and

600 mm away from the source. Three different lengths of the cracks were investigated
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both by FE simulations and experiments. The resultant reflection ratio as a function

of frequency is shown in Fig. 5.12. The defect length (L) was expressed as a fraction

of the input wavelength (λ). The amplitude of reflection coefficient was calculated

in the frequency domain by dividing the maximum amplitude of the reflected signal

by the maximum amplitude of the incident signal, which were both monitored 300

mm away from the source.

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3
0.02

0.04

0.06

0.08

0.1

0.12

0.14

R
ef

le
ct

io
n 

C
oe

ff
ic

ie
nt

Length of crack to wavelength ratio

30 mm
24 mm
16 mm

(a)

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3
0.02

0.04

0.06

0.08

0.1

0.12

0.14

Length of crack to wavelength ratio

30 mm
24 mm
16 mm

(b)

Figure 5.12: Reflection coefficient spectrum with cracks of different lengths (solid line 30

mm, dashed line 24 mm and dotted line 16 mm) parallel to the edge of the weld: (a) FE

results (b) experimental results .

It can be seen from the figure that, from low frequency, the reflection coefficient

rises as the wavelength decreases (frequency increases) and reaches a maximum

value when the length of the crack is around 40% of the incident wavelength. While

the frequency keeps increasing, generally the reflection coefficient decreases. This is

because the energy of the weld guided mode becomes more and more concentrated

in the weld while the frequency increases as was shown in Sec. 5.3.1. Therefore less

energy strikes the defects which results in smaller reflection coefficient. There are

also oscillations on the curve which shows a large peak point at 90% and two low

points which are located at 70% and 120% respectively. The reason of the oscillation

is the interference between the reflection from the near tip and the far tip of the

crack. The reflection from the far tip of the crack is retarded with respect to the

signal from the near tip, so their superposition in the resulting reflected wave packet
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may be constructive or destructive, depending on the duration of the delay.

Similar oscillation phenomena were also discovered for rectangular notches [81] and

axial (aligned in the propagation direction) cracks [77] in plates. The location of

the oscillation peaks appear at similar places as figure 5.12(a), which suggests that

the local interference at cracks is similar in both cases. However there are also dif-

ferences. Firstly in uniform plates there is no overall decreasing while the frequency

increase because the mode shape of the SH0 wave is independent of the frequency.

It should also be noted that the reflection coefficient in plates was calculated after

performing the compensation for the beam spreading effect. As the SH0 waves decay

cylindrically away from the source and also assuming the crack to act as the emitter

of cylindrical waves, then the reduction of the amplitudes in both cases is inversely

proportional to the square root of the propagation distance from the source [73].

However the amplitude of the shear weld guided mode can be considered to be

independent of the propagation distance because it has very little attenuation.

Experimental work has been carried out on the three crack lengths mentioned above,

and compared with the FE modelling. It is shown in Fig. 5.12 that the experimental

results showed the same trend as the FE results, however they had slightly larger

amplitude, and the first oscillation peak shifted to a higher value of the crack length

to wavelength ratio. The difference might be caused by different shapes of the

defects in the FE modelling and in the experiment. In the experiment, the milled

slit (notch) has a finite width of about 2 mm, however in the FE modelling the defect

was defined as a zero-width crack. Therefore a slight difference of the amplitude

as well as the phase of the reflected signal from the notch and the crack can be

expected. More detailed discussion of the scattering from notches and cracks can

be found in [81].

Fig. 5.12 shows that in general the reflection coefficient is higher at low frequency,

since the energy is concentrating in the weld as the frequency increases. The maxi-

mum reflection appears when the wavelength is about 0.4 of the crack length. There-

fore low frequency shear weld guided waves are attractive to inspect cracks parallel

to the weld.
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Figure 5.13: Variation of reflection coefficient with location of the cracks parallel to the

weld.

Fig. 5.13 shows the influence on the reflection coefficient of the location of the crack

with respect to the edge of the weld, in the range from 2 mm to 20 mm. The crack

was 30 mm long and a 3 cycle toneburst signal at 100 kHz was used in the model.

The reflection coefficient at 100 kHz with respect to the location of the crack is

presented in the figure. The results show that the shear weld guided mode is more

sensitive to target defects in the region near the weld than far away from the weld,

which is expected from the mode shape studies explained in Sec. 5.3.1.

5.4.2 Cracks normal to the weld

The second study was carried out on cracks which were aligned normal to the di-

rection of the wave propagation (parallel to the wavefront).

Rajagopal [76] has studied the specular reflection of the low frequency SH0 wave

from the crack face and the diffraction at its tips. The incident wave has been con-

sidered to be a cylindrical crested wave, and in the far field it can be approximately

considered as a plain wave in which the energy is homogeneously distributed along

the wavefront.
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The weld guided mode behaves differently since the energy is concentrated in and

around the weld. In FE simulations, two lengths of cracks were modeled; one 20

mm long and the other 40 mm long. Both of them are located 600 mm away from

the source, and defined as zero width cracks. In both cases, one end of the crack

is 2 mm away from the edge of the weld. The measurement was taken at 300 mm

away from the source.
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Figure 5.14: Reflection coefficient spectrum for cracks normal to the edge of the weld:

(a) FE predictions (b) experimental results.

Fig. 5.14 shows the reflection spectrum for different crack lengths, in which (a)

shows the FE predictions and (b) shows the experimental measurements. From

Fig. 5.14(a), it can be seen that the energy reflected from the crack decreases as

the frequency increases. This is due to the decrease in lateral extent of the shear

weld guided mode as the frequency increases. At low frequencies, the shear weld

guided mode has a larger lateral extent and therefore a large portion of the mode

strikes the crack which results in larger reflection coefficients. At high frequencies,

a relatively small extent of the shear guided mode strikes the crack and therefore

results in smaller reflection coefficients at these frequencies.

At low frequencies, there is a substantial difference between the two reflection co-

efficients (reflection coefficient from 20 mm crack and reflection coefficient from 40

mm crack), but this difference decreases as the frequency increases. The reason can
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again be explained by the mode shape of the shear weld guided modes shown in

Sec. 5.3.1. While the frequency increases, the energy of the mode becomes more

and more concentrated near to the weld. Therefore only part of the crack which is

close to the weld scatters the weld guided mode. This results in the small difference

of the reflection coefficient between different lengths of cracks at higher frequencies.

Fig. 5.14(b) shows the experimental results for the corresponding defects. The

shape of the curve is similar to the FE predictions, which shows higher reflection at

low frequency than high frequency. However the amplitude of the curves were sig-

nificantly larger than the FE predictions. One likely reason for this is that the shape

of the geometry used in the FE model is derived from the calibration experiment,

which measures the mode shape of the shear weld guided mode at one location of

the weld. However, the shape of the weld is not strictly the same along the total

length of the weld. From Fig. 5.6 it can be seen that a small change in the height

of the weld will result in a relatively large change of the mode shapes. It is possible

that at certain locations the lateral extent of the weld guided modes is larger than

predicted by the FE model. This would cause the reflection from the defects at the

HAZ measured experimentally to be larger than in the FE prediction.

5.4.3 Flat-bottom holes

Corrosion in the heat affected zone around the weld is another defect of concern in

industry. The scattering of guided waves from corrosion patch defects on a plate has

been studied by many researchers. Diligent and Lowe [79] presented finite element

and experimental results for the reflection of S0 waves from flat bottomed circular

holes. Fromme and Sayir [83] used Kirchhoff and Mindlin theory to study the

scattering of flexural A0 waves from a through thickness circular hole. More recently,

Ma and Cawley [84] theoretically and experimentally studied the scattering of SH0

waves from part-thickness elliptical defects including circular holes.

In our work, for simplicity a circular hole with a diameter of 10 mm with different

depths was modeled as the corrosion. The hole was located 600 mm away from
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the source, and the edge of the hole was 2 mm away from the edge of the plate.

Fig. 5.15(a) shows the magnitude of the reflection coefficient spectrum obtained

from holes with six different depths with their diameter normalized to the input

wavelength.
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Figure 5.15: Reflection coefficient spectrum for flat-bottom holes with different depths:

(a) FE predictions (b) experimental results.

Given that the plate was 6 mm thick and the element length was 1 mm in the depth,

six different depths from 16.7% to 100% of the total depth were studied. At each

depth, the reflection coefficient was extracted in the same way as before and these

are plotted respectively in Fig. 5.15. From the figure, it can be seen that at low

frequency the reflection coefficients increase with the increasing of frequency, They

all reach a maximum value while the diameter of the hole is 23% of the wavelength.

After that, the reflection coefficients decrease as the frequency increases. Similarly

as discussed above, the reason for this shape of reflection function is that the energy

becomes more and more concentrated in the centre of the weld while the frequency

increases, therefore a smaller amount of the energy will strike the defects at the

HAZ.

The peak of the reflection coefficient is caused by the interference between the direct

reflection from the front of the hole and secondary reflections composed of circumfer-

ential creeping waves, as has been observed previously [79,85]. Their superposition
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in the reflected wave packet results in the oscillation of the curve. The constructive

interference occurs when the second reflection is half a cycle behind the leading edge

reflection, which is when the defect length is around a quarter of a wavelength, as

can be confirmed from the figure.

It can also be noted that at low frequency there is good resolution of the reflection

coefficient with respect to the depth of the hole. For example, the maximum value of

the reflection coefficient is approximately linear with the depth of the hole. However

the difference decreases at higher frequencies, since the energy is more concentrated

in the weld and only part of the hole which is close to the weld scatters the weld

guided mode.

Experimental results are shown in Fig. 5.15(b) for holes with depth of 2 mm, 4 mm

and 6 mm (through thickness) respectively. It can be seen from the figure that these

results have similar shapes as the finite element results, however the amplitude is

again higher. The reason is believed to be the same as discussed in Sec. 5.4.2.

5.5 Interaction of Compression Weld Guided Mode

with Defects Around the Weld

From the discussion above, it is shown that the fundamental shear mode can be a

good candidate as a screening tool to inspect for defects. On the other hand, the

compression weld guided mode, whose properties were discussed in Chapter 4, also

has some interest in detecting defects at low frequency. Juluri [70] has discussed the

interaction of the compression (S0-like) weld guided mode with cracks or notches

normal to the weld in the HAZ on an idealized welded plate. The interaction of

the compression (S0-like) weld guided mode with the flat-bottom hole was also

investigated experimentally.

In this section, FE simulations were performed using the compression mode and

the same geometry of the cross section. The typical wavelength of the compression
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mode at low frequency was relatively large. For example at 100 kHz the wavelength

is around 54 mm, which is twice as much as the wavelength of the shear mode at

the same frequency. As it is known, in order to get an accurate result, the monitor

point has to be located outside the zone of the near field, which is approximately 5

wavelengths away from the source. Consequently the length of the welded plate has

to be longer than it is in the model of the shear mode to avoid the near field effect.

Moreover the size of the absorbing region also needs to be larger than it is in the

other model to be effective.

However the current modelling capacity restricts the size of the geometry in the FE

model. Hence the near field effects are unavoidable and the modelling accuracy has

to be compromised. Therefore the scattering study carried out on the compression

welded guided mode interacting with different defects remains qualitative. For the

same reason, no experimental work has been carried out on this mode due to the

small size of the plate.

(a) (b)

(c) (d)
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Leaky SH0 mode Compression guided mode
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Incident wave
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Figure 5.16: Time snapshots of the compression weld guided mode propagation along the

weld (a), and scattering from a crack parallel to the edge of the weld (b), a crack normal

to the edge of the weld (c) and a flat-bottom hole in the heat affected zone (d).
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Fig. 5.16(a) shows a snapshot of the propagation of the compression weld guided

mode before it reaches the defects. It is shown that energy of the compression weld

guided mode is concentrating around the weld and a wave is spreading behind the

guided wave, which corresponds to the leaky SH0 wave in the plate.

Fig. 5.16(b) shows a snapshot of the compression weld guided mode at 100 kHz

interacting with a 30 mm crack parallel to the weld in the HAZ. Since the mode

shape of the compression weld guided mode is dominated by the axial displacement

(parallel to the weld) at low frequency, it is expected not to be sensitive to the

crack shown in the figure. However it can be seen from the figure that there still

exists a small reflection from the defect. This reflection is believed to be caused

by the interaction between the crack and the leaky SH0 wave from the weld guided

mode. Rajagopal and Lowe [86] have discussed the angular influence on scattering

of the SH0 wave by cracks. However it is not necessary to perform the study here

as the overall amplitude of the leaky SH0 wave is small, thus the reflection from the

defect is small correspondingly. Therefore, compared to the shear guided mode, this

compression mode is less interesting to detect cracks aligned parallel to the weld.

Fig. 5.16(c) and (d) show respectively the snapshots of the scattering of the compres-

sion weld guided mode by cracks perpendicular to the weld and through-thickness

flat-bottom holes. The local interaction was found to be similar to the S0 wave

interacting with certain types of defects [66,85]. Relatively strong reflections of the

the compression mode can be seen from the figure and some of the reflected energy

was converted to the shear weld guided mode. Moreover the reflected compression

mode also leaked the SH0 mode into the side plates, thus the remaining energy de-

creases with the propagation distance. Therefore for inspections over long distances

it is less interesting than the low attenuative shear mode.

5.6 Summary

In this chapter, a study of the pulse echo reflection of the weld guided wave from

defects in the heat affected zone on a welded plate is presented. Three different
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types of defects: cracks parallel or normal to the edge of the weld, and flat-bottom

holes were studied both by time-step FE simulations and by experiments.

It can be seen that the shear weld guided mode, which is little-attenuative and

little dispersive, is more interesting than the compression weld guided mode to be

applied as a screening technique to inspect welds over long distances. The nature of

the scattering of the shear weld guided mode by defects located around the weld is

similar to the SH0 wave interacting with defects on a plate. However the amplitude

does not decay with the distance of wave propagation. Moreover, the mode shape

of the weld guided mode is frequency dependent, i.e. the energy distribution of the

cross-section gets more and more concentrated in the center of the weld with the

increasing of the frequency.

The study on the reflection ratio with respect to frequency suggests that the weld

guided mode is more interesting at low frequency than at high frequency to inspect

defects located in the heat affected zone of a welded plate. The experimental mea-

surements show good agreement with the trend of the reflection coefficient spectrum

predicted by FE simulations, however there is a significant difference in the the am-

plitudes of curves. This is believed to be due to the variation of the cross-section

of the geometry, thus the mode shape of the weld guided mode is not consistent

along the weld. Therefore it might be difficult to apply the weld guided mode to

size the defect at this stage, although it has been shown to be attractive to screen

for defects.

129



Chapter 6

Feature Guided Waves on Other

Geometries

Chapters 4 and 5 have demonstrated that there exists weld guided modes in a

welded plate, which can be exploited as screening tools to inspect long lengths of

welds. However, it has been proved from previous chapters that the SAFE method

is capable to model geometries with any cross-sectional shapes. It is also clear from

the revealed principles of the weld guiding effect that feature-guiding should be

expected in any geometric feature whose effect is to lower the phase velocity of the

waves. Therefore a similar opportunity for long distance feature-guided propagation

may be possible in many other kinds of structural features.

In this chapter, the SAFE method will be applied to the example geometries of

lap joints, stiffened plates and tube plates. The existence of the feature guided

modes (trapped modes) will be discussed, as well as their properties and potential

applications.
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6.1 Lap Joints

6.1.1 Introduction

The first application is related to the inspection of the adhesively bonded lap joints,

which are common in industry. Fig. 6.1 (a) shows a schematic of the geometry and

possible defects such as voids in the adhesive layer or the disbond of the adhesive

from one of the adherends. Conventional techniques to inspect for defects and the

bonding quality rely on the point-by-point ultrasonic scanning, which is usually time

consuming. Lowe et al [87] have discussed a technique to rapidly check the quality

of the bonding, based on calculating the transmission of Lamb waves across the lap

joints. However, according to the discussing of the reason for the trapping effect in

Chapter 4, and considering the geometry of the lap joint, it can be expected that

there may exist similar feature guided modes in this geometry which can concentrate

the energy in the joint, and propagate along the joint. If so, it would offer an

attractive alternative to inspect a long length of the joint by the pulse-echo or

pitch-catch feature guided wave method, thus significantly increasing the speed of

inspection of large regions.

6.1.2 Geometry and model description

The geometry of the model is shown in Fig. 6.1 (b). The two plates are both

made of aluminum with thickness of 1.6 mm each, with their density and elastic

properties given in Tab. 6.1. There is a 1-mm-thick and 10-mm-wide layer of

adhesive between the two plates, and its mechanical properties are also shown in

Tab. 6.1. The adhesive has viscoelasticity which is presented in terms of attenuation

per wavelength of the longitudinal (αL) and transverse (αT ) waves. In order to

suppress unwanted reflections from the border of the plate, an absorbing region is

modeled at each side of the plate, in a similar manner as described in the weld case

discussed in Chapters 4 and 5. The absorbing region has the same mass density and

elastic properties as the plate, but its viscoelasticity, i.e. the imaginary part of its
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Figure 6.1: Schematic of a lap joint showing the possible defects (a) and the SAFE

modelling of this geometry (b) .

Table 6.1: Mechanical properties for materials used in the SAFE modelling.

Density Bulk longitudinal velocity Bulk shear velocity αL and αT

(kg/m3) (m/s) (m/s) (dB/λ)

Aluminium 2700 6320 3130 ...

Steel 7932 5959 3260 ...

adhesive 1100 2523 1044 1.637

elastic moduli, gradually increases with distance away from the joint. The width of

the absorbing regions was chosen in the same way as discussed in Chapter 4, which

can provide accurate solutions if it is more than twice the projection along the x1

axis of the maximum wavelength of the guided waves that could be radiated along

the plates.

In our model, the width of the absorbing region is set to be 800 mm, so that it

guarantees valid solutions from most of the range of radiation angle. For example,

the wavelength of the SH0 wave in the adjacent plate at 30 kHz is approximately
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110 mm, thus the 800 mm length of the absorbing region is greater than twice the

projection along x1 of the maximum wavelength, up to radiation angle of 74◦.

The displacements and stresses are considered to be continuous between the plate

and the adhesive. Stress-free conditions are imposed at the outer border of the

geometry. The geometry is meshed by 1895 triangular elements of first order and

the number of degree of freedom is 33522. The system is solved for all the possible

wavenumbers that can propagate harmonically at different frequencies. At each

frequency, those modes which have energy concentrating in the joints and radiating

into the side plates correspond to the feature guided modes.

6.1.3 Results and discussion

In order to pick up the solutions of interest among all the solutions obtained, the

axial component of the energy flow is calculated along a cross-section line in the

middle of the upper plate.

Fig. 6.2 shows the energy flow distribution for several solutions obtained at 100 kHz.

It can be seen that two modes (in solid lines) have their maximum energy in the

area of the joint, with decay towards the outsides of the absorbing region. These two

modes are the feature guided modes at this geometry, whose energy is concentrated

in the joint, and radiating into the lateral plates. For comparison, Fig. 6.2 also

shows the modes which are resonating in the plates and the absorbing region, thus

are unwanted.

Fig. 6.3 shows the properties of feature guided mode 1. Fig. 6.3(a) presents a

snapshot of energy flow at 100 kHz which confirms that the energy of this mode

is concentrated in the center of the joint. Fig. 6.3(b) presents the mode shape of

the displacement of mode 1 along a through thickness line shown in Fig. 6.3(a),

which suggests that this mode is dominated by the axial in-plane displacement (u3),

similar to the S0 mode in a free plate. The eigenvalue for this mode at 100 kHz is

119.13-0.2158i /m, from which the corresponding phase velocity is 5274 m/s. Thus,

it is possible to radiate the SH0 mode and A0 mode in the side plate, at radiation
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Figure 6.2: Cross-section distribution of axial energy flow for several eigen solutions

obtained for the lap joints at 100 kHz. The solid lines show two feature guided modes,

while the dashed lines show unwanted plate resonance solutions. The grey zone indicates

the joint area.

angles of about 36.4◦ and 13◦, respectively. Fig. 6.3(c) shows the phase velocity

dispersion curve of mode 1 from 30 kHz to 100 kHz, which suggests a similarity

to the S0 mode in the plate, and this mode does not have much dispersion at low

frequency. Fig. 6.3(d) presents the attenuation dispersion curve of this mode, which

shows an increasing attenuation while the frequency increases.

The properties of mode 2 are shown in Fig. 6.4. Fig. 6.4(a) shows the snapshot of

energy flow at 100 kHz of this mode and (b) shows the mode shape of the through-

thickness displacement, which indicates a similarity to the SH0 mode in a plate as

they are both dominated by the horizontal in-plane displacement u1. At 100 kHz,

the phase velocity of this mode is 2784.6 m/s and the attenuation is 1.641 dB/m,

both of which are obtained from the eigenvalue 225.639-0.189i /m. The A0 mode in

the aluminium plate is the only possible wave to radiate, at an angle of about 23.7◦.

Fig. 6.4(c) and (d) shows the phase velocity and the attenuation dispersion curves
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Figure 6.3: (a) Energy flow snapshot for the feature guided mode 1 at 100 kHz, with

arrows indicating displacements of the cross-section, (b) the mode shape of displacement

through the thickness of the plate, (c) the dispersion curve of phase velocity from 30 kHz

to 100 kHz, (d) the dispersion curve of attenuation from 30 kHz to 100 kHz .

from 30 kHz to 100 kHz, respectively. It can be noticed that mode 2 has very little

dispersion in this frequency range, similar to the shear weld guided mode discussed

before. This mode is radiating more energy to the side plate as the frequency

increases, and the attenuation is at about the same level as mode 1.

To explain the reason for feature guiding in this geometry, propagation modes on

the geometry of the joint part were investigated and compared with the plate modes.

Phase velocity dispersion curves of the joint part as well as a 1.6 mm thick aluminum

plate are presented in Fig. 6.5(a). It can be seen from the figure that there exists four

modes in the joint, which are the Longitudinal mode, Torsional mode, Flexural mode

1 and 2, and their modes shapes (displacements of the cross section) and the energy
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Figure 6.4: (a) Energy flow snapshot for feature guided mode 2 at 100 kHz, with arrows

indicating displacements of the cross-section, (b) the mode shape of displacement through

the thickness of the plate, (c) the dispersion curve of phase velocity from 30 kHz to 150

kHz, (d) the dispersion curve of attenuation from 30 kHz to 150 kHz .

flow snapshot are presented in Fig. 6.5(b). Comparing with the three fundamental

plate modes existing at this frequency, the Longitudinal mode and the Flexural

mode 1 of the joint has similar mode shapes to the S0 and SH0 mode in the plate

respectively. Moreover their phase velocities are slower than their corresponding

modes in the plate, therefore the energy of these two modes is concentrated within

the joint area when the whole lap joint geometry is considered. This is similar to

the case of the welded plate discussed in Chapter 4. On the other hand, the phase

velocity of Flexural mode 2 is higher than the A0 mode in the plate, although their

mode shapes are similar; the torsional mode does not have any similar modes in the

plate, thus neither of them is able to form a trapped mode (feature guided mode).
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Figure 6.5: (a) Phase velocity dispersion curves of the propagation modes in the joint

geometry and in the 1.6-mm-thick aluminium plate, (b) mode shapes of four propagation

modes of the joint geometry at 100 kHz. Arrows indicate displacements in the cross section

.

To summarize, two feature guided modes have been found on the lap joint geometry,

which may have the potential to inspect for defects in or around the joint according

to their properties. Moreover, it is also possible that the bonding conditions such

as the bonding strength, length and thickness may be evaluated by examining the

properties of the guided modes. However, in order to apply these two feature guided

modes in real applications, it would be necessary to perform parametric studies on

mode properties as well as on defect scattering. Since the purpose of this chapter

is just to illustrate the existence of feature guided wave on some geometries other

than welded plates, the studies on the application of the guided modes have not

been carried out, and would be left for future work upon request from industry.

137



6. Feature Guided Waves on Other Geometries

6.2 Plate with Stiffener

6.2.1 Introduction and model description

The second geometry concerned in this chapter is a large aluminum plate with a

T-shaped aluminum stiffener bonded onto one face. Feature guided modes, which

propagate along the stiffened region and radiate into the side plates, are possible

to exist due to the geometry change in the stiffened area, similar to the welded

plate and the lap joint. Castaings and Lowe [50] have investigated one sample of

the stiffened plate and discussed the existence and application of one feature guided

mode. However due to the complex shape of the stiffener, the discussion was brief.

In fact, there exists more than one feature guided modes in such a geometry. In

this section, the properties of these modes and the reason for feature guiding in this

geometry will be discussed in detail.

Figure 6.6: Schematic of 2D model of a aluminium stiffener bonded on a aluminium

plate.

The geometry of the model is shown in Fig. 6.6. The plate is 3 mm thick and

the adhesive has a thickness of 0.5 mm. The stiffener has a T shape and it is also
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made of aluminium. Material properties are all listed in Tab. 6.1. Similarly as

discussed, a 800 mm wide absorbing region is applied in the model to suppress the

reflections from the outer border of the geometry. Continuity of displacement and

stresses are imposed at the internal border between the stiffener, the adhesive layer

and the aluminium plate. Stress free conditions are applied at the outer border of

the geometry. The geometry is meshed by 1374 triangular elements of first order.

These elements are automatically generated by the software used, and are finer in

the stiffened zone than in the adjacent plates. The number of degrees of freedom is

15882.

6.2.2 Results and discussion

The system was solved using the SAFE method in the same way as in the previous

examples, to find values of the wave number k at different frequencies. For each

frequency, several solutions were obtained, including the feature guided modes and

also unwanted modes corresponding to the resonance of the whole system. To pick up

the feature guided modes, the axial component of the energy flow was calculated for

each solution along a cross-section line across the center of the plate. Modes which

have their maximum energy flow in the stiffened region with decay in the lateral

plates correspond to the feature guided modes. Fig. 6.7 presents the distribution of

the axial energy-flow component for one selected mode, at 100 kHz, showing that

the energy is concentrating in the stiffened region, and quickly decays outside the

region.

Fig. 6.8 presents snapshots of the three feature guided modes discovered at 40

kHz, which have higher energy flow in the stiffened area than in the side plates.

Fig. 6.8(a) shows a guided mode which is dominated by the axial displacement

u3, similarly to the longitudinal (S0) mode in the plate. The eigenvalue for this

solution is k = 46.296 − 0.0884i/m, from which the corresponding phase velocity

is: Cph = 5428.7 m/s and the attenuation is: α = 0.768 dB/m. It is possible to

radiate the SH0 and A0 modes in the side plate, at radiation angles of about 35.2◦

and 11.04◦, respectively. Fig. 6.8(b) shows a guided mode which is dominated by
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Figure 6.7: Cross-section distribution of axial energy flow for one eigen solution selected

corresponding to a wave mode propagating along the stiffener-bond-plate region and radi-

ating energy in the aluminium plate, at 100 kHz. The grey zone indicates the stiffened

region.

the horizontal displacement u1, similarly to the shear horizontal (SH0) mode in

the plate. The eigenvalue for this mode is k = 82.625 − 0.0222i/m, from which

the corresponding phase velocity is: Cph = 3041.8 m/s and the attenuation is:

α = 0.193 dB/m. Since the phase velocity of this mode is higher than the A0 mode

of the 3mm-thick plate but slower than the SH0 mode (3130 m/s) and the S0 mode

(5428.7 m/s) at this frequency, it is only able to radiate the A0 mode in the side

plate, at an angle of 19.99◦. Fig. 6.8(c) shows a guided mode, which is dominated

by the horizontal displace u1 at the top of the stiffener and in the region of the

plate its mode shape is similar to the bending mode (A0). The eigenvalue for this

mode is k = 325.744 − 0.0021i/m, from which the corresponding phase velocity

is: Cph = 771.58 m/s and the attenuation is: α = 0.018 dB/m. Since the phase

velocity of this mode is slower than all the guided modes in a 3mm-thick plate at this

frequency, no radiating modes are able to be launched, thus this mode is considered
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to be a non-leaky mode. The small attenuation of this mode is believed to come

from the adhesive which has a complex elastic modulus.

(a) (c)
10× 15

0

3.5 (b)
10× 14
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8
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Figure 6.8: The energy flow snapshot for the three feature guided modes at 40 kHz, with

arrows indicating displacements of the cross-section.

The reason for the energy trapping around the stiffener can be explained by modally

investigating a separate model of the stiffened region, containing the stiffener, the

adhesive layer and part of the plate with the same width as the stiffener (shown

in Fig. 6.9), and comparing with the plate modes. The SAFE method was carried

out to study the dispersion curves and the mode shapes of the geometry. Similarly

as discussed in Chapter 4 and in Sec. 6.1.3, it should follow two conditions for a

mode in the stiffened area to be trapped: the mode shape of the guided mode in the

stiffened geometry should be similar to a plate mode, and its phase velocity should

be slower than the corresponding plate mode.

Fig. 6.9 shows the phase velocity dispersion curves of the central geometry (including

stiffener, adhesive and part of the plate) at frequencies from 10 kHz to 70 kHz. Eight

guided modes have been found in this frequency region and are labeled mode 1 to

8 in the figure. There are only three fundamental guided modes: S0, SH0 and A0,

in a 3mm-thick plate at this frequency region, which are also shown in the figure.

At 40 kHz, six modes are discovered, three of which are able to be trapped, and

they are examined in Fig. 6.10. The snapshots of the axial energy flow in the

cross-section are shown in the left column, and in the right column there presents
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Figure 6.9: Phase velocity dispersion curves of the central geometry with the aluminium

stiffener, adhesive and aluminium plate with the same width as the stiffener, from 10 kHz

to 70 kHz, are shown in solid lines. Phase velocity dispersion curves of a 3-mm thick

aluminium plate are shown in dash-dot lines.

the corresponding mode shape of the displacement on the border of the plate along

the thickness of the plate. It can be seen that mode 1 is dominated by the axial

displacement u3 which is similar to the S0 mode in the plate. The phase velocity of

this mode is 4957.1 m/s at 40 kHz , which is slower than the S0 mode (5437 m/s).

Mode 2 is dominated by the horizontal displacement u1, similar to the SH0 mode

in the plate, and the phase velocity (2107.6 m/s) is slower than the SH0 mode(3130

m/s). Mode 6 is dominated by the horizontal displace u1 at the top of the stiffener,

but in the plate region it is dominated by the vertical displacement u2, which is

similar to the A0 mode in the plate, with phase velocity (770.1 m/s) slower than the

A0 mode (1045 m/s). There are three other modes of the central structure existing

at 40 kHz, whose mode shapes are all dominated by the vertical displacement u2.

However the phase velocities of mode 3, 4 and 5 are 1427.3 m/s, 1115.3 m/s and

1321.3 m/s respectively, which are all higher than the phase velocity of the A0 mode

as they are shown in Fig. 6.9, thus none of these three modes are able to form a
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Figure 6.10: Energy flow snapshots for the three guided modes which can form the feature

guided modes at 40 kHz, with their displacement mode shapes on the border of the plate

along the thickness presented in the right column.

trapped mode.

The phase velocities of the guided modes in the central structure change with the

frequency as shown in Fig. 6.9, and so do their mode shapes. More feature guided

modes in the whole structure appear as the frequency increases. For example, Fig.

6.11 shows the energy flow snapshots of the four feature guided modes at 60 kHz.

Comparing the mode shapes with Fig. 6.8, it can be seen that a new mode (shown

in (c)) appears. It comes from mode 4 shown in Fig. 6.9, and its mode shape

of displacement along the border is presented in Fig. 6.12(a) which suggests a

143



6. Feature Guided Waves on Other Geometries

(a) (b)

(c) (d)

10× 15

0

5
10× 15

0

2

10× 15

0

4.5

10× 15

0

4

Figure 6.11: Energy flow snapshot for the four feature guided modes at 60 kHz, with

arrows indicating displacements of the cross-section.

domination of the vertical displacement u2. Fig. 6.9 shows that the phase velocity

of mode 4 becomes slower than the A0 mode while frequency is higher than 50 kHz.

Therefore this mode is able to form a trapped mode at 60 kHz. Another phenomenon

is that the mode shape of mode 1 changes at 60 kHz, which is shown in Fig. 6.12(b).

Its mode shape becomes dominated by vertical displacement u2 at 60 kHz, and thus

loses similarity to the S0 mode in the plate at this frequency, therefore it can no

longer form a trapped mode. On the other hand, a new mode 7 appears at 60 kHz

shown in the dispersion curves in Fig. 6.9. Its mode shape of displacement shown

in Fig. 6.12(c) suggests a domination of the axial displacement u3, which is similar

to the S0 mode in the plate at this frequency. The phase velocity of the mode is

4958.3 m/s at 60 kHz and is slower than the S0 mode (5435 m/s), therefore this

mode is able to be trapped, and the snapshot of this trapped mode is shown in Fig.

6.11 (a).
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Figure 6.12: The energy flow snapshot for mode 4, 1 and 7 in the central structure

including the stiffener at 60 kHz, and their displacement mode shapes along the thickness

of the plate are presented in the right column.

6.3 Interconnected Heat Exchanger Tube (Tube

plate)

6.3.1 Introduction

Guided wave inspection of pipelines has been very successful over the years, and

commercial products have already been developed in industry [10, 11]. However
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when the geometry is not strictly pipes, but interconnected heat exchanger tubes, the

application of the guided wave technique remains challenging, as the wave properties

of the guided modes on these geometries are unknown.

(a)

(b)

Figure 6.13: (a) Picture of a heat exchange tube plate and (b) 2D cross-section of 1

period of the geometry.

Fig. 6.13(a) shows a picture of one type of interconnected heat exchanger tubes

which contains periodically structured pipes and plates, which is known as a tube

plate. It will be useful to know if the existing guided wave techniques can be applied

to inspect for defects located on the pipes in these geometries. Moreover, it will also

be interesting to investigate if it is possible to inspect the connections between pipes

and plates, as there is particular concern to detect defects at these locations.

The geometric data for one element of the structure is indicated in Fig. 6.13(b).
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Figure 6.14: Phase velocity dispersion curves of 7 mm thick steel pipe with 24 mm inner

radius.

The pipes are 7 mm thick with inner radius of 24 mm, and the plates are 6 mm

thick located in the middle of the pipes. The dispersion curves of the pipe can be

calculated by DISPERSE [9], and they are shown in Fig. 6.14. From the figure it

can be seen that there are many modes existing in the pipes between 10 kHz and 60

kHz, which are all labeled according to the criteria given by Silk and Bainton [35].

6.3.2 SAFE modelling and discussion

The SAFE method has been developed by Predoi et al [48] to describe periodic

geometries by introducing periodic boundary conditions in the modelling, which is a

particular case of Neumann boundary conditions, and validated by experiments on

a periodically grooved plate. The periodic boundary condition forces the elements

on a pair of boundaries of the structure to have identical variables, thus representing
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continuity of displacement and stress between the two edges. In this section, it is

applied on the outer borders of the plate on one element of the tube plate shown

in Fig. 6.13(b), which suggests that the tube and plates are periodically placed.

The geometry was meshed by 530 triangular elements of first order. These elements

are automatically generated by the software used, and the number of degrees of

freedom is 7212. Since there was no damping in the system, the real eigen solutions

corresponded to the propagation modes were picked up; while the complex eigen

solutions corresponded to the evanescent modes were unwanted.

(a) (b) (c)

(e)(d) (f)

(h)(g) (i)

Figure 6.15: The energy flow snapshot for all the guided modes in the heat exchanger

tube at 30 kHz, with arrows indicating displacements of the cross-section.

As the geometry is still dominated by the pipe, it can be expected that some guided

modes are similar to the pipe modes. For example, nine propagation modes were

discovered at 30 kHz, six of which have similar mode shapes to the pipe modes.

The energy flow snapshots of these modes are plotted in Fig. 6.15, with arrows
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indicating the displacement of the cross-section. Fig. 6.15(a) shows a mode with

eigen solution of 99.44/m, from which the corresponding phase velocity is 1895.6

m/s. It can be seen that there is a one-wave cycle of variation of displacement around

the circumference, which is similar to the F(1,1) mode in the pipe. The eigen solution

shown in Fig. 6.15(b) is 106.263/m, from which the corresponding phase velocity is

1773.9 m/s. It can be seen that there are two wave cycles of variation of displacement

around the circumference, which is similar to the F(1,2) mode in the pipe. Fig.

6.15(c) shows a similar mode to the F(1,3) mode in the pipe, as there are three wave

cycles of variation of displacement around the circumference. The eigen solution of

this mode is 89.851 /m and the phase velocity is 2097.9 m/s. Fig. 6.15(d) shows a

mode with eigen solution of 32.406/m, from which the corresponding phase velocity

is 5816.6 m/s. This mode also has one wave cycle of variation of displacement

around the circumference, but with higher phase velocity, thus is similar to the

F(2,1) mode of the pipe. Fig. 6.15(e) shows a guided mode which is dominated by

the circumferential displacements, similar to the T(0,1) mode in the pipe, although it

is not strictly axially symmetric due to the presence of the plate. The eigen solution

of this mode is 54.983 /m and the phase velocity is 3428.3 m/s. Fig. 6.15(f) shows

a similar mode to the L(0,1) mode in the pipe, with the mode shape dominated by

the axial displacement although not symmetrically distributed. The eigen solution

of this mode is 44.741/m and the phase velocity is 4213.1 m/s. Fig. 6.15(g) shows

a very interesting mode with phase velocity of 2479.8 m/s. The energy of this mode

is concentrated in the plate area, thus it may have the potential to inspect the

connections between the pipe and the plate where there is particular concern to find

defects. Fig. 6.15(h) and (i) present another two new modes which do not have

corresponding modes in the pipe, with phase velocity of 1957.9 m/s and 1978.3 m/s,

respectively.

Fig. 6.16 shows the phase velocity dispersion curves of the heat exchanger tube

plate for frequency from 10 kHz to 60 kHz, some high order modes are omitted

for simplicity. Modes in solid lines are labeled similarly as the pipe modes, but

with the subscript q standing for ”quasi”, while ”new” modes are plotted in dash-

dot lines. Comparing with Fig. 6.14, it can be seen the dispersion curves of the
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Figure 6.16: Phase velocity dispersion curves of the heat exchanger tube from 10 kHz to

60 kHz, without showing higher order modes.

heat exchanger tube plate are similar to those of a simple pipe, for example at

30 kHz phase velocities of quasi modes (shown in Fig. 6.16) are close to those of

their corresponding pipe modes (shown in Fig. 6.14). However there also exist

differences. Except for the appearance of some new modes which has been discussed

previously, both the Lq(0,1) mode and the Tq(0,1) mode have cut off frequencies.

This is because the side plates constraint the axial and the circumferential motions

of the longitudinal and the torsional mode respectively, thus below certain frequency

it is not possible for them to propagate. Another discovery is that the new mode

shown in Fig. 6.15(g) has very little dispersion above 30 kHz, which provides the

potential of applying this mode to inspect the connections between the pipe and the

plate for long distance, given that the energy is concentrated in this area.
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6.4 Summary

In this chapter, guided modes on a lap joint, a stiffened plate and a interconnected

heat exchanger tube plate are investigated. It can be concluded that feature guided

waves exist in a wide range of geometries, provided that geometry can lower the

phase velocity of the guided waves in the feature. The SAFE method can be applied

as a generic tool to modally investigate guided waves propagating along waveguides

with any arbitrary cross-section. The properties of the guided modes, such as mode

shapes, velocity dispersion curves and leakage rate, can be predicted by the method.

Therefore it is possible to suggest candidate modes to inspect for particular struc-

tures that are interesting for industry.
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Chapter 7

Conclusions

7.1 Thesis Review

Ultrasonic guided waves have been widely applied in industry since they can be

generated from a single transducer position and propagate for a long distance. An-

alytical theory for guided waves propagation on regular geometries such as plates or

pipelines has been well established. In this thesis, the application has been extended

to waveguides with irregular cross-sectional geometries, in particular for waveguides

which are surrounded by a fluid or solid medium of infinite extent, causing possi-

ble leakage of the guided wave energy. Chapter 1 introduced the background and

the motivation. The work in the thesis has been conducted in three parts: (a) the

modelling development in Chapter 2, (b) ultrasonic dipstick application in Chapter

3 and (c) applications of feature guided waves in Chapters 4, 5 and 6.

In Chapter 2, the basic theory of bulk ultrasonic waves and guided waves propagation

on regular geometries was firstly reviewed. The properties of guided waves, such as

dispersion relations and mode shapes were examined on a single plate and also on a

cylindrical bar immersed in a fluid. The Semi-Analytical Finite Element method was

introduced to describe the guided wave properties on geometries with irregular cross-

sectional shapes. Then the method was extended for a solid waveguide immersed in

both perfect and viscous fluids and validated with existing analytical solutions.
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Chapter 3 presented a guided wave technique to measure the density of a fluid by the

models developed in chapter 2. Previous approximate theory describing the tech-

nique was also reviewed and analyzed for the reason of its inaccuracy. Experiments

were carried out on a rectangular bar immersed in a range of fluids, and the results

were compared to both theories.

Chapter 4 investigated waves which can propagate along a weld joining two plates

and concentrate the energy in and around the weld. Properties of the weld guided

modes were examined in this chapter by the modelling techniques developed in

Chapter 2. The physical reasons for the trapping of the energy were also discussed.

Experimental work was undertaken to validate the existence of the weld guided

mode and the accuracy of the model.

Chapter 5 proceeded the work in Chapter 4 by investigating the interaction of the

weld guided wave to different types of detects, in order to exploit the potential to use

this wave as a screening tool to rapidly inspect long lengths of the weld. Both time

step simulations and experiments were carried out to study the reflection behavior

of different types of defects in terms of frequency, defect size, depth and location.

Chapter 6 presented finite element studies on some other geometries, in which similar

feature guided waves were also discovered. Properties of discovered modes and

potential applications of exploiting them for defect inspection were discussed.

7.2 Summary of Findings

7.2.1 Extension of Semi-Analytical Finite Element Method

Analytical methods to study guided wave propagation on regular geometries such

plates or pipelines has been well documented in literature. For waveguides with ir-

regular but constant cross-sectional shape, a Semi-Analytical Finite Element method

can be applied to study the properties of guided waves propagating in the structure.

This approach uses finite elements to represent the two dimensions of the cross-

153



7. Conclusions

section of the waveguide, plus a harmonic description for the axial dimension. The

SAFE method has been investigated by previous researchers on perfect waveguides

which do not leak energy.

In our work, the SAFE method has been extended to the problem of solid waveg-

uides embedded or immersed in an infinite medium, in which case a guided wave

may leak energy away from the waveguide when it propagates. The SAFE method

in solids has been reviewed and then developed in fluids, including both non-viscous

and viscous fluids. In order to model the infinite surrounding medium, an absorbing

region has been applied which has the same mass density as the medium but with

viscous damping of increasing rate with distance away from the waveguide. There-

fore there will be no reflections from the outer border of the geometry by applying

the absorbing region. Based on the development of the modelling, two applications

have been carried out.

7.2.2 Dipstick for ultrasonic density measurements

The first application concerns density measurements in fluids. A torsional wave

pulse is applied to propagate along a solid non-circular waveguide immersed in a

fluid, which interacts at the boundary with the surrounding fluid. Thus some fluids

will be trapped at the corners of the cross-section and this affects the propagation

velocity of the torsional wave. Therefore by measuring the propagation speed of the

torsional waves it is possible to inversely work out the density of the trapping fluid.

A previous analytical model had been developed by others based on the calculation

of the inertia of the surrounding medium, however the accuracy of that approach is

compromised due to the complexity of the wave behavior in the non-circular cross-

sectional shape.

In Chapter 3, the SAFE method was applied to describe a rectangular bar immersed

in alcohol. At low frequency, four fundamental modes were discovered which were

the longitudinal, torsional and two flexural modes. The torsional mode was picked

up, and the dispersion curve was generated by repeating the SAFE method over a
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range of frequencies. It was shown that this mode is non-attenuative and almost non-

dispersive, thus it could be a good candidate mode for fluid density measurements.

An inverse model relating the group velocity of the torsional mode and the den-

sity of the surrounding fluid was established, which presented a linear relationship

between them. Experiments were carried out on an aluminium rectangular bar

immersed in fluids. The first experiment validated the group velocity dispersion

curve of the rectangular bar immersed in alcohol, showing good agreement with the

SAFE prediction. The second experiment verified the inverse model to predict the

density of the fluid, which used fluids with densities varying from (800kg/m3) to

(1100kg/m3). Compared to the approximate theory, the SAFE method predictions

showed a significant improvement on the accuracy of the model.

With SAFE modelling, different geometries and material properties of the waveguide

can be designed to optimize the sensitivity of the sensor. It was shown that with

the same aspect ratio, the diamond shaped cross-section had better sensitivity than

the elliptical shape and the rectangular shape, and thus could be a good candidate

shape for the sensor. It was also presented that the solid bar with smaller density

would be more sensitive to the fluid.

7.2.3 Feature guided waves

Study of the principle

The second application is regarding large area inspections with feature guided waves.

It was a previous experimental finding of a compression wave whose energy was

concentrated in and around the weld, and propagated along the weld, which had

introduced this topic of research at the beginning. Three-dimensional time step FE

simulation was carried out to study a simple geometry to illustrate the trapping

phenomena, however it was very time consuming.

In Chapter 4, the SAFE method was applied to modally investigate the wave prop-

agation along a weld. As a two-dimensional model, the calculation time was signif-
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icantly reduced. The properties of the compression weld guided mode, which were

found experimentally, were studied. It was shown that this mode has similar mode

shapes and dispersion relations as the S0 mode in plates, but with energy concen-

trating more and more in the weld with the increasing of frequency. Moreover, at

low frequency, the compression weld guided mode is a leaky mode which radiates

SH0 waves into the side plates.

During the modal study, a new weld guided mode which has similar mode shapes

as the SH0 mode in the plate, was discovered. Compared to the compression mode,

this mode is non-leaky and little dispersive, thus it is very attractive for long dis-

tance inspections. While the frequency increases the energy of the shear mode also

becomes more and more concentrated in the weld.

The energy trapping effect for the weld guided mode was discussed, concluding

that the waves propagating in the weld should have similar mode shapes as the

surrounding plate but should have smaller phase velocities.

A validation experiment had been carried out on an idealized geometry which

trapped the energy in the same way as a real weld. The experimental results for the

group velocity, attenuation and energy concentration of the shear mode all showed

very good agreement with the SAFE predictions, which validated the existence of

the shear mode and the accuracy of the modelling.

Investigation on applications

The interaction of the weld guided mode with different types of defects was studied

in Chapter 5. It was demonstrated that the shear weld guided mode can be used

as a screening tool to inspect defects for long distances of the weld, due to its low

attenuation and minimally dispersive characteristics. The interaction of this wave

with three types of defects located on the heat affected zone were studied both

experimentally and in Finite Element simulations.

The reflection spectrum for cracks parallel to the edge of the weld showed simi-
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larity to the case studied elsewhere of the SH0 wave interacting with cracks in a

plate aligned in the propagation direction. However the amplitude of the reflection

coefficient decreases as the frequency increases, because the energy becomes more

concentrated in the center of the weld. Therefore the low frequency range is more

interesting for practical applications. It has also been discovered that the shear weld

guided mode is more sensitive to the defects located closer to the weld, and this can

be explained by its mode shapes. Experimental results have shown good agreement

in the shape of the reflection coefficient spectrum with the FE predictions, but with

slightly higher amplitude, which was believed to be caused by the difference in the

milled slits used in the experiments and zero-width cracks defined in the FE model.

For cracks normal to the edge of the weld, the reflected energy from the crack de-

creases with increasing frequency. There are substantial differences in the reflection

coefficient between cracks of different lengths, however the difference decreases as

the frequency increases. The curve of the reflection coefficient spectrum predicted

by the FE simulation had similar shapes as the experimental measurement, however

the amplitude of the curve disagreed. This was believed to be due to the variation

of the shape of the weld cap, so that the mode shape of the shear weld guided mode

was affected. Both FE and experiment showed that waves had better sensitivity at

low frequency than at high frequency.

The reflection coefficient spectrum for flat-bottom holes has shown that at low fre-

quency the reflection coefficient increases as the frequency increases. It reaches its

maximum while the diameter of the hole is around a quarter of the wavelength, and

decreases with the increasing of the frequency. Moreover the shear guided mode was

tested to have better sensitivity to the depth of the hole at lower frequency than at

higher frequency. The experimental results on the reflection coefficient spectrum of

a hole with three different depths have shown the same shapes as the FE predictions.

Feature guided waves have also been discovered on other example geometries of

lap joints, stiffened plates or interconnected heat exchanger tubing. It is possible

to use the SAFE method as a generic tool to predict the wave properties of the

feature guided modes, and thus to suggest suitable modes and frequencies for NDT
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applications.

7.3 Future Work

In future, it should be possible to extend the dipstick technology in viscous fluid and

establish inverse models to predict the viscosity as well as the density of the fluid,

following the preliminary work described in Chapter 3. It will be challenging if both

the velocity and viscosity of the fluid are unknown, as theoretically two equations

will be required for unicity of the solution. One possible method is to measure the

velocities of two different modes, i.e. the longitudinal mode and the torsional mode,

and then do the inversion. An alternative solution is to measure two properties of

one single guided mode, for example the velocity and the attenuation of the torsional

mode. Therefore there will be two equations, each of which links to the density and

viscosity in a different way.

In our research of the feature guiding phenomenon, the experimental plate was

manufactured to be wide enough so that the reflection from the edge of the plate

would not interfere with the inspection signals. However, the existence of the edge

reflection signal (shown in Fig. 5.2) will cause a blind zone where it may overlap

with reflections from defects. If the plate is narrow, or if there are some other

features existing on the plate, the blind zone will become large due to multi wave

reflections between the target feature and other features. Therefore in practice, it

would be very interesting to absorb the guided waves in side plates, for example by

placing an absorber on top of the plate as shown in Fig. 7.1. The absorber could be

made of a viscoelastic medium such as rubber which has high damping properties.

It should be contacted firmly to the plate, possibly with a coupling medium, so that

the energy of the guided waves in the side plates will transmit into the absorber

and then attenuate. Thus the reflection from the edge or other features of the plate

will be significantly reduced. The length and the thickness of an efficient absorber

could be calculated according to the choice of feature guided modes and operating

frequencies.
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AbsorberAbsorber

Plate guided modePlate guided mode

Transducer

Region of feature 
guided modes

Figure 7.1: Schematic of feature guided wave inspection with absorbers to attenuate

guided waves in plates.

In the modal study of the weld guided modes, we also found some high order weld-

guided modes; however for simplicity only the two fundamental weld-guided modes

were discussed since our interest is to reveal the principle of feature-guiding. These

higher order modes might be interesting for NDE applications at higher working

frequencies, if they are more sensitive to defects of specific interest. Therefore future

work can be carried out to investigate the potential of using these higher order

feature guided waves for inspection.

It is also important to perform experimental defect scattering studies of the weld

guided modes on a number of different geometries. Although it is understood that

the feature guiding phenomenon generally exists due to the geometry change in the

welded part, it is necessary to evaluate the robustness of the technology of using

weld guided modes as a screening tool to detect defects on long lengths of real welds.

Especially when the weld cap is not uniform along the propagation direction, more

coherent noise will be expected in the inspection.

This work was carried out within the research programme of the UK Research

Centre in NDE (RCNDE). A meeting of interested industrial partners of the RCNDE

has reviewed the outcome and members are identifying potential applications for

exploiting the approach in industry. It will be useful to carry out further studies

of feature guided waves on realistic geometries provided by the industrial partners,

following the work in Chapter 6. Specific applications, such as evaluation of the

bonding condition in lap joints or inspection for certain types of defects in the heat

exchanger tubes, can be investigated upon request.
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Appendix A

Laser Interferometric

Measurement

This appendix discusses the theoretical background of laser interferometric velocity

and displacement measurement. In a laser vibrometry measurement, a laser beam

is focused on the tested structure whose moment causes the presence of the Doppler

effect in the laser reflection. If the object can reflect the beam properly, it is possible

to calculate its velocity and displacement. Since the laser has a very high frequency

(f = 4.74 × 1014Hz for the helium-neon), it is not possible to operate a direct

demodulation. Instead an interferometer is used to mix the scattered light coherently

with the reference beam. A schematic of a laser interferometric measurement is

shown in Fig. A.1. The laser emits a spatially and temporally coherent source of

light (all photons have same frequency, direction and phase), and the beam is split

into reference and object beams. The scattered beam and the reference beam are

recombined and received by a photo detector, which measures the intensity of the

mixed light. The intensity varies with the phase difference ∆Φ between the two

beams according to the equation:

I(∆Φ) =
Imax

2
(̇1 + cos∆Φ). (A.1)
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Laser

Detector
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Beamsplitter

object

combined

Figure A.1: Schematic of a laser interferometer .

The phase difference ∆Φ is a function of the path difference ∆L between the two

beams according to

∆Φ = 2π · ∆L

λ
, (A.2)

where λ is the laser wavelength. When the object moves at a constant velocity

V , the optical path difference ∆L becomes a function of the time ∆L = ∆L(t).

The interference fringe pattern moves on the detector and the displacement of the

object can be determined by counting of the passing fringe pattern. The intensity

at the detector changes sinusoidally. The frequency that is produced as a function

of velocity is called the Doppler frequency shift fD and is a function of the velocity

component in the direction of the object beam according to

fD = 2 · |V |
λ

(A.3)

Fig. A.2 shows the schematic of using laser interferometers to measure the out-

of-plane and in-plane vibration. If the laser beam is aligned perpendicular to the

surface of the object, the out-of-plane vibration may be obtained from the above

theory. For the measurement of in-plane vibration, two laser beams are aligned at

a certain angle to the surface of the object. The in-plane displacement Ux can be

expressed as Ux = 2Ucosθ, where U is the displacement measured by one of the
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beams. If θ is set to be 60◦ as we did in the experiment, the in-plane displacement

Ux = U .

vibrating object

x

La
se

r

vibrating object

y

(a)

La
se

rLaser

θ θ

(b)

Figure A.2: Schematic of the measurement of out-of-plane (a) and in-plane (b) vibration

.
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