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Abstract

Research into ultrasonic guided wave non-destructive testing for the long range in-

spection of large metallic structures is now well advanced. The main advantage of

this method is that a large area can be covered from a given transducer position, so

avoiding expensive scanning of all the structure surface. However, in the presence of

attenuative coatings the test range can be dramatically reduced. As a consequence,

it is of great practical interest to characterise those modes and frequencies which

minimise the guided wave attenuation.

This thesis investigates the nature of shear horizontal (SH) and Lamb waves prop-

agating in elastic plates coated with viscoelastic layers, this geometry being also

representative of coated pipelines with large diameter to wall thickness ratio. For

both SH and Lamb waves the mode which exhibits the highest potential for long

range inspection purposes is identified and analysed. It is demonstrated that Lamb

modes provide longer propagation distance than SH waves. Moreover, it is shown

that the acoustic properties of the coating play a major role in the attenuation of

the guided waves. In order to measure these properties for a broad variety of vis-

coelastic materials, two novel techniques are developed.

The bulk velocities and attenuation of the coating may be obtained by measuring

the phase velocity and attenuation of guided waves propagating in a hollow waveg-

uide filled with the viscoelastic material. This method is feasible when the material

flows sufficiently easily for the cylinder to be filled. An alternative, when the ma-

terial does not flow easily, is to clamp a sample of the coating between two rod

waveguides and to measure the reflection and transmission of guided waves across

the sample. This has enabled the acoustic properties of the bitumen used to provide

corrosion protection on pipes in the chemical industry to be measured both when it

is applied in its viscous liquid state and when it has been in place for many years

and become solid.
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4.7 Lamb wave phase velocity dispersion curves for the bilayer described
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ᾱs = 1np/wl ᾱl = 0: (a) phase velocity for M̄1 ( ) and the lower

modes of the elastic bilayer (− − −); (b) attenuation of M̄1 ( )

and first order approximation (−−−). . . . . . . . . . . . . . . . . . 87

5.1 The grey bands identify the plateau zones in the dispersion curves of

the bilayer: ( ) Lamb waves; ( ) SH waves. . . . . . . . . . . 92

5.2 Bilayer energy factors: ( ) QΓ; (−−−) Q∆; ( ) QE. . . . . . 92

9



LIST OF FIGURES

5.3 Dispersion curves for the bilayer of Tab. 4.1 with ᾱs = 1np/wl:( )
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Y non-dimensional attenuation

Y0, Y1 Bessel functions of the second kind

Z impedance

α bulk attenuation per unit length (np/m)

ᾱ bulk attenuation per wavelength (np/wl)

γ Lamb wave peak distortional strain energy per unit volume

Γ Lamb Wave peak distortional strain energy

δ Lamb wave peak dilatational strain energy per unit volume

δij Kronecker symbol

∆ Lamb wave peak dilatational strain energy

εij strain tensor

ε0 first strain tensor invariant

ζ guided wave attenuation

η correction factor

continue on next page
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λ, µ Lamé moduli

Λ wavelength

ξ k projection along the propagation direction

ξ̄ non dimensional ξ

Π second energy factor

ρ density

σij stress tensor

τrθ, τzθ tangential shear stresses

Υ real part of the axial projection of k

φ scalar potential

χ generalized impedance

ω angular frequency

Ω non dimensional frequency

× vector product

· scalar product

∗ conjugate

∇ three-dimensional differential operator

im subscript, denotes the imaginary part

r subscript, denotes the real part

s subscript, refers to shear type waves

l subscript, refers to longitudinal type waves

v subscript/superscript denote viscoelastic

e subscript/superscript denote elastic

Bold typeface denotes a vector.
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Chapter 1

Introduction

1.1 Motivation

The extraordinary development of new and advanced technologies over the past

century has boosted the growth of non-destructive testing (NDT) leading to a well

established engineering discipline. In order to assess structural integrity, residual

life and so to ensure higher safety standards, NDT methods have been tailored to

suit the inspection requirements of a large variety of structures and materials. In

this context, ultrasound has been playing a major role as leading technique for the

detection of flaws and for the characterisation of the mechanical properties of a wide

range of materials.

More recently, new technologies employing ultrasonic guided waves have been de-

veloped for the long range inspection of large metallic structures. These techniques

are particularly advantageous since the acoustic signal is guided by the structure so

a large length of one dimensional structures (such pipes) or area of two dimensional

structures (like plates) can be inspected. (Note that for lossless one dimensional

structures the signal propagates without being attenuated, while in two dimensional

structures, the signal decays approximately with the square root of the distance [1]).

The detection of flaws is achieved by exciting the acoustic guided wave at one loca-

tion of the structure and by looking at the echoes produced by the defects. Moreover,

in contrast with traditional NDT techniques which are based on the propagation of
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1. Introduction

Figure 1.1: Typical oil steel pipeline coated with bitumen.

longitudinal and shear bulk waves, a broad range of guided waves can be excited.

Depending on the geometry of the structure, on the position of the defects and on

the surrounding environment, a mode can be selected in order to obtain the highest

sensitivity. The use of either extensional [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14] or

distortional [15, 16] modes for inspecting small diameter heat exchangers, large di-

ameter pipelines and storage tank plates has been studied extensively and screening

devices have been designed and commercialized for routine testing [17, 18].

In the oil, gas, chemical and petro-chemical industries highly attenuative materials,

such as bitumen, are often used as coatings in order to protect pipe networks from

corrosion as shown in Fig. 1.1. The possibility of performing long range inspection of

these systems with guided waves is very attractive since with conventional ultrasonic

NDT the scanning of the entire pipeline surface would be required. The scanning

which can be performed from outside the pipe, provided the coating is removed, or

from the inside with a so called ”pig” (a mechanical device which moves inside the

pipe) is time consuming and often prohibitively expensive. For instance, the intro-

duction of the pig inside a pipe carrying liquids requires the shutdown of the pipeline

and maneuverability issues arise in proximity of bends and cross section variations.

On the other hand, guided waves could overcome all these problems since guided
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1. Introduction

ARRAY

Figure 1.2: Transducer array employed for guided wave inspection of pipelines.

modes can be excited from outside the pipe by means of an array of transducers

which occupies only a few square centimeters of the pipe surface as shown in Fig. 1.2.

As a consequence, tests could be carried out by removing a limited portion of the

coating while the pipeline is still in service. However, the full potential of guided

waves can only be exploited if the acoustic signal propagates for a sufficiently large

distance while maintaining an energy level higher than the background noise. The

presence of attenuative coatings, as in the case of bitumen coated pipelines, can dra-

matically attenuate the signal due to the conversion of the mechanical energy of the

wave into heat. As a consequence, there is an urgent need for the characterisation

of the attenuation of guided waves propagating in metallic structures coated with

lossy materials in order to maximise the distance over which flaws can be detected.

The aim of this thesis is to investigate the feasibility of long range guided wave in-

spection of metallic structures coated with bitumen, by identifying those modes and

frequencies which minimise the guided wave attenuation. It should be emphasized

that the extensive use of metallic structures with adhesive joints in the automotive

and aerospace industries together with the need for vibration damping and elec-

trical insulation have led to a massive presence of metallic structures coated with

attenuative materials. Therefore, even though the direct application of the study
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1. Introduction

conducted in this thesis is the inspection of coated pipelines, the results are appli-

cable to a large number of NDT problems.

1.2 Thesis outline

For pipe testing, longitudinal and torsional guided waves are commonly employed.

Moreover, since the vast majority of coated pipelines is characterised by large diam-

eter to wall thickness ratio, the effects of the pipe curvature on the guided modes are

negligible (see for instance [19]) and the propagation of torsional and longitudinal

modes in pipes is equivalent to the propagation of shear horizontal (SH) and Lamb

waves in plates, respectively. Therefore, this thesis will focus on the characterisation

of the attenuation of SH and Lamb waves propagating in elastic plates coated with

viscoelastic layers.

There have been few studies on this subject. Jones [20] and Laperre [21] considered

the propagation of Lamb waves in bilayered elastic plates but they did not explore

the effects of internal losses. On the other hand, the influence of a Newtonian vis-

cous fluid layer on the dispersion of Lamb waves in metallic plates was investigated

by Zhu et al. [22], Yapura et al. [23] and by Nayfeh [24]. However, the hypothesis

of a viscous liquid fails to model the material adequately when the shear elasticity

cannot be neglected.

The thesis is divided into several Chapters each of them dealing with a particular

subject. References on specific topics are given in the relevant Chapters.

Since guided waves can be thought of as a superposition of bulk waves opportunely

polarized, Chapter 2 provides a review of the basic concepts of bulk wave propaga-

tion in viscoelastic materials and emphasizes the differences with the elastic case.

Chapter 3 is a comprehensive analysis of SH wave propagation in elastic plates

coated with viscoelastic layers. The phase velocity and guided wave attenuation as
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1. Introduction

a function of the frequency (dispersion curves) are studied for a perfectly elastic

bilayer and for the same system with low and large material damping.

In Chapter 4 the study of SH waves is extended to the case of Lamb waves, by con-

sidering the same bilayer as in Chapter 2. Moreover, as Lamb waves originate from

the superposition of longitudinal and shear bulk waves (while SH waves depend on

shear bulk waves only), the effects of the longitudinal and shear material damping

on the attenuation of Lamb waves are taken into account separately.

In Chapter 5 the dispersion curves of SH and Lamb waves are compared in or-

der to identify the best test conditions for long range inspections. Moreover, while

the dispersion curves presented in Chapters 3 and 4 always refer to a particular

geometry and mechanical properties of the bilayer, in this Chapter approximate

non-dimensional dispersion curves are derived. These curves enable the prediction

of the guided wave attenuation of either extensional or distortional modes propa-

gating in any bilayer.

In Chapter 6 an anomalous behaviour of Lamb waves observed in Chapter 5 is ex-

plained by considering the propagating and nonpropagating modes of the elastic

bilayer.

The guided wave attenuation is strongly dependent on the material properties of the

coating, as will be shown in Chapters 3, 4 and 5. However, due to the lack of tech-

niques able to measure the properties of highly attenuative materials, in Chapter 7 a

novel method for the characterisation of the acoustic properties of fluid viscoelastic

materials is presented. This technique allows the properties of bitumen coatings to

be measured when it is applied in its liquid state.

Due to the fact that the properties of viscoelastic materials are extremely sensitive

to temperature variations and oxidation phenomena which strongly depend on the

surrounding environment, there is a need for a technique which allows rapid in-situ

measurements of the coating properties to be performed. These measurements to-
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gether with the non-dimensional curves derived in Chapter 7 would enable a quick

estimate of the maximum distance over which defects can be detected. However, the

main difficulty comes from the limited dimensions of samples (typically the size of a

coin) due to the breakage of the coating as it is detached from the metallic substrate.

To overcome this problem in Chapter 8 a new technique for the measurement of the

properties of solid viscoelastic materials is presented.

The main conclusions of the thesis are summarised in Chapter 10 where possible

future applications are illustrated.
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Chapter 2

Bulk wave propagation in

viscoelastic materials

2.1 Background

The aim of this Chapter is to introduce wave propagation in unbounded attenuative

materials. This is an important step towards the understanding of sound propa-

gation in waveguides since guided waves originate from the reverberations of bulk

waves within the waveguide.

The behaviour of a bulk wave can be substantially different depending on whether

the propagation occurs in a lossy or a perfectly elastic medium. In particular, well

known properties of elastic waves, such as the coincidence between phase and energy

propagation directions, no longer apply to viscoelastic waves.

The theoretical model employed to account for material damping and the properties

of viscoelastic waves are discussed and compared with the elastic case. Moreover,

the definition of the material acoustic properties is provided.
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2. Bulk wave propagation in viscoelastic materials

2.2 Equations of motion for linear viscoelastic ma-

terials

Viscoelasticity is universally recognised as the most suitable approach for introduc-

ing material damping, being able to represent the hysteretic nature of attenuative

materials. This subject has attracted considerable attention over the past century

and comprehensive treatises are provided in a number of textbooks (see, for exam-

ple, Christensen [25], Haddad [26]).

The mechanical energy required to statically deform a viscoelastic material is in part

stored as strain energy, which can be released when the sample is unloaded, and in

part is converted into heat. The conversion mechanism is due to the complex nature

of viscoelastic materials in which a number of internal processes such as bond break-

age and bond formation occur. The main implication of these phenomena is that

the response of the material depends on the sample deformation-time history rather

than on the instantaneous value of the strain as in the case of elastic materials (this

is the reason why it is said that viscoelastic materials have ”memory”). The theory

of linear viscoelasticity provides the simplest model to account for such a hysteretic

behaviour.

Let us consider an isotropic and homogeneous viscoelastic medium and a system

of Cartesian coordinates {O, x1, x2, x3}. According to the linear viscoelastic theory,

the stress tensor, σij, at a given time, t, is given by

σij(t) = δij

∫ t

−∞
λ(t − τ)

dεkk(τ)

dτ
dτ + 2

∫ t

−∞
µ(t − τ)

dεij(τ)

dτ
dτ, (2.1)

where δij is the Kronecker symbol and εij is the strain tensor given by

εij =
1

2

(
∂ui

∂xj

+
∂uj

∂xi

)
, (2.2)

where ui is the displacement component along x̂i. The functions λ(t) and µ(t) are the

Lamé relaxation functions, which provide the stress relaxation in the material when

a step deformation is applied. As an example, the function µ(t) can be measured

by applying a state of pure shear deformation, ε12, to a material sample

ε12(t) = h(t), (2.3)
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2. Bulk wave propagation in viscoelastic materials

0
0

Time

σ(
t)

Figure 2.1: Schematic representation of the relaxation phenomenon.

where h(t) is the Heaviside function. If the material were elastic, the stress would

instantaneously rise to the shear modulus of the material and then remain constant

with time. On the other hand, for a viscoelastic material, the stress is maximum

at t = 0 and then decays monotonically as shown schematically in Fig. 2.1. The

stress-time curve provides the relaxation curve

µ(t) = σ12(t). (2.4)

Depending on whether the asymptotic value of this curve is zero or not the material

is referred to as viscoelastic fluid or viscoelastic solid, respectively.

The constitutive equations (2.1) are based on the assumption that the effect of an

arbitrary deformation history can be thought of as a superposition of the relax-

ations of elementary deformation increments, which satisfy (2.4), taken separately.

Therefore, the stress field corresponding to an arbitrary deformation history can be

determined from two relaxation functions only [i.e. λ(t) and µ(t)].

Let us now consider the equations of motion for a continuous medium in the absence

of body forces

ρüi = σij,j, (2.5)

where ρ is the material density and the subscript , j represents the partial derivative

∂/∂xj. These equations represent through the constitutive equations (2.1) and the
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2. Bulk wave propagation in viscoelastic materials

compatibility equations (2.2) a system of integro-differential equations in the three

unknown displacement components ui. However, it can be observed that by tak-

ing the Fourier transform of (2.5) the system reduces to a linear set of differential

equations

(λ̃ + µ̃)∇(∇ · u) + µ̃∇2u + ρω2u = 0, (2.6)

where ω is the angular frequency, ∇ the three-dimensional differential operator and

u is the Fourier transform of the displacement field. Note that in the rest of this

thesis only the Fourier transform of all the time dependent functions (displacements,

stresses etc.) are considered, unless explicitly specified. The linearity of (2.6) is a

consequence of the constitutive equations (2.1) and the convolution theorem which,

in the frequency domain, lead to constitutive relationships which are formally equiv-

alent to those of the elastic case

σij = λ̃δijεkk + 2µ̃εij, (2.7)

with

λ̃(ω) = λ∞ + iω

∫ ∞

0

(
λ(t) − λ∞

)
eiωtdt, (2.8)

µ̃(ω) = µ∞ + iω

∫ ∞

0

(
µ(t) − µ∞

)
eiωtdt, (2.9)

where λ∞ and µ∞ are the asymptotic values of the relaxation curves.

It is interesting to observe that in the time domain, in order to characterise monochro-

matic wave propagation, the functions µ(t) and λ(t) need to be known over the entire

time domain [0 ∞]. On the other hand, by replacing the time dependence with

the frequency through the Fourier transform, a monochromatic wave is completely

characterised by two parameters only, i.e. λ̃ and µ̃. Moreover, these constants can

directly be measured by means of experimental techniques which provide the values

of λ̃ and µ̃ either at a single frequency or over wide frequency ranges.
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2. Bulk wave propagation in viscoelastic materials

2.3 Solution to the wave equation

By using the Helmholtz decomposition [27] the displacement field can be expressed

as a sum of the gradient of a compressional scalar potential, φ, and the curl of an

equivoluminal vector potential, H,

u = ∇φ + ∇× H, (2.10)

with

∇ · H = 0. (2.11)

By substituting (2.10) into (2.6) the equations of motion break down into two un-

coupled equations for the two unknown potentials

a2
l∇2φ + ω2φ = 0, (2.12)

a2
s∇2H + ω2H = 0, (2.13)

where the frequency-dependent complex velocities al and as are given by

a2
l =

λ̃ + 2µ̃

ρ
, (2.14)

a2
s =

µ̃

ρ
. (2.15)

For an unbounded space the solution to (2.12) and (2.13) are

φ = φ0e
−ikl·x, (2.16)

H = H0e
−iks·x, (2.17)

where φ0 and H0 are arbitrary constants and kl,s are the wavenumber vectors which

have to satisfy the secular equations

kl,s · kl,s =
ω2

a2
l,s

. (2.18)

In general k is a complex vector which can be divided into its real and imaginary

parts

k = krn − ikimb, (2.19)

where n and b are the unit vectors directed parallel to the real and imaginary parts

of k, respectively. As a consequence, the secular equation becomes

k2
r − 2ikrkimn · b − k2

im =
ω2

a2
. (2.20)
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2. Bulk wave propagation in viscoelastic materials

This equation admits an infinite number of solutions depending on the angle be-

tween the vectors n and b. Note that k is frequency dependent because ω appears

explicitly in (2.20) and implicitly in the complex velocity a. The next two sub-

sections discuss the displacement and stress fields associated with viscoelastic bulk

waves.

2.3.1 Displacement fields

The displacement field corresponding to φ is irrotational (∇×∇φ = 0) and is given

by

uL = ∇
(
φ0e

−ikl·x
)

= A

(
n − i

kim

kr

b

)
e−kimb·xe−ikrn·x, (2.21)

where A is an arbitrary constant. Expression (2.21) describes the motion of a bulk

longitudinal wave. The quantity (n − ikim/krb) indicates the polarization of the

displacement, the exponential exp(−kimb · x) represents the decay of the wave,

which is maximum along b while exp(−ikrn ·x) accounts for the phase propagation

along n and leads to the definition of the phase velocity cph

cph =
ω

kr

. (2.22)

Let us now calculate the displacement field associated with H. It can be observed

that by applying the condition ∇·H = 0 to (2.17) two cases are possible. First, the

vector potential can be written as

H0 = h0e, (2.23)

where e is a unit vector belonging to �3 and h0 is a complex scalar constant. The

condition ∇ · H = 0 requires that H0 is perpendicular to the plane described by n

and b

H0 · n = 0 H0 · b = 0, (2.24)

and (2.17) can be rewritten as

H = h0
n × b

|n × b|e
−iks·x. (2.25)
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2. Bulk wave propagation in viscoelastic materials

The second condition corresponds to the case in which H0 is a complex vector

H0 = h01e1 + ih02e2, (2.26)

where h01 and h02 are real constants, while e1 and e2 are unit vectors of �3. Since

H has to be equivoluminal, it follows that e1 and e2 have to be perpendicular to n

and b, respectively. Moreover, both the vectors are contained in the plane described

by n and b, thus

H = h0(n × b) ×
(

n − i
kim

kr

b

)
e−ikrn·x, (2.27)

where h0 is a complex scalar constant.

The displacement fields associated with the two vector potentials (2.25) and (2.27)

are

usv
s = B(n × b) ×

(
n − i

kim

kr

b

)
e−kimb·xe−ikrn·x, (2.28)

ush
s = B(n × b)e−ikrn·x, (2.29)

where B is an arbitrary complex constant and the superscripts sv and sh refer to

different polarizations. These expressions, which describe the propagation of bulk

shear waves, are formally similar to (2.21) except for the polarizations which are

perpendicular to that of (2.21). Note that the polarization of (2.28) is parallel to

the plane describe by b and n whereas the polarization of (2.29) is perpendicular.

Note also that (2.21) involves the longitudinal wavenumber, kl, while (2.28) (2.29)

include the shear wavenumber ks.
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2. Bulk wave propagation in viscoelastic materials

c1=n

c2

c3

b

Figure 2.2: Frame of reference.

2.3.2 Characterisation of stresses and energy flux

In order to calculate the stress tensors is more convenient to introduce a frame of

reference {O, c1, c2, c3} in which c1 is parallel to n, c3 = n × b and c2 = −c1 × c3

as shown in Fig. 2.2. In such a frame, the components of the displacement field are

ul = Al




1

kl·c2

kl·n

0


 e−ikl·x, (2.30)

usv
s = Asv

s



−ks·c2

ks·n

1

0


 e−iks·x (2.31)

ush
s = Ash

s




0

0

1


 e−iks·x. (2.32)

(2.33)

The stress tensors can be derived through the constitutive equations (2.7) by sub-

stituting the displacement expressions (2.30), (2.31) and (2.32)into (2.2)
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2. Bulk wave propagation in viscoelastic materials

σl = −iAl




λ̃k·k
k·n + 2µ̃k · n 2µ̃k · c2 0

2µ̃k · c2 λ̃k·k
k·n + 2µ̃ (k·c2)2

k·n 0

0 0 λ̃k·k
k·n


 e−ik·x, (2.34)

σsv
s = −iµ̃Asv

s




−2k · c2
(k·n)2−(k·c2)2

k·n 0

(k·n)2−(k·c2)2

k·n 2k · c2 0

0 0 0


 e−ik·x, (2.35)

σsh
s = −iµ̃Ash

s




0 0 k · n
0 0 k · c2

k · n k · c2 0


 e−ik·x. (2.36)

(2.37)

The characterisation of the stress and displacement fields enables the study of the

energy carried by a bulk wave. Most importantly, for a prescribed direction of the

phase propagation, n, it is now possible to study how the energy propagates in the

surrounding space. This can be done by means of the complex Poynting vector [28],

P, which is defined in analogy with the electromagnetic case and is given by

Pj = −vi
∗σij

2
, (2.38)

where vi is the velocity component along x̂i (vi = iωui) and the superscript ∗ refers

to complex conjugate of the quantity. The energy rate per unit area across an ele-

mentary surface dΣ with normal y can be characterised by the scalar product P · y.

The real part of P · y coincides with the average of the power flow along y over one

cycle [28]. On the other hand, the imaginary part is the peak reactive power which

accounts for the instantaneous energy flux [28].

In order to study the energy propagation the real part of the Poynting vector has

to be considered, as this provides the direction of maximum power flow. Moreover,

since a wave propagates energy and not matter, the propagation direction has to

coincide with the direction of the real part of P.
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2. Bulk wave propagation in viscoelastic materials

The following expressions provide the Poynting vectors of longitudinal and shear

bulk waves.

Pl =
1

2
ω|Al|2




λ̃k·k
k·n + 2µ̃ |k|2

(k·n)∗

k·c2

|k·n|2
(
− λ̃k · k + 2µ̃|k|2

)
0


 e−2kimb·x. (2.39)

Psv
s =

1

2
ωµ̃|Asv

s |2




1
|k·n|2

(
2|k · c2|2k · n + (k · n)|k · n|2 − (k · c2)

2(k · n)∗
)

k·c2

|k·n|2
(
(k · n)2 + |k · c2|2 + 2|k · n|2

)
0


 e−2kimb·x,

(2.40)

Psh
s =

1

2
ωµ̃|Ash

s |2




k · n
k · c2

0


 e−2kimb·x. (2.41)

It can be observed that the Poynting vector belongs to the plane described by b

and n as P3 = 0. Moreover, its direction does not depend on the position vector,

x. This means, that in any point of the space the energy always propagates in the

same direction. However, the exponential decay exp(−2kimb · x), which is present

in all the expressions, shows that the wave is attenuated with distance due to the

conversion of mechanical energy into heat.
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Figure 2.3: Wave fields over the plane x3 = 0: (a) plane elastic wave; (b) evanescent

elastic wave; (c) viscoelastic wave with n ‖ b; (d) viscoelastic wave with n × b �= 0.

2.4 Comparison between elastic and viscoelastic

waves

The viscoelastic model presented in the previous sections is a generalization of the

theory of elasticity. As a consequence, the wave propagation in elastic media can

be derived from the former expressions by assuming that the quantities µ̃ and λ̃ are

real. The aim of this section is to show the main differences between elastic and

viscoelastic bulk waves.

When µ̃ and λ̃ are real, the velocities al,s are also real and the wavenumber solution

to the secular equation (2.20) can be either real or complex.

A real wavenumber corresponds to the case of plane wave propagation and is related
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2. Bulk wave propagation in viscoelastic materials

to the acoustic velocities al,s by a simple expression

k =
ω

al,s

n. (2.42)

Note that since kim vanishes, the vector b can be in any direction. Moreover, from

(2.30), (2.31) and (2.32) it follows that longitudinal waves are polarized parallel to

the direction n while shear waves have polarization perpendicular to n.

Furthermore, both the real and imaginary parts of the Poynting vector are always

parallel to n as can be deduced from (2.39), (2.40) and (2.41)(note that k · c2 = 0).

As a result, the propagation direction coincides with n. Figure 2.3a shows a typical

distribution of the field functions associated with a plane wave over the plane x3 = 0.

The complex solutions to (2.20) correspond to evanescent waves. In this case, since

the right hand term in (2.20) is real, n and b have to be perpendicular and the

secular equation becomes

k2
r − k2

im =
ω2

a2
. (2.43)

Longitudinal and shear evanescent waves have displacement components in both n

and b directions, expressions (2.30) and (2.31), or along c3 only (2.29) as in the

case of plane waves. The wave fields exponentially decay along b, the typical field

distribution being shown in Fig. 2.3b. However, the real part of the Poynting vector

is still parallel to n. This can be shown by observing that in (2.39), (2.40) and

(2.41) the second row is always imaginary (k ·c2 = −ikim). As a consequence, along

the directions perpendicular to n the average power flow vanishes, while the peak

reactive power is non zero. Therefore, it can be concluded that in the elastic case

the propagation direction and phase propagation direction are always coincident. It

has to be emphasized that this is a consequence of the elastic hypothesis only. For a

viscoelastic material, the real part of the Poynting vector is never parallel to n [see,

(2.39) (2.40) and (2.41)], unless b is parallel to n. This is shown in Fig. 2.4 which

provides the angle between the real part of P and n as a function of the angle be-

tween n and b. This curve refers to the case of a shear wave propagating in a highly

attenuative viscoelastic medium (µ = 0.18 + i0.13 GPa and ρ = 1200Kg/m3) at

50kHz and polarized parallel to the plane described by b and n. When b is parallel
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2. Bulk wave propagation in viscoelastic materials
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Figure 2.4: Angle formed between the real part of the Poynting vector and n versus the

angle between n and b for a shear bulk wave propagating in a viscoelastic material.

to n, the power flows along n. However, as the angle between b and n increases,

P rotates. The maximum angle between P and n is π/4 and is reached when b

is perpendicular to n. However, this is a limit condition as b and n can never be

perpendicular for a viscoelastic material [see eq. (2.20)]. Moreover, Fig. 2.4 shows

that the direction of the Poynting vector is always between b and n.

Figure 2.3c shows the field distributions for a viscoelastic bulk wave when b is par-

allel to n. In this case the wave fields decay along n only. Moreover, the Poynting

vector is parallel to n. On the other hand, when n × b �= 0 (Fig. 2.3d) the wave

fields are exponentially damped along n and c2, and the Poynting vector is directed

somewhere between n and b.

35



2. Bulk wave propagation in viscoelastic materials

2.5 Acoustic properties of viscoelastic materials

The acoustic behaviour of an isotropic and homogeneous viscoelastic medium is

completely characterised by four real, frequency dependent parameters, which can

be related to the two complex Lamé moduli, as pointed out in Sec. 2.2. Since lon-

gitudinal and shear waves are independent acoustic responses of the medium, it

follows that the acoustic properties have to be specified in terms of longitudinal and

shear waves. On the other hand, for a prescribed material, an infinite number of

bulk waves can propagate depending on the angle between b and n. However, if this

angle is fixed the wavenumber becomes uniquely linked to the material properties.

On the basis of such an argument, the acoustic properties are defined by considering

the case in which b and n are parallel (Fig. 2.3c). It should be emphasized that such

a definition is due to experimental reasons, since the ideal condition of parallelism

between b and n is the easiest to achieve during laboratory experiments. Moreover,

this definition includes the case of elastic materials for which the acoustic properties

are defined by considering shear and longitudinal plane waves (see Fig. 2.3a).

The acoustic properties are given in terms of phase velocity, c, and attenuation, α, of

longitudinal and shear bulk waves, the attenuation corresponding to the imaginary

part of the wavenumber

cl,s =
ω

Re{kl,s} αl,s = −Im{kl,s} b ‖ n, (2.44)

where Re{·} and Im{·} refer to the real and imaginary parts of the quantity. In the

following, the phase velocity c will be referred to as the bulk velocity and α as the

bulk attenuation (np/unit length or dB/unit length ). Note that the bulk velocities

and attenuations are frequency dependent since kl,s also depend on the frequency.

The attenuation can alternatively be expressed in terms of Neper per wavelength

(np/wl), ᾱ.

ᾱ = αΛ, (2.45)

where Λ is the wavelength. This definition turns useful for those materials whose

attenuation per unit length is a linear function of the frequency while the bulk ve-

locity is mainly constant with frequency, since ᾱ becomes constant.
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2. Bulk wave propagation in viscoelastic materials

The bulk velocity and attenuation can be related to the complex velocities (2.14)

and (2.15) through (2.20)

al,s =
cl,s

1 − iαl,scl,s

ω

, (2.46)

which also allow the acoustic properties to be related to the Lamé moduli through

(2.14) and (2.15).

2.6 Summary

The theory of bulk wave propagation in viscoelastic media and a comparison with

the elastic case have been presented.

In the viscoelastic case bulk waves can be divided into longitudinal and shear waves.

The longitudinal displacement field is irrotational while the shear one is equivolu-

minal. Moreover, for an elastic wave the propagation direction and the phase prop-

agation direction are always coincident, whereas in the viscoelastic case this only

occurs when the real and imaginary parts of the wavenumber vector are parallel.
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Chapter 3

SH wave propagation in bilayers

3.1 Background

This Chapter addresses the dispersion of shear horizontal (SH) waves propagating

in metallic plates coated with viscoelastic layers. The results obtained for this type

of geometry can be extended to the case of torsional waves propagating in hollow

cylinders with large diameter to wall thickness ratio as discussed in Chapter 1.

The dispersion of SH waves is due to the frequency dependence of the acoustic prop-

erties of the viscoelastic layer (see Chapter 2) and to the interaction between the

wavelength and the geometry of the bilayer. Previous studies have considered the

propagation of Lamb waves in an elastic plate bordered with a viscous liquid [23, 22].

However, the hypothesis of a viscous liquid does not consider the shear elasticity

of the material. Moreover, while for a Newtonian fluid the frequency dependence

of the acoustic properties is known as a function of the viscosity, for a viscoelastic

material it is not possible to state a general frequency dependence which can take

into account all the different viscoelastic materials (the generalized Kelvin-Voigt, or

Maxwell models depend on an infinite number of parameters).

While the frequency dependence of the viscoelastic material cannot be predicted,

the effect of the interaction between the wavelength and the geometry can be stud-

ied by using an ideal frequency dependence model for the acoustic properties of the

viscoelastic layer. The ideal model takes into account the elasticity and the damping
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3. SH wave propagation in bilayers

of the material separately. In particular, the elasticity is considered by assuming

that the bulk velocity is independent of the frequency (as in the case of perfectly

elastic materials) whereas the damping is taken into account by considering a bulk

material attenuation linearly proportional to the frequency. As the acoustic prop-

erties of a generic viscoelastic material can always be thought of as a perturbation

of the ideal model, it follows that the dispersion curves of the ideal bilayer can also

be generalized through a perturbation procedure.

The dispersion equation for SH wave propagation in bilayers is derived in Sec. 3.2.

In order to study the interaction between the wavelength and the geometry of the

bilayer, the possibility of relating the attenuation of SH modes to the energy distri-

bution over the cross section of the bilayer, considered to be elastic, is investigated

in Sec. 3.3. The dispersion curves of the elastic bilayer are studied in Sec. 3.4. The

effects of low material damping are considered in Sections 3.5 and 3.6 while large

material absorption is examined in Sec. 3.7.

3.2 SH waves in bilayered plates

Let us consider an elastic and isotropic plate of infinite extent in the x̂2 direction

and a viscoelastic layer rigidly coupled together (Fig. 3.1). Shear horizontal waves

in multilayered systems are given by the superposition of bulk shear waves [of the

form (2.29)] polarized parallel to the boundaries of the layers and with the vectors

b and n parallel to the plane x2 = 0. In particular, in the case of the bilayer, the

solution is obtained by considering one pair of bulk waves in each layer (see Fig. 3.1).

These waves are frequently referred to as partial waves [29].

The Lamé moduli can be expressed as a function of the complex velocities, al,s, and

the density by inverting (2.14) and (2.15), it follows that the stress tensor (2.7) can

be regarded as the product of the density, a suitable tensor Tij which depends on
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3. SH wave propagation in bilayers
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Figure 3.1: Partial waves diagram.

the bulk velocities only and the amplitude, A, of the bulk wave

σij = ρTijA, (3.1)

TijA = (a2
l − 2a2

s)δijε0 + 2a2
sεij. (3.2)

The secular equation for the bilayer can be found by imposing continuity of stress

and displacement at the interface between the two layers, and the zero traction

condition at the free boundaries of the bilayer [30]. This leads to a system of four

equations in the four unknown bulk shear wave amplitudes, A
SH±
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
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= 0, (3.3)

where the subscripts v and e refer to the viscoelastic and elastic layers respectively,

while the signs ± indicate the upward and downward directions of the bulk waves,

respectively. Since the displacement is polarized parallel to x̂2 and is constant along

this direction, it follows that the stress on the planes x3 = const. is parallel to x̂2.

The first row in the equation (3.3) gives the traction free condition on the top of the

bilayer, the second and third provide the continuity of displacement and stress at the

interface respectively, and the last gives the traction free condition at the bottom of

the bilayer. The system (3.3) admits non trivial solutions only if the determinant

of the matrix vanishes. This condition provides the secular equation for SH waves

in bilayered plates.
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3. SH wave propagation in bilayers

The phase velocity of the resulting guided wave is

cph =
ω

Re{ξ} , (3.4)

where ξ is the projection of the wavenumber along the interface (ξ is an invariant for

all the partial waves as Snell’s law holds). Moreover, the −Im{ξ} gives the guided

wave attenuation, ζ. Furthermore, the Fourier transformed displacement field has

the form

u2(x1, x3, ω) = h2(qx3)e
−ζx1e

−i ω
cph

x1
, (3.5)

where the function h2 is the mode shape and q the wave number projection along

the x̂3 direction (q is different in the two layers).

3.3 Guided wave attenuation

Since the guided wave attenuation depends on the amount of energy dissipated

in the viscoelastic layer, it is of crucial importance to investigate the relationship

between the mechanical energy, the guided wave attenuation, ζ, and the acoustic

properties of the viscoelastic layer. This analysis can be carried out by means of the

complex acoustic Poynting’s theorem [28]. According to this theorem, for a volume,

V , bounded by the closed surface, S, the sum of the net flux of the complex Poynting

vector into S and the average power dissipated over one cycle within V , Pd, equals

the Fourier transformed time derivative of the difference between the peak strain

energy, U , stored in V and the peak kinetic energy, K, contained in the same volume

giving∮
S

P · ydS − iω(U − K) + Pd = 0, (3.6)

where y is the outward normal to S and P is the Poynting vector (2.38). The real

part of the complex Poynting vector flux is the average net power flow into S over

one cycle [28]. Moreover, by considering the real part of eq. (3.6) it follows that the

dissipated power, Pd, equals in magnitude the average power flow through S (since

U , E and Pd are real). This allows the guided wave attenuation to be linked to
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3. SH wave propagation in bilayers
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the energy dissipation. In order to determine this relationship for the bilayer, let

us calculate the net flux into a rectangular parallelepiped of unit width in the x̂2

direction, and with height equal to the thickness of the bilayer (see Fig. 3.2). As

the stress field can be related to the displacement field through the complex Lamé

constants, by substituting (3.5) into (2.38) the flux through a transversal surface

perpendicular to x̂1, St, at the position x1 can be written as

Px1 =
1

2
ωξe−2ζx1

∫
de+dv

(
µ̃ | h2(qx3) |2

)
dx3. (3.7)

Moreover, the flux through each lateral surface perpendicular to x̂3, Sl, is zero as the

stresses vanish on the free surfaces of the bilayer. Furthermore, the flow across the

faces perpendicular to x̂2, Sf , vanishes as the stress is perpendicular to the displace-

ment along these surfaces. As a result, the total flow through the parallelepiped,

which corresponds to the integral in eq. (3.6), is the difference between the fluxes

calculated at the two transversal surfaces. Moreover, by considering the real part of

(3.6), the power balance can be written as

∆Re{Px1} + Pd = 0, (3.8)

where ∆ refers to the difference between the power flows through the transversal

surfaces. Expression (3.8) indicates that the power flow decay along the propagation

direction equals the power loss. Moreover, while for an elastic bilayer a mode is

propagating only above its cutoff frequency and is not propagating below it [31],

for a bilayer with internal damping a mode is always propagating. If there were

nonpropagating modes (zero in-plane power flow), the in-plane average power flow

would be zero by the definition of nonpropagating modes and consequently, from

(3.8) the power loss would be zero, which is physically inconsistent.
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3. SH wave propagation in bilayers

By substituting (3.7) into (3.8) and differentiating with respect to x1 one obtains

ζ =

dPd

dx1

2Re{Px1}
, (3.9)

which provides the guided wave attenuation as the ratio of the average dissipated

power per unit volume over the average in-plane power flow per unit width.

Generally speaking, at a prescribed point of a viscoelastic medium, the average

dissipated power per unit volume can be related to the peak strain energy per unit

volume [28]. In particular, for SH waves the peak strain energy per unit volume, es,

is

es = 2µ̃v
r(ε12ε

∗
12 + ε23ε

∗
23), (3.10)

in which the subscript r refers to the real part of the quantity. On the other hand,

the average dissipated power per unit volume, pd, is given by

pd = 2ωµ̃v
im(ε12ε

∗
12 + ε23ε

∗
23), (3.11)

where the subscript im refers to the imaginary part of the quantity. Since for the

bilayer all the field functions are constant along the x̂2 direction it follows that the

total power dissipated in V has to satisfy

dPd

dx1

=

∫
dv

pddx3 = ω
µv

im

µv
r

∫
dv

esdx3 = ω
µv

im

µv
r

dE

dx1

, (3.12)

where E is the peak strain energy of the portion of the viscoelastic layer contained

in V

dE

dx1

=

∫
dv

2µ̃v
r(ε12ε

∗
12 + ε23ε

∗
23)dx3. (3.13)

As a result, the guided wave attenuation can be expressed as

ζ =
1

2
ω

µ̃v
im

µ̃v
r

QE, (3.14)

where

Qe =
dE
dx1

< P >
, (3.15)

is the first energy factor. (Qe has been termed an energy factor as this gives an

appreciation of its application). It follows that the guided wave attenuation is
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3. SH wave propagation in bilayers

proportional to the first energy factor multiplied by the ratio of the imaginary to the

real part of µ̃v. Generally speaking, Qe also depends on µ̃v as the wavenumbers and

the mode shapes contained in (3.13) and (3.7) depend on µ̃v. However, for weakly

attenuative materials µ̃v
im is considerably smaller than µ̃v

r . As a consequence, in the

first order approximation the guided wave attenuation can be related to the first

energy factor of the elastic bilayer (obtained by assuming µ̃v = µ̃v
r) by considering

the Maclaurin expansion of the function ζ(µ̃v
im) up to the first order

ζ 	 1

2
ω

µ̃v
im

µ̃v
r

Qe

∣∣
µ̃v

im=0
. (3.16)

However, (3.16) does not provide the guided wave attenuation when the frequency

is lower than the cutoff frequency of the elastic mode to which Qe refers. At these

frequencies, the power flow Px1 is purely imaginary as the elastic mode is nonprop-

agating. As a consequence, Qe becomes singular and the Maclaurin expansion can

no longer be employed. Nevertheless, the guided wave attenuation can be still re-

lated to the nonpropagating modes. For this purpose, it is sufficient to consider the

imaginary part of Poynting’s theorem (3.6) which, by following an argument similar

to that employed for obtaining eq. (3.8), leads to another expression for the energy

balance

∆Im{Px1} − ω(U − K) = 0. (3.17)

By differentiating this expression with respect to x1 and by taking into account

(3.7), a new expression for the guided wave attenuation is obtained

ζ = ω
d

dx1
(U − K)

2Im{Px1}
, (3.18)

which relates the energy decay to the guided wave attenuation. As a consequence,

the guided wave attenuation can be expressed as a function of the second energy

factor, Π

ζ =
1

2
ωΠ, (3.19)

where Π is defined according to

Π =
d

dx1
(U − K)

Im{Px1}
. (3.20)
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In a similar fashion to the earlier approximation of equation (3.14), the guided wave

attenuation in the case of low loss materials can be approximated by considering

the Maclaurin series of the function ζ(µ̃v
im) up to zero order

ζ 	 1

2
ωΠ

∣∣
µ̃v

im=0
, (3.21)

which allows the guided wave attenuation to be derived from the nonpropagating

modes of the elastic bilayer. Since ζ is the projection of the imaginary part of

the wavenumber along the interface, Π
∣∣
µ̃v

im=0
can be obtained from the value of the

imaginary part of the wavenumber of the non propagating mode through (3.21)

Π =
2

ω
ξ
∣∣
µ̃v

im=0
. (3.22)

It follows that, under the zero order approximation, the guided wave attenuation

in the attenuative system corresponds to the projection of the wavenumber of the

nonpropagating mode of the corresponding elastic system along the interface.

The energy factors, Qe and Π, allow the attenuation of the lossy bilayer modes to

be derived from the elastic theory, once the frequency domain of each elastic mode

is divided into the nonpropagating and propagating regions. Moreover, while in

the nonpropagating region the zero order approximation is valid for low loss mate-

rials, in the second region the first order approximation is needed (the zero order

approximation would give zero guided wave attenuation). This type of approach

suggests that the guided wave attenuation can be studied by considering two differ-

ent regimes of material damping which can be classified as low and high attenuation

regimes respectively. In the first regime, the zero and first order approximations are

allowed, and the guided wave attenuation can be predicted by using the two energy

factors, Qe and Π, while in the high attenuation regime, higher order terms in the

Maclaurin expansion have to be taken into account.

The results obtained so far are based on a monochromatic approach. As a conse-

quence, they are valid whatever the frequency dependence of the material is. How-

ever, as the goal of this Chapter is the understanding of the effects of the viscoelastic

layer on the dispersion of the free elastic plate, it is necessary to derive a theory

which, starting from the dispersion curves of the elastic bilayer leads, through some

45



3. SH wave propagation in bilayers

approximation, to the dispersion of the attenuative bilayer. Here, it has been shown

that at a given frequency the guided wave attenuation can be derived from the en-

ergy factors of the elastic bilayer which is obtained by setting the imaginary part

of the shear modulus of the viscoelastic layer to zero, with the real part remaining

unchanged. Strictly speaking, this bilayer is artificially elastic as the frequency de-

pendence of the shear modulus requires the existence of its imaginary part as can be

deduced from the Kramers-Krönig relationship [32]. However, it is always possible

to assume that the real part of µ̃v consists of the sum of a constant part and a

frequency dependent term

µ̃v
r = µv

0 + µv
1(ω). (3.23)

The dispersion of the pseudo elastic bilayer (obtained by considering the frequency

dependent real part of µ̃v), can be obtained as a perturbation of the dispersion of

an equivalent elastic bilayer which is defined as the bilayer with µ̃v = µv
0. The

perturbation term, Qp, can be calculated by employing the Taylor expansion of the

generic energy factor Q (either Qe or Π)

Q(ω, µ̃v
r) = Q(ω, µv

0) +
∞∑

m=1

1

m!

∂Q(m)

∂µ̃v
r

(µv
1(ω))m, (3.24)

in which the series in the right hand term is Qp. As a result, the dispersion of the

guided wave can be regarded, in the zero and first order approximation, as a super-

position of the guided wave attenuation due to the equivalent elastic bilayer plus

the guided wave attenuation due to the perturbation term Qp. However, weakly

attenuative materials are characterised by µ̃v
r being only slightly dispersive, which

implies that Qp is negligible whenever the zero and first order approximations hold.
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Figure 3.3: Phase velocity dispersion curves for the elastic bilayer described in table 3.1

with ᾱs = 0.

3.4 SH modes in elastic bilayers

Since the bulk shear velocities of viscoelastic materials are lower than those of met-

als, in the rest of this Chapter the metallic plate is referred to as the ”fast plate”

(FP) while the viscoelastic layer is termed the ”slow plate” (SP).

For elastic materials, the characteristic equation (3.3) can be rewritten as (see, for

instance, Nayfeh [33])

sin(dfqf) cos(dsqs)
qf

qs

+ cos(dfqf) sin(dsqs)
µs

µf

= 0, (3.25)

where the subscripts S and F refer to the slow and fast plates respectively; df,s are

the thicknesses of the plates. It should be emphasised that only the shear properties

of the bilayer are involved in the propagation of SH waves. Therefore, in the rest of

this chapter, all the bulk velocities and attenuations are meant to be of the shear

type, and the subscript S always refers to the slow layer. The quantities qf,s are the

projections of the wavenumber along the normal to the bilayer, x̂3. Moreover, the

trigonometric functions are complex as their arguments are in general complex.

47



3. SH wave propagation in bilayers

(b)Rigid boundary

x1

x3 x3

x2

Vacuum

x1

x3 x3

x2

Vacuum

Vacuum (a)

SH0SH1

SH1 SH0

Figure 3.4: Different boundary conditions and corresponding displacement fields for the

first two modes: (a) free plate; (b) clamped-free plate.

Figure 3.3 shows typical dispersion curves of all the propagating modes in the range

of frequency from 0 to 1MHz for the bilayer whose acoustic properties and geometry

are summarized in table 3.1, the attenuation in the slow layer being neglected. The

curves have been traced by using Disperse [34] which essentially solves eq. (3.25).

By contrast with the case of a single free plate, for the bilayer it is not possible

to express the phase velocity as a function of the frequency-thickness product only.

Therefore, all the dispersion curves shown in this and in the next Chapter will refer

to a specific geometry and acoustic properties of the bilayer, while in Chapter 5

approximate non-dimensional dispersion curves will be considered.

In order to characterise the dispersion curves of the bilayer, let us consider the modes

of both the free SP and the free FP (Fig. 3.4a). SH wave propagation in free elastic

plates represents the simplest case of guided waves, and the analytical expression

Table 3.1: Material and geometric properties of the bilayer used for the study of SH wave

propagation.

Shear velocity (m/s) ᾱ (np/wl) ρ (Kg/m3) Thickness (mm)

Slow plate 900 0.10 1250 9.00

Fast plate 3260 - 7930 8.00
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Figure 3.5: Phase velocity dispersion curves for the free plates (Tab. 3.1 with ᾱs = 0):

( ) slow plate; (−−−) fast plate; (◦) transition points.

for the Nth order mode, SHN , is given by [35]

f 2

c2
− f 2

c2
ph

=

(
N

2d

)2

, (3.26)

where Nε{0, 1, 2, ...}, d and c are the thickness and the shear velocity of the plate

respectively. As shown in Fig. 3.5 an infinite number of intersections between the

modes of the FP and those of the SP occur. The frequencies, fm,n, where the SHf
m

modes of the free FP intersect the SHs
n modes of the free SP are given by

f 2
m,n =

c2
fc

2
s

c2
f − c2

s

[ (
n

2ds

)2

−
(

m

2df

)2
]
. (3.27)

Since at the frequency fm,n the SHf
m mode propagates at the same speed, cphm,n, as

SHs
n, and as the stress vanishes on the boundaries, it follows that these two modes

can also propagate in the joined plates. As a result, it is possible to conclude that

the intersection points of the isolated plates belong to the modes of the bilayer.

Moreover, these intersections are characterised by zero stress at the interface of the

bilayer.
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3. SH wave propagation in bilayers

Of particular interest are the intersections of the SHs
n modes with the SHf

0 mode,

which occur at the frequencies

f 2
0,n =

c2
fc

2
s

c2
f − c2

s

(
n

2ds

)2

, (3.28)

for n �= 0. The frequencies provided by this expression coincide with the transition

frequencies of Love waves. Love waves are SH waves propagating in a plate rigidly

bonded to a half space and polarized parallel to the plate [36]. The transitions occur

when the phase velocity equals the shear bulk velocity of the half space, which can

happen only if the plate bulk velocity is lower than that of the half space. Below

the transition frequency, energy leakage from the plate into the half space occurs.

However, as the frequency reaches the transition value, no more leakage occurs and

the wave energy is mainly trapped in the plate. A similar phenomenon occurs in the

case of the bilayer. Above the transition frequency, the partial waves in the FP be-

come evanescent and the guided wave energy is trapped in the slow layer. Since this

effect occurs at all the intersections, in the rest of this Chapter, the term ”transition

frequency” is used with reference to all the frequencies provided by (3.27). Moreover,

the term ”transition point” refers to the points (fm,n, cphm,n) of the dispersion curves.

Let us consider the dispersion curves in the case in which only one face of the plate

is free while the other is rigidly clamped (Fig. 3.4b). In this case the dispersion

curve for the Mth order mode, SH ′
M , is

f 2

c2
− f 2

c2
ph

=

(
2M + 1

4d

)2

, (3.29)

where Mε{0, 1, 2, ...}. Figure 3.6 shows the dispersion curves for both the FP and

SP in the clamped-free case. The intersection of the SH ′f
m mode of the clamped-free

FP with the SH ′s
n mode of the clamped-free SP occurs at

f ′2
m,n =

c2
fc

2
s

c2
f − c2

s

[ (
n

4ds

)2

−
(

m

4df

)2
]
. (3.30)

The intersections of the clamped-free plate modes also belong to the dispersion

curves of the bilayer. At the frequency f ′
m,n, the SH ′f

m mode propagates at the

same phase velocity as SH ′s
n. As a consequence, since the displacement at the

clamped boundary vanishes, the two modes can also propagate if the clamps are re-

moved and the plates are joined together. Moreover, at these frequencies the bilayer
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Figure 3.6: Phase velocity dispersion curves for clamped-free plates (Tab. 3.1 with ᾱs =

0): ( ) slow plate; (−−−) fast plate; (�) nodal points.

displacement field vanishes at the interface of the bilayer. In other words, at the

frequencies f ′
m,n, the interface is a nodal plane. For this reason, in the following,

the intersection points of the clamped-free plate modes will be referred to as ”nodal

points” and the frequencies f ′
m,n as ”nodal frequencies”.

A further insight into the dispersion of SH modes in the bilayer is provided by an

asymptotic solution obtained by considering the limit as the stiffness and the density

of the FP go to infinity at constant shear velocity cf. For this purpose, it can be

observed that the matrix in (3.3) can be partitioned into four square matrices and

the characteristic equation can be written according to

det


C11 C12

C21 C22


 = 0, (3.31)

where the matrices Cij have dimension 2× 2. As a consequence, by considering the

limit as the stiffness and the density of the FP go to infinity, the matrices Cij remain

unchanged except for C21 which vanishes (since ρv/ρe → 0), since the displacements

and the quantities Tij depend only on the two bulk velocities. As a result, for this
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3. SH wave propagation in bilayers

asymptotic condition, the characteristic equation becomes [37]

det


C11 C12

0 C22


 = det(C11)det(C22) = 0, (3.32)

which is satisfied if either det(C22) = 0 or det(C11) = 0. These conditions define

two families of modes.

The first condition coincides with the characteristic equation for the free FP as

C22 is a function of the stress on the two faces of the FP. The asymptotic modes

belonging to this family are given by

qf =
nπ

df

. (3.33)

The second condition corresponds to wave propagation in the SP if it were rigidly

clamped at the interface. This is due to the fact that C11 is a function of the stress

at the top of the bilayer and the displacement of the SP at the interface. Therefore

the modes of the second family are characterised by

qs =

(
p − 1

2

)
π

ds

, (3.34)

where p is an integer. The two families of asymptotic modes are shown in Fig. 3.7. It

has to be emphasized that the asymptotic solution holds also in the case of attenua-

tive bilayers since (3.3) has been derived for the general case of viscoelastic materials.

As the the stiffness and the density of the FP become large compared to those of

the SP the dispersion curves of the bilayer tend to the asymptotic modes. However,

the dispersion curves of the bilayer only intersect the asymptotic solution at specific

points as shown in Fig. 3.8. The intersections with the first family occur at the

transition points as they do not depend on the stiffness and density of the material

(see equation (3.27)). For the same reason, the intersections with the second family

occur at the nodal points.

52



3. SH wave propagation in bilayers

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

Frequency (MHz)

Ph
as

e 
ve

lo
ci

ty
 (

m
/m

s)
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The two families of asymptotic modes cross each other at several points but it

is interesting to note that the dispersion curves for different modes of the bilayer

(Fig. 3.3) never cross. Each mode follows a path close to that of the asymptotic so-

lution but veers away from it at the points where modes for the different asymptotic

families cross, as these points cannot belong to the bilayer mode.

This mode repulsion phenomenon is similar to that seen in Lamb waves. According

to Überall et al. [38] the Lamb modes in a free plate can be regarded as an interac-

tion between the modes of a fluid layer in vacuum (which has zero shear velocity)

and those of an artificial layer in vacuum which only supports shear waves (with zero

longitudinal velocity). The interaction results in the mode repulsion, which causes

the change of a Lamb mode character from primarily longitudinal to primarily shear

or vice versa.

It can be concluded that the modes of the elastic bilayer originate from the coupling

of the modes of the free FP and those of the clamped-free SP (Fig. 3.4). Moreover,

the coupling mechanism causes the jumping of a bilayer mode path between several

asymptotic modes. For instance, as the frequency increases, the trajectory of the

SH1 mode jumps from the SH ′s
0 into the FP mode, SHf

0, and then jumps again into

the SH ′s
1 mode as shown in Fig. 3.8. In this thesis this phenomenon will be referred

to as ”mode jumping”.
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Figure 3.9: First energy factor for the SH1 mode of the elastic bilayer defined in Tab. 3.1

with ᾱs = 0: ( ) bilayer; (· · ·) clamped-free SP; (◦) transition frequency; (−−−) Qe

asymptotic.

3.5 Low material attenuation regime

In the low attenuation regime the zero and first order approximations are satisfactory

and the perturbation factor of eq. (3.24) can be neglected. As a consequence, the

frequency dependence of the guided wave attenuation can be analysed by studying

the dispersion of the equivalent elastic bilayer factors Qe and Π. Fig. 3.9 shows

the first energy factor as a function of frequency for the SH1 mode of the elastic

bilayer studied in Sec. 3.4 (see Fig. 3.8). The dotted lines provide Qe for the two

asymptotic modes, SH ′s
0 and SH ′s

1, which best approximate SH1. For the clamped-

free configuration, the analytical expression for Qe can be derived from (3.7) and

(3.13)

Qe =
cph

c2
s

, (3.35)

where cs is the shear velocity in the slow layer and the phase velocity is related to

the frequency by (3.29).

As the frequency goes to infinity, the SH1 mode of the bilayer tends to the SH ′s
1
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3. SH wave propagation in bilayers

mode of the clamped-free SP and, as a consequence, Qe of the SH1 mode tends to

Qe of the SH ′s
1 mode. Since the phase velocity of SH ′s

1 tends to cs, it follows that

lim
f→∞

Qe =
1

cs

, (3.36)

which corresponds to the dashed line in Fig. 3.9. On the other hand, as the fre-

quency approaches the bilayer cutoff frequency, Qe becomes singular as the in-plane

power flow vanishes.

At the Love transition frequency Qe has a minimum. As the mode shapes in the

two plates, at this frequency, are the same as those of the isolated plates (constant

displacement for the FP and sinusoidal distribution for SP as shown in Fig. 3.4) the

Qe value can be calculated by using (3.7) and (3.13)

Qe =
1

cs

1
cs

cf
+ 2 cfρfdf

csρsds

. (3.37)

Since the functions involved in the integrals (3.7) and (3.13) depend on the square

of sinusoidal functions, these integrals do not depend on the order of the SP mode.

As a result, (3.37) is independent of the mode considered. Moreover, it is usually

lower than 1/cs as the product cfρfdf involves the acoustic impedance (cfρf) of the

fast plate which is much larger than that of the slow plate. Consequently, since

in the limit as f goes to infinity, Qe tends to 1/cs with a negative slope, it fol-

lows that a Qe maximum has to occur after the transition frequency (see Fig. 3.9).

The steep positive slope of Qe after the transition frequency marks the rapid energy

migration from the FP towards the SP which is in agreement with Love wave theory.

According to Sec. 3.3, the guided wave attenuation can be derived from the Q factors

of the equivalent elastic plate and the perturbation factor. In particular, since for

low loss materials the complex shear modulus can be related to the bulk attenuation

per wavelength, ᾱs, according to

ᾱs 	 π
Im{µ̃s}
Re{µ̃s} , (3.38)

the guided wave attenuation can be expressed as

ζ 	 fᾱsQe. (3.39)
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Figure 3.10: Guided wave attenuation versus frequency for the bilayer defined in Tab. 3.1,

with 0.1np/wl bulk attenuation in the SP: ( ) numerical solution from Disperse;

(−−−) first order approximation.

Moreover, for many low loss materials, the bulk attenuation is approximately pro-

portional to the frequency, so the bulk attenuation per wavelength is constant (since

the real part of the shear modulus is almost non-dispersive). Figure 3.10 shows the

guided wave attenuation calculated by the Disperse software which solves numeri-

cally the exact secular equation (solid grey line), and the first order approximation

(dashed line) in the propagating domain for the first three modes of the bilayer.

The excellent agreement between the two different calculations proves the validity

of (3.16). Moreover, the strong frequency dependence of the guided wave attenua-

tion is mainly due to the dispersion of the first energy factor of the elastic bilayer.

Also, minima of the guided wave attenuation spectrum must occur around the Love

transition frequencies since the energy factors have minima at those frequencies.

Figure 3.11 shows the comparison between the solution obtained from Disperse

(solid grey line) and the zero order approximation obtained through the Π factor

(dashed line). For each mode, the approximation is in agreement with the Disperse

prediction for frequencies up to the cutoff frequency of the corresponding equivalent
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Figure 3.11: Guided wave attenuation versus frequency for the same bilayer as figure

3.10: ( ) numerical solution from Disperse; (−−−) zero order approximation.

elastic mode. Figure 3.11 also shows the numerical solution in the propagating region

of the first two equivalent elastic modes, which correspond to the first two modes

shown in Fig. 3.10. It can be noticed that, for each mode, below the cutoff frequency

of the equivalent elastic mode the guided wave attenuation is extremely high while it

rapidly drops as the frequency approaches the cutoff. As a consequence, for practical

purposes, the modes can be regarded as nonpropagating below the cutoff frequencies

of the equivalent elastic bilayer.
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Figure 3.12: Asymptotic phase velocity (a) and guided wave attenuation (b) dispersion

curves: (−−−) first family; ( ) second family.

3.6 Mode jumping

In Sec. 3.4 it has been shown that for the equivalent elastic bilayer, each mode orig-

inates from the coupling of different asymptotic modes which results in the mode

jumping previously studied. In this section it will be shown that, if the material

attenuation is considered, the bilayer mode paths do not necessarily jump.

This phenomenon becomes evident if an asymptotic solution for the attenuative bi-

layer is considered. In particular, by taking the limit as the stiffness and the density

of the FP go to infinity at constant shear velocity, it can be shown that the dispersion

curves tend to two families of modes which correspond to those discussed in Sec. 3.4.

The first family coincides with the free FP modes, which propagate without being

attenuated as all the energy flows in the elastic FP. The second family corresponds

to the clamped-free modes of the SP, which are highly attenuated. Figure 3.12 shows

the phase velocity and guided wave attenuation dispersion for the two families. The

curves have been obtained by modelling the SP according to Tab. 3.1 and assuming

constant bulk wave attenuation per wavelength (ᾱ = 0.1np/wl).
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3. SH wave propagation in bilayers

As can be deduced from Fig. 3.12a, an infinite number of intersections occur be-

tween the phase velocities of the first and second families. However, no intersections

occur in the guided wave attenuation versus frequency plane, as the guided wave

attenuation of the first family is always zero (Fig. 3.12b). Since two modes intersect

each other when both the phase velocity and guided wave attenuation are equal, it

follows that the asymptotic modes do not intersect each other.

For large stiffness and density of the FP, the bilayer mode paths approach the

asymptotic families since the asymptotic solution is the limit condition of the bi-

layer modes. Moreover, due to the absence of intersection between the asymptotic

families, as the stiffness and density increase, a bilayer mode cannot tend to two

different asymptotic modes simultaneously. As a result, the bilayer modes cannot

jump from one asymptotic mode to another, provided the FP stiffness and density

are large enough. On the other hand, the mode jumping studied in Sec. 3.4 for the

elastic bilayer is due to the existence of the asymptotic mode intersections, which

allow a bilayer mode to tend to two different asymptotic modes simultaneously.

From the previous discussion it follows that, for a particular value of the FP stiffness

and density, a transition between jumping and non-jumping behaviour must occur.

Moreover, the transition is characterised by the intersection of two different modes

which occurs when, at the same frequency, the two modes have the same phase

velocity and guided wave attenuation.

As an example, let us consider the bilayer studied in Sec. 3.5 when the density

and the stiffness of the FP are increased by about a factor of four while all the

other parameters are kept constant (the shear velocity of the FP is unchanged).

According to Fig. 3.13, the bilayer SH0 mode jumps from the free FP SHf
0 mode

into the clamped-free SP SH ′s
0 mode, while the SH1 mode jumps from SH ′s

0 into

SHf
0 below the first transition frequency. Around the first cutoff frequency of the

equivalent elastic bilayer, SH0 and SH1 cross in attenuation (Fig. 3.13b) while their

phase velocities do not because of the mode jumping. However, if the FP stiffness

and density were increased further mode jumping would not occur at this frequency.
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Figure 3.13: Phase velocity (a) and guided wave attenuation (b) versus frequency for

Tab. 3.1 bilayer with ρF = 33000Kg/m3 and ᾱ = 0.1np/wl : ( ) numerical solution

from Disperse; (−−−) first family; ( ) second family.

For frequencies higher than the first transition frequency, the SH1 mode follows the

path of the SHf
0 mode rather than jumping down to the SH ′s

1 mode (Fig. 3.13a) as

happened at lower value of the stiffness and density for the elastic bilayer (Fig. 3.8).

Instead, SH1 and SH2 modes cross in phase velocity but they do not in attenuation

(Fig. 3.13b). Since an intersection between two modes occurs when at one frequency

the couples (cph, ζ) are the same for both modes, it follows that for the case consid-

ered here, the modes never intersect each other.

A similar phenomenon has been observed in the case of Lamb waves propagating

in elastic anisotropic plates loaded with an inviscid fluid [39]. Rohklin et al. [40]

showed for the isotropic case that while for low fluid density the mode paths essen-

tially overlap those of free plate modes, increasing the fluid-solid density ratio (at

constant bulk velocities) leads to an interaction and mutual exchange between por-

tions of various mode branches. On the other hand, Dabirikhah et al. [41] showed

that as the fluid-solid density ratio decreases, the antisymmetric A0 mode couples

with the AS antisymmetrical interface Scholte wave. Moreover, mode ”switch over”
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3. SH wave propagation in bilayers

between the two lowest-order longitudinal modes of a free rod occurs when it is

loaded with a high density inviscid fluid [42].

The occurrence of the transition between jumping and non-jumping behaviour de-

pends on all the bilayer parameters and on the frequency. Numerical calculations

carried out for different geometries and material properties have shown that the

transition occurs when the impedance-thickness product of the two layers, the shear

velocity of the fast plate and the material attenuation of the slow plate satisfy the

approximate relationship

cf
cfρfdf

csρsds

(2M − 1)2ᾱ2 = const., (3.40)

where Mε{0, 1, 2, ...} is the order of the clamped-free SP mode where the transition

occurs and accounts for the influence of frequency. The value of the constant is

roughly 25m/ms. If the left hand side of (3.40) is larger than the constant, the

modes do not jump, whereas if it is lower, the modes jump. Even though (3.40) is

only an approximate relationship, it provides a complete description of the role of

the bilayer parameters in the mode jumping phenomenon.

For non attenuative materials (ᾱ = 0), (3.40) implies that jumping always occurs

as the left hand term is zero whatever the geometry and the acoustic properties

are (this is in agreement with Sec. 3.4). Moreover, (3.40) shows that, for a given

value of the material damping, the occurrence of the jumping depends on the ratio

of the impedance-density product of the FP to that of the SP. This ratio provides

a measure of the acoustic-geometric coupling of the two layers. As a consequence,

the stiffer, heavier and thicker the FP compared to the SP the more unlikely is the

mode jumping. This is a direct consequence of the fact that the energy tends to

flow primarily in the fast plate.

With reference to the former example (Fig. 3.13), the SH0 mode jumps since the

value of the left hand term of (3.40) is 2.8m/ms which is below the transition limit.

On the other hand, the SH1 mode does not jump because the value of the left

hand term of (3.40) is 25.2 (M = 1) which is slightly higher than the transition
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limit (25m/ms). This proximity to the limit is the reason why SH1 and SH2 al-

most touch each other in the guided wave attenuation-frequency plane as shown in

Fig. 3.13b (i.e. this condition is close to the mode intersection which characterises

the transition).

The factor M accounts for the role of the frequency in the transition mechanism.

In order to show this it has to be noticed that the two partial waves which gener-

ate the SP vibration (see Fig. 3.1) have an important physical interpretation: the

partial wave which leaves the interface, SH+, accounts for the energy transmitted

from the FP to the SP, while that which enters the interface, SH−, represents the

portion of transmitted energy which returns to the FP. In the elastic case the two

partial waves have the same amplitude by energy conservation. As M increases (i.e.

the frequency increases) the material damping increases as well. As a consequence,

the SH− amplitude decays, while the SH+ amplitude remains almost unchanged.

In other words, SH+ becomes dominant with respect to SH−. For very low SH−

amplitude the bilayer behaves as if the FP was loaded with a viscoelastic half space,

as the solution for this case is obtained by considering only one partial wave in the

half space. Since for this type of geometry no mode jumping occurs, it follows that

modes can jump only for low values of M . This argument will be explored in more

detail in the next section.

The relationship (3.40) leads to a more rigorous definition of the low material atten-

uation regime. The low regime corresponds to those values of the bulk attenuation

which allow the modes to jump, for given geometry and elastic properties of the

bilayer. Under this hypothesis, the zero and first order approximations can be ap-

plied. Moreover, even though these approximations can only strictly describe jump-

ing modes, they still provide accurate results when modes do not jump. Figure 3.14

shows the comparison between the dispersion curves of the case studied in Fig. 3.13

and the first order approximation prediction obtained by considering the first three

modes of the elastic bilayer only. With the exception of the frequencies where the

mode jumping is expected, the first order solution is generally quite accurate over

all the frequency spectrum. Note that the first order approximation covers up to

63



3. SH wave propagation in bilayers

0 0.25
0

400

Frequency (MHz)

G
ui

de
d 

w
av

e 
at

te
nu

at
io

n
   

   
   

   
   

(d
B

/m
)

0 0.25
0

6

Frequency (MHz)
Ph

as
e 

ve
lo

ci
ty

 (
m

/m
s) (a)

(b)

A
SH1

SH1 SH1

SH3SH2

SH0

SH0

SH2 SH3

SH1

Figure 3.14: Phase velocity (a) and guided wave attenuation (b) versus frequency for

the bilayer described in Tab. 3.1 with ρF = 33000Kg/m3 and ᾱ = 0.1np/wl: ( )

numerical solution from Disperse, (− − −) first order approximation for the first three

modes only

the peak A of SH0 (Fig. 3.14b) since it has been calculated by considering just the

first three modes of the elastic bilayer.

As has been shown in the previous section, the minima of Qe for the elastic bilayer

occur at the Love transition frequencies which are roughly located at the centre of

the plateau regions of the phase velocity dispersion curves. The accuracy of the

first order approximation in these regions suggests that the minima of Qe of the

viscoelastic bilayer have to occur at the Love transition frequencies indeed. As a

consequence, by virtue of (3.14) it follows that the guided wave attenuation minima

have to occur around the Love transition frequencies also.
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Figure 3.15: Phase velocity (a) and guided wave attenuation (b) dispersion curves;

( ) Tab. 3.1 bilayer with ᾱ = 0.8np/wl; (· · ·) free FP; (− − −) FP bonded to a

viscoelastic half space.

3.7 High material attenuation regime

In the case of highly attenuative materials the attenuation levels are large and mode

jumping cannot occur. Moreover, the zero and first order approximations become

less accurate, due to the large imaginary part of the shear stiffness. On the other

hand, the perturbation factor Qp (eq. 3.24) becomes significant since the shear mod-

ulus of the viscoelastic material is more dispersive. However, in order to study the

effects of the interaction between the wavelength and the geometry on the guided

wave dispersion the perturbation factor will be neglected in this study. Moreover,

the modes which tend to the second asymptotic family are not considered as they are

highly attenuated and therefore of no interest for practical applications (Sec. 3.6).

Here, only the bilayer SH0 mode, whose path tends to that of the SHf
0 mode, is

studied since the results obtained in this case can be extended to the higher order

modes of the first family. Figure 3.15a shows the SH0 phase velocity as a function

of frequency (solid line). As the frequency increases, the phase velocity oscillates

around that of SHf
0 . On the other hand, the guided wave attenuation exhibits peri-

odic peaks which occur at the frequencies where the mode would jump if the bilayer
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Figure 3.16: Diagram of the reflection at the interface half space-layer showing the echo

wave paths.

was elastic (Fig. 3.15b). In order to understand the physical reason for these peaks,

it is useful to consider the case in which the elastic plate is bonded to a viscoelas-

tic half space with the same mechanical and acoustic properties as the bilayer SP.

For the bilayer, at each frequency, one would expect lower guided wave attenuation

than the half space case, as part of the energy transmitted from the FP into the

SP is reflected back from the SP free boundary (while in the half space case all

the transmitted energy is lost). However, at the peak attenuation frequencies, the

bilayer guided wave attenuation is higher than that of the loaded plate (dashed line)

as shown in Fig. 3.15b. This suggests that, at these frequencies, the mechanism

which causes the guided wave attenuation is strongly affected by the geometry of

the wave guide. In particular, with reference to (3.14), it follows that the bilayer

has higher energy factor than the loaded plate. However, this does not explain why

this phenomenon only occurs at certain frequencies rather than being continuous

over the whole frequency range.

The explanation can be found by studying the reflection of an SH bulk wave at the

interface between a fast half space and the slow layer. In this case, the reflected

wave can be regarded as the superposition of a front reflection, which would occur if

the slow layer was infinitely thick, and a series of back reflections from the SP free

surface as shown in Fig. 3.16.
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If the incident wave, I, is perpendicular to the interface and of unit amplitude and

zero phase, the front reflection, F , is given by

F =
Zs − Zf

Zs + Zf

= |F |eiΦf , (3.41)

where Zs,f are the complex impedances for the two materials defined as

Zs,f = as,fρs,f. (3.42)

On the other hand, the back reflection, B, is [43]

B =
∞∑

n=1

bn =
F 2 − 1

1 + Fe2iqsds
e2iqsds = |B|eiΦb , (3.43)

where

q =
ω

cs

+ 2πi
ω

cs

ᾱs. (3.44)

As a consequence the total reflection is

R = |F |eiΦf + |B|eiΦb . (3.45)

Since the incident signal has unit amplitude, R can be regarded as a reflection

coefficient. In the case of an elastic SP, the total reflection is equal in magnitude

to the incident signal, by energy conservation. Moreover, since a unit amplitude

incident signal is considered, the total reflected signal has to be of unit amplitude,

while the phase can assume any value between zero and π. Figure 3.17 shows the

phase shift between the front and the back reflections and the two reflection moduli

versus the ratio of layer thickness to wavelength in the layer (the material properties

are those of table 3.1).

At the through thickness resonances of the free SP (ds/Λ = 0, 0.5, 1, ...), the two

reflections are in phase and constructive interference occurs. On the other hand, at

the through thickness resonances of the clamped-free SP (ds/Λ = 0.25, 0.75, ...), the

interference is destructive as the two reflections are opposite in phase.

When material damping is considered, the total reflection cannot be studied as a

function of ds/Λ unless the frequency dependence of the SP acoustic properties is

known. However, since the purpose here is to explain the reason for the maxima in
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Figure 3.17: Reflection coefficients moduli and phases against the ratio SP thickness

to wavelength for the elastic case: (a) phase shift between front and back reflection; (b)

( ) back reflection modulus, (−−−) front reflection modulus.

attenuation in the case shown in Fig. 3.15, constant bulk shear velocity and bulk

attenuation per wavelength will be assumed.

The total reflection coefficient amplitude has to be lower than unity as energy dissi-

pation within the SP occurs. Figure 3.18a shows the reflection coefficient amplitude

when the same acoustic and mechanical properties as the case studied in Fig. 3.15

are considered. According to Fig. 3.18a the total reflection coefficient modulus has

maxima close to the free SP resonance frequencies, whereas it has minima around

the clamped-free resonance frequencies. Moreover, as the frequency increases, the

reflection coefficient tends to the front reflection F (dashed line). These oscillations

are due to the interference phenomena as shown in Fig. 3.18b which is similar to

Fig. 3.17a. Minima and maxima in the reflection occur where the interference is

destructive (∆Φ = π) and constructive (∆Φ = 0), respectively. It is interesting to

note that the back reflection peaks and minima decay with the frequency as the

amount of the energy dissipated in the SP increases with the frequency, Fig. 3.18c.

At high frequencies, the back reflection almost vanishes, and the total reflection

coefficient tends to that of the front reflection.
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modulus.

As the total reflection coefficient amplitude accounts for the energy lost in the vis-

coelastic layer, the comparison of Fig. 3.18a with Fig. 3.15b suggests that guided

wave attenuation peaks are due to destructive interference phenomena, which occur

at the interface between the two layers. Moreover, as the bulk attenuation increases,

the guided wave attenuation tends to that of the plate loaded with viscoelastic half

space, since the back reflection tends to zero.

Even though these results have been obtained by considering a simple model for

the frequency dependence of the SP material properties (constant shear velocity

and bulk attenuation per wavelength), they can be generalized to the case of more

complex frequency dependence. In particular, the main effect of shear velocity dis-

persion is to shift the frequencies of the guided wave attenuation peaks, since the

clamped-free SP through thickness resonance frequencies change. In other words,
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3. SH wave propagation in bilayers

the guided wave attenuation plot is stretched and contracted along the frequency

axis.

3.8 Summary

A theoretical investigation of shear horizontal waves propagation in elastic plates

coated with viscoelastic materials has been presented. It has been shown that the

bilayer modes originate from the interaction between the free elastic plate modes and

the clamped-free viscoelastic layer modes. Moreover, the guided wave attenuation

has been related to the strain energy and to the time derivative of the mechanical

energy of the viscoelastic layer. This has led to the definition of two energy factors

that, for low loss materials, can be assumed to equal those of the equivalent elastic

bilayer. As a result, the guided wave attenuation of the attenuative bilayer has been

derived from the acoustic response of the equivalent elastic bilayer. Moreover, for

low loss materials, a mode jumping (which is equivalent to mode repulsion) phe-

nomenon occurs. It has been shown that the jumping is due to the nature of the

asymptotic solution of the equivalent elastic bilayer (existence of intersection points

between the two different families of asymptotic modes). For highly attenuative

materials, it has been shown that the mode jumping does not occur and an ap-

proximate formula has been provided in order to characterise the transition between

jumping and non-jumping behaviour as a function of all the acoustic and geometric

parameters of the bilayer.

For highly attenuative materials the bilayer modes can be divided into two families:

modes whose paths are close to those of the free elastic plate modes, and modes

which follow the trajectories of the clamped-free viscoelastic layer modes. The sec-

ond family of modes is characterised by higher guided wave attenuation than those

of the first family. For the first family modes, the guided wave attenuation as a func-

tion of frequency exhibits periodic peaks which occur around the through thickness

resonance frequencies of the clamped-free viscoelastic layer when it is considered to

be elastic. On the other hand, minima of the guided wave attenuation occur at the
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3. SH wave propagation in bilayers

Love transition frequency.

Under the hypothesis of large pipe diameter to wall thickness ratio, the SH modes

studied in this chapter are equivalent to torsional modes propagating in coated

pipelines. Moreover, since bitumen coatings are highly attenuative (see Chapters 7

and 8), the torsional modes tend to either the first or second families as discussed

above. However, the modes of the second family have little practical interest due to

their large guided wave attenuation which would lead to a very short propagation

distance. On the other hand, SH0 is the most attractive mode for long range in-

spections as, at the Love transition frequencies, it provides the lowest values of the

guided wave attenuation.

Another class of mode which could be employed for the inspection of coated pipelines

is represented by longitudinal modes which, according to our assumption on the pipe

geometry, correspond to Lamb waves propagating in bilayered plates. Since these

modes could have lower guided wave attenuation than SH0, their dispersion curves

will be analysed in the next Chapter.
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Chapter 4

Lamb wave propagation in bilayers

4.1 Background

In order to assess the feasibility of longitudinal guided wave inspection of coated

pipelines, this Chapter addresses the effects of attenuative coatings on the disper-

sion characteristics of Lamb waves propagating in elastic plates. Lamb waves origi-

nate from the superposition of shear and longitudinal bulk waves, consequently the

propagation of these waves depends on both the shear and longitudinal acoustic

properties of the material.

After deriving the dispersion equation in Sec. 4.2 the topology of phase velocity and

guided wave attenuation spectra is analysed as a function of the coating internal

damping (longitudinal and shear bulk attenuations). By analogy with the previous

Chapter the possibility of an energy based correspondence between the dispersion

of the attenuative bilayer and that of a related elastic bilayer is explored in Sec. 4.3

so as to investigate separately the effects of the longitudinal and shear bulk atten-

uations on the attenuation of the guided modes. The dispersion characteristics of

a perfectly elastic bilayer are considered in Sections 4.4 and 4.5 and the spectra of

the bilayer with low and large material absorption are examined in Sections 4.6 and

4.7, respectively.
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Figure 4.1: Partial waves diagram.

4.2 Secular equations for a bilayer

Let us consider the same bilayer as in the previous Chapter whose longitudinal

properties are listed in Tab. 4.1. The propagation of Lamb waves originates from

the superposition of one pair of longitudinal bulk waves (2.21), L±, and one pair of

shear bulk waves (2.28), SV ±, per layer (Fig. 4.1), the bulk waves being polarized

parallel to the plane x2 = 0. The boundary conditions, which are the same as in the

case of SH waves, lead to the following secular equation

det



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= 0,

(4.1)

where the first two rows refer to the traction free condition on the top of the bilayer,

the third and fourth rows account for the continuity of the displacement at the

bilayer interface, the fifth and sixth come from the stress continuity at the interface

and the last two provide the traction free condition at the bottom of the bilayer. In
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4. Lamb wave propagation in bilayers

this case, the resulting displacement field can be expressed as

u1(x1, x3, ω) = h1(x3)e
−ζx1e

−i ω
cph

x1
, (4.2)

u2(x1, x3, ω) = 0, (4.3)

u3(x1, x3, ω) = h3(x3)e
−ζx1e

−i ω
cph

x1
. (4.4)

4.3 Lamb wave attenuation

As in the previous Chapter, the purpose of this section is to provide a relationship

between the guided wave attenuation, the strain energy in the viscoelastic layer and

the longitudinal and shear acoustic properties of the bilayer. For the case of SH

waves, it has already been shown that by considering a volume, V, of unit width in

the x̂2 direction, and with height equal to the thickness of the bilayer (see Fig. 3.2),

the guided wave attenuation, ζ, can be related to the average dissipated power, Pd,

in the volume and the average in-plane power flow per unit width, < P >, according

to (3.9). The same relationship holds in the case of Lamb waves and can be proved

by means of the complex acoustic Poynting’s vector theorem [28]. The net flux into

the rectangular parallelepiped shown in Fig. 3.2 is given by the summation of the

flows through the faces of the parallelepiped. However, the flux through each lateral

surface perpendicular to x̂3, Sl, is zero due to the traction free condition. Also the

flow across the faces perpendicular to x̂2, Sf , vanishes as the only non zero stress

is σ22 which is perpendicular to the displacement field. By substituting (4.2) and

(4.4) into (2.38) the flux through a transversal surface perpendicular to x̂1, St, at

the position x1 can be written as

Px1 =
1

2
ωe−2ζx1

∫
de+dv

(
ξ
(
(λ̃ + 2µ̃)|h1|2 + µ̃|h3|2

)

+ i(λ̃h′
3h

∗
1 + µ̃h′

1h
∗
3)

)
dx3. (4.5)

As a consequence, the total net flow into the parallelepiped is the difference between

the fluxes calculated at the two transversal surfaces. Moreover, by considering the

real part of (3.6), the power balance can be written as

∆Re{Px1} + Pd = 0. (4.6)
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4. Lamb wave propagation in bilayers

Table 4.1: Elastic parameters used for studying Lamb wave propagation; the values of

the material absorption are specified in the text.

cs (m/ms) cl (m/ms) ρ (kg/m3) Thickness (mm)

Elastic plate 900 1700 1250 9.00

Metallic plate 3260 5960 7930 8.00

By substituting (4.5) into (4.6) and differentiating with respect to x1, and by con-

sidering that the real part of Px1 is the average in-plane power flow, < P >, one

obtains

ζ =

dPd

dx1

2 < P >
. (4.7)

Note that the eqs (4.6) and (4.7) are the same as in the case of SH waves. Further-

more, eq. (4.6) implies that all the modes are propagating (see Sec. 3.3).

In order to relate the guided wave attenuation to the strain energy let us now

consider the peak strain energy and the dissipated power per unit volume which,

after some manipulations, can be expressed as

es =
1

2
(λ̃v

r + 2µ̃v
r)ε0ε

∗
0 + 2µ̃v

r(ε13ε
∗
13 − ε11ε

∗
33), (4.8)

pd =
1

2
ω(λ̃v

im + 2µ̃v
im)ε0ε

∗
0 + 2ωµ̃v

im(ε13ε
∗
13 − ε11ε

∗
33), (4.9)

which leads to

pd = ω

(
λ̃v

im + 2µ̃v
im

λ̃v
r + 2µ̃v

r

δ +
µ̃v

im

µ̃v
r

γ

)
, (4.10)

where

δ =
1

2
(λ̃v

r + 2µ̃v
r)ε0ε

∗
0, (4.11)

γ = 2µ̃v
r(ε13ε

∗
13 − ε11ε

∗
33), (4.12)

ε0 being the first invariant of the strain tensor. It is interesting to note that δ only

depends on the displacement field resulting from the superposition of the two longi-

tudinal bulk waves propagating in the viscoelastic layer. In order to show this, it is

sufficient to consider that the strain tensor due to the superposition of two pairs of

longitudinal and shear bulk waves is equivalent to the sum of the strain tensors of
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4. Lamb wave propagation in bilayers

each bulk wave taken separately. Since for a bulk shear wave the first strain invari-

ant vanishes, it follows that ε0 is the sum of the invariants of the two longitudinal

bulk waves only. On the other hand, γ depends on both longitudinal and shear bulk

waves due to the presence of extensional and distortional strains in eq. (4.12).

As in the case of SH waves, the derivative of the dissipated power can be expressed

as

dPd

dx1

=

∫
dv

pddx3 = ω

(
λ̃v

im + 2µ̃v
im

λ̃v
r + 2µ̃v

r

∫
dv

δdx3 +
µ̃v

im

µ̃v
r

∫
dv

γdx3

)

= ω

(
λ̃v

im + 2µ̃v
im

λ̃v
r + 2µ̃v

r

d∆

dx1

+
µ̃v

im

µ̃v
r

dΓ

dx1

)
, (4.13)

where ∆ and Γ are the integrals of δ and γ over the portion of the viscoelastic layer

contained in V . By substituting (4.13) into (4.7) the guided wave attenuation is

given by

ζ =
1

2
ω

(
λ̃v

im + 2µ̃v
im

λ̃v
r + 2µ̃v

r

Q∆ +
µ̃v

im

µ̃v
r

QΓ

)
, (4.14)

where the two energy factors Q∆ and QΓ are defined as

Q∆ =
d∆
dx1

< P >
, (4.15)

QΓ =
dΓ
dx1

< P >
. (4.16)

Eq. (4.14) shows that the guided wave attenuation can be expressed as a linear com-

bination of the energy factors, each energy factor being related to the strain energy

contained in the viscoelastic layer when unit power flows through the cross section

of the bilayer. Moreover, eq (4.14) allows the guided wave attenuation dispersion to

be derived from the dispersion of a suitable equivalent elastic bilayer as has already

be done for the SH wave case. In order to show this, the Maclaurin expansion of the

function ζ(λ̃v
im + 2µ̃v

im, µ̃v
im) is considered. In particular, by taking the expansions

up to the first order results in

ζ 	 1

2
ω

(
λ̃v

im + 2µ̃v
im

λ̃v
r + 2µ̃v

r

Q∆ |λ̃v
im+2µ̃v

im=0 +
µ̃v

im

µ̃v
r

QΓ |µ̃v
im=0

)
, (4.17)
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which by considering that for low material damping the bulk attenuations in nepers

per meter take the form [28]

ᾱs 	 π
µ̃im

µ̃r

, (4.18)

ᾱl 	 π
λ̃im + 2µ̃im

λ̃r + 2µ̃r

, (4.19)

allows the guided wave attenuation to be written as

ζ 	 fᾱv
lQ∆ |λ̃v

im+2µ̃v
im=0 +fᾱv

sQΓ |µ̃v
im=0 . (4.20)

This equation clearly illustrates how splitting the energy into two parts, δ and γ,

allows the guided wave attenuation to be thought of as a superposition of the effects

of the two material bulk attenuations (longitudinal and shear) taken separately. In

particular, the δ energy which depends on the energy carried by the longitudinal

partial waves only (it would be zero if there were no longitudinal partial waves)

provides, through the energy factor Q∆, the part of guided wave attenuation due

the longitudinal bulk attenuation. On the other hand, the γ energy gives, through

the energy factor QΓ, the part of guided wave attenuation due to the bulk shear

attenuation.

In equation (4.20), the energy factors are calculated by considering the modes of an

artificial bilayer in which the viscoelastic layer has been replaced with an ideal layer

whose Lamé moduli are purely real and equal to the real parts of the viscoelastic

layer moduli (i.e. µart = Re{µ̃(ω)} and λart = Re{λ̃(ω)}). This assumption leads

to the introduction of the equivalent elastic bilayer concept already discussed in

Sec. 3.3.

As in the case of SH waves, below the cutoff frequency of a mode of the equiv-

alent elastic bilayer the energy factors are singular since the in-plane power flow

vanishes. The same argument considered for SH waves applies to the case of Lamb

waves and leads to the definition of the energy factor Π according to eq. (3.20).

It follows that, under the zero order approximation, the guided wave attenuation

in the attenuative system corresponds to the projection along the bilayer interface

of the wavenumber of the nonpropagating mode of the corresponding elastic system.
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Figure 4.2: Lamb wave phase velocity dispersion curves for the elastic bilayer described

in Tab. 4.1.

4.4 Elastic bilayer

As has been shown in the previous section, the guided wave attenuation dispersion

can be derived from the energy factors of the equivalent elastic bilayer. For this

reason this section is devoted to the study of the dispersion of elastic bilayers. Fig-

ure 4.2 shows the Lamb wave dispersion curves obtained by solving eq. (4.1) when

the material damping is neglected, the bilayer acoustic properties and the geometry

being summarized in Tab. 4.1. It can be seen that these curves are considerably

different from those of a metallic plate loaded with an inviscid fluid layer. In the

latter case, due to the absence of the shear stiffness in the liquid layer, the dispersion

curves are only slightly different from those of the free metallic plate [23].

The Lamb waves of the bilayer originate from the interaction between the modes of

the free metallic plate and those of the equivalent viscoelastic layer if it were rigidly

clamped at the bilayer interface. In a similar fashion to Sec. 3.4, it can be observed

that the matrix in (4.1) can be partitioned into four square matrices, leading to the
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Figure 4.3: Asymptotic solutions to eq. (4.1): (− − −) free metallic plate; ( )

clamped-free equivalent viscoelastic layer.

characteristic equation

det


C11 C12

C21 C22


 = 0, (4.21)

where the matrices Cij have now dimension 4 × 4. By considering the limit as the

stiffness and the density of the metallic plate go to infinity while keeping the complex

bulk shear and longitudinal velocities constant the characteristic equation becomes

det


C11 C12

0 C22


 = det(C11)det(C22) = 0. (4.22)

As a consequence, the asymptotic solution can again be divided into two families of

modes. The first family is represented by the free metallic plate modes while the sec-

ond one corresponds to the modes of the clamped-free equivalent viscoelastic layer.

Figure 4.3 shows the two asymptotic families for the bilayer described in Tab. 4.1.

For a finite value of the density and stiffness of the metallic plate, the bilayer mode

trajectories jump from one asymptotic mode to another, as shown in Fig. 4.4. For

instance, let us consider the path of the bilayer mode M3. Its cutoff frequency occurs

close to that of the M ′
2 mode of the equivalent clamped-free viscoelastic layer. As the
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Figure 4.4: Phase velocity dispersion curves: ( ) asymptotic solution; ( ) bi-

layer modes.

frequency increases, M3 jumps to the S0 mode of the free elastic plate. After inter-

secting S0, M3 veers towards the M ′
3 mode, and as the frequency increases further,

M3 intersects first M ′
3 and then A0. M3 does not intersect the bilayer mode M4 (see

inset), but veers and tends asymptotically to the M ′
4 mode. As has been shown for

SH waves (Chapter 3) , the bilayer modes do not intersect each other. However, the

presence of intersections between the two families of asymptotic solutions leads to

the mode repulsion phenomenon (see for instance M3 and M4), which is particularly

evident when the elastic plate is much stiffer and heavier than the viscoelastic layer.

Generally speaking, the bilayer cutoff frequencies tend to those of the clamped-

free equivalent viscoelastic layer which correspond, for Lamb modes, to shear or

longitudinal through-thickness standing waves and are given by

fs =
cv
s

4dv

(2N − 1), (4.23)

fl =
cv
l

4dv

(2N − 1), (4.24)

where Nε{1, 2, 3, ..}.
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Figure 4.5: (a) Phase velocity; (b) energy factor dispersion curves for the bilayer de-

scribed in Tab. 4.1: ( ) QE for the SH0 mode; ( ) QΓ for the M1 mode; (−−−)

Q∆ for the M1 mode.

4.5 Elastic energy factor dispersion

The frequency dependence of the energy factors QΓ and Q∆ is much more complex

than that of the SH wave energy factor, Qe (see Sec. 3.5). Fig. 4.5 provides a com-

parison between the SH0 mode and the M1 mode of Fig. 4.2. While QE experiences

only one peak (Fig. 4.5b) where the mode jumping occurs, QΓ and Q∆ exhibit sev-

eral peaks due to the more tortuous path of M1. However, it can be noticed that as

the frequency tends to infinity, the phase velocity of M1 tends to that of SH0. More-

over, QΓ tends to QE whereas Q∆ vanishes. The reason for this behaviour is that at

high frequencies, the two SV bulk waves in the equivalent viscoelastic layer become

dominant while the L and SV bulk waves in the metallic plate become evanescent.

This is because the phase velocity of M1 becomes lower than the longitudinal and

shear bulk velocities of the metallic plate

cph =
ω

ξ
< ce

l,s ⇒ ξ >
ω

ce
l,s

. (4.25)

For plane waves in the metallic layer ξ has to be lower than ω/ce
l,s [which are the

moduli of the wavenumbers of the bulk waves, see eq. (2.42)] as it is the projection
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4. Lamb wave propagation in bilayers

of the wavenumber along the bilayer interface. Therefore, in order to realize the

condition (4.25) the wavenumbers need to be complex, and the bulk waves become

evanescent. Moreover, the lower the phase velocity of the guided mode the higher is

the attenuation of the evanescent waves, and as a consequence the lower the energy

in the metallic plate.

Even though in the case shown in Fig. 4.5, Q∆ is always lower than QΓ this is

not generally true for the other modes as will be shown in the next Chapter, and

it is not possible to state general properties for all the modes as in the case of SH

waves.
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Figure 4.6: Comparison between the first order approximation (−−−) and the numerical

solution ( ): ζ∆ attenuation of M̄1 for ᾱs = 0 and ᾱl = 0.01np/wl; ζΓ attenuation of

M̄1 for ᾱs = 0.01np/wl and ᾱl = 0.

4.6 Low material attenuation

The analysis of the dispersion of the equivalent bilayer energy factors allows the

guided wave attenuation to be obtained through (4.20). Fig. 4.6 shows a compari-

son between the first order approximation (dashed lines) and the numerical solution

of the exact dispersion equation (grey lines), obtained by using the software Dis-

perse [34]. The curves refer to the bilayer of Tab. 4.1. The curve ζ∆ provides the

attenuation of the Lamb mode M1 for ᾱs = 0np/wl and ᾱl = 0.01np/wl. Conversely,

ζΓ gives the guided wave attenuation associated with M1 when ᾱs = 0.01np/wl and

ᾱl = 0np/wl. Lastly the grey solid curve labelled ζΓ + ζ∆ is the exact dispersion

for ᾱs = ᾱl = 0.01np/wl while, the dashed line is the superposition of ζ∆ and ζΓ.

In all cases, the linear approximation, is in excellent agreement with the numerical

solutions. Therefore, the guided wave attenuation of Lamb modes can be obtained

as a superposition of the guided wave attenuation due to the bulk longitudinal at-

tenuation ᾱl and the bulk shear attenuation ᾱs taken separately.

As was discussed in section 4.3, in order to characterise the dispersion of the vis-
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Figure 4.7: Lamb wave phase velocity dispersion curves for the bilayer described in

Tab. 4.1: (a) elastic case; (b) ᾱs = ᾱl = 0.01np/wl.

coelastic bilayer through the equivalent elastic bilayer, both the propagating and

nonpropagating modes have to be considered. Fig. 4.7b shows the phase veloc-

ity dispersion curves of Lamb waves for a slightly attenuative bilayer (ᾱs = ᾱl =

0.01np/wl). These curves almost overlap those of the elastic bilayer, shown in

Fig. 4.7a, with the exception of certain regions. In particular, the modes M̄0 and

M̄1 are essentially the same as M0 and M1. As the frequency increases, the mode

M̄2 follows M2 up to 0.05MHz and then suddenly joins M3. The mode M̄5 overlaps

M2 above 0.05MHz. However, at lower frequencies, M̄5 follows a path which does

not belong to the dispersion curves of the elastic bilayer. Similar branches have

been observed in the case of Lamb waves propagating in a free isotropic viscoelastic

layer [44]. M̄3 (shown in grey) overlaps M̄5 at low frequency, and then jumps to the

trajectories of M2 and M3 (Fig. 4.7a). Moreover, the power flow of M̄3 is negative as

the energy flows along −x̂1. As consequence, the attenuation and the group velocity

are negative. The anomalous behaviour of M̄3, and the presence of the unexpected

branch of M̄5 at low frequency, which do not occur in the case of SH waves, are

due to the presence of nonpropagating modes with non purely imaginary ξ in the

dispersion curves of the elastic bilayer (see Chapter 6).
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4. Lamb wave propagation in bilayers

4.7 Large material damping

High material damping is accompanied by large imaginary parts of the Lamé con-

stants which make the zero and first order approximations less accurate. Moreover,

the large dispersion of the Lamé moduli may cause high dispersion of the energy

factors of the artificial bilayer (Sec. 4.3). As a result, the energy factors obtained

for the equivalent bilayer need to be corrected through the perturbation factors.

However, as the frequency dependence of the acoustic properties of a viscoelastic

material cannot be stated in a general form holding for all the different viscoelastic

materials (whereas all Newtonian fluids can be described by one dispersion rela-

tionship which depends on one parameter, the viscosity, for a generic viscoelastic

material an infinite number of parameters would be required) in the following, the

perturbation factor will be neglected. Additionally, the bulk attenuation per wave-

length is assumed not to vary with frequency.

Fig. 4.8a shows the phase velocity dispersion curves for Lamb waves propagating

in the bilayer described in Tab. 4.1 when a large material attenuation is considered

(ᾱs = ᾱl = 1np/wl). These curves are considerably different from those obtained

in the elastic case (see Fig. 4.7a). In particular, the mode jumping phenomenon,

which occurs for the elastic bilayer, has now disappeared. For instance, the trajec-

tory of the M̄1 mode oscillates around that of the free elastic plate mode S0 rather

than jumping to M ′
1, A0 and M ′

2 as happened in the elastic bilayer (see Fig. 4.4).

Similarly the M0 mode follows the A0 mode path rather than veering toward M ′
1.

On the other hand, M̄2 follows the trajectory of the clamped free viscoelastic layer

M ′
1 mode rather than jumping to S0. In general, each bilayer mode follows the

trajectory of one asymptotic mode only. A similar phenomenon occurs for Lamb

wave propagation in free plastic plates. Chan and Cawley [45] showed that for a

large material damping, the Lamb modes split into two families of modes which

correspond to the modes of a fluid layer in vacuum (which has zero shear velocity)

and those of an artificial layer in vacuum which only supports shear waves (with
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Figure 4.8: Lamb wave dispersion curves for the bilayer described in Tab. 4.1 with ᾱs =

ᾱl = 1np/wl: ( ) asymptotic solution; ( ) bilayer modes: (a) phase velocity; (b)

guided wave attenuation; (c) attenuation of the M̄0 and M̄1 modes.

zero longitudinal velocity). These two families have the same role as the asymp-

totic modes discussed studied in this thesis since Lamb modes in elastic plates can

be thought of as an interaction between them as demonstrated by Überall et al. [38].

The absence of the mode jumping between the bilayer modes leads to the intersec-

tion of the phase velocity spectra of different modes. However, these intersections do

not correspond to mode intersections, since two different modes would only intersect

each other at a given frequency if the couples (cph, ζ) were the same for both modes.

As an example, M̄1 and M̄2 cross in phase velocity (Fig. 4.8a) but they do not in

attenuation (Fig. 4.8b).

The M̄3 has negative attenuation. This is because the mode originates from the

complex branches of the M2 mode of the elastic bilayer whose power flow is directed
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Figure 4.9: Lamb dispersion curves for the bilayer described in Tab. 4.1 with ᾱs = 1np/wl

ᾱl = 0: (a) phase velocity for M̄1 ( ) and the lower modes of the elastic bilayer

(−−−); (b) attenuation of M̄1 ( ) and first order approximation (−−−).

along −x̂1 as mentioned earlier.

Fig. 4.8b shows that the bilayer modes M̄1 and M̄0, which follow the S0 and A0

modes of the free elastic plate, have much lower attenuation than the modes that

follow the clamped-free modes of the viscoelastic layer. This is due to the fact that

in the second case the energy is mainly trapped in the viscoelastic layer while the

energy associated with M̄1 and M̄0, flows primarily in the elastic plate. As a conse-

quence, only the modes which tend to the free elastic plate modes can be practically

employed. Fig. 4.8c is a comparison between the attenuation spectra of M̄0 and M̄1.

Since the attenuation of M̄0 is usually larger than that of M̄1 (especially at low fre-

quency), M̄1 is more attractive than M̄0 for travelling long distances in the bilayer.

Fig. 4.9 shows the dispersion curves of this mode (thick solid line) when only a large

bulk shear attenuation is considered, the longitudinal attenuation is set to zero. The

dashed lines in Fig. 4.9a represent the modes of the elastic bilayer while, the dashed

lines in Fig. 4.9b are the guided wave attenuation spectra calculated through the

first order approximation 4.20. Note that the dashed lines in Fig. 4.9b have been
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4. Lamb wave propagation in bilayers

labelled M1, M2 etc. in order to show the correspondence with the elastic modes

of Fig. 4.9a. It is interesting to note that the attenuation spectrum exhibits peaks

which occur at the transitions where the phase velocity changes rapidly and mode

jumping would occur if the bilayer was elastic. These peaks are due to a resonance

phenomenon which causes maximum energy transfer from the metallic plate into

the viscoelastic layer (see previous Chapter). The resonances would not occur if the

viscoelastic layer was infinitely thick.

The first order approximation provides a satisfactory approximation in the plateau

zones of the dispersion curves, while it becomes inaccurate around the guided wave

attenuation maxima.

4.8 Summary

The propagation of Lamb waves in metallic plates coated with viscoelastic layers

has been investigated.

A general formulation relating the guided wave attenuation to the amount of strain

energy stored in the viscoelastic layer per unit in-plane power flow has been derived.

It has been shown that the strain energy can be split in two parts, δ and γ, which

account separately for the effects of the two material bulk attenuations (longitudinal

and shear) on the attenuation of the guided wave.

The topology of the dispersion curves of the elastic bilayer experiences substantial

modifications when internal damping is considered. In particular, due to the energy

dissipation within the attenuative layer, a mode is always propagating and its dis-

persion strongly depends on the magnitude of the internal damping. Two different

material attenuation regimes can be defined. In the low regime, a bilayer mode

embraces both the nonpropagating and propagating branches of the corresponding

elastic mode. The non purely imaginary complex branches of the elastic bilayer dis-

persion curves cause anomalies in the phase velocity and guided wave attenuation
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4. Lamb wave propagation in bilayers

spectra. For large values of the material attenuation, the modes can be classified as:

a) modes whose energy travels primarily in the elastic plate; b) modes whose energy

is trapped in the viscoelastic layer. While the modes of the second family have little

practical interest, as they are highly attenuated with distance, the modes of the first

family can be employed in suitable frequency ranges. In particular, the attenuation

spectra of these modes exhibit peaks which occur roughly at the through-thickness

resonance frequencies of the viscoelastic layer if it were considered elastic and rigidly

clamped at the bilayer interface.

The results obtained in this Chapter can be extended to the case of longitudinal

modes propagating in coated pipes when the diameter to wall thickness ratio is

large. In the case of large material damping, M̄1 is the mode which has the lowest

attenuation since its energy mainly travels in the metallic plate. The frequencies

which minimise the attenuation of M̄1 maximise the propagation distance, so pro-

viding the best conditions for long range inspections.

It is now clear that the modes which must be employed in order to maximise the

range of inspection are SH0 and M̄1. However, it is not yet clear which of them

results in the longest propagation distance. Since the ultimate goal of this thesis

is to identify the mode which provides the largest range of inspection, in the next

Chapter, the characteristics of SH and Lamb waves will be compared.
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Chapter 5

Comparison between Lamb and

SH waves

5.1 Background

In Chapters 3 and 4 the attenuation characteristics of SH and Lamb waves have

been considered separately. This chapter provides a comparison between the atten-

uation levels associated with the propagation of SH waves and those corresponding

to Lamb waves when the same power flows through the bilayer cross section. Since

for pipelines with large diameter to wall thickness ratio torsional and longitudi-

nal modes correspond to SH and Lamb waves, the aim of such a comparison is to

establish, at each frequency, whether torsional modes are more attenuated than lon-

gitudinal waves or vice versa.

In Sec. 5.2 the guided wave attenuation spectra are compared in the low material

absorption regime, while in Sec. 5.3 large material attenuation is considered. The

dispersion curves showed in Chapters 3 and 4 refereed to specific geometric and

acoustic properties of the bilayer. In Sec. 5.4 the possibility of deriving two approx-

imate dispersion curves which can provide the guided wave attenuation of SH and

Lamb waves for any bilayer at any frequency is considered.
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5. Comparison between Lamb and SH waves

5.2 Low material damping

In order to compare the guided wave attenuation of SH and Lamb modes in the low

damping regime the linear expressions (3.39) and (4.20) are employed.

As has been pointed out in the previous Chapter, the frequency dependence of the

energy factors QΓ and Q∆ [see (4.16) and(4.15)] is much more complex than that of

the energy factor Qe [see (3.15)]. However, for practical purposes, a mode can only

be employed in the frequency ranges in which its phase velocity is not too dispersive

since high dispersion is accompanied by a strong distortion and amplitude decay of

the wave packet over long propagation distances. For this reason, in the following,

the comparison between Lamb and SH waves is confined to the plateau regions of the

dispersion curves. In Fig. 5.1 five different zones, labelled A, B, C, etc., have been

identified for the plateaus of the modes of the bilayer described in Tab. 4.1. The

corresponding energy factor curves are shown in Fig. 5.2. Note that for clarity, the

energy factor dispersion curves refer to the plateau regions of the bilayer modes only.

In zone A, QE is always larger than QΓ while Q∆ is negligible. This is proved in

Appendix A. Since the Lamb wave attenuation is a linear combination of QΓ and Q∆

through the bulk attenuations ᾱl and ᾱs it follows that the role of the longitudinal

attenuation ᾱl is negligible compared to ᾱs and it can be assumed that

ζLamb 	 fᾱsQΓ. (5.1)

Moreover, as QE � QΓ [see equation A.18] the guided wave attenuation of the SH0

mode is much larger than that of M1.

Close to the lower limit of zone B (Fig. 5.2), the relationship between the energy

factors is the same as in zone A. However, as the frequency increases the inequality

changes, and at the upper limit of zone B it is inverted (i.e. QE < QΓ < Q∆). This

is due to the fact that zone B ends at the second cutoff frequency of the bilayer Lamb

modes. This frequency is characterised by longitudinal through-thickness standing

waves which have large ε0 which implies that δ > γ (see (4.11) and (4.12)).
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Close to the lower limit of zone C (Fig. 5.2), the energy factors behave as in the

upper limit of zone B, while the situation is inverted as the frequency reaches the

upper limit of zone C. Here, the third cutoff for Lamb and the second cutoff for SH

waves occur. These cutoffs are characterised by shear through-thickness standing

waves and consequently QE > QΓ > Q∆. Similar considerations hold for all the

other zones.

It can be concluded that, in the low material damping regime, the attenuation of

Lamb modes is higher than that of SH waves only around the longitudinal cutoff

(4.24) of the equivalent bilayer, while in the rest of the spectrum, SH waves are more

attenuated.

5.3 Large material damping

As shown in Chapters 3 and 4 when the material damping is large, the modes which

tend to the first asymptotic family (modes of the free metallic plate) exhibit the

lowest attenuation since the energy primarily flows in the non attenuative layer.

Moreover, within the first family, the modes which have the lowest attenuation are

SH0 and M̄1. Therefore, here only these two modes are compared since they provide

the highest potential for long range inspections.

Fig. 5.3 provides a comparison between M̄1 and SH0. In this analysis the bulk lon-

gitudinal attenuation is neglected at first (solid lines). The two modes experience

the first attenuation peak at the same frequency since the first cutoff frequency is

the same for both modes [see eq. (4.23)]. Moreover, in the frequency interval around

the first cutoff (0.03MHz in Fig. 5.3), the guided wave attenuation of the SH0 mode

is larger than that of M̄1. This follows from the fact that in the zone A (Fig. 5.2),

SH0 requires a higher strain energy than M̄1 in order to produce unit power flow as

has been shown in Sec. 5.2. However, as the frequency approaches the second cutoff

frequency (0.05MHz in Fig. 5.3) of the Lamb mode M3 [eq. (4.24), upper limit of

zone B Fig. 5.2], M̄1 has another maximum, while the SH0 attenuation tends to
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Figure 5.3: Dispersion curves for the bilayer of Tab. 4.1 with ᾱs = 1np/wl:( ) SH0;

( ) M̄1 with ᾱl = 0; (−−−) M̄1 with ᾱl = 1np/wl.

its minimum. On the other hand, if the bulk longitudinal attenuation is considered

(dashed line), the second sharp peak disappears. It can be observed that this at-

tenuation maximum is due to a destructive interference phenomenon between the

energy reflected at the bilayer interface and the energy reflected from the free face of

the viscoelastic layer as was addressed in Sec. 3.7. At this frequency the strain en-

ergies, δ and γ [eqs. (4.11) and (4.12)], are primarily carried by longitudinal partial

waves. As a consequence, if the longitudinal attenuation increases, the viscoelastic

layer behaves as if it were infinitely thick (since all the energy transmitted from

the metallic plate is lost into the bulk of the viscoelastic layer) and interference no

longer occurs. Moreover, the M̄1 mode is sensitive to the longitudinal bulk atten-

uation around the peak frequencies given by (4.24) only since, over the rest of the

spectrum, the energy in the viscoelastic layer travels in the form of γ energy rather

than δ according to Sec. 5.2.
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5.4 Universal curves

The aim of this section is to provide a set of curves which enables the prediction of

the attenuation of SH and Lamb waves propagating in the bilayer as a function of

the frequency and the bilayer acoustic properties and geometry. This can be done

by introducing an approximate relationship between two non-dimensional parame-

ters which involve all the variables of the problem (acoustic properties, geometry,

densities, frequency and guided wave attenuation).

Let us consider the case of SH0 first. It has been shown in Chapter 3 that guided

wave attenuation minima occur at the Love transition frequencies. Moreover, it has

been demonstrated that in both low and large material damping regimes, the first

order approximation (3.39) provides accurate results.

Consider the expression of the first energy factor Qe at the Love transition fre-

quencies (3.37). Under the hypothesis of cv
s 
 ce

s, in the first order approximation,

eq. (3.37) becomes

Qe 	 1

2ce
s

ρvdv

ρede

=
1

2cv
s

Zvdv

Zede

, (5.2)

where Z is the material shear impedance (Z = ρcs). As a consequence, by substi-

tuting (5.2) into (3.39) the guided wave attenuation becomes

ζ 	 fᾱv
s

2cv
s

Zvdv

Zede

, (5.3)

which rearranging gives

ζdeZ
e

ᾱv
sZ

v
=

1

2

fdv

cv
s

. (5.4)

This expression is in the form

Y =
1

2
X, (5.5)

where the non-dimensional groups X and Y are defined as

X =
fdv

cv
s

, (5.6)

Y =
ζdeZ

e

ᾱv
sZ

v
, (5.7)
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Figure 5.4: Non dimensional representation of the attenuation spectrum for SH0.

note that ᾱv
s is non-dimensional and ζ is [m−1]. While X can be thought of as a

non-dimensional frequency, Y gives an appreciation of the guided wave attenuation.

This suggests a possible transformation of guided wave attenuation spectra ζ versus

f to non-dimensional X versus Y form. From (5.5) it follows that if the minima of

the guided wave attenuation spectra of SH0 are transformed according to (5.6) and

(5.7), they always correspond to the same points of the X − Y plane regardless of

the bilayer material and geometry. Figure 5.4 provides a comparison between the

approximation at the Love transition frequencies (5.5) (black squares) and the SH0

attenuation spectrum calculated for the bilayer of Tab. 4.1 when ᾱv
s = 1 (solid line).

This spectrum, which has been obtained by transforming the attenuation spectrum

of SH0 (calculated for the bilayer of Tab. 4.1 with ᾱv
s = 1) according to (5.6) and

(5.7), will be referred in the rest of this Chapter to as the non-dimensional atten-

uation spectrum. Around the first Love transition frequency (X = 0.5) the exact

solution and the approximation (5.5) are very close. However, (5.5) becomes less

accurate as the frequency increases (see X = 1) due to the increase of the bulk

attenuation.

As was explained in Chapter 3 the guided wave attenuation maxima approximately
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Table 5.1: Material parameters and geometry for different bilayers.

Bilayer Layer Material cs (m/ms) cl (m/ms) ρ (kg/m3) Thickness (mm)

I Bitumen 900 1700 1250 9.00

Steel 3260 5960 7930 8.00

II Epoxy 1100 2610 1170 7.00

Steel 3260 5960 7930 5.00

III Perspex 1430 2730 1180 7.00

Steel 3260 5960 7930 10.00

IV Epoxy 1100 2610 1170 7.00

Brass 2200 4400 8400 10.00

occur at the through thickness resonances of the clamped-free viscoelastic layer if

it is considered elastic, these frequencies being given by X = 0.25, 0.75 [see (4.23)].

Therefore if the attenuation spectrum of SH0 is transformed according to (5.6) and

(5.7), its maxima will approximately occur at the same abscissas X = 0.25, 0.75, as

shown in Fig. 5.4.

As a consequence, for any bilayer made of a stiff and heavy elastic plate coated

with a soft and light attenuative layer, if the guided wave attenuation of the SH0

mode is transformed according to (5.6) and (5.7), the minima of the guided wave

attenuation spectrum always correspond to the same positions in the X − Y plane

and the maxima of the attenuation spectrum correspond to the same abscissa X.

This suggests that any guided wave attenuation spectrum might correspond to the

solid line shown in Fig. 5.4 if transformed according to (5.6) and (5.7). However,

there are two considerations to take into account. Firstly, the correspondence is

only an approximation as the characteristic equation (3.3) cannot be expressed as

a function of X and Y only. Secondly, the correspondence will be more accurate

around the attenuation minima since there the first order approximation is more

accurate (see Sec. 3.6).
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Figure 5.5 shows the non-dimensional attenuation spectra of the SH0 mode propa-

gating in different types of bilayers whose characteristics are summarized in Tab. 5.1

with ᾱv
s = 1np/wl. As expected, different curves overlap well around the guided wave

attenuation minima, whereas some differences occur in the regions of attenuation

maxima (X = 0.25, 0.75). These differences become larger if the bulk attenua-

tion ᾱv
s is increased since the guided wave attenuation exhibits a strongly non-linear

behaviour with ᾱv
s . This is shown in Fig. 5.6 which provides the non-dimensional dis-

persion curves for the bilayer I (see Tab. 5.1) when ᾱv
s is increased up to 1.75np/wl.

As pointed out before, around the attenuation minima, the different curves are very

close each other. On the other hand, around the attenuation maxima, Y monoton-

ically decrease with ᾱv
s or in other words, the guided wave attenuation decreases

as ᾱv
s increases. This can be explained on the basis of the argument discussed in

Sec. 3.7 where has been shown that the attenuation peaks are due to the destructive

interference between the reflections from the bilayer interface and the back of the

viscoelastic layer. Therefore, as ᾱv
s increases, the reflection from the back of the

viscoelastic layer decreases and the cancellation effect becomes weaker, resulting in

a reduction of the guided wave attenuation.

At this stage, it is clear that the non-dimensional attenuation spectra associated

with different bilayers can be considered coincident over limited intervals of the X

domain, see grey zones in Fig 5.7. Moreover, in these intervals, the non-dimensional

dispersion curve can be regarded as a universal curve since it is representative of

the attenuation of SH0 propagating in any bilayer, provided that the non attenua-

tive layer is much stiffer and heavier than the viscoelastic one. On the other hand,

around the Y maxima, the non-dimensional spectrum depends on the characteristics

of the bilayer, although the abscissas X where the maxima occur are universal (all

the peaks occur around X = 0.5, 1, etc.).

The curve shown in Fig. 5.7 becomes extremely valuable for practical testing as it

provides accurate estimates of the guided wave attenuation when X < 0.25 and

0.25 < X < 0.5 but it also defines the conditions which result in the largest guided

wave attenuation. In other words, Fig. 5.7 identifies the conditions which minimise
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Figure 5.5: Non dimensional attenuation spectra for SH0 propagating in the bilayers of

Tab. 5.1: ( ) I; (−−−) II; (· · · · ·) III; (− · −·) IV.
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Figure 5.6: Non dimensional attenuation spectra for SH0 propagating in the bilayer

of Tab. 4.1 for different values of the bulk attenuation: ( ) ᾱs = 1np/wl; (− − −)

ᾱs = 1.25np/wl; (· · · · ·) ᾱs = 1.50np/wl; (− · −·) ᾱs = 1.75np/wl.
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Figure 5.7: Universal chart for the SH0 mode attenuation characterisation.

the guided wave attenuation so defining the practicability of tests. Moreover, the

fact that in the regions of maximum Y the curve cannot predict the guided wave

attenuation accurately has little practical relevance, as in these regions the attenu-

ation is extremely high and the guided mode would be completely attenuated after

travelling a short distance.

Let us now consider the attenuation spectra of the M̄1 mode. The similarity between

the dispersion curves shown in Fig. 5.3 suggests that the attenuation spectrum of

M̄1 can also be transformed through (5.6) and (5.7) in certain ranges of X. This is

shown in Fig. 5.8 which refers to the different bilayers described in Tab. 5.1 when

ᾱv
s = 1 and ᾱv

l = 0.1. Around the first attenuation peak the transformation (5.6)

(5.7) leads to results which are quite similar to the SH0 case and for low values of

X the non-dimensional spectra are coincident. However, as X approaches 0.5 the

curves no longer superimpose. This is due to the presence of a longitudinal mode

cutoff as discussed in Sec. 5.3 which cannot be transformed through (5.6). For each

curve the relative distance between the abscissa of the second maximum, X2, and

the abscissa of the first maximum, X1, can be related to the bulk velocities of the
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Figure 5.8: Non dimensional attenuation spectra for M̄1 propagating in the bilayers of

Tab. 5.1: ( ) I; (−−−) II; (· · · · ·) III; (− · −·) IV.

viscoelastic layer according to

X2

X1

=
cv
l

cv
s

(5.8)

which follows from expressions (4.23) and (4.24). Since for many materials cv
l 	 2cv

s

it follows that the second peak occurs around X2 = 0.5. As a consequence, while

the amplitude of the non-dimensional spectrum depends on the bilayer properties

around X = 0.5, the abscissa of the second peak, X2, can be considered as univer-

sal. Therefore, the condition X = 0.5 results in a minimum for the guided wave

attenuation of SH0 as it correspond to the first Love transition frequency, and in a

maximum for M̄1. Moreover, the non-dimensional spectrum of M̄1 is universal for

X < 0.25 only.

Figure 5.9 is a superposition of the curve shown in Fig. 5.7 and the non-dimensional

attenuation spectrum of M̄1 propagating in bilayer I (see Tab. 5.1). While the non-

dimensional spectrum of SH0 can be considered universal over ∆X1 and ∆X2, that

of M̄1 is universal over ∆X1 only. These curves lead to some important general

conclusions.
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Figure 5.9: Universal non-dimensional attenuation spectra for:( ) SH0; ( ) M̄1.

For low values of X (Xε∆X1) the SH0 mode is always more attenuated than M̄1,

this being in agreement with the demonstration provided in Appendix A. As a con-

sequence, at low frequency the M̄1 provides the largest range of inspection.

For Xε∆X2 the SH0 mode is generally less attenuated than M̄1, as in this range

the first longitudinal cutoff occurs.

It could be argued that the M̄1 mode is more attractive than SH0 since it has the

lowest guided wave attenuation. However, it is not always possible to perform tests

in the region ∆X1. For instance, in the case of a very thick coating with low shear

velocity, in order to have Xε∆X1 the frequency needs to be very low [see eq. (5.6)]

which might result in a severe reduction of the guided mode sensitivity to defects.

In this case, testing in the ∆X2 range with SH0 can be beneficial as the frequency

can be increased considerably.
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5. Comparison between Lamb and SH waves

5.5 Summary

Universal relationships between the frequency, the guided wave attenuation and the

bilayer material properties and geometry have been derived under the hypothesis

that the elastic plate is much stiffer and heavier than the viscoelastic layer. These

approximate relationships provide a satisfactory accuracy in the frequency ranges

where the SH0 mode attenuation spectrum has minima, and at low frequency for

the M̄1 mode.

The comparison between Lamb and SH waves suggests that the guided wave at-

tenuation of SH waves is considerably larger than that of Lamb modes before and

immediately after the first attenuation peak. At higher frequencies, the Lamb wave

attenuation may be higher than that of the SH mode, depending on the magnitude

of the longitudinal attenuation. However, apart from this region, the guided wave

attenuation is not sensitive to the magnitude of the longitudinal bulk attenuation.

By virtue of the correspondence between coated pipe and coated plate modes, it can

be concluded that long range inspections are not possible where maxima in the non-

dimensional curves occur. The critical frequency where the first attenuation maxi-

mum occurs is proportional to the ratio between the shear velocity and the thickness

of the coating for both longitudinal and torsional modes. At each frequency, the

guided wave attenuation decreases with the impedance-thickness product of the pipe

wall and increases with the bulk shear attenuation-impedance product of the vis-

coelastic coating. As a consequence, guided waves can propagate for a long distance

in thick metallic pipes coated with thin attenuative layers. Moreover, since tests

can be performed at frequencies below the first critical frequency (which is large

due to the thin coating), longitudinal modes provide propagation ranges which are

much larger than those achievable with torsional modes. On the other hand, a thick

coating with low shear velocity leads to a low value of the first critical frequency.

Therefore in order to limit the guided wave attenuation, the testing frequency has

to be very low. However, the mode sensitivity to defect represents a limit to the

extent to which the testing frequency can be reduced. Hence for very thick coatings,

the only possibility is to perform tests around the first Love transition frequency,

103



5. Comparison between Lamb and SH waves

where the second minimum of the attenuation spectrum of SH0 occurs. By contrast

with the case of thin coatings, the SH0 mode now has lower attenuation than M̄1

as explained in Sec. 5.4.

Since the first critical frequency strongly depends on the shear velocity of the coat-

ing, and due to the dependence of the guided wave attenuation on the shear bulk

attenuation of the coating, the feasibility of long range inspections can only be as-

sessed if the shear properties of the coating are known. The characterisation of these

properties will be addressed in Chapters 7 and 8.
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Chapter 6

Meaning of Lamb mode

nonpropagating branches

6.1 Background

The aim of this Chapter is to explain the reason for the low frequency anomalous

branches observed in the dispersion curves of Lamb modes propagating in a weakly

attenuative bilayer (Fig. 4.7).

The possibility of relating these anomalous branches to the nonpropagating modes

of an appropriate elastic system is studied in Sections 6.3 and 6.4 where the modes

of an attenuative free plate are studied and subsequently compared with those of the

plate considered to be elastic. In Sec. 6.5 the analysis is extended to the bilayer case.
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6. Meaning of Lamb mode nonpropagating branches

6.2 Previous work

The propagation of stress waves in plates has been extensively studied since Rayleigh [46]

and Lamb [47] established the secular equation for the free vibrations of infinite elas-

tic plates in 1889. The study of the dispersion characteristics of propagating modes

was initiated by Lamb [48] in 1917 who first investigated the lowest symmetric and

antisymmetric modes. In the following half a century, researchers had focused their

efforts on the characterisation of the higher order propagating modes by analyzing

the dispersion of the real roots (wavenumbers) of the Rayleigh-Lamb equation, [49].

Only in 1955 Lyon [50] calculated the purely imaginary roots of the secular equation

which correspond to modes of infinite wavelength starting at the cutoff frequencies

of the Lamb modes. A key contribution is the work done by Mindlin who established

the existence of modes at the cutoff frequencies whose amplitudes vary linearly with

the propagation distance [51] and also demonstrated the presence of complex roots

of the Rayleigh-Lamb equation, [52, 53]. A rather complete picture of the topology

of real, imaginary and complex wavenumber dispersion is provided by Mindlin [54].

Modes associated with non-real wavenumbers appear to be substantially different

from those corresponding to real wavenumbers as they do not carry energy [28] and

are exponentially damped with distance (therefore they are generally referred to as

nonpropagating modes). As a consequence, there is ground for a sharp separation

between propagating and nonpropagating modes on the basis of a strong physical

argument such as the energy propagation. However, this separation may lead to

a misleading interpretation of the nature of these two families of modes which are

representative of the same physical phenomenon, i.e. plate vibrations. This common

nature is suggested by the fact that nonpropagating modes, at each frequency, pro-

vide the infinity of eigenmodes which, jointly with the finite number of propagating

modes, results in a complete set of orthogonal eigenmodes [55]. This, for instance,

allows the response of the plate to an arbitrary body force to be studied by expand-

ing the force in terms of the infinite number of plate eigenmodes, both propagating

and nonpropagating, according to modal analysis theory [1, 56].

106



6. Meaning of Lamb mode nonpropagating branches

2d

x3

Vacuum

Vacuum

SV-
eSV+

e

L
+
v L

-
v

x1

Figure 6.1: Partial waves diagram.

6.3 Dispersion loci

Let us consider a homogeneous, isotropic viscoelastic plate of infinite extent. The

motion is independent of the x̂2 direction and takes place in two directions, x̂1,

x̂3, the origin being taken in the middle surface of the plate, see Fig. 6.1. The

propagation of Lamb waves can be studied by considering two pairs of longitudinal

and shear bulk waves as shown in Fig. 6.1. The dispersion equation is obtained by

imposing the zero traction condition along the lateral surfaces of the plate which

leads to the well known Rayleigh-Lamb equation

tan qsb

tan qlb
+

[ 4ξ2qsql

(ξ2 − q2
s )

2

]±1

= 0, (6.1)

where ξ is the wavenumber projection along x̂1, ql and qs are the projections of the

longitudinal and shear bulk wave wavenumbers along x̂3 and 2b is the plate thickness.

The plus and minus signs refer to symmetric and antisymmetric modes, respectively.

The first few symmetric modes of a metallic plate (see Tab. 4.1) with low material

damping (ᾱs = ᾱl = 0.01) are shown in Fig. 6.2a, the frequency and wavenumber

being normalized according to

Ω =
2bω

csπ
, (6.2)

ξ̄ =
2bξ

π
, (6.3)

(The mode labelling is justified later). Figure 6.2b shows the dispersion curves for

the propagating modes of an elastic plate with the same bulk velocities as the at-

tenuative plate but zero bulk attenuations. It can be observed that the two sets of
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Figure 6.2: Real wave number dispersion curves; (a) attenuative symmetric modes; (b)

elastic symmetric modes; (c) attenuative antisymmetric modes; (d) elastic antisymmetric

modes.

dispersion curves are very similar except for the zones labelled A and B where the

spectrum of the attenuative plate exhibits some extra branches. Moreover, some

modes appear to join each other at infinite wavelength (see, for instance, L2 and

L−2). The same considerations hold for the antisymmetric modes which are shown

in Figs 6.2c,d for the attenuative and elastic plate, respectively. For this reason, in

the following, only symmetric modes are considered.

The understanding of the topology of the dispersion curves can only be gained by

considering the dispersion of both the real and imaginary parts of the wavenumber.

This leads to a three-dimensional representation of the dispersion loci in the space

(Im{ξ̄}, Re{ξ̄}, Ω). Figure 6.3c shows such a representation for the modes L1, L2,

L−1 and L−2. Figures 6.3a,b,d are the projections of the mode trajectories over the
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Figure 6.3: Three dimensional dispersion curves for the lossy plate (c) and projections

over the planes: (a) Re{ξ̄} = 0; (b) Im{ξ̄} = 0; (d) Ω = 0.

planes Re{ξ̄} = 0, Im{ξ̄} = 0 and Ω = 0, respectively.

Consider the trajectory of the L1 mode. For large values of the frequency (branch

AB Fig. 6.3d), Re{ξ̄} is dominant with respect to Im{ξ̄}. However, as the frequency

decreases, Im{ξ̄} becomes significant (branch B’C). More interesting is the slope of

the function Ω(Re{ξ̄}) which is negative along the branch BB’ at whose edges the

derivative dΩ/dRe{ξ̄} is singular (Fig. 6.3b). As a consequence, a question arises:

is this derivative representative of the group velocity? It can be observed that the

original conception of group velocity, introduced by Rayleigh [57], is to predict the

speed of a wave packet whose harmonic components travel at different speeds. Such

a velocity for a conservative system can be related to the wavenumber, k, according
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6. Meaning of Lamb mode nonpropagating branches

to

Vgr =
dω

dk
. (6.4)

Note that the wavenumber is real since the system is conservative. A natural, but

not necessarily correct, way of defining the group velocity for propagation in lossy

media, is to consider the real part of the wavenumber i.e.

Vgr =
dω

dRe{k} . (6.5)

Such a definition, for the attenuative plate, would lead to both negative (branch

BB’) and supersonic (higher than the material longitudinal velocity) group veloc-

ities around the point B and B’ of the L1 mode. Studies on the propagation of

electromagnetic waves have shown that the definition (6.5) leads to ”abnormal”

velocities when the material absorbtion is taken into account, as in any medium

there would be frequencies where the group velocity is superluminal, infinite or neg-

ative [58]. The debate on whether these abnormal cases are unphysical [59, 60, 61]

or not [62, 63] is still open. In the acoustic field, there has been little work on

this subject and at present there is no theoretical evidence which suggests a correct

and sensible definition of the velocity of a wave packet. However, a possibility is to

consider the velocity of energy transport which is defined as the power flow to me-

chanical energy density ratio. While for a conservative system, group velocity and

velocity of energy transport are coincident [64], when material absorbtion is taken

into account, the two velocities differ. In particular, Bernard et al. [44] showed

experimentally for the L3 mode that where a group velocity singularity occurs the

velocity of the wave packet tends to the velocity of energy transport rather than the

group velocity. Moreover, the sign of the velocity of energy transport characterises

the modes since it is an invariant for each of them. This can be proved by observing

that the propagation direction of a mode has to be constant along the mode path.

If there was a propagation inversion, either a frequency where the power flow is zero

or discontinuous would exist. However, a zero power flow frequency is not possible

as a mode is always propagating. On the other hand, a discontinuous change in

the power flow would imply that at the frequency where the discontinuity occurs

the mode propagates in both directions (±x̂1) which is unphysical. As a result, for

one mode, it can be concluded that the velocity of energy transport sign has to be
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Figure 6.4: Velocity of energy transport versus real wavenumber.

constant with frequency. It has to be emphasized that at a given frequency the

same perturbation can propagate in the positive or negative direction, which is con-

firmed by the fact that only the square of the wavenumber is involved in eq. (6.1).

Therefore, the roots ξ and −ξ must equally be solutions to eq. (6.1). However, in

the space (Im{ξ̄}, Re{ξ̄}, Ω), these roots lay over different paths. As an example,

in Fig. 6.3d L1 corresponds to a mode propagating along x̂1 while L−1 represents

the same type of vibration propagating in the opposite direction as can be deduced

from the signs of the velocity of energy transport shown in Fig. 6.4, this justifies

the negative subscript of some modes. Note that the velocity of energy transport is

always subsonic.

While for L1 the real part of the wavenumber is always positive, as the frequency

decreases, the L2 mode crosses the plane Re{ξ̄} = 0 (Fig. 6.3b,d). At the frequency

where the intersection occurs, the wavelength is infinite, but in contrast with the

cutoff modes of an elastic plate, the mode still carries energy along x̂1. At this fre-

quency, the real part of the wavenumber associated with each bulk wave is parallel

to x̂3 (n ‖ x̂3) whereas the angle between the vector b and x̂3 is non zero. As ex-

plained in Chapter 2, the direction of the Poynting vector is always between n and
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b; therefore, the component of the Poynting vector along x̂1 generates the in-plane

power flow.

As the frequency decreases further, Re{ξ̄} becomes negative while Im{ξ̄} is still

positive. Since the velocity of energy transport is always positive (Fig. 6.4), the

mode still propagates in the direction x̂1. However, when Re{ξ̄} < 0 the power flow

is in the opposite direction to the phase velocity. This type of propagation is known

as backward-wave motion and was first theoretically predicted by Tolstoy et al. [65]

and experimentally observed by Meitzler [66] and Wolf et al. [67] for elastic plates

and cylinders.

6.4 Attenuative versus elastic plate

The understanding of the topology of the dispersion curves of an attenuative plate,

provides a clear picture of the structure of the dispersion curves of the elastic case.

Figure 6.5 shows how the dispersion curves of Fig. 6.3 transform as the material

damping vanishes. Consider the S1 mode as the frequency goes to zero. Along the

branch AB the mode is propagating along x̂1 and its trajectory is entirely contained

in the plane Im{ξ̄} = 0. At point B, the mode breaks into three more branches,

BC, BD and BE. Along the branches BC and BD the mode is nonpropagating, while

along BE the group velocity is negative. However, among these branches only BC

belongs to S1. Mindlin clarified that the branch BE is not part of S1 on the basis

of the negativity of the group velocity (hence, of the power flow). However, it is

not clear why the branch BC has to belong to S1 rather than BD or even being

a different mode. It is usually argued that a non propagating mode is a vibration

which does not propagate and decays from the source. As a consequence, if the S1

mode propagates in the x̂1 direction, the nonpropagating mode which decays in the

same direction (branch BC), is associated to it. In these terms, this would be a mere

convention which does not provide a valid motivation for considering the branch BC

as a part of S1 rather than an independent mode.
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Figure 6.5: Three dimensional dispersion curves for the elastic plate (c) and projections

over the planes: (a) Re{ξ̄} = 0; (b) Im{ξ̄} = 0; (d) Ω = 0.

The physical reason why the branch BC has to belong to the S1 mode lies in the

dispersion curves of the attenuative plate. Since the trajectories of the attenuative

plate modes tend to those of the elastic case as the material damping vanishes (see

limiting absorption principle [68]), it follows that for very low material damping the

modes of the attenuative plate mark the trajectories of the elastic plate. For in-

stance, the L1 mode tends to embrace the branches AB and BC (compare Fig. 6.3d

and Fig. 6.5d). Therefore, it can be concluded that since the two branches AB and

BC of the elastic plate correspond to the limit toward which the trajectory of only

one mode (L1) tends, they belong to the same mode indeed. In a similar fashion,

the branches BD and BE belong to the S−2 mode since the L−2 mode tends to them

as the absorbtion vanishes (compare Fig. 6.3d and Fig. 6.5d). Moreover, a nonprop-
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agating mode decays along the propagation direction of the corresponding mode of

the attenuative plate. This discussion suggests that it would be more appropriate to

refer to the nonpropagating branch of a mode rather than to a nonpropagating mode.

It is worthwhile to notice that for a mode of the attenuative plate the branch which

approaches the non propagating branch of the corresponding elastic mode is charac-

terised by large guided wave attenuation (Im{ξ}). As a consequence, the L1 mode

at very low frequency is rapidly attenuated with distance, and from a practical point

of view behaves as a nonpropagating mode. This consideration holds for the other

higher order modes in the regions where they approach the elastic nonpropagating

mode branches.

6.5 Lamb waves in bilayered plates

The intimate link between propagating and nonpropagating branches explains the

anomalies in the dispersion curves discussed in Sections 4.6 and 4.7.

Figure 6.6 is the spectrum of the first five Lamb modes of the bilayer studied in

Sec. 4.6. For simplicity only the curves with positive Re{ξ̄} have been represented.

Solid lines refer to modes propagating along the x̂1 direction, while the dashed line

represent a backward mode. On the other hand, Fig. 6.7 shows the dispersion loci

when the material absorbtion in the viscoelastic layer is neglected. In this case all

the propagating modes lie on the plane Im{ξ̄} = 0. Note that the only nonpropa-

gating branches are AD, AD’, and the loops CB, GF and EO.

While the trajectories of M0 and M1 are quite similar to those of M̄0 and M̄1, the

paths of the other modes exhibit significant changes. In particular, the modes of the

elastic bilayer are all connected through complex branches, whereas the modes of

the attenuative bilayer are well separated. As in the case of a free plate, the mode

paths of the elastic bilayer can be thought of as the limit condition toward which

the modes of the attenuative bilayer tend as the material attenuation goes to zero.

114



6. Meaning of Lamb mode nonpropagating branches

O

M
0

M
1

M
2

M
3

M
4

Re{ξ}

Ω

E

G

D

D'

M
-4

Im{ξ}

Figure 6.6: Three dimensional Lamb

wave dispersion curves for the bilayer

described in tab. 4.1 with ks = kl =

0.01np/wl.

B

C

Re{ξ}

Ω

Im{ξ}

M
0

M
1

M
2

M
3

M
4

M
4

M
3

M
2

M
-4

A
B

C

D

D'

F

E

G

O

M
-4

M
3

M
-4

M
3

M
-4

M
-4

Figure 6.7: Three dimensional disper-

sion curves for the equivalent elastic bi-

layer of tab. 4.1.

An interesting feature of the dispersion loci of the elastic bilayer is the presence of

a complex loop with diameter BC one half of which belongs to the mode M3 (space

Im{ξ̄} > 0, solid line) and the other half to M−4 (space Im{ξ̄} < 0, dashed line)

as depicted in the zoom at the top of Fig. 6.7. This loop causes the M3 mode to

split into two different branches in the phase velocity versus frequency plane shown

in Fig. 6.8a. The apparent separation is due to the fact that the half loop belonging

to M3 is not visible since it is nonpropagating. However, as the attenuation in the

viscoelastic layer is considered, the loop becomes propagating and the two branches

join together Fig. 6.8b. Moreover, due to the shape of the loop, a maximum in

the guided wave attenuation, Im{ξ}, occurs. Also the branch AD of M2 and the

branches CB, BA and AD’ of M−4 (Fig. 6.7) appear in the phase velocity dispersion

curves as soon as the material absorbtion is taken into account Fig. 6.8b. Note that

the dispersion curves shown in this figure are the same as those shown in Fig. 4.7;

however, the mode labelling is now more rigorous.
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Figure 6.8: Lamb wave phase velocity dispersion curves for the bilayer described in

tab. 4.1: (a) elastic case; (b) ks = kl = 0.01np/wl.

6.6 Summary

The nature of the nonpropagating modes of an elastic plate has been investigated by

considering the elastic case as a restriction of the more general viscoelastic problem.

It has been emphasized that the existence of nonpropagating branches in the disper-

sion curves of an elastic plate is due to the elastic hypothesis. In other words, once

energy absorbtion within the material is considered, nonpropagating branches begin

to carry energy and become a continuous extension of the original elastic propagat-

ing mode. As a consequence, a nonpropagating mode should be regarded as a mode

branch which jointly with one or more propagating branches forms a mode, rather

than a mode itself.

It has been shown that the low frequency anomalous branches in Fig. 4.7, and the

negative attenuation of M̄−4 are due to the complex branches of the modes of the

elastic bilayer. Moreover, the presence of a complex loop (BC) in the dispersion

curves of the elastic bilayer causes the attenuation maximum of the M̄3 mode. Such

a maximum, in the case of large material damping, corresponds to the second at-

tenuation peak of the M̄1 mode.
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Chapter 7

Characterisation of fluid

viscoelastic materials

7.1 Background

As has been shown in the previous Chapters, the dispersion characteristics of guided

waves propagating in coated pipelines are strongly dependent on the shear acoustic

properties of the coating which need to be characterised in order to assess the fea-

sibility of long range inspections.

For this purpose several techniques are available. Reflectometry, for example, uses

the successive echoes from both the front and the back faces of a sample rigidly

bonded to a delay line, the amount of the reflected energy and its phase being

dependent on the sample impedance [69, 70]. However, although the method is

relatively easy to carry out, the measurement of the reflected signal is affected by

several factors, including beam spreading, transducer coupling, and magnification

of bias and variance errors in the time trace of the consecutive echoes emitted from

the back of the specimen [71]. This problem can be overcome by considering the

front reflection from the delay line-sample interface only. However, since the front

reflection is almost insensitive to the material attenuation in the sample, only the

bulk velocity can be measured. Transmission methods [72, 73], are affected by the

same limitations as reflectometry. However, an improvement in the signal loss is

achieved as the signals have to travel only once through the thickness. The ampli-
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7. Characterisation of fluid viscoelastic materials

tude spectrum method [74, 75] and the phase spectrum method [76] are often used

as signal processing methods. They do not significantly change the basic limitations.

The use of guided waves is an extremely attractive alternative to solve many of the

problems mentioned above. Horizontal shear waves in strips [77] or torsional waves

in rods submerged in a Newtonian liquid of known density have been employed to

measure the viscosity of the liquid [78, 79]. The viscosity can be obtained by mea-

suring the guided wave attenuation since, at a given frequency, there is a unique

relationship between the guided wave attenuation and the viscosity. The method is

extremely rapid and ideal for measurement on line and in real time. On the other

hand, these techniques cannot be used for viscoelastic materials as the elasticity

and the damping of the material cannot be linked uniquely to the guided wave at-

tenuation. In other words, the link between the guided wave attenuation and the

two acoustic properties (sound velocity and bulk attenuation) provides one equation

only, which does not allow the two unknown acoustic properties to be found.

In the case of a rod embedded in an other medium, the phase velocity of guided

waves in the rod is only very weakly dependent on the properties of the second

medium (unless the two media are similar). However, with other geometries, the

phase velocity in the waveguide is sensitive to the properties of the second medium.

In this Chapter, the possibility of deriving the viscoelastic properties from the dis-

persion characteristics of guided waves propagating in a hollow cylindrical waveguide

filled with the unknown viscoelastic material is considered. The first important fea-

ture of this approach is that the guided wave attenuation is only a consequence of the

material damping within the inner core. If the core was perfectly elastic no guided

wave attenuation would occur (assuming the waveguide to be elastic), in contrast

with the case of a rod embedded in an elastic space [31]. By contrast with con-

ventional methods, a full control of the magnitude of the guided wave attenuation

can be achieved by varying the geometry (radius and wall thickness) and acoustic

properties of the tube. In particular, the physics behind the attenuation mechanism

of guided waves propagating in filled tubes is the same as in the case of SH waves
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propagating in absorbing bilayers, when a correspondence between the tube and the

metallic plate and the inner core and the attenuative coating is set.

The method proposed in this Chapter provides excellent geometry control, since the

waveguide works as a mould. As laser interferometry can be used for the detection

of the propagating modes, transducer coupling problems can be avoided.

The viscoelastic material is modelled by considering the linear viscoelastic approach

discussed in Chapter 2. Moreover, no assumptions about the frequency dependence

of the acoustic properties such as Kelvin-Voigt, Maxwell or Newtonian models are

made. The technique to obtain the acoustic properties of the viscoelastic core is ex-

plained in Sec. 7.3. Bitumen properties (Sec. 7.5) have been measured by employing

the setup described in Sec. 7.4.

7.2 Torsional modes

Let us consider a hollow, elastic and isotropic cylinder filled with the unknown vis-

coelastic material. The geometry of the system suggests that cylindrical coordinates

(r,θ,z) are appropriate here (r,θ,z, represent the radial, angular and axial positions

respectively).

The tensorial nature of eqs (2.12) and (2.13) implies that these equations hold

regardless of the coordinate system. In particular, as in the case of shear bulk

waves, torsional waves correspond to the solutions to eq. (2.13). In this case the

vector potential H is parallel to ẑ and is provided by

H = [A0J0(kr̂r) + B0Y0(kr̂r)]e
−ζze−iΥzẑ, (7.1)

where A0 and B0 are arbitrary constants, kr̂ and Υ − iζ are the projections of the

complex wavenumber vector ks along r̂ and ẑ respectively, ks being solution to the

characteristic equation (2.20). J0 and Y0 are the Bessel functions of the first and

second kind. Note that the vector potential is no longer equivoluminal as addressed
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7. Characterisation of fluid viscoelastic materials

Table 7.1: Material bulk properties and geometry.

Material cs (m/ms) ᾱs (np/wl) ρ (kg/m3) Thickness/radius (mm)

Copper tube 2.24 0.00 8900 0.70

Inner core 0.43 1.35 970 6.80

by Gazis [80]. The displacement field can be obtained by applying the curl operator

to H, thus

uθ = [A1J1(kr̂r) + B1Y1(kr̂r)]e
−ζze−iΥz, (7.2)

where A1 = −A0kr̂ and B1 = −B0kr̂, the displacement field being tangential. By

considering the compatibility equations (2.2) and the constitutive equations (2.7) in

cylindrical coordinates, the non zero components of the stress tensor are

τrθ = µ̃

(
∂uθ

∂r
− uθ

r

)
, (7.3)

τzθ = µ̃
∂uθ

∂z
. (7.4)

(7.5)

The displacement field associated with a torsional mode propagating in a filled tube

can be expressed according to (7.2) where the constants A1 and B1 are different in

the wall tube and in the inner core. This would lead to four unknown constants.

However, it can be observed that inside the core, the constant B1 has to vanish since

the function Y1 is singular for r = 0. As a consequence, the characteristic equation

can be found by imposing the continuity of the displacement and the stress com-

ponent τrθ at the interface core-tube and the zero traction condition at the free

surface of the tube, in agreement with the partial wave technique already employed

in Chapters 3 and 4.

The topology of the dispersion curves of torsional modes propagating in a filled

tube exhibits the same characteristics as SH waves propagating in layered plates.

Fig. 7.1 shows the dispersion curves for torsional modes travelling in the filled tube

described in Tab. 7.1 when the bulk attenuation of the core is neglected (the curves

have been calculated with the software Disperse). As in the case of SH waves, the
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Figure 7.1: Phase velocity dispersion curves for the filled tube when the bulk attenuation

is neglected (material properties Tab. 7.1).

filled tube modes originate from the interaction between the torsional modes of the

empty tube (which correspond to the first family of asymptotic modes studied in

Chapter 3) and the torsional modes of the inner core if it were rigidly clamped at

the interface with the tube (second asymptotic family). In particular, the disper-

sion curves shown in Fig. 7.1 are due to the interaction of the fundamental torsional

mode of the empty tube with the first four modes of the clamped core.

The displacement field of the fundamental mode of the empty tube, T t(0, 1), is

uθ = Bre
−i ω

ct
z
, (7.6)

where ct is the shear velocity of the tube. Note that the phase velocity coincides

with the bulk shear velocity of the tube, Fig 7.2.

The modes of the clamped core can be obtained by imposing the zero displace-

ment condition at the core-tube interface. This leads to the following characteristic

equation [see eq. (7.2)]

J1(kr̂r0) = 0, (7.7)
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Figure 7.2: Asymptotic modes for the filled tube:(−−−) empty tube; ( ) clamped

core.

where r0 is the core radius and the wavenumber component kr̂ satisfies the condition

k2
r̂ + Υ2 =

ω2

c2
c

, (7.8)

where cc is the core shear velocity. The solutions to (7.7) are [81]

kr̂r0

π
= 0, 1.2196, 2.2332, 3.2384, 4.2410, . . . , ψN , (7.9)

where ψN represents the Nth solution. The first solution is trivial as it corresponds

to zero displacement over the cross section of the core. On the other hand, the phase

velocity spectrum associated with the Nth order mode, T ′c(0, N), is given by

f 2

c2
c

− f 2

c2
ph

=

(
ψN

2r0

)2

, (7.10)

the dispersion curves of the first four modes being shown in Fig. 7.2. As the mode

order increases, ψN tends to N and the phase velocity dispersion curves of torsional

modes propagating in the clamped core tend to the dispersion curves of SH waves

propagating in a free plate with thickness r0 [see eq. (3.26)]. Moreover, from (7.10)

the cutoff frequencies of the clamped core are

fcutoff =
ccψN

2r0

. (7.11)
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Figure 7.3: Dispersion curves of the asymptotic modes ( ) and the modes of the

filled tube ( ).

Figure 7.3 is the superposition of the asymptotic modes and the modes of the filled

tube. As in the case of SH waves, torsional modes undergo the mode jumping

phenomenon (Sec. 3.6) which, as the frequency varies, is accompanied by energy

migration from the tube wall into the core and vice versa. In particular, at the

cutoff frequencies of the filled tube modes, due to the large impedance difference

between the core and the tube, the modes correspond to standing waves in the core

(7.11), while there is very little motion of the tube wall. However, as the frequency

increases, the amount of energy which travels in the tube wall increases. At the

frequencies where the modes intersect the T t(0, 1) mode of the empty tube, most

of the energy propagates in the tube rather than in the core. As the frequency

increases further, the energy contained in the tube wall decreases, and for very high

frequency the energy primarily travels in the core.
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Figure 7.4: Dispersion curves for the system described in tab. 7.1: (a) Phase velocity of

the filled tube when the bulk attenuation is neglected (solid line) and phase velocity of

the empty tube (dashed line); (b) as (a) but with bulk attenuation in the core material;

(c) guided wave attenuation corresponding to (b).

Fig. 7.4b,c show the phase velocity and guided wave attenuation for a viscoelas-

tic core with constant bulk shear velocity and attenuation per wavelength while

Fig. 7.4a corresponds to the elastic system (note the velocity scale in Fig. 7.4b is

finer than that in Fig. 7.4a). Due to the large value of the material attenuation, the

modes no longer jump and as the frequency increases, the T (0, 1) mode of the filled

tube approaches the T t(0, 1) mode of the empty tube rather than tending to the

T ′c(0, 1) mode of the clamped core. All the other higher order modes of the filled

tube tend to the modes of the clamped core which are highly attenuated (not shown

here). Moreover, as for SH waves, the maxima of the attenuation spectrum occur

at the frequencies where the modes would jump if the core were elastic [compare

Figs (7.4)a and (7.4)c] as explained in Sec. 3.7.
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Figure 7.5: Contour plot of the guided wave attenuation (dB/m) as function of the bulk

shear velocity and the bulk attenuation at 50kHz for a 6.8mm inner radius, 0.7mm wall

thickness, filled copper tube. Core density 970kg/m3. The arrows indicate the direction

of increasing attenuation.

7.3 Method

For a given frequency and assigned tube geometry and core density, the guided wave

attenuation and phase velocity are functions of the bulk shear velocity and the bulk

attenuation only. Fig. 7.5 shows the contour plot of the attenuation when all the

parameters are kept constant except the acoustic properties of the inner core. Each

curve corresponds to a value of ζ and provides all the values of ᾱs and cs which, at

the prescribed frequency and geometry, result in the specified value of guided wave

attenuation. In other words, each curve provides ᾱs as a function of cs and ζ

ᾱs = g1(cs, ζ). (7.12)

While all the couples (ᾱs, cs) provided by (7.12) result in the same value of ζ, they

do not result in the same value of the phase velocity. A second relationship can

be obtained from the contour plot of the phase velocity (Fig. 7.6). It is possible to

obtain a function that, for a given value of the phase velocity, links ᾱs to cs and cph

ᾱs = g2(cs, cph). (7.13)
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Figure 7.6: Contour plot of the phase velocity (m/ms) as function of the bulk shear

velocity and the bulk attenuation at 50kHz for a 6.8mm inner radius, 0.7mm wall thick-

ness, filled copper tube. Core density 970kg/m3. The arrows indicate the direction of

increasing phase velocity.

In this case all the couples (ᾱs, cs) give the same phase velocity but different guided

wave attenuation. At a given frequency, f0, the phase velocity, cph0, and the guided

wave attenuation, ζ0, can be measured experimentally. As a consequence, the curve

g1(cs, ζ0) of the guided wave contour plot and the curve g2(cs, cph0) of the phase

velocity contour plot are known. By overlapping the two curves, the intersection

provides the bulk acoustic properties ᾱs and cs of the viscoelastic material at the

prescribed frequency, f0. This comes from the fact that at the intersection, ᾱs and cs

result in the measured value of the guided wave attenuation, ζ0, as the intersection

point belongs to g1(cs, ζ0), and in the measured value, cph0, of the phase velocity

as the intersection point belongs to g2(cs, cph0). Since the previous procedure can

be applied to any frequency, it follows that the dispersion curves of the viscoelastic

material [ᾱs(f) and cs(f)] can be determined over the frequency range of interest.

Moreover, by contrast with other techniques [82, 83], no assumptions are made

about the frequency dependence of the acoustic properties, as the method considers

each frequency separately.
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Figure 7.7: Schematic diagram of the setup.

7.4 Experiments

The experiments were performed at the temperature of 298K on a 1m length cop-

per tube (internal radius 6.8mm, wall thickness 0.7mm) filled with bitumen TML

24515 45/60 supplied by Shell Global Solutions. The torsional mode was excited by

means of two piezoelectric transducers clamped to the external surface of the tube

at one end as shown in Fig. 7.7. The transducers which are similar to those used

in pipe testing [17] comprised shear elements mounted on a steel backing mass and

oriented as shown in Fig. 7.7 to induce torsion. The transducers were excited by

a Hanning windowed toneburst generated by a custom-made waveform generator-

power amplifier. The torsional mode was detected by a laser interferometer (Sensor

Head: Polytec OFV 512, Controller: Polytec OFV 3001) operating in differential

mode. The tangential displacements were measured by focusing the two beams at

±300 with respect to the radial direction and by orienting the beams in the plane

perpendicular to the axis of the tube. The displacements were sampled along the

tube axis and stored in a PC after 100 averages.

In order to measure the properties of the unknown material over a wide range of

frequencies, a relatively wide band signal with a number of cycles ranging from 3,

for low frequencies, up to 5 for the higher frequencies was excited. More cycles are

needed at higher frequencies since the attenuation tends to be higher and the use of

more cycles improves the signal-noise ratio and reduces the effects of dispersion.

127



7. Characterisation of fluid viscoelastic materials

In order to obtain the dispersion curves, one can observe that for a propagating mode

the Fourier transform of the signal at an arbitrary position, z, can be expressed as

a function of the Fourier transform at the origin z = 0 multiplied by a suitable

complex exponential

U(z, ω) = U(0, ω)e−ζze
−i ω

cph
z
, (7.14)

where the argument of the exponential is the projection of the complex wavenumber

along the propagation direction. Furthermore, if the ratio R is defined as

R =
U(z, ω)

U(0, ω)
, (7.15)

it follows that

‖R‖ = e−ζz, (7.16)

R

‖R‖ = e
−i ω

cph
z

= cos

(
ω

cph

z

)
− i sin

(
ω

cph

z

)
, (7.17)

where ‖ · ‖ is the norm operator in the complex domain. Since the ratio R can be

measured experimentally, the guided wave attenuation can be determined through a

linear interpolation of the experimental, logarithmic distribution of ‖R‖ versus the

axial position. Such a distribution is shown in Fig. 7.8. The slope of the interpolation

line gives the guided wave attenuation. Fig. 7.9 shows the distribution of the real

part of the ratio R/‖R‖ against the axial position. The phase velocity is computed

from a cosine interpolation of the experimental data. The argument of the cosine

function, ω/cph, is obtained by minimizing the square root of the error between the

experimental distribution and the cosine function. This approach is particularly

robust as it does not require the inversion of the cosine function to determine the

unknown argument ω/cph and the successive phase unwrapping procedure due to

the periodicity of the cosine function [84].
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Figure 7.10: Experimental guided wave attenuation versus frequency for a 6.8mm inner

radius, 0.7mm wall thickness copper tube filled with bitumen.

7.5 Bitumen dispersion curves

Here the procedure described in Sec. 7.4 is applied to the characterisation of the

bitumen TML 24515 45/60 acoustic properties. For this type of bitumen the mea-

sured density was 970kg/m3.

Fig. 7.10 shows the measured guided wave attenuation as a function of frequency.

The curve is obtained as a superposition of measurements performed at different

centre frequencies and successively postprocessed according to the method described

in the previous section. Fig. 7.11 shows the experimental phase velocity for the filled

tube. The segments of the curves obtained at different centre frequencies overlap

very well.

As an example, let us consider the frequency where the first attenuation peak occurs

(i.e. 40kHz, Fig. 7.10). At this frequency the guided wave attenuation is 127dB/m

while the phase velocity is 2.093m/ms (Fig. 7.11). Fig. 7.12 shows the overlapping

of the guided wave attenuation and phase velocity contour plots at 40kHz. The

intersection of the curve at constant attenuation (ζ = 127dB/m) and the curve at
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Figure 7.11: Experimental phase velocity versus frequency for a 6.8mm inner radius,

0.7mm wall thickness copper tube filled with bitumen.
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Figure 7.13: Dispersion curves for bitumen TML 24515 45/60: (a) bulk shear velocity

against frequency; (b) bulk shear attenuation against frequency.

constant phase velocity (cph = 2.093m/ms) provides the values of the shear veloc-

ity, 0.43m/ms, and the bulk attenuation, 1.35np/wl, of bitumen at 40kHz. It is

interesting to note that the two curves intersect each other almost perpendicularly

which implies that the method is numerically robust. The bitumen bulk shear ve-

locity versus frequency is shown in Fig. 7.13 (a), and the bulk shear attenuation

against frequency is shown in Fig. 7.13 (b). The curves have been derived by ap-

plying the former procedure to several frequencies (black squares). The trend lines

(solid lines) have been obtained by best fitting second order polynomials. It has to

be emphasized that a polynomial interpolation is not strictly representative of the

behaviour of a viscoelastic material as it cannot account for the transition between

the material rubbery and glassy behaviour. More suitable mathematical expressions

are provided by Hartmann et al. [85] who show how the Havriliak-Negami model

can accurately describe the trend of both modulus and loss factor of a polymer over

the entire frequency range. According to the Havriliak-Negami model the complex

modulus is given by

µ̃ = µ∞ +
µ∞ − µ0

(1 + (if/f0)α)β
, (7.18)
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7. Characterisation of fluid viscoelastic materials

where µ0 and µ∞ are the limiting rubbery and glassy moduli, f0 is the frequency

where the transition occurs and α and β are two constants. However, at the low

frequencies considered here, due to the large value of f0 (typically 2MHz), the real

part of µ̃ is almost constant with frequency, while the imaginary part varies linearly

with frequency since the ratio f/f0 is very low. This suggests that a polynomial

interpolation, at low frequencies, should be able to describe with an acceptable level

of accuracy the material behaviour, and so avoiding a time consuming last square

fit to the measured data with (7.18).

7.6 Validation

In order to evaluate the accuracy of the method, the effect of errors in the phase ve-

locity and guided wave attenuation measurements on the bulk properties evaluation

has been studied numerically. For a system with the properties shown in tab. 7.1, it

has been found that the best sensitivity is reached around the frequency of the first

guided wave attenuation peak over a frequency range of 60% of the peak frequency

(60% bandwidth). In particular, for a 10% guided wave attenuation error and a

1% phase velocity error, which are representative of the level of confidence of the

measurements, the maximum bulk shear velocity and bulk attenuation errors are

about 4% and 20% respectively. However, the errors at the frequency of maximum

guided wave attenuation are considerably lower (2% and 12% in the bulk velocity

and bulk attenuation estimates respectively).

The lack of data on the acoustic properties of viscoelastic materials makes the val-

idation of the technique very difficult. One possibility would be the use of viscous

liquids, such as glycerol whose viscosity data are available in literature. However,

due to the low value of the viscosity, the shear impedance of glycerol is much lower

than that of any metal. As a consequence, the amount of energy which can be

transferred from the tube into the fluid core is very low. This leads to a low value

of the guided wave attenuation which is difficult to measure unless a very long tube

is used. On the other hand, high viscosity standards are extremely sensitive to

133



7. Characterisation of fluid viscoelastic materials

10 20 30 40 50 60 70 80 90
0

0.2

0.4

0.6

Frequency (kHz)

B
ul

k 
sh

ea
r 

ve
lo

ci
ty

 (
m

/m
s)

Figure 7.14: Bulk velocity dispersion curve for bitumen TML 24515 45/60: (�) experi-

ments; ( ) experimental data interpolation; (−−−) Kramers-Krönig formula.

temperature changes. For instance, Polybutene viscosity varies from 36.2Pa · s to

18.3Pa·s when the temperature ranges between 293K and 299K. As a result, an ex-

tremely accurate temperature control would be required. Moreover, some concerns

arise about the validity of the Newtonian model for these large values of the viscosity.

A partial validation of the technique comes from the fact that the dispersion curves

obtained for bitumen are in reasonable agreement with the Kramers-Krönig rela-

tionship [32], according to which the bulk shear velocity spectrum can be derived

from the bulk attenuation spectrum

1

c0

− 1

c(ω)
=

2

π

∫ ω

ω0

α(ω′)
ω′2 dω′, (7.19)

where c0 is the velocity at the reference angular frequency ω0 and ᾱ is the bulk at-

tenuation in neper per unit length. Fig. 7.14 shows the measured bulk shear velocity

and the prediction from the Kramers-Krönig formula applied to the experimental

bulk attenuation spectrum shown in Fig. 7.13b. The error bars indicate the level of

confidence of the measured bulk velocities; the estimated errors vary with velocity

as discussed above. The reference frequency in the integral (7.19) was chosen to

be equal to the frequency of maximum guided wave attenuation (40kHz) since, at
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7. Characterisation of fluid viscoelastic materials

this frequency, the level of confidence of both bulk attenuation and bulk velocity is

optimum. The measured bulk velocities (squares) fit well with the Kramers-Krönig

formula prediction (dashed line) for frequencies ranging between 30 and 55kHz.

However, at higher frequency, the fitting becomes less accurate. This is due to the

fact that, close to the frequency of the second guided wave attenuation minimum,

the sensitivity drops as shown by the error bars in Fig. 7.14. The bulk velocity for a

simple viscoelastic material should increase monotonically with frequency whereas

Fig. 7.14 suggests that the velocity has a local maximum at around 60kHz. This

apparent maximum is probably due to the increased error in the estimates around

the second guided wave attenuation minimum.

7.7 Summary

A novel technique for the characterisation of highly attenuative viscoelastic materi-

als has been presented. It has been shown that by measuring the dispersion curves

of a tube filled with the unknown material the shear acoustic properties can be

obtained. The method is based on the hypothesis of linear viscoelasticity and no

assumptions are made about the frequency dependence of the acoustic properties as

a monochromatic approach is followed.

The technique is attractive since many of the limitations common to traditional

methods including beam spreading, sample manufacturing, transducer coupling,

etc. are overcome. On the other hand, the need for the material to be moulded

into the tube represents a limitation in the case of solid materials, since melting

the material would dramatically change the properties. By contrast, the method is

particularly suitable for materials that will flow as the tube can then easily be filled.
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Chapter 8

Shear properties of solid

viscoelastic materials

8.1 Background

As has been discussed in the previous Chapters, the measurement of the shear

acoustic properties of solid viscoelastic coatings plays a major part in the prediction

of the test range of an ultrasonic guided wave propagating in a coated pipeline.

Since the properties of viscoelastic materials are extremely sensitive to temperature

variations and oxidation phenomena which strongly depend on the surrounding en-

vironment, there is a need for a technique which allows rapid in-situ measurements

to be performed. The main difficulty comes from the limited dimensions of samples

(typically the size of a coin) due to the breakage of the coating as it is detached

from the metallic substrate. Moreover, since for guided wave testing the frequency

is well below 100kHz, only the low ultrasonic frequency properties of the coating are

of interest.

In order to measure the shear properties of solid viscoelastic materials, the tech-

nique presented in the previous chapter cannot be employed, unless the material

is melted and moulded into the tube. However, such a procedure is not always

applicable since the material properties may dramatically change as a result of the

thermal treatment. Traditional ultrasonic techniques [69, 70, 73, 74, 75, 76] for the

measurement of longitudinal properties are based on the response of a sample to an
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8. Shear properties of solid viscoelastic materials

acoustic perturbation. Such a response can be measured by placing either solid or

fluid delay lines between the sample and the acoustic source/receiver. Measurement

of shear properties is more complex. First, shear waves do not propagate in liquid

couplants due to the low viscosity; consequently, in order to transmit shear stresses

through the contact interface between the excitation source and the sample, rigid

coupling is needed. One possibility is to cement the acoustic source onto the sample.

However, in order to avoid interference of the acoustic signal with the glue layer, the

wavelength of the signal has to be much larger than the glue thickness. Most impor-

tantly, chemical reactions between the glue and the sample have to be avoided as

they could dramatically change the mechanical properties of the sample. Moreover,

such a procedure is time consuming and not suitable for rapid testing. Alternatively,

liquid delay lines can be used. In this case, the sample is immersed in a liquid bath

and interrogated with an oblique longitudinal wave. The scattered longitudinal field

depends on both shear and longitudinal properties of the sample as the incident

wave undergoes mode conversion into shear and longitudinal bulk waves within the

sample. As a consequence, it is possible to derive the sample properties (shear and

longitudinal) from the scattered field through an inversion procedure [72]. However,

the accuracy of the measurements decreases when the incident signal wavelength is

large compared to the sample dimensions. Solid delay lines are more attractive as

they can support shear waves, and the shear properties can directly be derived from

the shear scattered field. However, the coupling of the solid buffer with the sample

remains an issue.

This Chapter describes and evaluates a new technique for the measurement of the

shear properties of viscoelastic solids. A small cylindrical sample is clamped be-

tween two buffer rods. Neither glue nor couplant is used at the interfaces between

the sample and the two buffers. Sec. 8.3 investigates the possibility of deriving the

sample properties from either the reflection or transmission coefficients of the fun-

damental torsional guided mode, T (0, 1), through the sample. Sections 8.4 and 8.5

describe the experimental apparatus and its calibration. Results for bitumen are

given is Sec. 8.6, where the technique is also validated.
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Figure 8.1: Schematic diagram of the reflection and transmission of a normally incident

wave through a layer separating two half spaces. (non-perpendicular incidence is shown

for clarity)

8.2 Previous work

It is known from optics that if a monochromatic plane wave, I, is incident on a

layer which separates two half spaces, it undergoes infinite partial reflections within

the layer as shown in Fig. 8.1. Such reflections cause an interference phenomenon

between the front reflection, b0, and the infinite back reflections, bi emerging from

the back face of the layer. Similarly, an interference occurs between the wave which

penetrates the layer, t0, and the reflections from the layer front face, ti. If the

incident plane wave is perpendicular to the layer and of unit amplitude, the total

reflection, R, and the total transmission, T, are [43]

R = R12 +
T12T21R21e

i2k2d

1 − R2
12e

i2k2d
, (8.1)

T =
T12T21e

ik2d

1 − R2
12e

i2k2d
, (8.2)

where the subscripts 1 and 2 refer to the half spaces and the layer, respectively.

The coefficients Rij and Tij are the reflection and transmission coefficients at the

interface between the half spaces i and j when an incident wave travels from the

half space i to the half space j. For acoustic stress waves, by defining the complex

impedance Z as [25]

Z = ρa, (8.3)
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where ρ is the density, a the complex velocity [(2.14) or (2.15)], the reflection and

transmission coefficients of either longitudinal or shear waves are

Rij =
Zj − Zi

Zi + Zj

, (8.4)

Tij =
2Zj

Zi + Zj

. (8.5)

By substituting (8.4) and (8.5) into (8.1) and (8.2) the total reflection and trans-

mission coefficients can be related to the material impedances

R =
Z2

2 − Z2
1

Z2
2 + Z2

1 + 2iZ2Z1cot(k2d)
, (8.6)

T =
4Z2Z1

(Z1 + Z2)2e−ik2d − (Z1 − Z2)2eik2d
(8.7)

(8.8)

In the case of propagation in lossless media, the impedances are real and constant

with frequency [see eq. (8.3)], and the total reflection and transmission coefficient

moduli are periodic functions of the wavenumber-layer thickness product, k2d. Re-

flection coefficient modulus maxima (|R| = 1) occur when

d

Λ
=

2N − 1

4
Nε{1, 2, ...}, (8.9)

where Λ is the wavelength within the layer (Λ = c2/f). On the other hand, the

reflection coefficient vanishes when

d

Λ
=

N

2
Nε{0, 1, 2, ...}. (8.10)

Conversely, by energy conservation, transmission coefficient minima and maxima

are given by (8.9) and (8.10), respectively. In other words, at the through thickness

resonance frequencies of the free layer [corresponding to condition (8.10)], the inci-

dent wave does not ”see” the layer and all the energy is transmitted without being

reflected.

The resonance condition (8.10) provides two direct methods for the measurement of

the bulk velocity c2. The first method, known as thickness interferometry, is based

on the measurement of the reflection or transmission coefficients as a function of

the layer thickness, d, at constant frequency (constant wavelength). The reflection
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coefficient modulus versus layer thickness, here referred to as the d-spectrum, ex-

hibits minima when the thickness is a multiple of half the wavelength according to

(8.10). Therefore, by measuring the distance between two consecutive minima, ∆d,

the bulk velocity, c2, can be obtained from (8.10)

c2 = 2f∆d. (8.11)

In a similar fashion, by measuring the transmission d-spectrum the bulk velocity can

be obtained from the distance between two consecutive peaks using (8.11). Thickness

interferometry has been employed for the measurement of the longitudinal acoustic

properties of gases [86] and several types of liquids such melts [87, 88, 89, 90, 91]

and biological tissues in vitro [92, 93]. The application of this technique has been

limited to the case of fluids as the layer thickness can be varied continuously by

maintaining perfect coupling between the fluid layer and the two half spaces.

Frequency interferometry is based on the same principle as thickness interferometry.

In this case either R or T are measured as a function of the frequency at constant

thickness. The frequencies where reflection minima and transmission maxima occur

correspond to the through thickness resonances of the free layer. As a result, the

bulk velocity can be obtained by measuring the frequency interval, ∆f , between two

consecutive transmission peaks or reflection minima, according to

c2 = 2d∆f. (8.12)

When material absorbtion is considered, due to the fact that the impedances and

the wavenumber k2 are complex, the ratios d/Λ where maxima and minima of the

reflection and transmission coefficients occur are shifted from the values provided by

(8.9) and (8.10). However, the magnitude of the shift, which depends on the amount

of internal damping, is usually negligible as discussed by Katahara et al. [87]. As a

result, c2 can still be derived from (8.11) and (8.12).
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8.3 Method

Frequency interferometry is particularly suitable for the measurement of the acoustic

properties of solids as, by contrast with thickness interferometry, there is no need for

varying the sample thickness. However, whereas thickness and frequency interferom-

etry are equivalent for a lossless system, a significant difference exists when material

damping is considered. In particular, thickness interferometry is a monochromatic

method (measurements are performed at constant frequency) and the d-spectra do

not depend on the frequency dependence of the layer acoustic properties, α2(ω) and

c2(ω). Therefore, at a prescribed frequency ω0, R(d) and T (d) are known functions

of the layer thickness and the two unknown parameters c2(ω0) and α2(ω0) only [see

(8.6) and (8.7)]. Moreover, since c2(ω0) can be obtained from (8.11), α2(ω0), can

be found by best fitting either R(d) or T(d) to the corresponding experimental d-

spectra [87].

In the case of frequency interferometry, such a procedure cannot be employed since

the frequency dependence of the acoustic properties c(ω) and α(ω) is unknown. As a

consequence, the functions R(ω) and T (ω) are unknown. In other words, the shape

of the reflection and transmission coefficient spectra depends on the shape of the

acoustic property spectra. Moreover, for a highly dispersive material, (8.12) can no

longer be employed as it requires the periodicity of R(ω) and T (ω). However, in a

sufficiently narrow band of frequency, outside the transition between the material

rubbery and glassy behaviour [94], it can always be assumed that the bulk velocity

c is constant with frequency and that α is a linear function of the frequency (see

Sec. 2.5)

α2 =
ᾱ2

c2

f, (8.13)

Under these assumptions, the problem becomes formally equivalent to thickness in-

terferometry. The material properties, and consequently R(ω) and T (ω), are now

known functions of the unknown parameters c2 and ᾱ2. The bulk velocity c2 can be

obtained from the frequency interval between two consecutive transmission peaks

or reflection minima according to (8.12) (note that the number of peaks or minima

occurring in a given frequency band depends on the layer thickness). The bulk at-
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tenuation ᾱ2 is obtained by best fitting the functions R(ω) or T (ω) to the measured

spectra.

It has to be emphasized that if the assumptions of constant velocity and constant at-

tenuation per wavelength do not hold in the frequency range of interest the method

becomes inaccurate. Nevertheless, the acoustic properties can be found by divid-

ing the frequency range into smaller intervals, where the simple rheological model

holds, and increasing the sample length so as to have enough reflection maxima and

transmission minima in the interval. In each interval, the validity of this model

can be assessed by considering the matching between the experimental spectra and

the analytical expressions. As an example, if the shear velocity is highly dispersive,

transmission maxima and reflection minima are no longer equally spaced in the fre-

quency domain.

The theory discussed so far refers to the case of plane waves propagating in a bound-

less space containing an infinite plane layer with finite thickness. Formulae (8.6) and

(8.7) provide the scattering coefficients for both longitudinal and shear bulk waves

when they impinge the layer perpendicularly. Since the purpose of this Chapter

is to assess the shear properties of the layer, it would be sufficient to measure the

reflection and transmission coefficients of a shear bulk wave through the layer rigidly

clamped between two large blocks of known properties. However, the propagation

of bulk waves is always accompanied by beam spreading due to the finite size of the

acoustic source and receiver.

In order to avoid beam spreading guided waves can be employed. Appendix B shows

that the reflection and transmission coefficients of the fundamental torsional mode,

T (0, 1), through a disk rigidly clamped between two identical, infinite long rods are

still provided by (8.6) and (8.7). As a result, the shear properties of the disk can be

obtained by measuring the reflection and transmission coefficients of T (0, 1) follow-

ing the procedure previously discussed for bulk waves. It is interesting to observe

that while T (0, 1) and all the other torsional modes do not undergo mode conversion

(see Appendix B), all the longitudinal modes propagating above the cutoff frequency
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of the second longitudinal mode [31] experience mode conversion at the interfaces

between the two rods. Moreover, while eqs (8.6) and (8.7) are exact expressions

for the scattering of T (0, 1), they only represent approximate solutions for the low

frequency scattering of longitudinal modes when the bulk velocity c is replaced with

the phase velocity of the first longitudinal mode [36].

The interferometry discussed in this Chapter reproduces in principle the resonant

bar technique [95, 96]. In this case, the shear velocity of a rod is measured by fixing

two accelerometers at the free ends of the rod and then measuring the frequency

interval between two consecutive resonances of the free rod according to (8.12).

However, the presence of the accelerometers produces a shift of the resonance fre-

quencies which may lead to significant errors especially when the sample dimensions

are limited. This problem has been overcome with the split-bar method [97, 98].

In this case, the sample is clamped between two rods and its acoustic properties

are derived from the resonance frequencies of the rod-sample-rod system. How-

ever, the resonances of such a system are different from those of the free sample

as they also depend on the rod properties and the accelerometer masses. This is

a consequence of the harmonic excitation of the system which means that the re-

sponse measured is that of entire rod-sample-rod system due to the superposition

of infinite reflections of the harmonic wave at the free ends of the system. On the

other hand, the novelty of the method presented in this Chapter is that the two

rods work as delay lines which drive an acoustic wave pulse onto the sample. As a

consequence, the reflection and transmission through the sample can completely be

separated from the reflections at the free ends of the rods and (8.12) remains valid.

This method is more advantageous than the split-bar method since the velocity can

be derived from the explicit expression (8.12) rather than inverting more complex

resonance expressions as in the case of the split-bar method. Moreover, the method

proposed here is more robust because expression (8.12) does not involve either the

properties of the rods or the transduction which are potential sources of uncertainty.
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Figure 8.2: Diagram of the apparatus for shear property measurements

8.4 Experimental setup

The setup consisted of two identical stainless steel cylindrical rods of 6mm diameter

and 333mm long (the acoustic properties are reported in Tab. 8.1). Alignment of

the rods was ensured by two cylindrical supports on each rod which allowed the

rod to slide axially as shown in Fig. 8.2. Moreover, so as to reduce reflections

from the contact interfaces rod-support, the support were made of Nylon 6 whose

acoustic impedance is much lower than that of steel. In order to excite and detect

the T (0, 1) mode, at one end of each rod two piezoelectric transducers were firmly

clamped onto the rod lateral surface. The transducers, which were similar to those

used for pipe testing [17] and in Chapter 7, comprised shear elements mounted on a

steel backing mass, excited in parallel and oriented as in Fig. 8.2 to induce torsion.

The use of two transducers operating in such a configuration is required in order

Table 8.1: Material bulk properties.

Material Velocity (m/s) Attenuation (np/wl) Density (kg/m3)

Steel 3260 – 7804

POM 890 0.10 1553

144



8. Shear properties of solid viscoelastic materials

to avoid the generation of a bending mode which would interfere with T (0, 1). A

custom-made waveform generator-power amplifier excited the transducers on rod A

(see Fig. 8.2) by a Hanning windowed toneburst. The acoustic response of the sys-

tem was monitored by receiving the signal with the transducers of rod A operating

in pulse-echo mode and those of rod B in pitch-catch mode. The pulse-echo and

pitch-catch signals were amplified and transferred to a digital oscilloscope (LeCroy

9400) for digital capture and then stored in a PC.

According to the theory of linear slip interfaces [99, 100, 101], the dry contact be-

tween two surfaces can be model by an interfacial spring stiffness, the condition of

perfect bonding [eqs (B.9) and (B.10)] being achieved when the spring stiffness is

infinite. The stiffness, which depends on the geometry of the contact and on the

surface materials, increases under the effect of an applied pressure [102, 103]. There-

fore, in order to ensure the continuity of displacement and stress at the interfaces

between the rods and the disk, an axial compressional load was applied at the free

end of each rod by means of a screw.

8.5 Measurement procedure

In order to measure the reflection and transmission coefficients the apparatus was

calibrated by performing two types of measurement. At first no sample disk was

placed between the two rods which were separated by an air gap. In this con-

figuration the pulse-echo response of rod A (see Fig. 8.2), PEair, was recorded.

Subsequently, the two rods were put in contact under a compressional load, and the

pulse-echo signal of rod A, PEsteel/steel, and the pitch-catch signal PCsteel/steel were

measured. Note that the magnitude of the compressional load is arbitrary since,

for the calibration purpose, no intimate contact between the rods is required as dis-

cussed later in this section.

Once the calibration measurements were completed, a material sample, previously

cut into a 6mm diameter disk, was placed between the rods. Neither couplant nor
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glue were employed. The rods were gradually loaded axially and the variations of

the transmitted signal continuously monitored on the oscilloscope. The load was

increased until the transmitted signal became insensitive to load increments, this

condition ensuring intimate contact between the rods and the sample. At that

point, the pulse-echo signal of rod A, PEsteel/disk/steel, and the pitch-catch signal,

PCsteel/disk/steel were recorded.

As the air impedance is negligible with respect to steel, PEair corresponds to unit

reflection coefficient therefore, the reflection coefficient R is given by

R =
PEsteel/disk/steel

PEair

. (8.14)

Note that the quantities appearing in the previous relationship and in the rest of

this section are the Fourier transforms of the time traces.

The transmission coefficient cannot be calculated by dividing the pitch-catch re-

sponse, PCsteel/disk/steel, by PEair as the rod-transducer transfer functions of the

two rods do not necessarily coincide due to differences in the transducers and in the

coupling. Moreover, the transfer functions of the pulse-echo and pitch-catch lines

are different too. However, it is possible to express the transmission coefficient as

T = η
PCsteel/disk/steel

PEair

, (8.15)

where η is a frequency dependent correction factor which can be derived from the

pitch-catch response of the rod-rod contact. In this case, the reflection coefficient

at the interface steel-steel, Ψ, is

Ψ =
PEsteel/steel

PEair

. (8.16)

Due to the low frequency considered, it can be assumed that there is no energy

dissipation due to internal damping in steel and at the interface between the two

rods. As a consequence, by energy conservation, the transmission coefficient steel-

steel, ν, can be related to Ψ according to

|ν| =
√

1 − |Ψ|2. (8.17)
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As a result, since

ν = η
PCsteel/steel

PEair

, (8.18)

by equating (8.17) and (8.18), it follows that

|η| =

∣∣∣∣∣ PEair

PCsteel/steel

∣∣∣∣∣
√

1 − |Ψ|2. (8.19)

Thus, η can be found from the calibration measurements with no need to determine

the quality of the steel-steel contact in the pitch-catch calibration test. The correc-

tion factor so obtained can be substituted into (8.15) to provide the transmission

coefficient T.

8.6 Results

The experiments were performed at room temperature, 298K. Figure 8.3a shows the

first and second echo reflected at the free end of rod A measured by operating the

transducers in pulse-echo mode. Figure 8.3b is the pulse-echo response of rod A

when a 18.5mm long Acetal Copolymer Plastic [chemical name polyoxymethylene

copolymer, POM], cylinder is clamped between rods A and B. In this case, each echo

consists of a train of signals which contains the front reflection b0 and the infinite

series of back reflections bi (see Sec. 8.2). The amplitude of the front reflection b0

is much larger than b1 since the steel shear impedance is almost twenty times that

of POM. Moreover, the amplitude of the back reflections bi rapidly decays due to

energy release into rod B and absorbtion within the POM cylinder. This is more

evident from the pitch-catch response shown in Fig. 8.3c. Also in this case there are

two trains of signals. The first train corresponds to the transmitted T (0, 1) mode and

comprises the signal t0 and all the reverberations from the front face of the cylinder,

ti (see Sec. 8.2). The second train, is the interference of the reverberation of the first

train along rod B and the signal transmitted by the train reverberating along rod A.

The reflection and transmission coefficients were calculated by following the proce-

dure discussed in the previous section. It has to be emphasized that formulae (8.6)
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Figure 8.3: (a) Typical time-domain signal reflected from the free end of rod A; (b)

signal reflected at the interface between rod A and a 18.5mm thick POM cylinder clamped

between rods A and B; (c) signal transmitted in the same configuration as (b).

and (8.7) hold when the steel rods are infinitely long. However, due to the rapid

decay of the reverberations within the cylinder, only a finite length of the rods which

ensures enough time resolution between the first two trains of signals is required.

As a result, for each time trace, the first train of signals was gated out as shown

in Fig. 8.3, and subsequently Fourier transformed. The spectra so obtained were

processed according to Sec. 8.5 to provide the reflection and transmission coefficient

spectra shown in Fig. 8.4. The transmission coefficient exhibits peaks which occur

at equally spaced frequencies, ∆f = 23.5kHz; this confirms that the bulk shear ve-

locity does not change in the frequency range of Fig. 8.4. From eq. (8.12) it follows

that the bulk velocity is 870m/s. The same result can be obtained by considering

the reflection coefficient minima which occur every 23.5kHz (Fig. 8.4). However, it

can be observed that the reflection coefficient spectrum contains more noise than

the transmission spectrum (Fig. 8.4). This is due to the fact that, by contrast with

the transmitted signal, a large difference between the amplitude of the front reflec-

tion b0 and the back reflections bi occurs (Figs 8.3b,c). Such a difference amplifies

the effect of noise in the time trace when the Fourier transform is performed. As a
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Figure 8.4: Measured reflection (•) and transmission (�) coefficient spectra for the POM

cylinder clamped between the two rods. ( ) transmission coefficient best fit; (−−−)

reflection coefficient calculated for c2 = 870m/s and ᾱ2 = 0.105Np/wl.

result, in order to derive the bulk attenuation, only the least square fitting (LSF) of

(8.7) to the measured transmission spectrum was considered. For the POM cylinder,

the optimum value of ᾱ was 0.105 Np/wl. The transmission and reflection spectra

calculated through (8.7) and (8.6) for c2 = 870m/s and ᾱ2 = 0.105Np/wl are shown

in Fig. 8.4 with solid and dashed lines, respectively. For the transmission coeffi-

cient, the fitting is good around the centre frequency of the toneburst (60kHz) and

becomes less accurate close to the limits of the pulse band width (around 20 and

110kHz the pulse energy is low). On the other hand, the noise level of the reflection

coefficient spectrum is quite large as mentioned before. The noise can be reduced by

using plastic rods so as to reduce the impedance mismatch between the sample and

the two rods. In this case, the bulk attenuation can be derived by LSF of (8.6) to

the experimental reflection coefficient. However, here the analysis is limited to the

use of steel rods and the bulk attenuation is derived from the transmission spectrum

only.

In order to obtain independent values of the bulk velocity and attenuation of POM,
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8. Shear properties of solid viscoelastic materials

a 6mm diameter 1m long POM rod was tested. The bulk shear properties were

derived from the guided wave attenuation and phase velocity spectra of the T (0, 1)

mode excited at one end of the POM rod, these spectra corresponding to the disper-

sion of the bulk properties of the rod [see eq.(7.2)]. The T (0, 1) mode was monitored

by means of laser scanning along the rod axis, T (0, 1) being excited with a pair of

transducers arranged as discussed in Sec. 8.4. The signals recorded at different axial

positions were Fourier transformed in order to extract the phase velocity and guided

wave attenuation spectra as described in Chapter 7. In the frequency range of in-

terest (between 20 and 100kHz), both the shear velocity and the bulk attenuation

per wavelength (ᾱ) were constant with frequency, the values being summarized in

Tab. 8.1.

The shear velocity obtained from the rod scanning was 2.3% higher than that mea-

sured with the frequency interferometry, while the bulk attenuation was 5% lower.

These differences are around the error levels of the scanning measurements (1% for

phase velocity and 10% for attenuation) therefore, they can be regarded as a rela-

tive estimate of the sensitivity of the frequency interferometry method but not as

absolute errors. Moreover, the accuracy level of the POM property measurement is

affected by the imperfect time resolution between the two trains of signals shown in

Fig. 8.3c which produces errors in the evaluation of the transmission coefficient. As

a consequence, the previous estimate of the relative error is conservative when more

attenuative materials like bitumen are considered since, in this case, perfect time

resolution between the first and second transmitted train of signals can be achieved.

8.6.1 Bitumen

Since bitumen is softer than POM the condition of good bonding between the disk

and the two rods was reached for very low values of the axial compressional load.

Figure 8.5 shows the time traces obtained for a 4.9mm long bitumen cylinder from

the coating of a gas pipeline in Dallington (UK), the density being 1750kg/m3. Note

that the reverberations in the steel rods are not visible as the time scale is finer than

that of Fig. 8.3. Figure 8.5a is the pulse-echo response of the free rod A. Figure 8.5b
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Figure 8.5: (a) Time-domain signal reflected from the free end of rod A; (b) signal

reflected at the interface between rod A and a 4.9mm thick bitumen disk clamped between

rods A and B; (c) signal transmitted in the same configuration as (b)

shows the reflection at the steel-bitumen interface of rod A. Comparison of the time

traces (a) and (b) suggests that the reflection coefficient is very little affected by the

presence of the bitumen sample since trace (a) and (b) are very similar. Moreover,

back reflections cannot be identified due to the low impedance of bitumen and high

attenuation. On the other hand, the transmitted signal (Fig. 8.5b) clearly shows

the presence of reverberations from the disk front face ti. However, these signals are

not resolved from the first signal t0 due to the small sample thickness. On the other

hand, a perfect resolution between the first and second train of signals is achieved.

This allows the transmitted signal to be completely separated from the reverbera-

tions inside the steel rods so improving the accuracy of the transmission coefficient

measurement.

Figure 8.6 shows the transmission coefficient spectrum derived from the time traces

of Fig. 8.5. The transmission peak shown in Fig. 8.6, which occurs at 79kHz, is

the second peak as the first peak occurs where the frequency vanishes [see (8.7)].

Therefore, ∆f = 79kHz and by applying (8.12) the corresponding shear velocity is
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Figure 8.6: (�) Measured transmission coefficient spectrum for the bitumen disk; ( )

best fit.

770m/s. The shear attenuation, obtained by LSF of (8.7) to the measured transmis-

sion coefficient is 0.591Nepers/wavelength which is much larger than that of POM,

expected since bitumen is an extremely attenuative material as shown in Chapter 7.

The good agreement between the experimental points and (8.7) indicates that the

shear velocity and shear attenuation ᾱ are roughly constant when the frequency

ranges between 20 and 120kHz.

Table 8.2 gives the shear properties of bitumen coating from four different sites

and shows how the coating properties can change depending on the location of the

pipeline. The data shown in Tab. 8.2, which have been measured with the technique

Table 8.2: Shear properties of bitumen coatings from different sites.

Location Velocity (m/s) Attenuation (np/wl) Density (kg/m3)

Dallington 770 0.59 1750

Kuwait 1012 0.24 1640

Oncor 1065 0.45 1442

Louisiana 642 0.32 1544
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8. Shear properties of solid viscoelastic materials

presented in this Chapter, demonstrate the need for in-situ measurements of the

coating properties.

8.7 Summary

A technique for the measurement of the bulk shear properties of solid viscoelastic

materials has been studied and its sensitivity estimated. It has been shown that

the bulk shear velocity of a sample clamped between two rods can be obtained by

measuring either the reflection or transmission coefficient spectra of the fundamental

torsional mode through the sample. The bulk shear attenuation has been derived

through a least square fitting of the analytical expression of the transmission coef-

ficient to experimental data.

The good level of accuracy obtained for the shear properties of Acetal Copolymer

Plastic, shows that a ”rigid” contact between the sample and the two rods can be

achieved by applying a moderate compressional load at the free ends of each rod. As

a consequence, since there is no need for the sample to be glued between the rods,

the technique is particularly advantageous for rapid measurements. Moreover, as for

a lossless sample at the through thickness resonances, all the energy passes through

the sample without being reflected irrespective of the impedance difference between

the sample and the rods, this technique is particularly suitable for the measurement

of very low impedance materials provided the bulk attenuation is low enough.

Moreover, the variability of the shear properties of the coating has been demon-

strated by performing tests on a number of samples from different locations. This

has proved that, in order to assess the feasibility of long range inspection of coated

pipelines, there is a need for in-situ characterisation of the coating shear properties.
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Chapter 9

Conclusions

9.1 Thesis Review

This thesis has investigated the propagation of acoustic guided waves in elastic

plates coated with viscoelastic layers in order to assess the feasibility of long range

inspections of coated pipelines. As discussed in Chapter 1, the possibility of using

guided waves is very attractive since the screening of the pipeline can be performed

without the need for scanning of the entire pipe surface.

The theory developed in this thesis concentrated on the propagation of SH and Lamb

waves in bilayered plates since, when the pipe diameter to wall thickness ratio is

large (as in the majority of coated pipelines), these modes are equivalent to tor-

sional and longitudinal waves propagating in hollow cylinders which are the modes

employed for the detection of defects in pipes.

The basic concepts of wave propagation in viscoelastic unbounded media were re-

viewed in Chapter 2, where the effects of the material absorption on the propagation

characteristics of elastic waves were examined.

The propagation of SH waves in bilayers was addressed in Chapter 3. Also in this

case, the dispersion characteristics of the attenuative bilayer were compared to those

of a perfectly elastic system, in order to understand how the material absorption in

the coating affects the guided wave.
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The study of SH waves was extended to the case of Lamb waves in Chapter 4 where

the same analytical approach as in Chapter 3 was employed. However, since Lamb

waves originate from the superposition of longitudinal and shear bulk waves, the ef-

fects of both dilatational and distortional material absorptions had to be considered.

In order to identify the modes and the frequencies which minimise the guided wave

attenuation, so maximizing the distance over which defects can be located, a com-

parison between SH and Lamb waves was carried out in Chapter 5.

Chapter 6 investigated the role of the nonpropagating modes of a perfectly elastic

bilayer on the dispersion curves of the attenuative bilayer, so completing the analysis

undertaken in Chapter 4. For this purpose the modes of a free plate, both elastic

and viscoelastic, were considered first.

In order to quantify the attenuation of guided waves, in Chapter 7 a novel tech-

nique for the measurement of the shear bulk velocity and bulk attenuation of fluid

viscoelastic materials was presented.

The technique discussed in Chapter 7 can characterise the coating properties when

it is applied in its liquid state. However, when the coating has been exposed to

atmospheric agents for a long time, as in the case of old pipelines, its acoustic prop-

erties change dramatically, and due to oxidation phenomena, the material behaves

as a solid rather than a liquid, though its attenuation is still high. Therefore, in

Chapter 8 a new technique for the characterisation of the shear properties of solid

viscoelastic materials which allows rapid in-situ measurement to be performed, was

addressed.

9.2 Summary of theoretical findings

The theoretical investigation undertaken in this thesis has led to a better understand-

ing of guided wave propagation in absorbing waveguides. In the next subsections a
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summary of the general properties of acoustic waves in attenuative waveguides and

an overview of the characteristics of guided waves in bilayered plates are given.

9.2.1 General results

Through Chapters 3, 4 and 6 it was shown that if the waveguide is nonelastic (ab-

sorbing) nonpropagating modes do not exist. This implies that the concept of mode

cutoff (infinite wavelength) which for a conservative system identifies the condi-

tion under which a mode stops carrying energy whereas there is still motion in the

waveguide, loses its significance for attenuative waveguides. Moreover, as was dis-

cussed in Chapter 6, the topology of the dispersion curves of an elastic waveguide

can only be understood by considering the elastic modes as the limit towards which

the modes of the attenuative system tend as the material damping vanishes. This

has been submitted for publication [P7] (see List of publications arising from thesis).

9.2.2 Nature of the bilayer modes

The dispersion curves of the bilayer are characterised by the fact that the metallic

layer is much stiffer and heavier than the coating.

If the material damping in the coating is neglected, the bilayer modes result from

the interaction between the modes of the free metallic plate, referred to as the first

asymptotic family, and the modes of the coating if it were rigidly clamped at the

interface with the metallic plate, termed the second asymptotic family. These two

families represent the asymptotic solution to the dispersion equations of the bilayer

as the density and stiffness of the metallic plate go to infinity while keeping the

bulk velocities constant, as was demonstrated in Chapters 3 and 4. These Chapters

also showed that each bilayer mode jumps from one asymptotic family to the other,

this behaviour being termed the mode jumping. The mode jumping occurs also for

attenuative bilayers, provided the material absorption is low. For large material

damping, the modes no longer jump, and the bilayer modes tend to the modes of
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one asymptotic family only as discussed in Chapters 3 and 4.

In Chapters 3 and 4 it was shown that for large material damping, the modes which

tend to the second asymptotic family are characterised by large levels of guided wave

attenuation since the vibrations are localised in the attenuative layer while there is

little motion in the elastic plate. On the other hand, the modes which tend to

the first family have lower attenuation as the energy primarily travels in the elastic

plate and they can be employed for practical testing. Moreover, the guided wave

attenuation spectra of the modes which tend to the first asymptotic family exhibit

maxima which occur where the mode would jump if the bilayer was perfectly elastic

as explained in Chapter 3. Furthermore, in the case of SH waves, minima in the

guided wave attenuation spectra occur at the Love transition frequencies.

In order to study the effects of longitudinal and shear material absorptions on the

attenuation characteristics of guided waves, the guided wave attenuation was related

to the energy distribution within the viscoelastic layer. This led to the introduc-

tion of the concept of first and second energy factors in Chapters 3 and 4. While

the first energy factor accounts for the strain energy contained in the viscoelastic

layer when a unit power flows through the bilayer cross section, the second energy

factor refers to the difference between the strain and kinetic energies contained in

the viscoelastic layer when unit reactive power flows through the bilayer cross sec-

tion. It was demonstrated that in the first order approximation, the guided wave

attenuation can be expressed as a linear combination of the longitudinal and shear

bulk attenuations and the first energy factor calculated by neglecting the material

absorption in the viscoelastic coating.

These results have been submitted for publication [P4 P5 P6].
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9.3 Feasibility of long range inspections

As discussed in Chapters 3 and 4, in the case of large material damping, the modes

with the lowest guided wave attenuation are SH0 and the Lamb mode M̄1. The uni-

versal curves derived in Chapter 5 contain all the information needed for identifying

the frequencies which maximise the inspection range, as a function of the bilayer

acoustic and geometrical properties.

Where maxima in the attenuation spectra of SH0 and M̄1 occur, long range inspec-

tions are never possible due to the large decay of the guided wave with propagation

distance. These frequencies mainly depend on the thickness and the shear or longi-

tudinal bulk velocities of the coating (see universal curves in Chapter 5). The first

attenuation peak of both SH0 and M̄1 occurs at a critical frequency which is pro-

portional to the ratio between the shear velocity and thickness of the coating. Long

range tests are possible before and immediately after this frequency as the attenua-

tion drops down. In these regions, for a prescribed value of the frequency, the guided

wave attenuation decreases almost linearly with the thickness-impedance product of

the metallic plate, and increases linearly with shear bulk attenuation-impedance

product of the viscoelastic layer. Moreover the attenuation of SH0 is always larger

than that of M̄1. Therefore, guided waves propagate for a large distance in pipeline

with thick wall and thin coatings. On the other hand, when the coating is thick,

the first critical frequency is low and in order to limit the guided wave attenuation,

the testing frequency has to be very low. However, there are practical constraints,

such as signal time resolution, which limit the lower value of the testing frequency

to around 10kHz. As a consequence, if the coating is too thick the only possibility is

to perform tests at frequencies higher than the first critical frequency (see universal

curves). It has to be noticed that while below the first critical frequency the M̄1

mode is less attenuated than SH0, around first Love transition frequency the SH0

mode is more attractive, due to the presence of the second attenuation maximum

of M̄1 (see Chapter 6).

The shear acoustic properties of the coating have a dominant role on the guided

wave attenuation. Coatings with low shear velocity and large shear attenuation
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increase the guided wave attenuation dramatically. For this kind of coating, the

only possibility is to use the SH0 mode around the first Love transition frequency.

On the other hand, coatings with high shear velocity and low shear damping allow

guided waves to propagate for longer distances. Unfortunately, the shear properties

of viscoelastic materials are extremely variable because of environmental factors,

such temperature and oxidation phenomena. As a result, even for a given type of

coating such as bitumen, is not possible to predict the guided wave attenuation,

unless in-situ measurement of the coating properties are performed. This can be

done with the technique presented in Chapter 8.

The universal curves will be submitted for publication [P8].

9.4 Methods for material characterisation

Two novel techniques for the characterisation of the acoustic properties of viscoelas-

tic fluids and solids were presented in Chapters 7 and 8, respectively.

For highly attenuative fluid materials, the shear properties can be evaluated from

the dispersion curves of the fundamental torsional mode, T(0,1), propagating in

a metallic tube filled with the material to be characterised. The presence of the

attenuative core modifies the phase velocity dispersion curve of the T(0,1) mode

propagating in the empty tube. Moreover, while the T(0,1) mode propagates with-

out being attenuated in the empty tube (due to the negligible absorption in metals

at the low frequencies used), the viscoelastic inner core causes a strong damping of

the guided mode. As a consequence, the guided wave attenuation and the phase

velocity variations, which are induced by the inner core, allow the properties of the

viscoelastic core to be derived. This technique overcomes several of the disadvan-

tages of traditional ultrasonic techniques such beam spreading, transducer coupling

and geometry control of the sample. Moreover, this method represents the best

alternative for the characterisation of highly attenuative material since in this case

traditional methods cannot be employed as bulk waves are completely absorbed by
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the material. The main feature of the method is that the geometry of the metallic

tube (radius and wall thickness) can be tailored to the core properties in order to

have a full control of the magnitude of the guided wave attenuation. The dependence

of the guided wave attenuation on the tube geometry is based on the same physics

which relates the attenuation dispersion of SH0 to the bilayer geometry. In this

context, a correspondence between the tube wall and the metallic plate thicknesses

and the tube inner radius and the coating thickness can be set. As an example, the

value of the guided wave attenuation can be reduced by increasing the tube wall

thickness. This method has been published in [P1].

In Chapter 8 it was shown that the shear properties of a solid viscoelastic mate-

rial can be derived from either the reflection or transmission coefficient spectra of

the fundamental torsional mode through a sample of the material clamped between

two rods. Since the sample is just clamped between the rods and neither glue nor

couplant is used, the technique is rapid and ideal for in-situ measurements of the

coating shear properties. This technique has been published in [P2 P3].

9.5 Future work

A possible future application of the knowledge gained on the guided wave prop-

agation in attenuative bilayers could be the detection of blockages in pipelines.

Precipitation of paraffins and asphaltenes in crude oil transportation and processing

pipelines may cause deposition which leads to the plugging of the pipeline and severe

pumping problems. As a result, a NDT technique able to locate and estimate the

thickness of the deposition would be extremely beneficial.

One possibility would be the measurement of the guided wave attenuation spectrum

of either the fundamental torsional mode propagating along the pipeline or the SH0

mode propagating around the pipe circumference [19]. If the deposition thickness

were uniform around the pipe circumference, by measuring the frequency where the

first guided wave attenuation maximum occurs, the thickness of the deposition could
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be derived from the simple expression (4.23), provided the shear velocity of the de-

posit is known in advance (for instance, by using one of the techniques developed in

this thesis).

However, due to gravity, the deposition occurs mainly on the bottom of the pipe,

leading to a non axisymmetric geometry of the waveguide (pipe plus deposit). As a

consequence, the propagating modes are also non axisymmetric and pure torsional

and longitudinal modes no longer exist. Nevertheless, the resonance phenomenon

which leads to maxima in the attenuation spectrum of SH0 should still exist in the

non axisymmetric case. If so, it should be possible to relate the resonance frequency

to the acoustic properties of the deposit and its geometry.

A further difficulty arises from the limited axial and circumferential extents of the

blockage, which cause the scattering of the incident guided mode. The scattering,

might result in a number of transmitted and reflected modes due to the mode conver-

sion phenomenon which occurs where the guided mode impinges the deposit. Since

the energy of the incident mode is distributed among all the scattered modes, the

signal amplitude decays, resulting in an apparent attenuation which superimposes

on the energy dissipation in the viscoelastic layer. Therefore, in order to separate

the apparent attenuation from the attenuation due to the material absorption, which

can be related to the size of the blockage, it is crucial to study and characterise the

scattering phenomenon.
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Appendix A

Energy factors at low frequency

In order to show the validity of the inequality QE > QΓ > Q∆ in zone A (see

Fig. 5.2), let us consider the limit case as the frequency approaches zero. For both

SH and Lamb waves, the displacement field tends to be constant across the thickness

of the bilayer (i.e. h2(x3) = h̄2 and h1(x3) = h̄1 see eqs (3.5) and (4.2)). For SH

waves, the only non zero strain is ε12 and the peak strain energy in the equivalent

viscoelastic layer can be obtained by substituting the displacement expression (3.5)

into ε12 and integrating (3.10) over the viscoelastic layer thickness

dE

dx
=

1

2
µ̃v

rdvξ
2h̄2

2. (A.1)

The in-plane power flow is obtained by integrating the real part of the Poynting

vector component along x̂1 over the thickness

< P >=
1

2
ω(µ̃e

rde + µ̃v
rdv)ξh̄

2
2, (A.2)

thus, by the definition of QE (3.15)

QE =
1

cph

µ̃v
rdv

µ̃v
rdv + µ̃e

rde

, (A.3)

where the phase velocity can be obtained by considering the propagation of a plane

wave along the bilayer

c2
ph =

µ̃v
rdv + µ̃e

rde

ρvdv + ρede

. (A.4)

If µ̃v
rdv/µ̃

e
rde 
 1, the expression (A.3) in the first order approximation, takes the

form

QE 	 1

cph

µ̃v
rdv

µ̃e
rde

. (A.5)
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In the case of Lamb waves the traction free condition at the two boundaries of the

bilayer implies that the stresses σ33 and σ31 are negligible compared to σ11 and σ22

across the thickness. Under this hypothesis, from the consitutive equations (2.7) the

strain tensor components are

ε33 = − λ̃v
r

λ̃v
r + 2µ̃v

r

ε11, (A.6)

ε31 = 0, (A.7)

in which (A.6) takes into account the Poisson effect for plane strain deformation. The

strain ε11 is derived from the displacement (4.2) with h1(x3) = h̄1. By substituting

the strains (A.6) and (A.7) into (4.11) and (4.12) and integrating the expressions so

obtained over the viscoelastic layer thickness, one obtains

d∆

dx
= µ̃v

r

2µ̃v
rdv

λ̃v
r + 2µ̃v

r

ξ2h̄2
1, (A.8)

dΓ

dx
= λ̃v

r

2µ̃v
rdv

λ̃v
r + 2µ̃v

r

ξ2h̄2
1. (A.9)

The in-plane power flow is

< P >= 2ω

(
µ̃e

rde
λ̃e

r + µ̃e
r

λ̃e
r + 2µ̃e

r

+ µ̃v
rdv

λ̃v
r + µ̃v

r

λ̃v
r + 2µ̃v

r

)
ξh̄2

1, (A.10)

and

Q∆ =
1

cph

µ̃v
r

µ̃v
rdv

λ̃v
r+2µ̃v

r(
µ̃e

rde
λ̃e

r+µ̃e
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λ̃e
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r
+ µ̃v

rdv
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r+2µ̃v

r
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where the phase velocity is given by

c2
ph = 4

(
µ̃e

rde
λ̃e

r+µ̃e
r

λ̃e
r+2µ̃e

r
+ µ̃v

rdv
λ̃v

r+µ̃v
r

λ̃v
r+2µ̃v

r

)
ρede + ρvdv

. (A.12)

Relationship (A.11), in the first order approximation, provides

Q∆ 	 µ̃v
r

1

cph

µ̃v
rdv

µ̃e
rde

λ̃e
r + 2µ̃e

r

(λ̃e
r + µ̃e

r)(λ̃
v
r + 2µ̃v
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, (A.13)

and similarly

QΓ 	 λ̃v
r

1

cph

µ̃v
rdv

µ̃e
rde

λ̃e
r + 2µ̃e

r

(λ̃e
r + µ̃e

r)(λ̃
v
r + 2µ̃v

r)
. (A.14)

As a consequence, by taking the ratio of (A.14) to (A.13)

QΓ

Q∆

	 λ̃v
r

µ̃v
r

, (A.15)
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which proves that, at low frequencies, QΓ � Q∆. It is interesting to note that,

although in zone A for a Lamb mode the amplitude of the longitudinal partial

waves is larger than that of the shear partial waves, QΓ is larger than Q∆ as the γ

energy depends on both longitudinal and shear bulk waves as explained in sec. 4.3.

The comparison between QΓ and QE leads to

QE

QΓ

	 cLamb
ph

cSH
ph

(λ̃e
r + µ̃e

r)(λ̃
v
r + 2µ̃v

r)

λ̃v
r(λ̃

e
r + 2µ̃e

r)
. (A.16)

Moreover, for µ̃v
rdv/µ̃

e
rde 
 1

QE

QΓ

	 2

(
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r + µ̃e
r

λ̃e
r + 2µ̃e

r

) 3
2
(

1 + 2
µ̃v

r

λ̃v
r

)
, (A.17)

which, when the metal considered is steel, gives

QE

QΓ

	 1 + 2
µ̃v

r

λ̃v
r

. (A.18)

It can be concluded that, in the zone A (Fig. 5.2), QE > QΓ > Q∆. Moreover, from

(3.39) and (4.20) it follows that SH modes are more attenuated than Lamb waves.
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Appendix B

Scattering of torsional waves

This appendix studies the scattering of a torsional mode, T (0, N), by a disk rigidly

clamped between two identical rods and demonstrates that torsional modes do not

undergo mode conversion, as would happen for longitudinal modes propagating

above the cutoff frequency of the second longitudinal mode. The scattering of T (0, 1)

will be considered first.

The displacement field of the T (0, 1) mode propagating in a viscoelastic homoge-

neous and isotropic infinite long rod can be written according to [36]

uθ = A1re
−ikzz, (B.1)

where kz is given by

kz =
ω

as

, (B.2)

where as is the complex shear velocity of the material. When two different rods, 1

and 2, with the same diameter are rigidly bonded together forming a single infinitely

long rod, the T (0, 1) mode travelling along the rod 1 is scattered at the interface

between the two rods. Let us assume that the T (0, 1) mode is scattered in a trans-

mitted and a reflected wave only, the displacement fields of the incident, reflected

and transmitted waves being

uI = rAIe
−ik1zz, (B.3)

uR = rAReik1zz, (B.4)

uT = rAT e−ik2zz. (B.5)

165



B. Scattering of torsional waves

On the other hand, the stress fields over the plane z = 0, τzθ, are

τI = −iµ̃1k1zrAIe
−ik1zz, (B.6)

τR = iµ̃1k1zrAReik1zz, (B.7)

τT = −iµ̃2k2zrAT e−ik2zz. (B.8)

The continuity of the displacement and stress at the interface between the two rods

requires that

uI + uR = uT , (B.9)

τI + τR = τT , (B.10)

which lead to a system of two equations in the unknown amplitudes AR and AT

AI + AR = AT , (B.11)

µ̃1k1z(AI − AR) = µ̃2k2zAT . (B.12)

Such a system is identical to that describing the scattering of plane shear horizontal

waves at the interface between two different media [31]. Therefore, R12 and T12 are

still provided by (8.4) and (8.5). It is worth emphasizing that the existence of the

solution to the system (B.11) (B.12) implies that the T (0, 1) mode does not undergo

mode conversion [i.e. T (0, 1) is scattered in the T (0, 1) mode only] at the interface

between the two rods. This contrasts with L(0, 1) where mode conversion to L(0, 2)

and higher order modes can occur above their cutoff frequencies.

Let us now consider the case of a disk of thickness d rigidly clamped between two

identical rods of infinite length. When T (0, 1) impinges on the disk, it undergoes

infinite reflections as in the case of plane waves. Moreover, since the interface re-

flection and transmission coefficients, Rij and Tij, of T (0, 1) are the same as those

of shear plane waves, the total reflection and transmission coefficients are still given

by (8.6) and (8.7). As a result, the shear properties of a disk clamped between two

rods can be obtained by measuring the reflection and transmission coefficients of

the fundamental torsional mode following the procedure discussed in Sec. 8.3.

The previous demonstration can be extended to case of higher order modes, by

observing that the displacement field of a T (0, N) mode can be written according
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to (7.2)

uθ = A1J1(kr̂r)e
−ikzz, (B.13)

where the second kind Bessel function, Y0, has been discarded since it is singular for

r = 0. kz is now the projection of the wavenumber along ẑ (complex) whereas kr̂ is

the wavenumber projection along r̂. The secular equation describing the propagation

of torsional modes in rods can be found by imposing the zero traction condition along

the lateral surface of the rod. As a consequence, by substituting (B.13) into (7.3)

one obtains [36]

kr̂r0J0(kr̂r0) = 2J1(kr̂r0), (B.14)

where r0 is the rod radius. Eq. (B.14) admits infinite solutions, each of them cor-

responding to a single mode. Moreover, for a given mode, since eq. (B.14) does not

involve the material properties of the rod, kr̂ depends on the rod radius only.

Consider the scattering of T (0, N) at the interface between two rods. In a similar

fashion to the case of T (0, 1) let us assume that the T (0, N) mode is scattered in

a transmitted and a reflected wave only, the displacement fields of the incident,

reflected and transmitted waves being

uI = J1(kr̂r)AIe
−ik1zz, (B.15)

uR = J1(kr̂r)AReik1zz, (B.16)

uT = J1(kr̂r)AT e−ik2zz. (B.17)

On the other hand, the stress fields over the plane z = 0, τzθ, are

τI = −iµ̃1k1zJ1(kr̂r)AIe
−ik1zz, (B.18)

τR = iµ̃1k1zJ1(kr̂r)AReik1zz, (B.19)

τT = −iµ̃2k2zJ1(kr̂r)AT e−ik2zz. (B.20)

Note that kr̂ is an invariant for the two rods, provided the radii of the two rods

and the mode order are the same. The continuity of stress and displacement at the

interface between the rods leads to the system (B.11) and (B.12), where kz is now

the projection of the wavenumber along the rod axis.
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By introducing the generalized impedance χ

χ =
µ̃kz

ω
, (B.21)

the stress reflection and transmission coefficients can be obtained by solving the

system (B.11) (B.12) i.e.

R12 =
χ2 − χ1

χ1 + χ2

, (B.22)

T12 =
2χ2

χ1 + χ2

. (B.23)

The existence of this solution proves that the assumption that a T (0, N) mode is

scattered in a transmitted and reflected waves which have the same order as the

incident wave is valid. In other words, the T (0, N) mode does not undergo mode

conversion.
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