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Abstract

The thesis investigates some aspects of the fundamental science necessary for
the development of piezoelectric sensors for use in integral structural inspection systems
based on ultrasonic Lamb waves. It is particularly concerned with the analysis of the
electromechanical interaction, the process of generation of Lamb wave modes and the
design of permanently attached transducers such as PVDF-based interdigital transducers
(IDT) or ceramic-based piezoelectric strips.

Interdigital transducers developed for use in smart structures are now at the
stage where practical applications on plate and pipe structures are being considered. For
such a transducer to be used, it is necessary to understand exactly the electromechanical
interaction and the internal scattering phenomena governing their performance. An
analytical investigation into the interactions that occur between mechanical fields and
electric quantities is presented. This model is developed for a simple transducer design,
a single-strip transducer under plane strain conditions. A computer model for predicting
the acoustic field generated by a given voltage applied to the transducer and vice-versa
is presented. This model is developed on the basis of normal mode theory and
perturbation methods, providing flexibility and physical insight. Intermediate
calculations as well as final results are validated using the finite element model
developed in parallel with this work. Since the analytical model is based on assumptions
mainly related to the perturbation methods, these are discussed and limits of the model
as well as its eventual extensions are drawn.

The thesis is also concerned with a numerical analysis based on the finite
element method. A finite element formulation that includes the piezoelectric or
electroelastic effect alongside the dynamic matrix equation of electroelasticity and its
reduction to the well-known equation of structural dynamics, based on a strong analogy
between electric and elastic variables, is presented. It is shown how these equations
were incorporated in an already existing finite element code. In parallel with validation,
results are produced to identify several important features that are not taken into account
in the analytic model. Results are presented for IDTs and checked against experimental
data when measuring displacement field amplitudes using a laser probe.
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Chapter 1 

Introduction

The aim is to model the generation of waves by piezoelectric transducers in
order to optimise the design of electromechanical sensors used in what is fashionably
called smart structure applications. Controversy has arisen over the use of these terms,
which have been used to cover a broad range of related work in many disciplines, since
the late 1980's. A review of work on smart structures can be found for example in
Culshaw [1.1], [1.2] and recently my colleague R. Dalton [1.3] studied the possibility of
using guided waves to monitor the structural health of an aircraft fuselage. For this
thesis, we will consider a smart structure as being a structure that has the potential to
monitor its condition repetitively. Data transport and computer technology is already
sufficiently developed to meet the challenge of developing a smart structure for many
applications, and they will undergo tremendous progress in the future, especially in the
data transfer area with the bluetooth new technology. However sensor technology is not
yet advanced enough and recent reviews state that fully adaptive systems may not be in
service for several years [1.4]. In this thesis we will focus our attention on
electromechanical sensors and their interaction with the structure on which they are
attached.

Much research has been devoted to problems in electromagnetism and acoustics.
Often the investigation runs along parallel lines, the main differences being due to the
vector character of the electromagnetic field and to the scalar nature of sound waves.
Some times these differences are significant because of boundary conditions but often
the analysis is very similar, especially when the electromagnetic field is a simple
function of time and space. For this study, we use many electromagnetic-acoustic
analogies as defined by Auld [1.5]. Transducers of interest in this thesis are
piezoelectric. The piezoelectric effect is basically understood to be a result of linear
interaction between the mechanical and electrical systems, and studies on it are closely
related to the linear response theory. The piezoelectric direct effect manifests itself
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experimentally by the appearance of bound electric charges at the surface of the strained
medium. The direct piezoelectric effect is always accompanied by the converse
piezoelectric effect, whereby a solid becomes strained when placed in an electric field.
Piezoelectricity is a fundamental process of electromechanical interaction and is
representative of linear coupling in energy conversion. Obviously piezoelectricity is not
the only principle on which electromechanical devices can operate but phenomena such
as electrostriction, triboelectricity and Seigneto-electricity [1.6] are not covered in this
thesis. Hence this analysis of electronic devices necessitates knowledge in three
different fields of physics: mechanics, electromagnetism and piezoelectricity and
associated mathematical developments.

 1.1 ADVANTAGES OF LAMB WAVES INSPECTION
TECHNIQUES

The use of ultrasonic Lamb waves for the testing of plate and pipe structures is
attractive since a large area of structure can be interrogated from only a few locations.
The main advantage of Lamb waves is that both sides, as well as the interior of the
structure, can be sensed from only one location on one side of the structure, which
makes in situ monitoring viable. Many techniques such as angle transducers or EMATs
are very efficient in order to excite Lamb waves in plate or pipe structures. However,
for cost and dimension reasons none of these types of transducers are suited to being
permanently attached to a structure, which is a necessary requirement in a smart
structure application. From a design point of view, permanently attached transducers
are, by nature not reusable and thus their cost must be added to that of the structure
which they are monitoring. The transducer and the structure are bonded together with an
adhesive which makes consistency of the measurements easier to achieve. This means
that such transducers are much more suitable for accurate condition monitoring than
removable transducers for which the coupling conditions may not be consistent from
one test to another. Since the thickness and the properties of each of the component of
such bonded transducers is measurable, it allows us to develop a model that might be
usable for any permanently attached transducer.

 1.2 PERMANENTLY ATTACHED TRANSDUCER
TECHNOLOGY FOR SMART STRUCTURES

Current sensor technology is well advanced in the acoustic field, but the specific
application to the generation and reception of Lamb waves in non-piezoelectric
structures by means of piezoelectric transducers needs some further theoretical
development in order to predict accurately field parameters such as amplitude and
attenuation. The generation and reception of Surface Acoustic Waves (SAW) by means
of interdigital electrodes plated on piezoelectric substrates has been widely used in the
electronics industry, [1.5], [1.7], [1.8], [1.9], [1.10]. This technology has made the
concept of using permanently attached transducers for the generation and reception of
Lamb waves in a structure for NDT purposes viable. There is a special emphasis on
surface acoustic wave applications. Those waves are confined in close proximity to one
surface of the substrate and are therefore efficiently excited by acoustic and electric
sources on the surface. Surface acoustic wave transducer technology is not directly
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applicable to smart structures because of the frequency at which these devices operate,
normally in the GHz range, whereas NDT applications typically work below a
frequency thickness product of 1 MHz-mm. Hence in order to inspect large structures,
flexible cheap PVDF transducers have been developed for the generation and the
detection of Lamb waves, [1.11], [1.12]. The geometry of these devices is similar to that
of the transducers used to generate surface acoustic waves in non-piezoelectric
substrates, see [1.13] and [1.14].  The plate under interrogation is overlaid by a thin
piezoelectric film, itself overlaid by the interdigital electrodes. The transducer
comprises the piezoelectric film and the electrodes, where the piezoelectric film is very
thin and is limited in the two other dimensions to the size of the electrodes. Figure 1.1
shows this configuration for Lamb modes.

 1.3 MODELLING OF FIELD GENERATED BY
PIEZOELECTRIC TRANSDUCERS

From the above discussion, the main goal of this thesis appears as being to
investigate the process by which permanently attached transducers can generate guided
waves in structures. Our interest in this particular subject, and the particular direction
we took to study it, follow from the chief objective and the main conclusions we drew
from a project [1.23] founded on an EPSRC/DIG Grant which was entitled "Efficient
Ultrasonic Inspection and Monitoring of Large Structures”. This project linked together
the combined efforts of several researchers from Strathclyde University [1.15] and
Imperial College, efforts that were orientated toward a common goal: producing
permanently attached sensors to monitor large structures which involved optimisation of
the form of the sensors, the determination of the best mode(s) to use and the
development of test strategies (e.g. pulse-echo).

The work at Imperial College concentrated on the modelling of the behaviour of
the transducers, the development of inspection strategies and the refinement of PVDF
based permanently attached sensors. Figure 1.2 shows a schematic diagram of such
transducers, with interdigital electrodes, on a metallic plate. The aim was to produce
permanently attached sensors, which could generate modes whose motion is
predominantly in-plane. However it was found that this was considerably more difficult
than had been anticipated. Facing these difficulties led during the growth of the project
to re-direction of the work away from developing interdigital PVDF based sensors. The
operation of these devices is based on the launching and the reception of wave guide
modes by distributed electrodes. One of the reasons why such transducers are difficult
to model is that the function that describe the charge distribution is extremely
cumbersome [1.19], [1.20], [1.21], [1.22] and the number of parameters that affect the
response of such a transducer is large. Solutions exist, such as those provided by Engan
[1.21] and Coquin [1.22] for example, but they are valid only for SAW and not for
Lamb waves and these solution still needed to be developed. Therefore we believed that
we could gain in understanding and time by starting the study to a less cumbersome
problem. Indeed, at first approximation each of the distributed sources (i.e. each
electrode) of the IDT transducer is acting as a single transducer. Such an elementary
transducer, referenced as a strip transducer by analogy with transmission line strips, is
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easier to study, at least from the mathematical point of view. Figure 1.3 shows the
configuration for a single element. Nonetheless if the electrostatic problem is greatly
simplified for such a transducer, the mechanical problem is the same as for an IDT. The
system is multilayered, limited in extend, and the guided waves generated in the
structure are dependent on the mechanical and electrical waves generated inside and
underneath the transducer. However we are not so much interested in what happens
exactly in the transducer itself. Thus is possible to use some simplifying approximations
in order to obtain information only about the fields that we are primarily interested in.
This, in theory, should allow us to get the physical understanding of what is happening
in the overall system.

It has also been shown during the EPSRC founded project [1.23] that
satisfactory field predictions could be obtained by assuming that the analysis of the
PVDF based interdigital transducer can be decoupled from that of the structure and that
the action of the IDTs is essentially to apply out-of-plane forces at the locations of the
fingers. Accordingly non-piezoelectric finite element or Huygens’ principle based
calculations [1.16] enable us to predict efficiently the field generated in the structure
and a 1-D piezoelectric transmission line technique enable to analyse the electric
behaviour of piezoelectric sensors [1.17].  Although these assumptions are valid in large
number of circumstances, the amplitude of the acoustic wave generated by a given
voltage applied to the transducer and vice-versa cannot be predicted using the models
aforementioned. Moreover these approximation are fair for low acoustic impedance and
weak electromechanical coupling transducer materials such as PVDF [1.11], [1.12], but
it is very unlikely to remain accurate for ceramic-based transducers. It was therefore
decided to develop more accurate models and this is achieved by two different means.
The first one is to develop a finite element program allowing to model the full
piezoelectric behaviour. The second one is to develop an analytical model that will
enlighten the key factors governing the performance of the transducers.

1.3.1 FINITE ELEMENT ANALYSIS

The Strathclyde group uses a commercially available FE code, PZFlex which
can perform dynamic piezoelectric analysis in the time domain, as required in this
study, but, although very efficient, PZFlex is not optimized for Lamb wave work. This
is a problem common to most commercially available codes and it is usually impossible
to modify the source of such codes. Hence it was decided to incorporate piezoelectricity
in an already existing general purpose finite element package, FE77 [1.25] developed at
Imperial College by Mr. D. Hitchings for thermal and structural analysis. On previous
projects [1.26], [1.27], this code has been optimized at the NDT Lab for the solution of
Lamb wave propagation problems in the time domain. Unfortunately it did not allow
piezoelectric equations to be solved so this feature was added. From the general
formulation of finite element piezoelectric equations found in the literature, we derived
a direct integration formulation based on the central difference explicit methods of
integration. Although simple in its principle, implementation of a new set of equations
in an already existing finite element code required lots of attention. FE77 is a research
tool, constantly under development for more than 20 years, and despite the constant
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help of Mr. D. Hitchings a considerable amount of time was spent on understanding the
original code and tracking coding errors. Nevertheless the code is now producing
piezoelectric calculations and results are systematically being validated against simple
examples. Although the introduction of the piezoelectric equations in FE77 will mainly
serve the purpose of validating the analytic model it is to be mentioned that it has been
developed in the form of a permanent module of FE77 in order to be used by other
researchers in the future.

A major drawback of the finite element technique is that this does not run
quickly enough to be used as an interactive design tool. Moreover the solution provided
is purely numerical, hiding most of the physical significance of the electromechanical
coupling process. Hence an analytic approach of the problem was undertaken.

1.3.2 ANALYTICAL MODEL

This model was initially only concerned with PVDF based interdigital
transducers (IDTs). However it is believed that the analytic work carried out for IDTs
can be diverted from its initial aim to enlighten our comprehension of the physics
involved in electromechanical coupling within ceramic based piezoelectric transducers.
The reason for that is that basically a piezoelectric transducer always comprises a
piezoelectric layer, adhesive layers and electrodes. The mathematical difficulty with the
study of IDT resides entirely in the formulation of the electric charge distribution. If one
compare the strip transducer geometry shown in Figure 1.3 and the geometry of the IDT
transducer shown in Figure 1.2, it appears that the difference lies only in the electrode
pattern. By comparison with an IDT, the electrical boundary problem is simplified for
the single strip transducer but the rest of the study is identical. Therefore we decided to
develop an analysis for the strip transducer bearing in mind that this study can be
extended to many other transducers as long as their geometries are similar to that of the
single strip transducer, that is basically a stack of layers of finite thickness and lateral
dimensions. Due to the voltage applied across the electrodes, acoustic waves as well as
electromagnetic waves are generated in the piezoelectric layer. However, we are not
primarily interested in the exact behavior of the film so it is appropriate to make some
simplifying assumptions about the piezoelectric layer/electrode structure in order to
obtain a physical understanding of what is happening in the overall system. These
assumptions are related to the perturbation theory and they allow keeping the model
analytical. Keeping the problem analytical enable to determine appropriate transducer
properties in order to generate a given mode with a given amplitude in a given structure.

 1.4 THESIS OUTLINE

The thesis will investigate some aspects of the fundamental science necessary for
the development of piezoelectric sensors for use in integral structural inspection
systems based on the use of ultrasonic Lamb waves. It will be particularly concerned
with the analysis of the electromechanical interaction and the process of generation of
Lamb waves and the design of permanently attached transducers such as ceramic-based
piezoelectric discs or IDT's. This work naturally fell into phases defined by the
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development of the tools and theories needed to investigate the behaviour of
piezoelectric transducers. These phases of work therefore form the subsequent chapters
of this thesis. There are six chapters, the first being this introduction chapter.

Lamb waves, which are the guided waves of a free plate, are considered in
Chapter 2, where attention focuses on their modal properties. Structures of interest in
smart structure technologies are closely related to free plate structures and the presence
of the transducers only affect the guided wave locally. As shown by Auld [1.5] modal
analysis is a powerful tool for treating waveguide excitation and scattering problems.
As stated by Auld, in order to apply this technique in electrodynamics, one must
develop a procedure based on the reciprocity relationship and mode orthogonality, for
expanding arbitrary acoustic waveguide field distributions as superposition of
waveguide modes. These techniques are also presented in Chapter 2. The well-known
perturbation theory is also presented since this is the approximate method used to
develop the analytic model for waveguide excitation by means of piezoelectric
transducer. Lastly, piezoelectric materials used in this study are presented and a short
review of the piezoelectric equations is given.

A finite element formulation that includes the piezoelectric or electroelastic
effect along side with the dynamical matrix equation of electroelasticity and its
reduction to the well-known equation of structural dynamics, based on a strong analogy
between electric and elastic variables, is developed in Chapter 3. It is shown how these
equations were incorporated in an already existing finite element code [1.25]. This
program has been checked against PZFlex [1.28] and the validation results are
presented.

In Chapter 4, the analytical model, developed on the basis of normal mode
theory and perturbation methods for predicting the acoustic field generated by a given
voltage applied to a transducer and vice-versa, is presented. The sections follow
naturally the three perturbation steps of the model, and insight is given on how each
perturbation step can be used for various independent problems. Since the overall model
is based on assumptions mainly related to the perturbation methods, these are discussed
and limits of the model as well as its eventual extensions will be drawn. Throughout the
development of the model, validation against the finite element program will be
presented.

In Chapter 5, a full example of the structure of interest in this study is presented.
Comparison between the results obtained from the analytical model and the finite
element program is presented. This example serves the purpose of fully validating the
analytical model presented in Chapter 4. Preliminary Results on the analysis and the
experimental study of IDTs are also presented.

Lastly, Chapter 6 presents the conclusions of this thesis regarding the modelling
of the generation of guided waves by piezoelectric transducers. The approach and the
methods used throughout this work are also critically reviewed and a number of
avenues for further work are suggested, in particular concerning the modelling of
guided waves scattering at surface defects such as notches, grooves or cracks.
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Figure 1.1 : Interdigital transmitter and receiver on a metallic plate.
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Chapter 2 

Background

The focal point of this thesis is the analysis of the generation of Lamb waves
[2.1] in plate-like structures by piezoelectric transducers, with special attention given to
interdigital transducers. We will concentrate our study on the interaction between thin
transducers and the structure in which the Lamb waves propagate. In order to have a
correct idea of the fields applied by the transducer onto the structure, any interactions
between any mechanical and electrical fields in the transducer have to be quantified.

This chapter introduces the basic concepts and equations that, although well-
known, are necessary for the understanding of the analysis developed in Chapters 3 to 5.
The first section is concerned with a general description of the acoustic field in plate-
like structures. The second section shows how the normal mode technique can be used
to treat waveguide excitation problems, in conjunction with the reciprocity relationship.
The third section presents the perturbation techniques which are used to quantify how
the presence of a transducer influences the behaviour of the modes that propagate in that
waveguide. The fourth and last section is concerned with transducers, the piezoelectric
materials that constitute them and the equations of piezoelectricity.

 2.1 PLATE WAVES

In this section the emphasis is on the theoretical analysis of guided waves
propagating in solids. All equations and reasoning presented here can be found in more
details in the selection of books [2.1] to [2.15] proposed in the reference section.

In this section, and in the rest of this thesis, it is assumed that mechanical waves
suffer no attenuation due to "internal friction", i.e. material attenuation is assumed to be
negligible. This condition is not too restrictive since low-loss materials are usually
chosen for practical waveguides and internal friction has a negligible effect on the
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velocity of propagation and other characteristics of the guided waves except for an
overall reduction in amplitude.

2.1.1 PROPAGATION IN UNBOUNDED NEDIA

The general description of guided waves starts with the definition of strain and
stress, and with Hooke’s law, which describes the relation between stress and strain, and
goes on to derive the wave equation of motion. The mathematical forms of the waves
that can propagate in a solid medium (bounded or infinite), are the solution of the wave
equation. If boundaries exist, these solutions must also satisfy certain conditions at the
boundaries. First we shall be concerned with unbounded media of propagation, the
material being homogeneous, linear elastic, non-absorbing and non-piezoelectric.
Contrary to rigid body dynamics that assumes that the material of the body has infinite
Young’s modulus, i.e. that a resultant force sets every point in a body in motion
instantaneously, we shall consider the case where a body is a sum of infinitesimally
small mass elements. These masses will vibrate in the material according to Newton’s
law applied to each of these small masses. The motion of each particle produces
changes in the equilibrium of the neighbouring particles and this cause stress, which
will be transmitted through the medium [2.2].

 2.1.1.1 Strain

Consider a point P(x1, x2, x3) in a solid body in which a wave propagates
without any loss of amplitude. This point is displaced, the components of the
displacement being (u1, u2, u3). Direct strains in the medium in the vicinity of P are
represented by S11, S22 and S33 and the shear components of strain S12, S23 and S13

correspond to the rotation of the element as a rigid body. ,

The strain tensor S can be expressed in the following form, see [2.3]:

ji
ij

j i

uu1S i, j 1,2,3
2 x x
� �∂∂

= + =� �� �∂ ∂� �
(2.1)

The strain tensor S is symmetric and the above equation is only valid in case of
small deformations, a condition that will be kept valid throughout this thesis. The
velocity at which particle P is displaced is denoted as v, and in the three directions it is
found from the particle displacement using formula:

i
i

duv , i 1,2,3
dt

= = (2.2)

 2.1.1.2 Stress

The stress is a force over a unit area, thus the net force Fi, in the direction xi, is:
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ij
i

j

T
F  = i, j 1,2,3

x
∂

=
∂

(2.3)

where T is the stress tensor. To describe the force acting on an elemental area of a body,
nine stress component are required, just as for the strain. The stress tensor, alike the
strain tensor is symmetric, i.e. ij jiT T= . The symmetry condition on both tensors implies
that only six of the nine components are needed to fully describe the stress and strain
states of the body. Therefore instead of representing the stress and strains as a tensor of
rank 2, we use a 6 component vector. For example, the stress tensor T

xx xy xz

yx xx yz

zx zy xx

T T T

T T T

T T T

� �
� �
� �
� �� �
� �

(2.4)

is also represented by the vector

( )1 2 3 4 5 6T ,T ,T ,T ,T ,T with 
1 xx 2 yy 3 zz

4 yz 5 xz 6 xy

T T ,T T ,T T

T T ,T T ,T T

= = =

= = =
(2.5)

 2.1.1.3 Stress-Strain Relations, Elastic Constants

The general form of Hooke's law assumes that each of the six components of the
stress is a linear function of six components of the strain. Therefore 36 elastic constants,
cij with i,j = 1,..,6 are needed. Love [2.3] showed that the elastic tensor must be
symmetric. This property reduces the number of independent elastic constants to 21. In
tensor notation, Hooke's law is given by

l
ij ijkl kl ijkl

k

u
T c S c i, j, k, l 1,2,3

x
∂

= = =
∂

(2.6)

and in vector notation,

I IJ JT c S I, J 1...6= = (2.7)

The most complex crystals, of the triclinic class, require these 21 elastic
constants to define the stress-strain relations, but in crystals with planes and axes of
symmetry the number is reduced, as we will see it when discussing piezoelectric
crystals. It is indeed very fortunate that most piezoelectric materials are either cubic,
hexagonal or orthorhombic, reducing the number of independent constants to 3, 6 or 9
respectively. Metallic plate-like structures are often isotropic, for which the number of
independent elastic constant is reduced to 2 Lamé's coefficients. In an isotropic solid
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12 13 21 23 31 32

1
44 55 66 11 122

11 22 33

c c c c c c

c c c , c c

2 c c c

λ = = = = = =

µ = = = = −

λ + µ= = =

(2.8)

and all the other coefficients are zero. Therefore, from Eq.(2.6) Hooke's law for
isotropic solids is

ij ij ijT 2 S=λ∆δ + µ (2.9)

Lamé's constants λ and µ completely define the elastic stress-strain behaviour of the
material. In engineering applications Lamé's constants are usually replaced for
convenience by four related elastic constants, [2.4] and [2.5]:

(3 2 ) 2E , , B , G ;
2( ) 3

µ λ + µ λ µ= σ = =λ + =µ
λ + µ λ + µ

(2.10)

E E, ,
(1 )(1 2 ) 2(1 )

σλ = µ =
+ σ − σ + σ

(2.11)

where E is the modulus of elasticity, ν is Poisson's ratio, B is the bulk modulus and G is
the shear modulus. Lamé's constants λ and µ determine the ratio between the shear
velocity and the longitudinal velocity. This ratio, for an isotropic medium, is always
between 0 and 0.707.

 2.1.1.4 The Equation of Motion

The equation of motion comes from the fundamental law of dynamics, F = mγ,
where γ is the acceleration of the particle and F is a force given by Eq.(2.3). Neglecting
the effect of gravity, stating that the force applied gives raise to the acceleration of the
unit volume mass ρ and making use of Hooke’s law, the equation of motion becomes:

2
iji

2
j

Tu
 = 

xt

∂∂
ρ

∂∂
(2.12)

This equation which describes the motion in a solid is obtained by considering
stress variations across an element. It can be expressed, from equations (2.1) and (2.9),
in term of the stress-strain relations as [2.6]:

2 2
i l

ijkl 2
j k

u u
 = C

t x x
∂ ∂

ρ
∂ ∂ ∂

(2.13)

The four-index notation for the elastic constant tensor can be contracted to the two-
index notation used, for example in Eq.(2.7) in the same way the stress and strain
tensors have been contracted into six-component vectors. In other words, Eq.(2.13) can
be derived from Eq.(2.12) using Eq.(2.6) or (2.7). Auld [2.7] gives more details on how
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the divergence of stress operation and the strain-displacement relation can be
represented by a matrix in rectangular coordinates.

 2.1.1.5 The Wave Equation

Further analysis of the wave equation is usually made simpler if two potential
functions are introduced, a scalar and a vector potential of the displacement vector.
However here we will not make use of this convenient technique. As we will see it later,
to be piezoelectric a crystal must be anisotropic and it is more convenient for us to use
Christoffel’s equation.

In dynamic elasticity or acoustics we are interested in propagation phenomena.
The equation of motion as given in Eq.(2.13) for a three-dimensional anisotropic
medium, can be seen as a generalisation of the propagation equation in a fluid [2.8]
which has a general solution u(x, t)� in the form of a progressive wave, travelling in a
direction n�  perpendicular to the wave planes n.x = constant,� �  where x�  is the position
vector of the points of the wave planes. This solution,

n.xu(x,t)=A pf t-
V

� �
� �
� �

� �

�� (2.14)

represents the vibration created at each position x�  by a wave propagating in the
direction n� . V is the phase velocity, A is the amplitude of the vibration and p�  the wave
polarisation (i.e. the particle displacement direction). Among all possible disturbances,
harmonic vibrations about a mean position are very important since other perturbations
result from the superposition of these vibrations [2.9]. The solution to Eq.(2.13), for a
fluid is sought using the separation of variables techniques. The general solution is a
stationary or standing harmonic wave. This solution may be put in the form of the sum
of harmonic waves propagating in opposite directions. The typical form of the function
f of Eq.(2.14), assuming an initial time behavior of the form exp( t)ω  is then given by
exp( t -kx)ω  where ω is the frequency of the vibration and k is referred to as the
wavenumber. The argument ( t -kx)ω  is designated as the phase and for increasing time,
increasing values of x are required to maintain the phase constant. Therefore this
function represent a wave propagating in the positive x direction. The propagation
velocity of the planes of constant phase is the phase velocity:

kV =
ω

(2.15)

The wavenumber is the inverse of the wavelength which is the space interval
which lies, at a given time, between two identical states of the continuum, for instance
two successive maxima of the vibration. Therefore the quantity (kx) measures the
difference in phase at a given time between the vibration of planes separated in space by
the distance x. Graff [2.9] pointed out that a solution of type Acos( t-kx)ω  has no wave
front since it represents a vibration of infinite length. Therefore it is only by considering
the phase that a propagation velocity can be associated with the motion. Therefore,
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assuming solutions in the form of harmonic propagating waves, the equation of motion
in its general form can be reduced to the Christoffel equation [2.7]

2 2
il l ik u uΓ =ρω (2.16)

where the second rank tensor

il ijkl j kc n nΓ = (2.17)

is called the Christoffel tensor. Its elements are functions only of the plane wave
propagation direction and the stiffness constants of the medium. It applies to bulk waves
(uniform plane waves). Generally, for a given direction of propagation of those bulk
waves, there are three velocities, the three roots of the secular equation

2
il ilV 0Γ −ρ δ = (2.18)

which express the compatibility of the three homogeneous equations [2.10]. Each
velocity is related to an eigenvector, which defines the direction of displacement (i.e.
the polarisation of the wave).

Although we are interested in the behaviour of anisotropic crystals, it is
convenient first to consider a simple isotropic example. This exercise will be very
useful when, in Chapter 3, we will investigate simple one-dimensional propagation
along directions linked to the piezoelectric crystal axes of symmetry. The Christoffel
tensor for an isotropic infinite solid, when the stiffness matrix given by Eq.(2.8) is
substituted in Eq.(2.18), is

2 2
11 x 44 x 12 44 x y 12 44 x z

2 2
il 12 44 x y 11 y 44 y 12 44 z y

2 2
12 44 x z 12 44 z y 11 z 44 z

c n c (1 n ) (c c )n n (c c )n n

(c c )n n c n c (1 n ) (c c )n n

(c c )n n (c c )n n c n c (1 n )

� �+ − + +
� �
� �Γ = + + − +
� �
� �+ + + −
� �

 (2.19)

Now if we assume that the wave is propagating in a particular direction, for example the
direction z, then Eq.(2.19) becomes a diagonal matrix and the Christoffel equation
reduces to

44 x x
2

44 y y

11 z z

c 0 0 u u
0 c 0 u u
0 0 c u u

� � � �� �
� � � �� � =ρω� � � �� �
� � � �� �� � � � � �

(2.20)

There are three independent solutions, i.e. three independent waves propagating
in the z direction but polarised in different directions: an x-polarised wave and a y-
polarised wave which both satisfy the dispersion relation

2 2
44k c =ρω (2.21)
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These waves are shear or transverse waves, propagating with velocity

T 44c c= ρ . The shear displacements are given by j( t kz)
su p ue  where p.z 0ω −= =� � � . The

third solution is a compressional wave j( t kz)
lu z ue ω −=� propagating with velocity

L 11c c= ρ . The velocity cL is associated with displacement components parallel to
the direction of propagation, while cT is associated with displacement components
normal to the direction of propagation. The corresponding shear and longitudinal waves
propagate independently of each other. Therefore, any plane wave propagating through
an infinite isotropic medium must travel with a constant velocity (cL or cT), which is a
function of material properties only. These three solutions are independent of the
direction of propagation by virtue of the nature of isotropic solids. This is not true for
generally anisotropic solids.

2.1.2 THE LAW OF REFRACTION OF PLANE WAVES AT AN INTERFACE

Expression of the reflection of longitudinal and shear waves incident on the
boundaries is essential to the comprehension of the behaviour of guided waves. Details
on this subject may, for example, be founds in Redwood [2.11] and expressions for the
reflection and transmission coefficients are given in [2.9] and [2.12].

If a plane wave strikes a plane interface obliquely, reflected and transmitted
waves arise, as in optics. If a longitudinal wave is incident at the boundary two waves, a
longitudinal wave and a shear wave are generally reflected, the shear wave being
generated by mode conversion. If only a shear wave is incident, in general there will be
mode conversion to a longitudinal wave to satisfy boundary conditions. No mode
conversion occurs at normal incidence, or when the shear wave is incident at 45°. The
law of refraction determines the directions of the reflected and transmitted waves. For
example if we assume that a wave propagates in medium “1” with velocity c1 and is
incident, at the interface between medium “1” and medium “2”, with an angle α1, the
wave transmitted in medium “2” will propagate with an angle α2 determined by

2
2 1

1

c
sin sin

c
α = α (2.22)

2.1.3 LAMB WAVES

If the elastic medium is made finite in the y direction then a plate results. Plates
cause plane waves to be guided between their boundaries, and hence are sometimes
called waveguides. The assumptions previously applied, relating to the properties of the
medium, will also be employed here. The plate is assumed to extend to infinity in the x
and z directions, and the origin of the y-axis is located midway through the thickness of
the plate as shown in Figure 2.1. In this thesis we are only interested in plane strain
problems, therefore shear horizontal (SH) waves will not been considered. Extensive
details on SH waves can be found in [2.11] and [2.9].
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Plate waves can be generated by exciting the plate with an obliquely incident
wave. For a plate wave to travel parallel to the plate surfaces, the angle of incidence is
derived from Eq.2.22 and is given by

1
1

2

csin
c

α = (2.23)

The transmitted waves travel unimpeded through the plate at the angle of
refraction given by the law of reflection. On reaching the opposite surface the
transmitted wave is reflected inside the plate at the same angle and continues its way
along a zigzag path. Depending on the angle of incidence and the nature of the incident
wave, either only transverse waves or both longitudinal and transverse waves travel
along the plate. If the angle of incidence is chosen so that the beams cover each other in
a proper phase relationship, the pattern arising in this way, composed of mutually
superimposed zigzag reflected longitudinal and transverse waves is known as a Lamb
wave. The simple geometrical requirement, that the reflected waves should not cancel
each other, demands indeed a complicated relationship between plate thickness and the
most favourable angle. The complication results from the fact that in the case of the
oblique reflection of sound at surfaces of the plate, phase shifts occur which in turn
depend on the angle. The relationship becomes even more complicated when one
examines the velocity of these waves in the direction parallel to the surfaces of the
plate. Lamb [2.13] has first published these dispersion relations. For a single plate in
vacuum the solution of the Rayleigh-Lamb dispersion relationship can be expressed
analytically, as shown by Viktorov [2.1] and Achenbach [2.14].

Strictly speaking the term “Lamb waves” holds only for plate waves propagating
in free plates in vacuum. This is extended to plates embedded in an infinite medium,
such as water, but for multilayered systems, in particular with no symmetry with respect
to the z-axis, it is improper to use the term Lamb waves to depict the plate waves that
propagate in such a system. In Chapter 4, plate waves in multilayered plate-like
structures will be denoted with a “P” and termed acoustic plate modes (APM). Solutions
in multilayered systems cannot be expressed analytically and a computer program such
as DISPERSE [2.16] can be used to trace the dispersion curves for the acoustic plate
modes propagating freely in the structure. Based on the geometry and the material
properties of the multilayered plate system, DISPERSE determines what resonances can
exist in order to satisfy the boundary conditions and the bulk wave propagation
characteristics in each layer [2.17]. These resonances control how ultrasonic waves will
be guided in the system and what properties each of these waves will have. The
solutions to the guided wave problem lie on continuous lines called dispersion curves
that must be found iteratively in frequency – wavenumber space. Once the solutions
have been found, stress and displacement modeshapes can be found.

For both single plates and multilayered plate systems, these solutions form the
basis for which is based our analytical model, presented in Chapter 4, for the excitation
of acoustic plate modes by permanently attached piezoelectric transducers. More details
on how dispersion curves are found will not be given in this thesis but extensive details
can be found in [2.18].
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 2.2 LAMB WAVE EXCITATION IN THIN PLATES

The problem of the excitation of Lamb waves by piezoelectric transducers
permanently attached to plate-like structures is the central problem that is adressed in
this thesis. This problem can be formalized using the exact theory of elasticity but, in
most cases it is impossible to solve the equations analytically. This limitation led
researchers to find approximate theories and in particular it is well-known that most
problems of forced vibrations in elastic multilayered structures, though diverse in
formulation, are all amenable to solution by a uniform method that belongs to the
normal mode theory. Modal analysis, basically the search for the eigenvalues of the
system, is a very powerful tool for treating waveguide excitation, as shown by Rose
[2.19] for a mechanical excitation. The use of this technique for dispersive plate waves
has been reported only recently [2.20], [2.21], and the contribution of perturbing modes
is considered in [2.22] for a simple case. None of these papers deal with piezoelectric
materials however the normal mode expansion technique can also be used to solve
analytically the problem of excitation of mechanical waves in piezoelectric materials
driven electrically as shown by Auld [2.7].

The main idea of the normal mode method is to assume that, a priori, the sought
functions, for example the particle velocity and the stresses, can be written in the form
of a series with unknown amplitude

( ) ( ) ( )

( ) ( ) ( )

n n
n

n n
n

v z,y = a z v y

T z,y = a z T y

�

�
(2.24)

where vn and Tn are the particle velocity and the stress mode shapes of the nth mode and
an is the unknown amplitude. Similar expressions can be obtained for the electrical
fields.

Our purpose in this thesis is to depict accurately the process by which Lamb
waves can be generated in a plate by use of transducers. Therefore our primary goal is
to find either a general expression for the unknown amplitudes an or a numerical
estimate of them. In the first case when the amplitudes can be found, the expanded
series should represent the exact solution to the original differential equation(s)
depicting the problem. This requires the proof that the acoustic field distributions of the
modes form a set of orthogonal functions, and additionally that the set of modes is
complete [2.7]. Both subjects are very well documented and details can be found in both
theoretical physics text books [2.23], [2.24], and in text books treating in detail about
guided waves [2.7], [2.9], [2.19], [2.25], [2.26], [2.27]. However complications may be
encountered when dealing with acoustic plate modes in piezoelectric layers, in which
coupling between acoustic and electromagnetic fields may occur. Indeed the first step
when using the normal mode theory is to make sure that the set of acoustic waveguide
mode functions is complete and also that the modes are orthogonal. These two points
are discussed below and will be considered as established for the remainder of the
thesis.
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 2.2.1.1 Completeness of Normal Modes

The Lamb modes of a plate are assumed to be complete in the space of solutions
of the governing equations. A set of normal modes is said to be complete in a particular
space of functions if any of the functions in that space can be exactly represented in
terms of a finite or infinite number of functions in the set. For example in the space of
twice differentiable functions u(x) satisfying the boundary conditions u(0)=u(L)=0, it is
known that the set of functions u(x)=sin(nπx), n ∈  {1,2,...,∞} is complete [2.28]. This
means that any function which can be differentiated twice (without having singular
points) and which vanishes at the boundaries can be expressed, for any x in the interval
[0,L], as a series in the form u(x)=�An sin(nπx), for some choice of expansion
coefficients, An. Stated alternatively, there are no twice differentiable functions,
vanishing at the boundaries, which cannot be expressed in the above form. Kirrmann
[2.29] treated the problem of the completeness for Lamb modes. It should be noted,
however that no general proof of such completeness exists for the normal modes of
even a single isotropic flat layer and in the remainder of this thesis their completeness is
assumed.

 2.2.1.2 Orthogonality of Normal Modes

Orthogonality of normal mode is a fundamental property of the acoustic modes.
The concept of orthogonality of a set of functions is an abstraction of the notion of the
orthogonality of vectors in space [2.23]. That is, for any set of functions, Um(x), m ∈
{1,2,...,∞} defined over the domain x∈ [a, b], the set is orthogonal over the interval [a,
b], if and only if,

( ) ( )
b

m n
a

U x U x dx 0 for m n= =� (2.25)

The procedure to establish the orthogonality of the normal modes is similar. A pioneer
text on this subject has been written by Marcuse [2.27] for optical systems and a typical
example of its application to acoustics can be found in [2.30] for the study of a
liquid/solid interface. The important point to remember is that if one wants to construct
for a specific structure the orthogonal set of acoustic modes, one first has to derive some
orthogonality relation. This means that the set of modes is intrinsic to the structure and
therefore the orthogonality relation has to be built for each different system. For free
waveguides, this has already been done by Auld [2.7, Chap. 10]. However, even for
simple waveguides, it may be necessary to establish new orthogonality and the
normalisation relations if the non-propagating modes are also considered in the analysis.
It has been shown by Peach [2.31] and Kostenbauder and Siegman [2.32] that the
normalisation relation used for propagating modes cannot be used for the resonant cut-
off modes. In the derivation of our analytical model, see Chapter 4, it has been
arbitrarily decided to omit non propagating modes and to limit the study to the two
fundamental modes therefore we used directly the work done by Auld [2.7, Chap. 10]
and no new orthogonality relationship has been derived.
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 2.2.1.3 Reciprocity Relationship

Auld [2.7] derived the orthogonality relationship, for the excitation of guide
wave in free and lossless waveguides, by piezoelectric sources by means of the
introduction of the complex electromechanical reciprocity relationship. This expression
directly relates the electrical signal that would be received by an ultrasonic transducer to
the radiation patterns of the transmitting and receiving transducers. The relationship
thus provides a formalism that allows one to develop a system description of an
ultrasonic measurement, which includes the influence of all aspects of the measurement
system on the observed voltage. This reciprocity relationship is nonetheless useful in
demonstrating the orthogonality of the Lamb modes and also is the starting point for all
the perturbation calculations performed in this thesis.

Let us consider a homogeneous insulating piezoelectric material, whose
behaviour is governed by the piezoelectric constitutive equations and Newton’s law.
Any disturbance in the material gives rise to a particle displacement velocity vector v, a
stress tensor T, an electric scalar potential Φ and an electric displacement vector D, all
of which are functions of the space coordinates and of time. It is assumed that these
functions describe a first solution satisfying the constitutive relations of the material and
they will all be assumed to be proportional to exp(iωt). A second solution is also
assumed, described by the functions v’, T’, Φ’ and D’, and also proportional to
exp(iωt). These two solutions are related by the complex reciprocity relation which is
written

( ) ( ){ }* * * *
2 1 1 2 2 1 1 2. v .T v .T i D i D 0∇ − − +Φ ω + Φ ω = (2.26)

when there is no free charge and no mechanical source. This relation is not valid for
lossy media and assumes the electric field to be quasi-static, E = - grad Φ.

 2.2.1.4 Perturbation Theory

At this stage and for the remainder of the thesis it is considered that the
completeness and the orthogonality of Lamb modes in a free plate are established. This
enables us to use the normal mode expansion technique to establish expressions for the
mechanical and electrical fields. To do so we will use the well-known perturbation
methods [2,8], [2,23], in order to estimate the amplitude of the expansion coefficients an

in Eq.(2.24). To solve the entire transducer problem we adopted a methodology,
detailed in the introduction of Chapter 4, where each perturbation is assumed to be
sufficiently weak to represent it in a linear problem and to solve it by considering each
effect separately. This idea of evaluating electrical and mechanical perturbations
independently has been validated by Slobdonik [2.34] and allows us to split the problem
into various stages, each relatively easy to solve, and to combine them linearly.

The modes which can propagate in the entire system, transducer and structure,
must be the exact solutions of the Christoffel equation for the system. Since we consider
weak perturbations these solutions differ very little from the solutions for a stress-free
plate and the idea to solve the problem is to start the calculations with the Lamb mode
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solutions for the metallic plate in vacuum, and then to add the perturbations gradually.
In other words, the problem starts with finding the Lamb modes in the structure and
then we develop the calculations by gradually adding electrical and mechanical
boundary conditions that represent the entire transducer plus structure system. These
calculations are presented in details in Chapter 4.

The advantage of using this perturbation approach is that analytical expressions
can be found. The major drawback is that the solutions found are only approximate and
the solutions valid only in the limits of the assumptions used to simplify the problem.

The next section introduces the piezoelectric coupling and some notions about
the transducers and piezoelectric material used in this study.

 2.3 PIEZOELECTRIC MATERIALS & PIEZOELECTRICITY

Piezoelectricity is a phenomenon which allows electric polarisation to be
produced by mechanical stress in certain materials. This is defined as the direct
piezoelectric effect. Closely related is the converse effect, whereby a crystal becomes
strained when an electrical field is applied. Both effects are manifestations of the same
fundamental property of the crystal. The variables are in linear relationship to one
another in both direct and indirect processes. More details can be found in the reference
books by Masson [2.35] and Cady [2.36].

2.3.1 PIEZOELECTRIC MATERIALS

The piezoelectric effect is a property of a crystal structure, and a necessary
condition for the existence of piezoelectricity is a certain type of asymmetry in the
material: the crystal must not have a centre of symmetry. Piezoelectric materials are
therefore anisotropic. In this thesis we deal with a ceramic, PZT (ferroelectrics are
piezoelectric [2.37])., and a polymer, PVDF.

 2.3.1.1 Piezoelectric Ceramics

Ceramics, by definition, comprise inorganic, non-metallic, non-water-soluble
compounds that show ionic contributions in their chemical bonds. In this thesis we use
PZT ceramics. These ceramics have originally been developed by Clevelite
Corporation. They are ferroceramics based on Pb(Zr-Ti)O3 compositions. Greater
details are to be found in textbooks and articles by Bechmann [2.38], Jaffe [2.39],
Berlincourt [2.40], [2.41], Meitzler [2.42], Cross [2.43], [2.44] and Uchino [2.45].

 2.3.1.2 Piezoelectric Polymers

Polymers are another group of materials which exhibit piezoelectric effects. It is
known that some natural substances such as rubber, wool, hair, etc. are piezoelectric.
However in most polymers the piezoelectric effect is very weak though polyvinilidene
fluoride has demonstrated promising potential. Certain polymers, such as polyvinyl
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chloride (PVC), polyvinyl fluoride (PVF), and polyvinilidene fluoride (PVF2 or PVDF)
can be made piezoelectric by a combination of mechanical stretching and electric field
poling at elevated temperatures. The induced anisotropy varies with the polymer and the
subsequent treatment. PVDF sheet, poled along the thickness belongs to the crystal
class ∞ mm (equivalent to 6mm) and uniaxial stretching or rolling converts it to
orthorhombic 2mm, while biaxial stretching produces class ∞mm.

Kawai [2.46] published the first description of the piezoelectric properties of
PVDF. Subsequently, it has been used in many transducer applications as reviewed by
Chen and Payne [2.47]. Numerous workers among who Ohigashi [2.48], [2.49],
Lovinger [2.50], Chen [2.47], Kimura [2.51] and Brown [2.52], [2.53] have made
detailed investigations of the mechanical and dielectric properties, and piezoelectric
coupling parameters, all of which exhibit both frequency and temperature dependence.

2.3.2 PIEZOELECTRICITY

Piezoelectricity is a fundamental process of electromechanical interaction and is
representative of linear coupling in energy conversion. The piezoelectric process is
adiabatic, the temperature is assumed to be constant. In linear piezoelectricity the
equation of linear elasticity are coupled to the charge equation of electrostatics by
means of the piezoelectric constants. However, the electric variables are not purely
static, but quasistatic because of the coupling to the dynamic mechanical equations.
Thus in order to provide an appropriate theoretical basis for the piezoelectric materials,
the relevant electric equations are presented first in this section.

 2.3.2.1 Piezoelectric Constitutive Equations

When the media are piezoelectric the problem involves not only elastic particle
displacements but also the electric and magnetic fields, with the results that the
applicable equations are the combination of the elastic equations of motion and the
Maxwell’s equations. Elastic and electromagnetic fields are coupled by the piezoelectric
tensor of the media. The electromagnetic equations have two plane solutions while the
acoustic equations have three. In a non-piezoelectric medium, the electromagnetic and
acoustic solutions are completely independent of each other, but in the piezoelectric
case, they are coupled together through the piezoelectric stress equations.

Piezoelectricity couples the mechanical stress T and strain S fields with the
electric intensity E and displacement D fields. Depending on variable choice, four sets
of material constitutive relations are defined for the linear case of insulating dielectric
materials. The four equivalent pairs of material constitutive equations differ in their
combinations of independent and dependent variables; the material constants used in the
sets are interrelated. The equations relating the constitutive material values may be
determined by first pairing the equations sharing common variables, then one variable is
eliminated from each pair, yielding the required results, [2.55].

It must be noted that we choose a specific independent variable set that is the
strain S and the electric displacement E. In many textbooks, for example [2.35], [2.36],



Chapter 2 Piezoelectric Materials & Piezoelectricity

Page 41

[2.37] and [2.56], the chosen variables are S and P the electric polarisation. We choose
the electric displacement because the electric boundary conditions specified in our
problems are the continuity of the electric potential and the continuity of the electric
displacement. The classic thermodynamic derivation [2.7] [2.56], [2.57] of the adiabatic
process leads to the fundamental relations for the selected variable set S, E as
independent mixed variables:

E t E
ij ijkl kl kij kT = c S-e E T  = c S -e E (2.27)

S S
i ikl kl ij kD eS E D e S E= +ε = + ε (2.28)

The electric field E and electric displacement D are tensors of rank one. The mechanical
variables T and S are tensors of rank two, which have been converted to six-
dimensional vectors, see Eq.(2.5). cE is the symmetric matrix representing the elastic
stiffnesses at constant electric field. εS is the symmetric dielectric permittivity matrix at
constant strain, while e is the piezoelectric matrix. Superscript t denotes a transposed
matrix.

These relations shows that the presence of piezoelectricity modifies the elastic and
dielectric constants, that the mechanical (elastic) conditions must be specified for the
dielectric quantities, and that electrical conditions must be specified for elastic
quantities.

2.3.3 QUASISTATIC APPROXIMATION

The piezoelectric coupling between electromagnetic and acoustic plane waves is
negligible by comparison with the influence of the electric field. This is called the
quasistatic approximation and it leads to a very great simplification of the analysis. In
this so-called quasistatic approximation the elastic wave equations for the particle
displacements are inter-coupled to the anisotropic Laplace’s equation for the potential
Φ by the piezoelectric tensor e. Thus the particle displacements and the potential must
satisfy the following set of equations [2.54] using acoustic displacement rather than
velocity,

22 2
jE k

ijkl kij2
l i k i

uuc  -     e 0
x x x xt

∂∂ ∂ Φρ + =
∂ ∂ ∂ ∂∂

(2.29)

2 2
j

ijk ij
k i i j

u
e 0

x x x x
∂ ∂ Φ− ε =

∂ ∂ ∂ ∂
(2.30)

Each tensor is referred to the coordinate system and the summation convention on
repeated subscripts is implied.

The electric potential can be calculated from the acoustic displacement by
integrating twice Eq.(2.30) and solving for the electric potential. Then substitution into
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Eq.(2.29) leads to an equation of the same form as the Christoffel’s equation but with a
different stiffness constant. This term is called the piezoelectric stiffened elastic
constant.

Eqs.(2.27) and (2.28) can be written in their developed matrix form. In general the
matrices are fully populated but, considering that almost all piezoelectric crystals
belong to the trigonal (3, 3m, 32), orthorhombic (222, 2mm), tetragonal (4, 4, 4mm, 422
,42m), hexagonal (6, 622, 6mm, 6) and cubic (23, 43m) systems, only a restricted
number of independent constants are required.

x1 y2 z111 12 13 14 25 16

x1 y2 z212 22 23 14 25 16

13 23 33 z3

14 14 44 25 x4 y4 z4
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(2.31)

In monoclinic and triclinic systems, the number of independent piezoelectric
strain constants reduces to 12, and only 3 permittivity constants are required.
Additionally the number of independent elastic constants is also limited to 12.

The units of the tensors in equations (2.27) and (2.28) are given in Table 1
[2.57].

 2.3.3.1 Piezoelectric Forces

The volumetric force density is given by

ij
j

i

T
F  = 

x
∂
∂

(2.32)

Piezoelectric force density components may be found from Eq.(2.27) as

( )kij k

i

e E

x

∂

∂
(2.33)

This means that piezoelectricity forces may arise either from spatial gradients of
the piezoelectric constants or from spatial gradients of the electric field. In a single
crystal it is not usual that the piezoelectric constants will vary from place to place,
although it is possible. Thus piezoelectricity forces arise because of spatial gradients of
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the electric field. This is particularly the case when interdigital transducer electrode
arrays are used to produce acoustic waves. From the electrode array placement one may
find the force components and infer qualitatively if a particular type of wave motion
may be driven piezoelectrically by the electrode array [2.58].

2.3.4 ELECTROMECHANICAL COUPLING FACTORS

The physical significance of various piezoelectric stress constants eIj, is illustrated in
Figure 2.2. If we suppose that only one dimensional coupling occur, it is seen from the
first schematic in Figure 2.2 that an electric field applied along the x-direction of the
piezoelectric crystal will induce a normal stress in the x-direction via the ex1 coupling
constant. From Eq. (2.27) the stress is given by

1 x1 xT e E=− (2.34)

The piezoelectric stress constants are measured in coulomb/m2, and values are as
large as 10, meaning that at an elastic limit strain in the order of 10-3, the
piezoelectrically induced electrical displacement may be as large as 10-2 coulomb /m2.
Conversely, at break down electric field strength on the order of 107 volts/m, the
piezoelectrically induced stress may be as large as 108 newtons per meter.

Electromechanical factors are dimensionless measures of the efficacy of
piezoelectricity transduction and far more important than the piezoelectric constants
taken by themselves. For thickness plate resonators, coupling factors have the generic
form k2 = e2/ (εC) at high frequencies. For a Z-normal sheet PVDF polymer, k31=16 %,
whereas k33 = 30-60% for Z-cut ceramics and less than 10% for AT-cut or BT-cut (k26)
quartz. Calculations for the electromechanical coefficients of piezoelectric elements are
presented in details in Chapter 3.

 2.4 CONCLUSION

In this Chapter we have introduced some basic notions on four different fields,
Lamb waves, the normal mode theory, the perturbation method and the piezoelectric
behaviour of piezoelectric materials. These constitute the background on which the
analysis presented in Chapter 4 is based.
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 2.6 TABLES

Field tensors
Mechanical

Stress, T pascal                    Pa = N/m2 = kg /m s2

Strain, S dimensionless        metre/metre = m/m
Electric

Intensity, E volt/metre              V/m = kg m2 /A s3

Displacement, D coulomb/surface    C/m2
 = A s/m2

Matter tensors
Permittivity, εS farad/metre            F/m = C/(Vm)
Piezo-constants e coulomb/surface    C/m2 = N/(m-V)
Elastic Stiffness, CE pascal                     N/m2 = J/m3

Table 2.1 : SI Units for the fields and tensors used in the piezoelectric constitutive equations.
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 2.7 FIGURES
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Figure 2.1 : Diagram of flat isotropic plate, showing orientation of axes, with propagation
direction and wavefront.
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Figure 2.2 : Examples of the four basic types of piezoelectricity coupling terms (from B. Auld
[2.7]).
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Chapter 3 

Finite Element Modelling of Piezoelectricity

The finite element method is a mathematical technique which, based on the governing
constitutive differential equations of a continuum, allows the precise numerical
computation of boundary value problems for arbitrary geometries. Traditionally, the
finite element method is applied to mechanics and civil engineering, having its roots in
these faculties as well. In electromechanical engineering, however, it has emerged over
the last decade. The main reason for that delay is that for the simulation of
electromechanical transducers, such as ultrasound transmitters and receivers, for
example, a coupled field problem has to be solved which causes much more effort than
handling a single field as is the case for purely mechanical components. In most cases,
the coupling problem is twofold: first one has to describe the internal coupling
mechanism of an electromechanical transducer, such as the piezoelectric effect.
Secondly, the interaction of a fluid (propagation medium) and a solid (transducer) has to
be considered. When the propagation of a sound wave in a huge (unbounded) domain
has to be computed, further difficulties may arise, demanding special elements, such as
infinite elements, or adapted procedures. However such elements will not be discussed
here since this work is only concerned with propagation of plate waves in piezoelectric
solids coupled or not to solid non-piezoelectric structures; coupling with fluids is
beyond the scope of this thesis.

In this chapter a method for the analysis of piezoelectric structures, based on
finite element calculations is presented. The implementation of these equations in an
already existing finite element code, FE77, is described in some detail. Models are also
presented which serve the purpose of validating this new code.
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 3.1 INTRODUCTION

Modelling the generation and reception of waves by piezoelectric devices
requires the amplitude of the waves to be related to the voltage applied to the transducer
and to its piezoelectric properties. Without a strong understanding of the
electromechanical fields that can exist and propagate in the piezoelectric structure,
reasonably accurate models cannot be developed to predict the amplitude and the nature
of the waves generated by devices, which until recently have been empirically designed.
Our main purposes in developing a computer model for simulations in transducer
development are of three kinds.  First the optimization of transducer design without time
consuming experiments; secondly the evaluation of new materials in device design; and
finally to acquire a deeper insight into the wave propagation in piezoelectric solids and
coupled solid structures.

The equations of piezoelectricity are sufficiently complex to preclude closed
form solution for all but the simplest cases. To overcome this limitation, since the late
1960’s, variational principles have been derived which serve as the basis of approximate
solution techniques such as the Rayleigh-Ritz method. From the variational principle
enunciated by Holland [3.1] in 1968, a finite element formulation has been derived as
early as 1970 [3.2]. Since then the industry has been slowly recognizing discrete
numerical modelling on computers as a powerful alternative to conventional design
methods (Masson’s model or KLM model [3.3]). Today nearly all the major transducer
companies are experimenting with finite element models using commercial packages
like ANSYS [3.4] or by writing their own codes, [3.5]-[3.8]. However most
commercially available packages are often limited to implicit algorithms for frequency-
domain or time-domain analysis. In general implicit solutions are best suited to linear
static problems, steady state vibrations and low frequency dynamics. A better choice for
transient phenomena is an explicit time-marching algorithm [3.9] as will be
demonstrated. To our knowledge other commercially available packages are available,
among them PZFlex® [3.10], which are using explicit time domain solutions. However
it is very unlikely that these codes are optimised for our specific problems and it would
have been extremely difficult, not to say impossible, to adapt these codes to our needs.
On the other hand, over the last ten years an already existing general purpose structural
finite element program, FE77, developed at Imperial College by Hitchings [3.11], has
been optimised for wave propagation problems [3.12]. The finite element modelling of
Lamb waves presents several difficulties which have been studied in the past [3.13]-
[3.17] both for mechanical structures and piezoelectric solids. Alleyne studied the
interaction of Lamb waves with defects using FE77 [3.18] and developed a two
dimensional Fourier transform method that enables different modes to be separated
directly from the output displacements monitored within FE77 [3.19]. Pavlakovic [3.20]
developed an interface between FE77 with DISPERSE [3.21], [3.22], a software for
generating dispersion curves developed at Imperial college, that enables pure Lamb
modes to be generated in a finite element model. In order to take advantage of these
previous works, it has been decided to add piezoelectric properties to FE77 rather than
purchasing a commercial code. Introduction of piezoelectricity in FE77 is done by
means of matrix manipulations.



Chapter 3 Addition of the Piezoelectric Equations

Page 53

Piezoelectric transducers have been modelled using finite element analysis for
more than 25 years [3.5]-[3.8], [3.23]-[3.28], however implementation of piezoelectric
properties in an already working structural finite element program presents some
specific difficulties [3.29] that we decided to overcome by matrix manipulations. This
technique, commonly known under the names reduction or condensation [3.30]-[3.32],
presents certain advantages that enabled us to incorporate the piezoelectric equations in
the already existing mechanical time marching explicit algorithm without changing its
structure.

Implementation of piezoelectric elements in FE77 enables selected analytical
results to be checked and helps to estimate the limits of one and two-dimensional
models. Selected quantitative predictions that have been made will help us to
understand better the electromechanical process and to guide our analytical calculations.

 3.2  ADDITION OF THE PIEZOELECTRIC EQUATIONS

This section discusses a way of generating the piezoelectric equations of motion
in a method compatible with the already existing structural finite element program
FE77. The electromechanical finite element matrix equations relating mechanical and
electrical quantities in piezoelectric media are the basis for the derivation of the finite
element model. These are derived from the piezoelectric constitutive relations [3.33]

E t

S

T c S e E

D eS E

= −

= +ε
(3.1)

In the contracted formulation T, S, E and D are vectors and c, ε and e are
matrices. T contains the mechanical stresses, S the mechanical strains, E the electric
fields and D the dielectric displacements. cE represents the mechanical stiffness for
constant electric field, εS the permittivity for constant mechanical strain and e the
piezoelectric stress constants. The superscript t means transposed. Eq.(3.1) is just one of
the possible set of piezoelectric equations and it gives the mechanical stress and electric
displacement in terms of the independent variables electric field and strain. It is known
as the piezoelectric stress equations. The equations of state for a piezoelectric material
can be expressed in various forms by taking other pairs of variables to be independent
[3.33], [3.34], [3.35]. For example, choosing the electric field E and the mechanical
stress T as independent variables leads to the piezoelectric strain equations

E t

S

S s T d E

D dT E

= +

= + ε
(3.2)

where d is a matrix of the piezoelectric strain constants which expresses the magnitude
of strain induced by the applied electric field, and the units are in meters per volt, or the
magnitude of the electric displacement (in coulombs) per unit applied stress (Newton).
The choice between the different forms of piezoelectric constitutive equations depends
on the problem to be solved and the mechanical and electrical boundary conditions that
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apply. However for the purpose of modelling wave propagation in piezoelectric media,
the set of equations Eq.(3.1) is preferred because it is the only one which is suitable for
a three-dimensional continuum when no boundaries are present [3.33]. The reason for
that is that Eq.(3.1) is the only form that suits a displacement-based FE formulation,
since Eq.(3.1) is directly derived from the stress equation of motion (in absence of
forces) and the Poisson’s equation of electrostatic for an insulator (no free charges), that
is

T u
.D 0
=ρ

∇ =
��

(3.3)

where ρ is the mass density and u��  the acceleration. ‘ .∇ ’ is the conventional symbol for
the divergence of a vector. In finite element analysis, the stresses are calculated from the
strains therefore strain must be chosen as an independent variable, and as a consequence
of that choice it is seen that in absence of piezoelectric coupling, Eq.(3.1) reduces
directly to the generalized Hooke’s law. Therefore in absence of piezoelectric material
the finite element piezoelectric code will reverse simply to the original structural finite
element code in which piezoelectric properties have been added.

3.2.1 FINITE ELEMENT FORMULATION OF THE PIEZOELECTRIC
EQUATIONS

In electrostatics, that is when charges and current are static, the circulation of the
electric field is zero, therefore E is a gradient,

E = −∇ φ (3.4)

where φ is the electrostatic potential and is a scalar.

The second law of electrostatics states that the flux of the electric field from a
volume is proportional to the charge inside. This is the Gauss’ law

0
.E ρ∇ =

ε
(3.5)

and in terms of the electric displacement and in the absence of charges it is given by the
electrostatic charge equation:

.D 0∇ = (3.6)

Using the symbolic notations introduced by Auld [3.34], Eq.(3.4) can be given by

E Bφ=− φ (3.7)

where
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x
B y

z
φ

∂ ∂� �
� �= ∂ ∂� �
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(3.8)

The mechanical strain S is related to displacement through:

ji
ij

j i

uu1S i, j 1,2,3
2 x x
� �∂∂

= + =� �� �∂ ∂� �
(3.9)

and in Cartesian coordinates, since the strain tensor is symmetric, and using Auld’s
symbolic notations [3.34], this relation can be given by

S Bu= (3.10)

where u is the vector of mechanical displacements and

x 0 0
0 y 0
0 0 z

B
0 z y

z 0 x
x x 0

∂ ∂� �
� �∂ ∂� �
� �∂ ∂

= � �∂ ∂ ∂ ∂� �
� �∂ ∂ ∂ ∂
� �
∂ ∂ ∂ ∂� �� �

(3.11)

The equation of motion, neglecting the effect of gravity, is given by Newton’s law:

2

2
u  = .T

t
∂ρ ∇
∂

(3.12)

where ρ is the mass density of the medium.

Equations (3.4) to (3.12) constitute a complete set of differential equations,
which can be solved with the appropriate mechanical and electrical boundary
conditions. The above equations can be expressed in the finite element formulation
based on the Hamilton’s variational principle. The variational principle which serves to
incorporate the piezoelectric effect in the finite element formulation is essentially due to
Holland [3.1] and is reported in details by Tiersten [3.35].  It has been formalised in
finite element notation by Allik [3.2].

The finite element method reduces the electromechanical partial differential
equations over the model domain to a system of ordinary differential equations in time.
A problem of an infinite number of unknowns is therefore reduced to one of a finite
number of unknowns by dividing the continuum (solution region) into finite elements
and expressing the unknown field variables (displacements for solid mechanics
problems and potential for electric problems) in terms of an assumed interpolation
(shape) function within each element.
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The degrees of freedom of the system are the mechanical displacements u and
the electric potential φ. The prescribed quantities are defined as the body forces F and
the charge Q. They are determined at the nodes of the elements. These values at any
other arbitrary position on the element are given by a linear combination of polynomial
interpolation functions N(x, y, z) with the nodal point values of the quantities as
coefficients [3.30]. The discrete nodal values of the field variables can be used to
express the continuous behaviour within each element, and the full problem for the
continuum is formulated by summing the contributions from each element. For an
element with n nodes (nodal coordinates: (xi, yi, zi); i = 1, 2, …, n ) the continuous
displacement function u(x, y, z) can be evaluated from its discrete nodal point vectors as
follows [3.5]

u i i iˆu(x, y, z) N (x, y, z) u(x , y , z )= (3.13)

where û is the vector of nodal point displacements and Nu is the interpolation function
for the displacement. All other mechanical and electrical quantities are similarly
interpolated with appropriate shape functions. With the interpolation functions for the
electrical potential Nφ, Eq.(3.4) and  Eq.(3.10) can be written:

u u

ˆ ˆE (N ) B
ˆ ˆS Bu B(N u) B u
φ φ=−∇ φ=∇ φ =− φ

= = =
(3.14)

Applying this formalism to the local equations yields a set of linear differential
equations with a symmetric structure that describe one single piezoelectric finite
element

uu uu u
ˆˆ ˆ ˆˆmu c u k u k Fφ+ + + φ=�� � (3.15)

t
u

ˆ ˆˆk u k Qφ φφ+ φ= (3.16)

Subscript u refers to mechanical quantities whereas subscript φ refers to
electrical quantities. The combination of the two refers to electromechanical coupling
matrices, i.e. Kuφ is the finite element equivalent of the material piezoelectric matrix e.
And Kφφ is the finite element equivalent of the capacitance matrix ε. On an element
basis, i.e. before assembling the global matrices, the local matrices are given by

t E
uu u uk B c B dV=���    (3.17)

t t
u uk B e B dVφ φ=��� (3.18)

t
u um N N dV= ρ��� (3.19)

If the damping is chosen to be the Rayleigh damping [3.30], [3.31], [3.32] then
the global damping matrix is given by
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(e) t E (e) t
uu u u u uc B c B dV N N dV=β + α ρ��� ��� (3.20)

where the Rayleigh coefficients α and β are constants but can vary from element to
element. α  is the mass factor and this affect the low frequency damping. β is the
stiffness factor and this will affect the high frequency damping. More details about the
modelling of the damping is given in section 3.3.2.2.

 The forces and charges are given by:

t (e)
u f

t (e)
u q

F̂ N N f

Q̂ N N q

=

=

�

�
(3.21)

where the integral is a volume integral for body forces and a surface integral for surface
forces and/or charges. Forces and charges can also be applied at local points; in such a
case integration over the element surface or volume is not required and we have

t (e)
p u p

t (e)
p p

F̂ N F

Q̂ N Qφ

=

=
(3.22)

The complete finite element mesh is therefore mathematically described by a set
of global differential equations

uu uu uMu C u K u K Fφ+ + + φ=�� � (3.23)

t
uK u K Qφ φφ+ φ= (3.24)

where the quantities u, F, φ and Q are the global field quantities, and M, C and K are the
assembled global matrices. For a three-dimensional piezoelectric mesh made of n nodes
there are three mechanical degrees of freedom per node, the three components of the
displacement vector, and one electrical degree of freedom, the electric potential.
Therefore, at each time step, a coupled system of 3n equations (3.23) and n equations
(3.24) must be solved.

Eq.(3.23) and (3.24) can be assembled together in a single matrix equation:

t t
uu uu u uu u

u u

M 0 u u u FC C K K
0 0 QC C K K

φ φ

φ φφ φ φφ

� � � �� � � � � � � � � �
+ + =� � � �� � � � � � � �� � φ φ φ	 
 � � � � � � � �� � � �	 
 	 


�� �

�� �
(3.25)

Unfortunately the global mass matrix of the system of Eq.(3.25) is singular due
to the zero associated with the piezoelectric terms. This means it cannot be inverted
which causes problems with transient solution techniques discussed in section 3.3. The
problem may be solved by reducing the electrical degrees of freedom in such a way that
only one system of equations is to be solved but with no singular matrix. This method is
discussed below.
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3.2.2 REDUCTION OF THE MATRIX STRUCTURAL PIEZOELECTRIC
PROBLEM

Reduction, which may also be called “condensation”, is a way of making a few
degrees of freedom (d.o.f) represent all the d.o.f of the model. Thus the size of the
matrices is reduced and in some problems an analysis can be performed more cheaply
and more quickly [3.30]. In mechanical problems the disadvantage of reduction is the
introduction of some error and uncertainty into the analysis. However for a piezoelectric
problem since we do not attempt to reduce the mass matrix of the model but only to get
rid of the zeros in the lower part of the global mass matrix, errors and uncertainty
should not appear.

Referring to the reduction process in stress analysis finite element models, some
d.o.f are called masters which dictate the motion of other d.o.f called slaves. Slaves are
discarded and masters retained. The order of matrices in the reduced problem is equal to
the number of masters. The most commonly used method is the Guyan’s reduction
[3.36]. Its principal assumption is that inertia forces on slaves are negligible in
comparison with elastic forces transmitted to slaves by the motion of masters.
Transposing this method to Eq.(3.25), the electric potential d.o.f. are the slave d.o.f. of
the elastic displacement d.o.f.. The slave-master relation is easily extracted and is given
by

( )1
u uK Q K u C u−

φφ φ φφ=− − − � (3.26)

Hence the piezoelectric problem reduces, in absence of electric and piezoelectric
damping, to:

t 1 t 1
uu uu u u uMu C u K K K K u F K K Q− −

φ φφ φ φ φφ� �+ + − = −
� �

�� � (3.27)

The solution of this equation yields the mechanical displacements and the
electric potentials can be obtained from Eq.(3.26). This reduction technique has been
done before for reducing the size of dynamic problems, but we found no evidence that
this technique has been used in the past for structural-piezoelectric problems. Articles
on the implementation of piezoelectricity in time marching finite element algorithm are
rare [3.2], [3.10] and none discuss the detail of the algorithm, and there are no books on
the subject. It is seen that the only difficulties in solving this problem are in the
inversion of the mass and the capacitance matrices. The time marching algorithm is
therefore quite simple in theory and we will now discuss how it is handled in FE77.

 3.3 DIRECT INTEGRATION METHODS

The equation system to be solved is the following:

M u Cu K u F+ + =�� � (3.28)
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where u is the vector containing the generalised nodal displacements, and u� and u��  are
the corresponding velocities and accelerations at the same time. F is the vector of
applied nodal forces and can be varying with time. Matrices M, C, and K, represent the
assembled mass, damping and stiffness matrices.

Eq.(3.28) is the finite element formulation of the second order differential
dynamic equation of motion. For linear problems, as we are concerned with in this
thesis, these matrices are invariant with time. The displacements, velocities and
accelerations are assumed to be known at initial time t0.

The problem then is to solve Eq.(3.28) for the acceleration at some later time
1 0t t t= + ∆ , where t∆  is the time increment. There are two techniques to solve

Eq.(3.28), the direct integration and the mode superposition. In this thesis we are only
concerned with direct integration methods. In direct integration the equations in
Eq.(3.28) are integrated using a numerical step-by-step procedure and “direct” means
that prior to the numerical integration, no transformation of the equations in Eq.(3.28)
into different form is carried out [3.30]. There are two basic iterative approaches to
solving these equations directly, the implicit method where attempts are made to solve
the exact equations at time t1 and explicit methods where only an approximate form of
the equation at time t1 is solved. In both cases, successive temporal values of the
displacements and forces are calculated, denoted by un and Fn, and correspond to the
values calculated and applied at 1 0t t n t= + ∆ . This means firstly, that equilibrium is
sought at discrete time points within the interval of solution and secondly, that a
variation of displacements, velocities and accelerations is assumed within each time
step. In the following sections we only consider the Newmark-β implicit and the central
difference explicit solutions forms, since these are the two methods implemented in
FE77. More details on these two methods in a general context, along with other implicit
and explicit methods, may be obtained from Bathe [3.30] and Zienkiewicz [3.31].

3.3.1 THE IMPLICIT SOLUTION FORM

For the implicit solution, using the Newmark-β or other implicit method, the
equations to be solved are written in the form

1 1 1 1M u F C u K u= − +�� � (3.29)

The intention is then to satisfy the complete solution at time 1t . This has to be
done by some iterative technique, typically by a Newton-Raphson method. This means
that the system is assumed to be at equilibrium at a given time in the future and the
displacements are obtained by solving the simultaneous equations. In theory, it should
be possible to solve the implicit solution form for any time step t∆ . For linear problems
it is used to develop unconditionally stable solution methods that give a solution for any
step size. The major drawback of implicit schemes is that a matrix of the order of the
number of degrees of freedom has to be inverted. This is a very restrictive condition for
large models and practically, it imposes the condition for the matrix to be diagonal.
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One practical implementation of the implicit solution form is the Newmark-β
method in which the process of time marching uses a linear acceleration assumption
combined linearly with a constant acceleration assumption. In other words the
acceleration at time at time (∆t + t) is deduced from that at time t using a combination of
linear and constant variation during the interval of time (∆t).  By changing the
parameter β the proportion of linear acceleration to constant acceleration is changed.
Hence in this method pure constant acceleration or pure linear acceleration assumptions
may be used. Before developing further the equations of the Newmark-β method we
shall discuss the constant and linear acceleration assumptions.

 3.3.1.1 Constant and Linear Accelerations

For both the explicit and implicit methods the time response has to be advanced
with time. An assumption is made as to how the acceleration (or displacement or
velocity) changes with time. At time 0t  the response quantities, 0u�� , 0u�  and 0u  are
known. Assuming that the equations have been solved at time 1t  then, using either the
implicit or explicit forms, the acceleration at the end of the step, 1u�� , will also be known.
Assuming that the acceleration varies linearly, as shown in Figure 3.1, over the time
step, then the acceleration at any time t  can be written as

( ) 0 0
0 1

t t t t
u t 1 u u

t t
− −� �= − +� �∆ ∆� �

�� �� �� (3.30)

This can be integrated to give the velocity and integrated again to give the
displacement. At the end of the step this gives

1 0 1 0
t tu u u u

2 2
∆ ∆= + +� �� �� �    and  

2 2

1 0 1 0 0
t tu u u t u u
3 6

∆ ∆= + + ∆ +�� �� �   (3.31)

Other assumptions can also be used since the response at all previous time steps
is known. The simplest form is to assume that the acceleration is constant over the time
step, so that ( ) 0u t u=�� �� , as shown in Figure 3.2. Integrating this gives the velocity and
displacements at the end of the step as

1 0 0u t u u= ∆ +� �� �    and    
2

1 0 0 0
tu u t u u
2

∆= + ∆ +�� � (3.32)

In FE77 the linear variation, or a combination of constant and linear variations,
is used for the Newmark-β  method.

 3.3.1.2 The Newmark-ββββ Method

The parameter β in the Newmark-β method is used to change the proportion of
linear acceleration to constant acceleration. A linear combination of the constant
acceleration and the linear acceleration, gives from Eq.(3.31) and Eq.(3.32), the
combined velocities as :
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2 2
t t 1 t t t 1 2 t

a t a t
u a t u u (a a )u

2 2+ ∆ +∆
∆ ∆� �= ∆ − + + +� �

� �
� �� �� � (3.33)

where a1 and a2 are the constants of proportionality. Since the velocity at the start of the
step must be tu�  then (a1+a2) = 1 so that

( ) 2
t t 2 t t t t

a ttu 2 a u u u
2 2+∆ +∆

∆∆= − + +� �� �� � (3.34)

Similarly the combined displacements, using values b1 and b2 as the constants of
proportionality, become

( ) ( ) ( )2 2 2
2

t t 1 2 t t t 1 2 t t
t t b t

u b b u u (b b )( t u u )
2 2 6+ ∆ +∆

� �∆ ∆ ∆
� �= + + + + ∆ +
� �
� �

�� �� � (3.35)

and again the condition (b1+b2) = 1 must be satisfied giving,

( ) ( ) ( )2 2
2

t t 2 t t t t t
t b t

u 3 b u u t u u
2 6+ ∆ +∆

∆ ∆
= − + + ∆ +�� �� � (3.36)

With b2 = 1 and a2 = 1 then the basic linear acceleration interpolation form is recovered.
With a2= 0 and b2 = 0 the constant acceleration form is recovered.

The conventional definition for the Newmark-β [3.37] method has b2 = 6β ; b1 = (1-
6β ); a2 = 2γ; a1 = (1 -2γ), hence

( )t t t t t t

2 2
t t t t t t t

u 1 t u t u u

1u t u t u u u
2

+∆ +∆

+∆ +∆

= − γ ∆ + γ ∆ +

� �= −β ∆ +β∆ + +� �
� �

� �� �� �

�� �� �

(3.37)

The Newmark-β form of the implicit solution is then

( ) ( )

( )
2

t t t t t t t t t t t t

2
t t t t t

M t C t K u R C 1 t u u

1K t u t u u2

+∆ +∆ +∆ +∆ + ∆

+∆

+ γ ∆ +β∆ = − − γ ∆ +� �� �

� �− − β ∆ + ∆ +
� �

�� �� �

�� �

(3.38)

 3.3.1.3 Approximate Newmark-ββββ Form in FE77

It is seen in Eq.(3.29) that the mass matrix M on the left-hand side must be
inverted to solve for the acceleration at time (∆t + t). To overcome this problem an
assumption may be used stating that the changes in displacements and velocities during
the time interval ∆t are small enough so that Eq.(3.29) may be written at time (∆t + t) as

t t t t t tM u F C u K u+ ∆ +∆= − −�� � (3.39)
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Then since the lumped mass matrix is diagonal, the acceleration at time ∆t + t is given
by

1
t t t t t tu M (F Cu K u )−
+ ∆ +∆= − −�� � (3.40)

The displacement and the velocity at the end of the step are calculated by
integration of the acceleration assuming the combined constant-linear acceleration
assumption, that is

t t t tt t t t2
1 1 1u 1 u u (u u )

2 t t
+ ∆ +∆

� �
= − − + + −� �β β∆ β∆� �

�� �� �� (3.41)

leading to

( )

( )

t t t t t t

2
2

t t t t t t t

u u 1 t u t u

tu u t u 1 2 u t u
2

+∆ +∆

+∆ +∆

− = − γ ∆ + γ ∆

∆− =∆ + − β +β∆

� � �� ��

� �� ��

(3.42)

The major drawback of this approximate form of the Newmark-β method is that
there is no combination of a2 and b2 that lead to an unconditionally stable solution,
hence that the algorithm needs numerical damping to stay stable [3.37]. It must be noted
that this approximation of the implicit Newmark-β method assumes that the system is at
equilibrium at time t to calculate the acceleration at time (∆t+t) which is the usual
assumption used in the explicit algorithm.

3.3.2 THE EXPLICIT SOLUTION FORM

In the explicit method the solution for the displacement at the end of the time
step is sought using the equilibrium condition at the beginning of the time step,
therefore the equations to be solved are written in the form

1 1 0 0M u F C u K u= − +�� � (3.43)

The acceleration at time t1 is determined from the known displacements and
velocities at time t0. In this case the equations to be solved are only an approximation to
the true one. However, if the time step t∆  tends to zero then the equations tend to the
exact ones. In fact this assumption is not quite as bad as it appears at first sight. For
most structural problems the damping is low and the response is largely determined by
the stiffness and inertia forces, Ku  and Mu��  respectively. In addition the displacement,
being the double integral with respect to time of the acceleration, changes less rapidly
than the acceleration over a small time step. It takes some time for the displacement to
change but the acceleration can change immediately. This means that the assumption
that the stiffness force is defined by its value at the start of the step is a much better
approximation than assuming that the inertia force at the end of the step is the same as
that at the start. However, the stiffness force assumption does mean that the explicit
solution method can only ever be used with a small time interval t∆ . This is the major
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drawback of explicit solution: the solution is stable only if the growth of the disturbance
is bounded. Therefore the time interval must be less than a critical time interval.
Physically this restriction is that no energy may be propagated through the mesh spacing
in under a time step. This condition is discussed later in more detail, for the central
difference method. The major advantage of the explicit schemes is that the stiffness
matrix K does not require factorisation in the step-by-step solution.

The only unknown in Eq.(3.43) is the acceleration, 1u�� , which can be found by
inverting the mass matrix,

1
1 1 0 0u M (F Cu K u )−= − +�� � (3.44)

For almost all implementations of the explicit solution method the mass matrix
M, is idealised to be a diagonal matrix, making the inversion 1M−  trivial, although
using a diagonal mass matrix is not a necessary requirement for explicit solution
methods. Once the acceleration at the end of the step is known, the time step can be
advanced, typically assuming linear variation of acceleration, to give the velocity and
the displacement as in Eq.(3.31). The solution at the end of the step is then known and
can be used as the starting conditions for the next step.

 3.3.2.1 The Central Difference Explicit Method

It can be shown that most of the numerical methods of integration can be written
in a similar form, the difference being in the value of coefficients affecting
displacements and their derivatives. More details about the central difference method
may be found in the text book by Bathe [3.30]. The characteristic of the central
difference method is that velocities and accelerations are only approximated from
displacements at different time positions as shown by

( )
( )t t t t t2

1u(t) u 2u u
t

−∆ +∆= − +
∆

�� (3.45)

( )t t t t
1u(t) u u

2 t −∆ +∆= +
∆

�  (3.46)

The initial condition on the velocity at time t is approximated, via a second order
Taylor expansion, by an initial condition on the displacement at the previous time step.
Substitution of Eq.(3.45) and Eq.(3.46) into Eq.(3.44) yields

( ) ( )
t t t t t t2 2

2 MM C M Cu R K u u
2 t t 2 tt t

+∆ −∆

� � � �� �
� � � �+ = − − − −� �� � � �∆ ∆ ∆� �∆ ∆� � � �

(3.47)

from which we can solve for the displacement at the next time step, u ∆t+ t.

This method has two disadvantages. First as mentioned in the previous section,
to be numerically stable this integration method must advance in time by a controlled
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interval, which necessarily limits the computation speed. Secondly, when the damping
matrix C is non null the inherent advantage of the explicit method disappears since a
matrix (a representation of the stiffness matrix) which is not diagonal has to be
factorised and inverted. Moreover, when piezoelectricity is added, the damping matrix
contains also electrical and the piezoelectric damping. This means that in order to have
a non singular damping matrix, electric loss must be added to the entire piezoelectric
region. This problem can be overcome in theory by condensing the electric degrees of
freedom, as discussed in section 3.2.2. However it then leads to a system of equations
involving, at each time step, an enormous amount of matrix operations which, in
practice, precludes from using such a technique when damping is to be modelled.

 3.3.2.2 Modelling of Damping

In many cases, when damping is introduced in a FE model, it is ill defined and
not expressed as a real damping matrix. Since the explicit solution obtains the response
for all frequencies, including the highest, the computed response tends to “ring” at the
high frequencies, especially for shock type loadings. To overcome this it is common to
include some form of numerical damping, in the form of a damping matrix, to control
this high frequency ringing. One technique for doing this is to assume the numerical
damping is in the form of Rayleigh damping [3.30], [3.31], [3.32]:

C M K=α +β  (3.48)

where M is the diagonal mass matrix, K is the stiffness matrix and α and β are constants
to control the level of damping. α  is the mass factor and this affect the low frequency
damping. β is the stiffness factor and this will affect the high frequency damping.
Including the numerical damping the explicit form of the equations of motion become

1
1 1 0 0 0 0u M (F C u Mu Ku K u )−= − − α −β +�� � � � (3.49)

Eq.(3.49) can be written in the form

1 1
1 1 C0 K0 0u M (F F F F ) M Mu− −

β= − − + − α�� � (3.50)

where

FCO = 0Cu� = the damping force

FKO = 0K u = the stiffness force

Fβ = 0Kuβ � = the numerical stiffness damping

1
0M Mu−α � = the numerical mass damping
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 3.3.2.3 Choice of Time Step for the Explicit Method

One major problem with any explicit solution form, and the central difference
method in particular, is the fact that it becomes unstable if the time step is above a
critical value. It is necessary to use a small enough time step for the solution to be
stable. For a given duration of response the computational time is directly proportional
to the time step so that it is necessary to choose a time step as close to the stability limit
as possible in order to minimize the computation time. A physical interpretation of the
critical time step can be made by considering the propagation of a disturbance through
the structure. A wave will travel between points at some velocity defined by the
material properties. In many cases this is the speed of sound in the material. In the bulk
of an isotropic material the quickest wave is the compression wave whose velocity is
determined by the stiffness and the material density. This can be used to estimate the
explicit time step [3.38]. For the explicit central difference scheme, Blake [3.13]
enacted a simple rule which states that the time step must be less than the time needed
by a longitudinal wave to reach the next node. When using the explicit central
difference form within FE77, the time step is being defined by the relationship:

L

min( x, y, z)t 0.8
C

∆ ∆ ∆∆ = (3.51)

where x, y∆ ∆ and z∆ are the dimensions of the elements and CL is the longitudinal phase
velocity. The factor 0.8 has been determined empirically [3.12]. Eq.(3.51) implies that
the time step is set to a fixed value all through the course of the calculation.

3.3.3 DISCUSSION

For linear problems, FE77 allows the user to choose between the approximated
Newmark-β implicit method and the central difference explicit method. The best choice
between these two methods depends on the analysis to be conducted. For wave
propagation problems the central difference method is more suitable. The major
drawback of the Newmark-β integration method for wave phenomena is that accurate
solution requires a time step smaller than one-tenth the period of the highest frequency
to be resolved. This is close to the stability limit for explicit methods and effectively
removes the principal advantage of implicit integration [3.39]. Another reason to prefer
the central difference algorithm for the analysis of wave phenomena is that no
numerical damping is required to stabilize the integration. Therefore a wave may
propagate along the structure without being artificially damped. This is of great
importance for reflection coefficient prediction, for example.

When choosing which method is suitable, the efficiency of the algorithm in
terms of time cost is also important. Two parameters directly affect the time of
computation: the number of time steps during the solution interval and the number of
equations to solve at each time step, that is the number of nodes times the number of
degrees of freedom (d.o.f) at each node. Since the step length is proportional to the
element size, or in other words to the time period of the highest frequency of the mesh,
very many steps will be required to solve for a typical response. It is essential that the
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numerous calculations per step are minimised. When dealing with high frequency
(typically a few MHz) waves propagating in plate-like structures the number of degrees
of freedom in the model can very easily exceed 100,000. Such analyses are very
demanding in terms of memory and anything involving a disc access at each step should
be eliminated, all of the required quantities being held in the fast memory of the
computer. The central difference algorithm enables massive reduction in the amount of
information to be accessed and stored in memory. The efficiency of the central
difference method lies in considering the precise details of its implementation and
coding and, in general, explicit central difference algorithm are attractive because they
enable numerical integration to be performed with a minimum of information and
therefore to run large models.

For these reasons, all the finite element analyses presented in this thesis have
been run using the central difference algorithm without any damping, either mechanical,
electric or piezoelectric. Eq.(3.47) is then reduced to

( ) ( )t t t t t t2 2
2 MM Mu F K u u

tt t
+∆ −∆

� �
= − − −� �∆� �∆ ∆

(3.52)

from which the displacement at the next time step is calculated from the displacement at
the present time and the displacement at the previous time step. This equation can be
even further reduced by calculating the displacement increment directly as:

( ) ( )2 1 1
t t t t t t2 u u u t M F K 2 t M u− −
+∆ −∆∆ = − = ∆ − − ∆

(3.53)

Alleyne [3.12] carried out numerous analyses of the propagation of Lamb waves
and their interaction with defects in plates using FE77 and the central difference explicit
method. Results, thoroughly validated against experiments, show that the phase velocity
of Lamb modes can be predicted with errors of less than 0.5%. In order to obtain
accurate solutions the number of nodes per wavelength should be greater than eight. For
quadrilateral 4-noded two-dimensional elements, this rule should be applied strictly.
Too fine a mesh increases the number of degrees of freedom and therefore the size of
the matrices and also the time step is reduced proportionally so to get to a particular
future time more intermediate calculations are required. When particles of a
piezoelectric material move they generate an electric field which in turn generate
motion. This effect is called piezoelectric stiffening since, for static cases, it can be
described as equivalent to a change in the stiffness of the material. This was discussed
in great detail by Auld [3.34] and is summarized in section 3.5.1.1. Any change in the
stiffness involves a change in the speed of sound travelling in such materials and
therefore, when modelling piezoelectric material, particular attention must be given to
the calculation of the critical time step, as given in Eq.(3.51).
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 3.4  TRANSIENT ALGORITHM IN FE77

FE77 is a general-purpose finite element program. It has all three aspects that are
generally taken as making up a finite element program: a mesh generation facility, an
analysis facility and a results presentation facility.

This program has a modular architecture, where the definition of the modules is
based upon the characteristics of any finite element analysis. Typically, the solution of a
finite element problem requires a mesh to be specified (module GEOMETRY),
boundary conditions to be given (module SUPPORT), the finite element equations to be
assembled (module ASSEMBLE), the loads to be applied (module LOAD) and the
equations to be solved (module SOLVE). The user calls these modules to define the
analysis that is to be conducted and gives input data to them as they are called. The
modular structure of program is shown in Figure 3.3.

3.4.1 THE FE77 PROGRAM STRUCTURE

The database initialisation phase allows the user to define the basic attributes of
the analysis. The executive module then calls the required modules for the analysis.
Each module writes the data it generates either to the analysis database or to the output
files. All modules communicate with each other via the analysis database and pass
control back to the executive module when it is finished.

The input to FE77 can either be in the form of an input file for batch analysis or
via menus for interactive input. In both cases the data command structure is the same,
however for detailed analysis it is more efficient to use the batch analysis. See
Appendix A for an example of the input data for a simple piezoelectric plate.

AWAVE is a time marching integration module which has been developed by
Alleyne [3.12] in order to efficiently model the generation and the propagation of Lamb
waves. For wave propagation problems the central difference algorithm is better suited
than the Newmark-β method, since for proper Lamb wave analysis in non-lossy
materials the amplitude of the propagating pulse must not decrease with distance.
However when the analysis requires damping then the user can switch to the Newmark-
β algorithm and set either the Rayleigh damping coefficients or a viscous damping
matrix (which can be seen as an equivalent of the complex parts of the stiffness
coefficients). Our main contribution here was to add the piezoelectric constitutive
equations to the central difference algorithm in the AWAVE module.

3.4.2 SECOND ORDER TIME MARCHING INTEGRATION ALGORITHM

The structure of the algorithm is simple and is summarised in 5 steps:

1. Accessing data

2. Initialisation
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3. Assembling matrices

4. Time marching integration

5. Storing and processing results

FE77 has been developed in the order of efficiency. This depends on several
factors such as the use of efficient finite elements, efficient programming methods and
sophisticated use of available computer hardware and software and also the use of
appropriate numerical methods. The numerical procedures involved at each of the steps
aforementioned are well known and only the processes specific to the implementation of
piezoelectricity are discussed here and a particular attention is given to the matrix
manipulations.

In FE77 the assembly of forces, as defined in Eq.(3.50) are performed such that
the result of every step in the assembly is only a column vector. No element stiffness
matrix, let alone the complete stiffness matrix need be formed, and since the same
computation loop is involved in the assembly of each of the forces, these are performed
in parallel. Such considerations are vitally important in an explicit solution program
since this sequence is likely to be executed millions of times.

In FE77 matrices are stored using an inverted “sky line” scheme [3.30], which
consists of storing a matrix column by column, keeping only the diagonal terms and all
the non zero terms below the diagonal. Therefore the matrix is banded and only its
symmetric part is stored. An additional vector must be stored to indicate how many
elements stand in each column. This information is accessible before the matrix is
stored and the order of the degrees of freedom can then be rearranged in order to
minimize the width of the band. The fact that all non zero elements are clustered around
the diagonal of the system matrices greatly reduces the total number of operations.
Therefore it was imperative to implement the piezoelectric equations in FE77 without
modifying the storage scheme. At the time marching integration level, the dynamic
analysis of piezoelectric materials reduces to solving Eq.(3.26), what involves inverting
the capacitance matrix Kφφ and assembling the charge, and to solving Eq.(3.27), what

involves adding the piezoelectric contribution t 1
u uK K K−
φ φφ φ to the stiffness matrix uuK ,

and assembling the forcing charge t 1
uK K Q−
φ φφ . These operations are essentially simple

when the matrices are classically stored in memory but they require more attention
when the “sky line” storage technique is used.

Because it is stored using the “sky line” technique, the capacitance matrix is a
banded matrix, but its inverse is not. However although the direct inversion of the
capacitance matrix Kφφ is therefore not suitable, the calculation of 1K−

φφφ is possible
without changing the “sky line”. This is because the vector storing the potential
amplitudes φ can be used to decompose the matrix using the Cholesky technique [3.40]
in which the capacitance matrix is expressed as the product of triangular matrices L
obtained from the Cholesky factorisation:
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1 t 1K L L− − −
φφφ= φ (3.54)

Then, by replacing the inverse of the capacitance matrix by its decomposition which
respect the “sky line”, all the other calculations for which the inversion of the
capacitance matrix is required are now simplified and can be done without affecting the
memory allocations.

Starting with Eq.(3.27), the first product containing the inverse of the capacitance
matrix Kφφ is the piezoelectric contribution t 1

u uK K K−
φ φφ φ to the stiffness matrix uuK .

t 1
u uK K K−
φ φφ φ is a matrix which, in general, does not have the same structure as the

capacitance matrix and when adding it to the stiffness matrix, the “sky line” format of
the stiffness matrix would be modified. Moreover an extra memory space would be
necessary to perform the direct assembly of t 1

u uK K K−
φ φφ φ. However if 1K−

φφ is replaced

by its Cholesky decomposition, the product t 1
u uK K K−
φ φφ φ reduces to

t
u uK Kφ φ

� � (3.55)

with

1
u uK L K−
φ φ=� (3.56)

uK φ
�  and uK φhave the same shape therefore uK φ

�  can be stored in place of uK φ and the
“sky line” is preserved. Therefore the stiffened stiffness matrix

t 1
uu u uK K K K−

φ φφ φ� �−
� �

can be assembled and stored in place of the stiffness matrix uuK .

Similarly, the calculus of the forcing charge t 1
uK K Q−
φ φφ  on the right hand side of

Eq.(3.27), is now reduced to

t 1
uK L Q−
φ

� (3.57)

and eventually the overall calculation of the electric potential, as given by Eq.(3.26) is
now given by:

( )t 1
uL L Q K u− −
φφ= − (3.58)

This technique to implement the piezoelectric equations in the existing program
by condensing the electrical degrees of freedom and without modifying the assembling
technique of the matrices is very close to the static condensation algorithm [3.41], and
is rather economical in terms of matrix manipulation. Further advantage in keeping the
same structure for all the matrices is that the same storage space can be used
successively. This is rather important in FORTRAN 77, language in which FE77 is
written, where memory allocation is decided at the beginning. The technique described
above is employed to reduce the number of nodal degrees of freedom and thus, in effect,
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to perform part of the solution of the total finite element system equilibrium equations
prior to solving the system of dynamic equation, that is calculating the acceleration at
each time step. Finally the acceleration, once all the contributing forces have been
assembled, is given by

( )1 t 1 t t
u uu uu u uu M F K L Q C u K K K u− −
φ φ φ� �= − − − −

� �
� ��� � (3.59)

and then the central difference algorithm enables us to calculate the displacement
increment as given in Eq.(3.53). This ends the time marching calculations and if it is
repeated until the last time step is passed, the model is complete.

However extra calculations may prove to be very valuable for transducer
characterisation, in particular the determination of the electromechanical coupling and
the input impedance of the piezoelectric medium. Values of coupling and impedance
given in text books or provided by manufacturers may be either experimentally
measured or calculated via simple calculations that assume a one-dimensional
behaviour. Using a finite element code to compute them allows better comparison with
experimental data. Before developing the implementation of the electromechanical
coupling coefficients and the electrical impedance it is necessary to look in some details
at the electrical boundary conditions that apply to FE77.

3.4.3 ELECTRICAL BOUNDARY CONDITIONS

A finite element model is by nature limited in all its dimensions and at the outer
surfaces, the appropriate boundary conditions must be satisfied. The mechanical
boundary conditions are not changed by the introduction of piezoelectric properties in
the structural code. At the free surface of the piezoelectric continuum they are given as
follows

i ijn T 0= (3.60)

where ni is the outward unit normal to the external surface.

Concerning the electrical boundary conditions, the difficulties arise from the fact
that the outer surface of a piezoelectric body is in fact an interface between two
dielectric media, and this surface can be either free or partly electroded. Problems
involving electrical open boundaries in finite elements programs have been studied
extensively in the past for electromagnetic waves [3.42], [3.43] and even recently for
piezoelectric finite element problems [3.44].

The first important issue we must consider is the modelling of the external
electrostatic field. The physics tell us that the infinite exterior region of a piezoelectric
device adheres to Laplace’s equation. In FE77, for the analysis of piezoelectric
vibrations, the electrical field external to the crystal is neglected. In practice this is
usually justified for materials with large values of relative permittivity. However for
those crystals [3.45] that possess both low relative permittivity and strong piezoelectric
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coupling, the electric leakage is not negligible and the vibrations in the piezoelectric
device are affected. This problem was resolved, for example, by Antonova [3.44], by
defining a “super element” that encircles the outer boundary. Such a procedure does not
exist in FE77 and therefore no electromechanical wave can be modelled to propagate
away from the model, just as it would be the case for a device in vacuum. Therefore the
electrical boundary condition along a free surface is that the component of the electric
displacement, normal to that surface, is zero

i in D 0= (3.61)

where ni denotes the components of the unit normal to the surface. Since there is no
field in the outer region, then the potential along the outer boundary of the piezoelectric
model can be set to zero. If part of the outer surface is electroded, in the general case, at
an electrode some relation between the potential φ and the components of the electric
displacement D, normal to the electrode must be found. In practice either the surface
charge or the potential must be specified on the electrode:

[ ]i in D or= σ φ=φ (3.62)

where [ ]Di  denotes the jump in the electric displacement at the surface, but since in
FE77 the outer medium is not modelled, the jump [ ]Di  reduces to Di . σ  is the applied
surface charge density and φ is the prescribed potential. If the electrode is driven by the
applied surface charge density, the total charge on the electrode is given by

i iS
Q n D dS=− � (3.63)

Let us now consider the situation where a piezoelectric device is driven by a
voltage signal applied at a very thin electrode. If its mechanical influence is considered
negligible, the electrode can be modelled simply by specifying the electric potential φ at
each node i of the surface and the sum of charges on the electrode is zero.

i iand Q 0φ =φ =� (3.64)

If the electrode is grounded, all the nodes of the electrode must be set to a fixed
value. This is done in FE77 by supporting the electrical degree of freedom at these
nodes in the same way that mechanical boundary conditions are enforced: the relevant
degrees of freedom at the fixed boundaries are simply specified to be fixed. Therefore at
all nodes along the grounded electrode the potential is set to zero.

If a pair of electrodes operates, each are set to different potentials, and the
difference is equal to the voltage applied between the electrodes. In real experiments the
two electrodes operate into a circuit of admittance Y and the current I and the voltage V
are related by the condition

i
i

S

D
I n ds YV

t
∂

= = ±
∂� (3.65)
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where ni denotes the components of the unit normal to the electrode of area S, and the  ±
depends on the orientation of the coordinate axes. However FE77 does not allow us to
model the effect of external electric circuits, therefore the two electrodes in FE77 are
independent. This situation corresponds to that of a device operated with open-circuited
electrodes.

3.4.4 ELECTROMECHANICAL COUPLING COEFFICIENTS

The piezoelectric crystal in an ultrasonic transducer behaves as an
electromechanical device. It is important that the electric to acoustic energy conversion
is maximised to achieve optimal performance of the transducer. The electromechanical
coupling coefficient (EMCC) is widely accepted as such a measure of conversion
efficiency [3.48]. The magnitude of the electromechanical coupling coefficient of a
mode of vibration represents the significance of that particular mode compared with
other modes, and as reported by Lerch [3.5], the larger the electromechanical coupling
coefficient of the mode of interest, the lower the insertion loss and the broader the
bandwidth of the transducer. In fact, the EMCC characterises a piezoelectric element
better than do the sets of elastic, dielectric and piezoelectric constants since it allows
materials of different levels of permittivity and/or compliance to be directly compared.
Many other ways to quantify the effectiveness of a transducer can be defined, depending
on the physical phenomenon to be quantified. For example Smith [3.46] defines a
particular figure of merit that assesses the quality of hydrophones.

Although the literature describes several approaches, there are two main
definitions for the determination of the EMCC. It can be defined either by using energy
considerations [3.47], or by determining the resonant frequencies of the crystal
submitted to an electrical excitation [3.33]. The method of determining the EMCC
which is supported by the IEEE standards on piezoelectricity [3.33] is based on the
experimental determination of the resonant frequencies of the crystal, for instance by a
network analyser. On the other hand the ratio of energies lends itself easily to evaluation
by numerical methods.

The general concept of the EMCC is introduced as follows [3.48]: the square of
the EMCC is the ratio of the electrical energy stored in the volume of a piezoelectric
body and capable of conversion, to the total mechanical energy supplied to the body.
The first mathematical formulation of this concept was provided by Berlincourt [3.47].
By neglecting the thermal and magnetic terms the internal energy of a linear
piezoelectric system is given by:

1 1
I I i i2 2U S T D E I 1 to 6,i 1 to 3= + = = (3.66)

Using the set of piezoelectric equation given in Eq.(3.1), Eq.(3.66) may be written:

( ) ( ) ( )E S1 1 1
I IJ J i iJ J I Ji j i ij j2 2 2U S c S E e S S e E E E

I, J 1 to 6, i, j 1 to 3

= + − + ε

= =
(3.67)
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This equation differs from that given in the literature [3.47] since we used the set
of piezoelectric equations given by Eq.(3.1) whereas Berlincourt [3.47] used the set of
equations given by Eq.(3.2). Therefore Eq.(3.67) is given here as a function of  the
mechanical strains and the electric field whereas Berlincourt [3.47] developed Eq.(3.66)
as a function of mechanical stresses and electric field.

From the Lagrangian operator, in the Hamilton’s principle, the different energies
in Eq.(3.67) can be formalised in the finite element notation and are given by Lerch
[3.5] as:

( )

t
strain uu

t
dielectric

t
Kinetic uu

t t t
mutual u u

1U u K u
2

1U K
2

1U u M u
2
1U u K K u
4

φφ

φ φ

=

= φ φ

=

= φ+φ

� �
(3.68)

At each discrete time step of the simulation, to remove the time dependencies of
the individual energies, we take a time average response of each term of Eq.(3.68) as
given by:

N

ave
n 1

1U U( t)
N =

= ∆� (3.69)

where E is any of the energies calculated at each time step t∆  and N is the total number
of time steps. The electromechanical coupling is defined [3.47] by:

2
2 mutual

strain dielectric

U
k

U U
= (3.70)

Eq.(3.70) is used as a general formula for the EMCC since it is suitable for both static
and dynamic measurements [3.51]. Eq.(3.70) is rather simple to implement in FE77
since almost all the calculations involved are already performed at some stage of the
iteration procedure. Analytical applications of Eq.(3.70) are more complicated than it
first looks in the general case. However for a piezoelectric solid, having a simple shape,
used dynamically as a single resonant element, the material EMCC is found as it arises
naturally in analytical solutions for electrically driven electrodes. Berlincourt [3.47]
derived Eq.(3.70) for simple classical problems. For all these cases, the problem is made
one dimensional and the stress system is simple. Depending on the shape of the element,
the stress system and the electrical boundary conditions, a particular set of piezoelectric
equations may prove to be handier to use than the other ones. For example let us
consider a very long, very slender piezoelectric rod of axis z as shown in Figure 3.4.
Assuming that under the influence of a longitudinal electric field E3, the stress system is
one dimensional, then the fundamental mode of the rod is the longitudinal mode. In this
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case, 1 2T T 0= = , 3T 0≠  and 1 2 3S S S 0= ≠ ≠  and since the stress system is simpler
than the strain system it is better to use the set of piezoelectric equations given by
Eq.(3.2). The energies can then be calculated in the same way as in Eq.(3.67), and the
coupling factor for the fundamental mode is given by

2
2 33
33 T E

33 33

d
k

s
=

ε
(3.71)

where 33d is the piezoelectric strain constant that relates the electric field along the

direction z and the direct strain S3. T
33ε is the dielectric permittivity at constant stress and

E
33s  the elastic compliance measured at constant electric field. As with other

piezoelectric constants, coupling factors carry subscripts; 33k , for instance, is the
coupling factor associated with the one dimensional fundamental longitudinal mode
excited by an electric field parallel to the axis (direction 3) of the rod. Similarly 31k
would be the coupling factor for longitudinal vibrations of a long rod under the
influence of a transverse electric field and 15k  describe the shear mode vibrations of the

rod. The coupling factor, 33k , as given in Eq.(3.71), is usually measured statically but
can also be measured in the low frequency range, as long as there are no appreciable
spatial variations in the stress and electric field, in other words as long as the one
dimensional assumptions remain valid. These measurements at low frequency are called
quasistatic measurements [3.33].

Coupling factors can also be calculated for other modes of vibrations. For
example, let us consider a thin rectangular plate electroded on the major faces, as shown
in Figure 3.5. Under the thin plate assumptions the elastic boundary conditions are

1 2S S 0= = , 3S 0≠  and 1 2 3T T 0; T 0= ≠ ≠ , and for fully electroded faces the electric
field is in the direction 3. Therefore it is simpler to use the set of equations (3.1) and the
internal energy is given by Eq.(3.67). Eventually one obtains

2
2 33
t S E

33 33

e
k

c
=

ε
(3.72)

where tk is the piezoelectric thickness coupling factor and relates to as specific case of

one dimensional strain parallel to the thickness axis. tk represents the coupling between
an electric field in direction 3 and mechanical vibrations in direction 3 for a planar
object. Since the overall volume of the object remains constant, expansion/contraction
in the thickness must always be accompanied by corresponding contraction/expansion
in the transverse directions, so the strongly attenuated transverse vibrations at the higher
frequency of the thickness mode tend to increase the apparent stiffness of the material.
Hence tk is lower than 33k , the coupling factor for longitudinal vibrations of a slender
rod. For the long slender rod, the longitudinal resonant frequency is much lower than
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the thickness resonant frequency of the planar object and matches more closely its
transverse resonant frequency.

Therefore if the coupling factor was to be measured dynamically instead of
statically, it would be found to be lower than in a static configuration because not all the
elastic energy is dielectrically coupled. The difference is due to the presence of the
overtones of the fundamental resonant mode as seen for the planar object. In theory for
certain resonant modes which have no overtones the dynamic and static coupling factors
are equal. In general however the values of the static coupling factor quoted in tables,
Kino [3.3], and Berlincourt [3.47], are usually maxima based on precisely defined
vibrational modes of ideal specimens of the material. Therefore in practical transducers,
the coupling factors are lower. Approximate conversion formula from Eq.(3.70) to
equivalent experimental representation of the EMCC have been defined by Bechman
[3.52] and Naillon [3.28].

3.4.5 ELECTRIC IMPEDANCE

The electrical input impedance can also be computed in the time domain if the
model is steady. This involves running the model over an unusually long time. The
input impedance of the piezoelectric device is given by the ratio of the voltage to the
current. Current can be calculated by summing the time rate of change of charge at the
electrode nodes, but this solution involves extra operations within the time marching
algorithm. A simpler technique, involving operations only at the post processing level
can be used, but only in harmonic regime. For harmonic oscillations the current can be
calculated from the charge:

dQ(t)I(t) j Q(t)
dt

= = ω (3.73)

where ω is the harmonic circular frequency. Therefore, in the frequency domain, the
input electric impedance is given by

{ }
{ }

elf1Z( )
j f Q(t)

φ
ω =

ω
(3.74)

where f{φel} is the Fourier transform of the electrical potential at the excited electrode.
In principle the application of a delta pulse charge is superior to any other time function
for the charge since the Fourier transform of a delta function is unity.

However this remark is purely theoretical since in an FE code a delta function
will have to have the duration of at least 2 time steps and is therefore finite in time.
Therefore the Fourier transform of this pseudo delta function has to be performed.
Moreover such a spike would contain very high frequencies which are, de facto, filtered
since the highest frequencies generated by a finite element code are directly linked to
the size of the elements constituting the model. A better solution is to define a pseudo
pulse, for instance a single cycle of a cosine wave at a frequency such that the frequency
bandwidth of the pseudo pulse will be large enough to encompass the resonant
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frequencies of the mode of vibration of interest. As a general matter it is necessary to
bear in mind that although the FE code may produce results at high frequencies, because
of the limited size of the elements, only parts of the impedance curve can be considered
as being accurate.

To calculate the electrical impedance as given in Eq.(3.74), charges are applied
at one electrode as given in Eq.(3.64) and the voltage variation induced is calculated at
that electrode. This sounds simple enough to do but unfortunately it is not. In FE77 the
electrical conductivity of the electrode is not taken into account and in fact the electrode
is not modelled and is just idealised by applying the same charge load at each node of
the surface that is supposed to be electroded. Electrically speaking, the electrode is
usually seen as a perfect conductor which means that the electrons move freely along
the surfaces of the electrode, in other words the surface of the electrode are
equipotentials. This implies two things, firstly Q(t)  in Eq.(3.73) is for the whole
electrode, that is the sum of the charge applied at all nodes and secondly, the forced
electrode is an equipotential surface, hence each node on the electrode has to have the
same value of electric potential to satisfy the boundary condition at a perfect conductor.

1 2 3 ...φ =φ = φ = =unknown constant (3.75)

The value is not predetermined and varies at each time step. In FE77 this is done
by connecting the electrical degree of freedoms of the nodes on the electrode plane in
the same way as rigid mechanical connections can be set between nodes so that they
undergo only rigid body translations and rotations.

The electrical impedance is a quantity that can be verified experimentally
without any undue effort, since impedance measurements can easily be carried out with
a network analyser by sweeping the frequency and recording the real and imaginary part
of the impedance. The input impedance of the piezoelectric transducer also reveals all
resonances, fr and anti-resonances, fa of the device. The electrical properties of a
piezoelectric vibrator are dependent on the elastic, dielectric and piezoelectric constants
of the vibrating material. Thus values for these constants can be obtained from resonator
measurements on a suitably shaped and orientated specimen, provided the theory for the
mode of motion of that specimen is known. The measurement basically consists of
determining the electrical impedance of the resonator as a function of frequency. To
find the material constants it is in theory necessary to obtain the resonant and anti-
resonant frequencies and the capacitance and the dissipation factor. A simple calculation
is that of the EMCC of each vibration mode, which requires only the knowledge of the
resonant and anti-resonant frequencies. This method of determining the EMCC is
supported by the IEEE Standards on piezoelectricity [3.33] and the EMCC is given
using the approximate formula [3.47]:

2 2
2 a r

2
r

f f
k

f
−

= (3.76)

where fr and fa are frequencies which coincide with the admittance and the impedance
maxima, respectively. Eq.(3.76) can be used to calculate the coupling factor by
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measuring the resonant frequency and corresponding anti-resonant frequency of the
mode, although in practice it is somehow more complex than it first looks since
piezoelectric materials are lossy and lossy resonators have three frequencies of interest
near the maximum of admittance and three near the maximum impedance. However in
FE77, piezoelectric devices are lossless and therefore resonators modelled with FE77
exhibit only fr and fa. The calculation of the EMCC is therefore straightforward. Naillon
[3.28] applied the finite element method to a piezoelectric bar used in array transducers,
and an effective piezoelectric coupling factor similar to that in Eq.(3.76) was derived to
relate to the anti-resonant and resonant frequencies of the piezoelectric structure, which
was then used to estimate the strength of each mode. Numerous works have been
published concerning the use of finite element method and electrical impedance to
understand the nature of resonant modes of piezoelectric discs [3.25], [3.27], [3.28],
[3.53], [3.54] and evaluate the strength of excitation at each resonance [3.55]. Modal
properties of piezoelectric discs are not of specific interest in this thesis and furthermore
all our finite element calculations are performed in the time domain only.

An application of the impedance and EMCC calculations presented in this
section is given in section 3.5.2 as part of the validation process.

 3.5 VALIDATION OF THE ALGORITHM

The theory described above has been implemented in FORTRAN 77 routines
added to FE77. In FE77 the implementation has been simplified because we had the
ability to access the source code and modify it at the necessary levels. On the other
hand, the limitations of the piezoelectric models are those of FE77 in general.

Alleyne [3.12] developed FE77 to model the propagation of Lamb waves in
plates. His work concerned purely mechanical problems, but since the introduction of
the piezoelectricity in the code does not change the integration method, the principles
enacted by Alleyne remain valid for electromechanical analysis. This direct parallel
with previous work is very advantageous because, since the new features have been
added to a thoroughly validated code, the validation stages are greatly simplified and in
fact reduced to verifying that the electromechanical coupling is accurate.

Incidentally, it is to be noted that the commercially available code PZFlex®
[3.10] uses the explicit integration method for similar reasons to those described here
and therefore validating FE77 against this code is helpful.

Several test cases were run using FE77 and both analytic calculations and
predictions obtained using PZFlex® have been used as verification of the FE77 results.
All models are two-dimensional assuming plane strain conditions. Some are also
constrained mechanically to allow only plane waves to propagate.
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3.5.1 FINITE ELEMENT RESULTS OF INITIAL TEST CASES

The initial validation procedure is two fold. Firstly, plane waves are modelled
and their group velocity measured from the predicted displacement time histories.
Secondly, Lamb waves propagating in simplified piezoelectric materials are modelled,
and their predicted group velocity is compared with group velocity dispersion curves.
The material properties used in both cases are listed in Table 3.1 and refer, for the
mechanical part, to an isotropic material: aluminium. The physics of piezoelectricity
implies that it can exist only in anisotropic materials, and the material used in these
models is isotropic. However, for the purpose of the validation of the numerical
calculations, these artificial material constants are satisfactory and have been chosen in
order to simplify the analytic calculation and also in order to avoid matrix rotations in
the finite element program.

 3.5.1.1 Piezoelectrically Coupled Plane Wave

Our purpose here is to lay emphasis on the electromechanical coupling of plane
waves. A simple FE model has been developed to check the predictions on velocities of
plane waves obtained using FE77, when the material is artificially made to be
piezoelectric.

The model is a 0.5 mm thick plate, 50 mm long, with all surface nodes pinned in
one direction. The coordinate system is defined in Figure 3.6. The 'plate' is considered
to be infinite in the direction normal to the plane xy since plane strain conditions were
introduced in the code. The mesh is made of 0.25mm square 4-noded elements and the
material properties are listed in Table 3.1.

In order to generate a longitudinal wave propagating in the x direction, the 'plate'
was excited by applying initial displacements in the x direction to all the nodes at x = 0,
with unit amplitude. Since all surface nodes are pinned in the y direction only the bulk
longitudinal wave can propagate. The applied signal is a 1 MHz sine wave of unit
amplitude modulated temporally by a 5 cycle wide Gaussian window function to limit
the bandwidth, as shown in Figure 3.7.

Figure 3.8(a) shows the time history recorded at position x = 25 mm when the
piezoelectric constants are set to zero. To calculate the group velocity, the transit time is
measured as the arrival of the maximum of the envelope of the toneburst. The group
velocity is then calculated as 6.30 mm/�s for the forward travelling wave packet. The
second wave packet in Figure 3.8(a) is the first reflected wave packet from the right end
of the model from which the group velocity is then measured as 6.35 mm/�s.  The
theoretical sound velocity for the parameters listed in Table 3.1 is CL= 6.34 mm/�s. The
error in the predicted particle velocity for the first pulse Figure 3.8(a) is 0.6 %. The
error is defined as

FE77 Theroy

Theory

V V
Error (%) 100

V

−
= × (3.77)
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The model was then amended by adding the piezoelectric coupling coefficient ex1 with
magnitude 40.46, so that the material is artificially made piezoelectric. Figure 3.8(b)
shows the time history recorded at position x = 25 mm when a piezoelectricity constant
ex1 equal to 40.46 is introduced in the model. The physical significance of piezoelectric
stress constant ex1 can be illustrated as being the coupling term between the electric
displacement in the x direction and the direct strain S1, as discussed in Chapter 2.In this
model the nodes can move only along the x direction and therefore by solving Eq.(3.1)
under these boundary conditions the Christoffel equation is [3.34]
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where k  is the wavenumber, ux is the particle displacement in the x direction and ω is
the circular frequency. C11, C12, C66, ex1 and εxx are material constants given in Table
3.1. Superscripts E and S indicates material constants measured, respectively, at
constant electric field and constant stress. Eq.(3.79) has exactly the same form as the
Christoffel equation for a non piezoelectric material, but with the C11 elastic constant
replaced by the expression
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which is called the piezoelectrically stiffened elastic constant. The only non zero
solution to Eq.(3.80) is a stiffened compressional wave with dispersion relation
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The electric potential associated with this stiffened compressional wave is given
in term of the particle displacement by
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 (3.82)

From Eq.(3.80) the stiffened velocity is given by
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Numerical application of Eq.(3.83) using the material constants given in Table
3.1, gives a theoretical  stiffened longitudinal velocity of 8.97 mm/�s. From Figure
3.8(b) the group velocity of the wave packets is calculated as 8.94 mm/�s for the
forward travelling pulse, 8.95 mm/�s for the first reflected wave packet and 8.95 for the
last wave packet which was reflected at both ends of the model. The maximum error in
the predicted particle velocity is 0.4 %. Compared to Figure 3.8(a), Figure 3.8(b) shows
a third wave packet. this is also the S0 mode but reflected twice, on time at each end of
the plate. It is therefore propagating forward like the first wave packet.  Figure 3.8(c)
shows the time history of the electric potential associated to the mechanical
displacements. According to Eq.(3.82) the potential time history at position x = 25 mm
is proportional to the displacement at this position. Numerical application of Eq.(3.82)
gives a maximum electric potential of 2.69 10+9 GV  for the first wave packet in Figure
3.8(b). The corresponding measured electric potential in Figure 3.8(c) is 2.8 GV. The
error between theoretical and predicted values is 2.8%. The value of the potential peak
are in Giga Volts here since the maximum amplitude of the applied displacement is
1meter.

Figure 3.9(a) shows the envelope of the first pulse of Figure 3.8(a) when the
piezoelectricity is not active in the model and Figure 3.9(b) shows the envelope of the
first pulse seen in Figure 3.8(b). It is seen that both envelopes are very similar in shape
and amplitude. This clearly indicates that the numerical piezoelectric routines added to
FE77 do not add any dispersion to the time marching process.

The model was then amended by releasing the surface nodes in the y direction
and pinning them in the x direction. Therefore nodes can only move along the y
direction and only a shear bulk wave can propagate. Because the wavelength of the
shear wave is shorter than that of a longitudinal wave the elements size was decreased
to 0.166 mm in order to have enough nodes per wavelength. The overall dimensions of
the model remain unchanged. To allow a pure shear wave to propagate along the
direction x, initial displacements, in the y direction, as shown in Figure 3.7 are applied
at each node at x = 0 with the same unit magnitude and the resulting predicted
waveforms at x = 33.83 mm are shown in Figure 3.10. The group velocity for the non-
piezoelectric model, Figure 3.10(a) is calculated as 3.115 mm/�s. The theoretical group
velocity for the bulk shear wave is 3.132 mm/�s. The error in the velocity is less than
0.5%.

The model was then amended by adding the piezoelectric coupling coefficient
ex6 with  magnitude 20, so that the material is artificially made piezoelectric. In a two
dimensional plane strain system if the particle can move only in direction y and if the
only non zero piezoelectric stress constant is ex6, the only non zero solution is a stiffened
transverse wave with dispersion relation
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where the expression in brackets is called the piezoelectrically stiffened elastic constant
C66. The electric potential associated with this stiffened shear wave is given in term of
the particle displacement uy as

x6
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xx

e
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ε
 (3.85)

and the stiffened shear velocity is given by
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Numerical application of Eq.(3.85) gives a theoretical stiffened transverse
velocity of 4.43 mm/�s. Figure 3.10 (b) shows the time history recorded when the
piezoelectricity was active in the model. The group velocity of the right propagating
wave packet is calculated as 4.42 mm/�s and the group velocity for the reflected wave
packet is calculated as 4.419 mm/�s. The error in the predicted particle velocity in here
again less than 0.5%.

Numerical application of Eq.(3.85) gives a theoretical electric potential of 1.33
GV for the first wave packet in Figure 3.10(b). The corresponding measured electric
potential in Figure 3.10(c) is 1.34 GV. The error between theoretical and predicted
values is below 1%. In Figure 3.10(c) ripples are seen to occur at times earlier than that
corresponding to the arrival of the first toneburst of piezoelectrically induced toneburst.
The ripples are due to an interaction between the electromagnetic wave and the stiffened
wave. The electromagnetic wave exists on his own since the coupled quasi-
electromagnetic and the quasi-elastic waves are effectively decoupled by the large
difference of their propagation velocities and become pure electromagnetic and pure
elastic waves. This phenomenon has been described in great details by Auld [3.34
section F of Chapter 8, and in particular Figures 8.4 and 8.5]. To implement the
piezoelectric equations in FE77 the electrical degrees of freedom are condensed and
consequently the electrostatic wave is set instantaneously. Therefore a standing
electrostatic wave exist independently of the piezoelectric coupling.

When Alleyne [3.12] validated FE77, he found that plane wave velocities could
be predicted with an error less than 0.5%. In the two above cases, the finite element
predictions for the piezoelectrically stiffened wave velocities differed from the
theoretical value by less than 0.5% confirming the applicability of the piezoelectric
routine. It must be stressed that the calculations presented here are for an isotropic
material and therefore are not representative of the general behaviour of a piezoelectric
solid. Eq.(3.81) and Eq.(3.84) are only valid in few particular cases where bulk waves
propagate, for example, along the poling axis of a hexagonal crystal (e.g. PZT).
However this remark does not affect the meaning of these calculations since the aim
here was to verify that the finite element program is coupling the electrical and
mechanical waves correctly.
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 3.5.1.2 Initial Modelling of Lamb Wave in Piezoelectric Material

Our aim here is to lay emphasis on the correct modelling of the
electromechanical coupling of Lamb waves propagating in a piezoelectric plate-like
structure. Two models were designed to achieve this goal. The first model is concerned
with the propagation and the electromechanical coupling of the S0 mode and the second
model with the propagation and the electromechanical coupling of the A0 mode
propagating in a 1mm thick plate. In both cases the model is made of square 4-noded
elements, with free boundaries assuming plane strain conditions. The plate is therefore
considered as infinite in the z direction so that predicted velocities can be compared
with the velocity dispersion curves calculated using the program DISPERSE [3.22]. The
co-ordinate system is as defined in Figure 3.6 and the material properties are listed in
Table 3.1. Alleyne [3.12] studied in detail the problems associated with the modelling of
ultrasonic Lamb waves. First a frequency region, determined by the frequency
bandwidth of the excitation signal, has been carefully chosen to avoid dispersion since
we want to calculate the group velocity directly from the time histories. When selecting
the frequency bandwidth of the excitation signal it is necessary to avoid cut-off
frequencies since at these points in frequency, the phase velocity of that mode is infinite
and the finite element program encounters great difficulties in modelling such waves.
Both models presented here are only concerned with propagation below the A1 mode
cut-off frequency which, for the material properties listed in Table 3.1 and for a 1mm
thick plate, is at 1.55 MHz. Therefore the higher frequency of the excitations signals
must be lower that 1.55 MHz. The next step is to generate a single mode. Since at least
two Lamb mode always co-exist at every frequency, generating a single mode can be
achieve only by matching the initial displacements applied at the position of the nodes
through the thickness of the plate, with the exact value of the displacement of the mode.
For the two models designed here, the nodes at plane x = 0 are being forced with
sinusoidal toneburst of amplitude the displacement components, at the centre frequency
of the excitation toneburst, of the mode to be generated. This allows us to generate
either the A0 or the S0 mode alone.

For the first model, only the ex1 piezoelectric stress constant is non-null. This
means that a stress wave propagating in the x direction will generate an electric field in
the same direction. For both models the aim is to generate a single Lamb wave in the
piezoelectrically stiffened plate and measure the group velocity at the centre frequency.
However the group velocity of a Lamb mode cannot easily be predicted from a simple
consideration of the stiffness constants and no simple equation such as Eq.(3.86) can be
used. For the first model, according to Eq.(3.79) only the bulk compressional wave is
stiffened  and its velocity is given by Eq.(3.83). All other elastic constants and the
density remain unchanged. The stiffened dispersion curves can therefore be deduced
from those for the non-stiffened material (i.e. when the piezoelectric constant ex1 is
equal to zero) by just replacing the C11 elastic constant by its stiffened value as given in
Eq.(3.80). The group velocity dispersion curves for the 1mm thick plate stiffened only
through the piezoelectric constant ex1 are shown in Figure 3.11. It is seen that the group
velocity of the S0 mode is greatly increased at low frequency whereas the group velocity
of the A0 mode is only slightly changed, as expected since only the ex1 piezoelectric
constant is active in this model. Indeed, the piezoelectric coupling can only be activated
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by the T11 direct stress component, that is the compressional stress and the bending
stress have no influence. When propagating, the compressional wave components
generate an electric field in the x direction, which in turn increases the compressional
strain. Therefore the solid appears to be stiffer in compression and all compressional
wave components propagate at a higher velocity. It is seen in Figure 3.11 that the group
velocity of the A1 mode is also increased by the piezoelectric stiffening. This is due to
the high proportion of compressional displacement in the A1 mode stress mode shapes.
However its cut-off frequency is unchanged since this corresponds to a shear wave,
unaffected by the stiffening, travelling between the free surfaces of the plate with no
transmission of energy along the x direction. This wave is unaffected by the
piezoelectric stiffening, its velocity is unchanged and therefore the frequency at which it
resonates between the free surfaces of the plate is also unchanged.

With this first model the attempt is to model the propagation of the S0 mode
alone. All nodes at x = 0 are therefore forced in the x and y directions with amplitude
corresponding to the particle displacement mode shapes of the S0 mode, calculated with
DISPERSE [3.22]. The input signal is a sinusoidal toneburst at 0.505 MHz modulated in
a 5-cycle wide Gaussian window function. Its frequency spectrum is shown in Figure
3.11. It is seen that within the input frequency bandwidth, the S0 mode, propagating in a
1mm thick plate, is weakly dispersive. It is also seen that the excitation frequency
bandwidth ends before the A1 mode cut-off frequency therefore only the S0 and A0

mode are can propagate in the plate, but in fact only the S0 mode is being excited since
the plate is  being excited with displacement components, at 0.505 MHz of the S0 mode.
At this frequency, the S0 mode behaves like a compressional mode, hence its velocity is
highly affected by the piezoelectric stiffening.

The model is first run without any piezoelectricity. At 0.505 MHz in a 1mm
thick plate the theoretical group velocity of the S0 mode is 5.38 mm/�s.  Figure 3.12(a)
shows the time history recorded at position x = 25 mm in the x direction when the plate
in non piezoelectric (i.e. ex1 = 0). The group velocity is measured as 5.38 mm/�s. The
error is therefore negligible in this purely mechanical case. Figure 3.12(b) shows the
time history recorded at position x = 25 mm in the x direction when the plate is
piezoelectric (i.e. ex1= 40.46 coulomb/m2). The group velocity is measured as 8.3
mm/�s. Numerical application of Eq.(3.80) shows  when the plate is piezoelectrically
active, (i.e. ex1 = 40.46 coulomb/m2), the stiffened C11 elastic constant is in fact the
double of the original C11 elastic constant. Figure 3.12(c) shows the time history
recorded at x = 25 mm in the x direction when the plate is non piezoelectric but when
the value of the C11 elastic constant has been doubled, i.e. C11 = 217.6 GPa. It is seen
that Figure 3.12(b) and Figure 3.12(c) are indeed very similar which demonstrates
clearly that the dispersion curves, for the piezoelectrically coupled material, can be
deduced from those of a purely mechanical system by just adapting the value of the
elastic constant to their stiffened equivalent value. From the dispersion curves shown in
Figure 3.11 the group velocity at 0.505 MHz for the S0 mode in the stiffened plate is
calculated as 8.32 mm/�s. The error between the predicted FE value of the group
velocity and the calculated value given by the dispersion curve is less than 0.15%.
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The model was then amended by changing the forcing amplitudes at the nodes
on plane x = 0. The input was designed to reproduce the particle displacement mode
shape of the mode A0 propagating in a 1mm thick plate. In order to minimise the
dispersion effect a 10-cycle toneburst at 1.5 MHz was used. As shown in Figure 3.13,
the mode A0 is almost non dispersive within the frequency bandwidth of this toneburst.
The A0 mode has large transverse displacements at these frequencies and therefore we
chose to only set the ex6 piezoelectric coupling constant for this test case. Therefore the
coupling will occur between the shear stress T6 and the electric field in direction of
propagation Ex, and the equivalent stiffened elastic constant is given by the expression
in the bracket in Eq.(3.84). The dispersion curves for the stiffened equivalent material,
traced by DISPERSE, are shown in Figure 3.13. As expected, it is seen that, at low
frequency, the S0 mode is almost unaffected whereas the A0 mode is highly affected by
the stiffening due to the piezoelectric coupling. It is also seen that the cut-off frequency
of the A1 mode is changed to a higher frequency, which corresponds to the resonant
frequency of the stiffened shear wave in the thickness of the plate. From Eq.(3.86), the
stiffened shear wave velocity is given as 4.43 mm/�s and for a 1mm thick plate the cut-
off frequency is 2.215 MHz instead of 1.56 MHz for the non-piezoelectric plate.

The group velocity in the non piezoelectric model is measured as 3.14 mm/�s
from Figure 3.14(a). From the dispersion curves the group velocity for the mode A0 at
1.5 MHz is found as 3.16 mm/�s. The error is 0.7%. After the second wave packet on
the right of Figure 3.14(a) there is a third packet that has a long ‘tail’. This shows that
this signal is dispersive. This wave packet that spreads in time is the A1 mode which is
also generated in the non-piezoelectric plate. In Figure 3.13 it is seen that the excitation
bandwidth has been chosen so that the A0 mode in the piezoelectric plate would be
generated alone and in a non dispersive region since the cut-off of the A1 mode has
been shifted to 2.215 MHz. Therefore, in the piezoelectric plate, the input signal cannot
generate the A1 mode. However when the plate is not piezoelectric, the A1 cut-off
frequency is 1.56 MHz and this mode, very dispersive in this frequency region, is
excited along with the A0 mode. When the piezoelectricity is turned on in the model (i.e.
ex6 = 20 coulomb/m2), the group velocity is measured from Figure 3.14(b) as 4.12
mm/�s. The theoretical group velocity for a material with a stiffened C66 constant is
4.15 mm/�s. The error between the predicted FE value of the group velocity and the
calculated value given by the dispersion curve is less than 0.7%.

Alleyne [3.18] proved the capability of FE77 to model accurately Lamb waves
in plates. The same accuracy in the group velocity is found here for piezoelectric plates
what clearly demonstrates that the piezoelectric coupling is correctly modelled in the
two directions.

Alleyne [3.19] also demonstrated that the two dimensional Fourier transform
method can be used to measure both the velocity and the amplitude of propagating
Lamb waves when more than one mode is present and the 2D-FFT method has been
used to determine mode purity very accurately in FE77 modelling studies. It is therefore
necessary to verify that the piezoelectric routine retains those capabilities. To do so the
first model (for the S0 mode with ex1 = 40.46 and ex6 = 0 coulomb/m2) is amended so
that the modes are launched by superposing the displacement components, at 1 MHz, of
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the S0 and A0 modes, as shown in Figure 3.15(a) and (b). The input at x = 0 is a 5-cycle
1.0 MHz toneburst of the form shown in Figure 3.7(a). The normalised time history, at
position x = 18 mm, of the response of the plate to the excitation at x = 0, is shown in
Figure 3.16. The first toneburst correspond to the fastest forward travelling mode, the S0

mode. The following, slower, wave packet corresponds to the A0 mode forward
propagating away from the excitation zone. The last toneburst on the right corresponds
to the first reflection of the S0 mode at the right end side of the plate (x = 50 mm).
Figure 3.17 shows the results of carrying out a two dimensional Fourier transform (2-D
FFT) on the time histories of 100 equally spaced points between x = 0 mm and x = 50
mm. This technique involves two Fourier transform stages. Firstly, the time domain
traces from each individual monitoring point are Fourier transformed into the frequency
domain, yielding the frequency spectrum for each monitoring point. For each frequency
component, a spatial Fourier transform is carried out encompassing all consecutive
monitoring points; this yields the wavenumber components present at each frequency.
The resulting two-dimensional array contains the amplitudes of the different frequency
and wavenumber components of the signal. The Lamb modes present have different
wavenumbers (owing to their different phase velocities), and therefore appear at
different locations on the wavenumber axis, allowing their amplitudes to be measured
independently. It is seen that the maximum amplitude of the response of the plate is at 1
MHz, the centre frequency of the excitation toneburst. At each discrete frequency in
Figure 3.17, the maximum amplitude is seen at the wavenumbers corresponding to the
A0 and S0 modes. The negative range of wavenumbers correspond to the S0 mode
travelling backward after reflection at the right end side of the plate. The theoretically
predicted wavenumber dispersion curves are overlaid on Figure 3.17. The agreement
with the theoretical curves is excellent, the maximum error in wavenumber being less
than 0.5%. The response is dominated by the S0 mode, the amplitude of the A0 mode
being always less than 50% of S0 mode.

These results show that the 2-D FFT method may also be used to measure both
the velocity and the wavenumber of Lamb modes propagating in piezoelectric plates,
when more than one mode is present.

3.5.2 TWO-DIMENSIONAL VALIDATION CASE

Two transducer problems are presented here, a clamped strip alone and a strip
mounted on a plate (see section 3.5.3). For these models the excitation signal is an
alternating electric potential applied between two electrodes on either side of the
piezoelectric device. For the clamped piezoelectric strip an approximate analytical
solution can found but for the piezoelectric strip mounted on an aluminium plate, there
are no analytical solutions. Therefore the predicted displacements for the two models
presented here have been compared to the displacement predicted using PZFlex®
[3.10], a commercially available finite element program.
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 3.5.2.1 Clamped Piezoelectric Strip

The first model represents a thin piezoelectric platelet, of thickness h, with one face
(perpendicular to z) rigidly bonded to a fixed support and the other face free as shown in
Figure 3.18. For this problem it is assumed that the metal electrode deposited on the free
face has no mechanical influence. Therefore it is only modelled in FE77 by applying the
prescribed voltage at all the nodes of the free surface. The excitation signal is an
alternating voltage of amplitude V applied between the two faces: one electroded (z = h)
and the other grounded (z = 0). This electromechanical problem can be solved
analytically and the mechanical displacements at the upper surface calculated with very
little approximation. These results are then compared with the displacements predicted
along the upper surface, using the finite element program FE77.

Because the displacements in the x and y directions, at the clamped face z = 0,
are null, the strains in the xy plane are also zero :

( ) ( ) ( )1 2 6S z 0 S z 0 S z 0 0.= = = = = = (3.87)

where S1 and S2 are the direct strains in the x and y directions and S6 the shear strain in
the xy plane. Eq.(3.87) is valid only at z=0. However in this problem the frequency of
the excitation signal is chosen to be much lower than the thickness resonant frequency
so that the wavelength of the alternating voltage is much bigger than the thickness of the
layer. Therefore, under the thin plate approximations Eq.(3.87) remains valid at all
points through the thickness:

1 2 6S S S 0 z= = = ∀ (3.88)

At the free face, z = h, the stresses in the yz  and xz planes are zero,

( ) ( ) ( )3 4 5T z 0 T z 0 T z 0 0= = = = = = (3.89)

and with the wavelength much greater than the thickness, these stresses are also
assumed to remain null within the layer,

3 4 5T T T 0 z= = = ∀ (3.90)

In this problem we try to relate the strains and the stresses to the electric field.
Therefore the most suitable set of piezoelectric equation is the so-called piezoelectric
strain equations [3.34], which use the stresses and the electric field as independent
variables. This constitutive relation is given as:

ES s : T d.E= + (3.91)

where S and T are the strain and stress tensors, E is the electric field vector, sE is the
compliance tensor and d is the third rank tensor containing the piezoelectric strain
constants. The units of these constants are meters per volt. The colon sign indicates a
tensor product. In matrix notation and using Eq.(3.90), the strains are given by:
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E E E
1 1 2 2 6 6 3 3S s T s T s T d Eα α α α α= + + + (3.92)

where 1..6α = . The last term 3 3d Eα  gives the piezoelectrically induced strains. For a
lithium niobate, LiNbO3 (trigonal class 3m) piezoelectric layer, only four piezoelectric
strain constants, d15, d24, d31 and d33 are non-null. Neglecting the edge effects, the
electric field is supposed to be along the z direction only. Therefore, using conditions
given in Eq.(3.88),  the relation between the direct in-plane stresses and the electric field
is

31
1 2 3E E

11 12
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T T E
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+
, 6T 0= (3.93)

Then the strain along the z axis is given by:
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(3.94)

By integrating Eq.(3.94) through the layer thickness, the displacements at the top
surface z = h are found to be:

z 33u (h) d V= (3.95)

where V is the voltage applied between the electrodes. From the material properties of
lithium niobate given in Table 3.2, the displacement, per unit voltage, at the top
electrode, in the direction normal to the electrode is given by:

zu (h) 5.69 pm= (3.96)

A pure 1-Dimensional problem would have given the displacement to be:

z 33u (h) d V 6.00 pm= = (3.97)

The difference between Eq.(3.96) and (3.97) is a direct, although simplified,
quantification of the lateral effects.

A piezoelectric layer, 0.5 mm thick and 10mm long, is modelled using two
dimensional square four-noded elements, with a nodal spacing of 0.1mm. All nodes at z
= 0 are clamped in all directions and maintained at zero potential. The row of nodes at z
= h are forced with an alternating potential. The excitation signal is a sinusoidal wave of
frequency 50 kHz. The thickness, h, of the layer is 0.5mm, and the bulk longitudinal
wave velocity is 6500 m/s for LiNbO3, the first thickness resonance occurs around 3.25
MHz. Therefore the piezoelectric layer is driven well away from resonance. The
displacements are monitored at the top surface (z = h) in the normal direction (z). Figure
3.19(a) shows the profile of the maximum displacements predicted at each nodes along
the 10mm long top surface. The theoretical value given by Eq.(3.96) for a voltage of
unit amplitude is plotted as a straight line. The value of the displacements in a pure one-
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dimensional case are also plotted, from Eq.(3.97). The error between the one-
dimensional theoretical results and the two-dimensional FE77 predicted values is less
than 4%. In order to better verify whether these 4% error are inherent to FE77 or due to
the approximations in the theoretical calculation, the same model was run using
PZFlex™. Figure 3.18(a) also shows the comparison between the displacement
amplitudes in the z direction predicted by FE77 and PZFlex™. Figure 3.19 shows the
comparison of the displacement amplitudes in the x direction. In both cases the error is
less than 1%.

 3.5.2.2 Electric Impedance and Electromechanical Coupling Coefficient

This model was amended in order to trace the impedance plot of the LiNbO3
piezoelectric strip. This is done by releasing the nodes at the back face in order to avoid
ringing. A pseudo impulse charge is applied at the top electrode and the bottom
electrode is grounded. At first approximation the through thickness resonance occurs for
a wavelength equal to twice the thickness of the layer, that is at 6.5 MHz. The
bandwidth of the impulse is chosen to be as broad as possible that is a single cycle of
sine wave at 20MHz which has a frequency bandwidth that encompasses the resonant
frequencies of the mode of vibration of interest.

The impedance calculations performed by FE77 are described in section 3.4.4
and the electromechanical coupling coefficient, as given in Eq.(3.70) is also calculated.
The transient voltage response across the strip is shown in Figure 3.20. It is seen that the
induced voltage vibration is not decaying to zero. This is due to the fact that in FE77 the
piezoelectric material is lossless, therefore the applied charge does not decay to zero and
consequently the piezoelectrically induced voltage does not decay to zero. To avoid
leakage [3.57], that is the consequence of truncating the time history, associated with
the assumption of periodicity when performing the Fourier transform, a decaying
exponential window is applied to the charge time history and to the voltage time history
prior to performing their Fourier transform. The spectrum of the voltage response, as
shown in Figure 3.21 shows the vibration modes which have been excited by the pseudo
pulse. Each peak represents a mode in the response, and the value of the frequency
corresponds to the resonant frequency of the mode. However, although Figure 3.21
shows the response of the strip up 40 MHz, the predictions above a certain frequency
are subjected to large errors since this frequency response results from a time domain
analysis which, because of the limited size of the elements and therefore of the time
step, de facto filters the highest frequencies. From Eq.(3.74) the impedance is calculated
and is shown in Figure 3.22 in a range of frequency where the FE code is accurate. The
same model was run with PZFlex® and the electrical input impedance predicted by
FE77 is compared with that predicted with PZFlex®.

The plots in Figure 3.22 also reveal the resonance and antiresonance of the
thickness vibration mode of the strip. Impedance calculations are described in detail in
section 3.4.5. The resonance (fr) is the natural frequency of the short-circuited
electrodes and corresponds to the maximum admittance, while the antiresonance (fa) is
that of the open-circuit conditions and corresponds to the maximum impedance. The
antiresonance is excited by a pulse of the electric charge thus it is represented by the
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maximum of the electric input impedance predicted by FE77. The resonance and anti-
resonance of the thickness mode predicted by FE77 and those predicted by PZFlex® are
given in Table 3.3. The difference between the predictions is approximately equal to 0.1
MHz, that is a relative difference of 1.1%.

When exposed to an alternating electric field, a piezoelectric element oscillates
and if the frequency lies in the vicinity of its series resonant frequency, its behaviour
can be described by an equivalent circuit. Equivalent circuits for unloaded piezoelectric
resonators can be found in the literature [3.47] and it can be shown that the series
resonant frequency, or resonant frequency fr, lies in the vicinity of the minimum of
impedance, and the parallel resonant frequency, or anti-resonant frequency fa, lies in the
vicinity of the maximum impedance. Below the resonant frequency and above the anti-
resonant frequency, in Figure 3.22, the piezoelectric strip behaves capacitively between
fr and fa.

The electromechanical coupling coefficient can be deduced for these resonant
frequencies, for both FE77 and PZFlex® using Eq.(3.76). The results are compared in
Table 3.3. The difference between the predicted EMCC by FE77 and PZFlex® is
approximately equal to 0.6%.

Here it must be stressed that in order to calculate the electric input impedance
with FE77, the lower face of the strip has been unconstrained and that the thickness of
the strip, 0.5 mm, is much smaller than its lateral dimension in the x direction, 10 mm.
Therefore, if at  first approximation the electric field is considered to be only along the z
axis, the stress system in the strip approximates a one-dimensional stress parallel to the
z axis and the theoretical static coupling coefficient is found as Eq.(3.72):

2
2 z3
t S E

zz 33

e
k

c
=

ε

This coupling coefficient corresponds to the thickness vibration of the strip
electroded on the major faces and poled along the z axis.

The dynamic electromechanical coupling coefficient has also been predicted by
FE77 using Eq.(3.70).

These three coupling factors, k33, the static coupling factor, k, the coupling factor
determined by the resonant frequencies and the dynamic coupling factor predicted by
FE77 are compared in Table 3.4. As expected they are very close to each other since the
strip is very slender and is even infinite in one direction. Nevertheless it is noted that the
dynamic coupling coefficient k is lower than k33 the static coupling coefficient as
expected.

 3.5.2.3 Discussion

This model of a piezoelectric strip driven electrically proved the capability of
FE77 to model accurately the piezoelectric effect. Under the action of the applied
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electric field the particles move and the magnitude of their displacements in both
directions have been predicted accurately. Moreover, the calculation of the electrical
impedance and of the dynamic electromechanical coupling coefficient when charges are
applied at the top electrode of the piezoelectric strip proved also to be accurate.

Transducers are in general more sophisticated than the simple strip studied here,
having backing materials on either side of the piezoelectric element, but their
piezoelectric behaviour is not different from that of the clamped strip, and FE77 already
proved its capability to predict reflection coefficients for mechanical waves. Therefore
the predictions performed for the strip prove the capability of FE77 to characterise
piezoelectric transducers.

3.5.3 GENERATION OF LAMB WAVES BY A PIEZOELECTRIC STRIP
MOUNTED ON A PLATE

The previous model emphases the capability of FE77 to characterise
piezoelectric transducers but in this thesis we are interested in the generation and
propagation of Lamb waves by piezoelectric elements. Therefore a last model is
designed to investigate how accurately FE77 can predict the generation of Lamb waves
by a simple piezoelectric strip mounted on an aluminium plate. Figure 3.23 shows a
schematic diagram of the mesh and the associated coordinate system. Such a problem
can hardly be studied analytically and therefore the predictions from FE77 have been
validated against the results obtained, for the same model, from PZFlex®.

The plate is 100mm long and 1mm thick and is made of aluminium. The strip is
mounted at the middle of the plate. It is 2mm thick and 5mm long so that there is 47.5
mm of free plate on either side of the strip. The piezoelectric strip is made of PZT-5H
whose properties are listed in Table 3.5. The top face of the strip and the interface with
aluminium plate are electroded but the electrodes are assumed to have no mechanical
influence and are not modelled. Moreover, no adhesive bond being modelled, the
piezoelectric strip is in direct contact with the plate. The model uses two-dimensional 4-
noded square elements in plane strain conditions, and free external boundary conditions
are assumed. The piezoelectric strip is driven electrically by an alternating voltage
applied at the top electrode (top nodes of the strip) and the strip-plate interface is
grounded. The applied signal is a 5-cycle sine wave at 0.9 MHz in a rectangular
window. It is in general better to use a smoothly varying window function such as a
Gaussian or a Hanning function but the version of PZFlex® that we used did not offer
us that possibilty. Figure 3.24(a) shows the applied toneburst. The signal is not
modulated and therefore the frequency spectrum has numerous side lobes as shown in
Figure 3.24(b). The bandwith of the main lobe is 400 kHz. The centre frequency and the
number of cycles have been chosen in order to generate non dispersive Lamb modes.
Unlike the example discussed in 3.5.1.2, the modes are not generated by carefully
selected displacement profiles applied through the thickness of the plate but by applying
an electric field across the thickness of the piezoelectric strip. Exposed to this
alternating electric field the size of the piezoelectric strip changes periodically in
accordance with the frequency of the electric field and motion is transmitted to the plate
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at the interface. The stress and displacement profiles at the interface are not known a
priori and both shear and compressional stresses are transmitted. Therefore it is not
possible to know a priori which modes will be generated and propagate in the plate.
However only the modes that exist within the excitation frequency bandwidth can
propagate away from the strip region. The group velocity dispersion curves for the
aluminium plate alone are shown in Figure 3.25. The frequency spectrum of the
excitation electric signal is overlaid on the dispersion curves and the frequency
bandwidth (20 dB down points) is shown as a shaded zone. It is seen that the only Lamb
modes that can be generated with significant amplitude in the plate away from the strip
region are the S0 and A0 modes.

The first step of the comparison of the results obtained from FE77 and PZFlex®
is to extract time histories of displacements at nodes located at the plane z =1mm and
from x = 50mm to x = 99.8mm. This monitoring line, as shown in Figure 3.23, starts at
the middle of the strip and finishes at the end of the top surface of the aluminium plate.
Every other node along this line as been monitored so that a total of 249 time histories
were extracted from each code and compared. Figure 3.26(a) and (b) show the time
histories predicted by FE77 and PZFlex®, at the same position, x = 50 mm, for the
displacements in the z direction over 13 µs. This position corresponds to the node at the
middle of the interface between the plate and the strip. It is seen that the time history
starts at zero as expected, and this is verified for all the interface nodes. Figure 3.26(c)
and (d) show the time histories predicted by FE77 and PZFlex®, at the next to last node
of the plate, x = 99.8 mm. It is seen that the wave front reaches that position after 9.09
µs which corresponds to a Lamb mode travelling at 5.2 mm/µs. From the group velocity
dispersion curves, this mode is identified as the S0 mode.

From these time histories it seems that both codes are producing very similar
results although the time traces from PZFlex® exhibit some high frequency components
that are not present in the traces from FE77. To quantify the differences the maximum
absolute displacement amplitude in both directions, at each node along the monitoring
line have extracted and  maximum displacement profiles for this line of nodes, in each
direction, are shown in Figure 3.27. The comparison between the displacement profile
in the z direction predicted by FE77 and that predicted PZFlex® is shown in Figure
3.27(a). The averages of these maximum displacements have been calculated for both
profiles and are shown as horizontal lines. The average difference in the predicted
amplitudes is 1.08 % for a maximum displacement of 1.20 µm, PZFlex® predicting
higher amplitudes than FE77. The same calculation was carried out for the
displacements in the x direction and the predicted profiles from FE77 and PZFlex® are
shown in Figure 3.27(b). The average difference is equal to 1.7%, FE77 predicting
higher amplitudes than PZFlex® in this case.

From the surface out-of-plane displacement monitored along a top line of nodes
along the plate, a two-dimensional Fourier transform has been performed. This method
is described in section 3.5.1.2. Figure 3.28(a) shows the results of carrying out a two
dimensional Fourier transform on the time histories of 223 equally spaced points
between x = 52.5 mm and x = 99.8 mm. It is seen that the maximum amplitude of the
response of the plate is at 900 kHz, the centre frequency of the excitation toneburst. At
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each discrete frequency, the maximum amplitude is seen at the wavenumbers
corresponding to the A0 and S0 modes. The theoretically predicted wavenumber
dispersion curves are overlaid on the plot. The agreement with the theoretical curves is
excellent, the maximum error in wavenumber being less than 0.5%.  It is seen that the
A0 mode is present over almost all the frequency range shown in Figure 3.28; this is due
to the broadband of the input signal which excited the strip over a very large frequency
bandwidth as shown in Figure 3.24(b). A direct consequence is that the A0 mode is
excited even in its dispersive region and therefore the A0 signal is spreading in time
what, in the frequency domain, is represented as leakage of energy over all the
frequency window, as seen in Figure 3.28. This problem is also affecting the S0 mode.
This problem of leakage is well known in signal processing [3.56] and it is a serious
limitation when trying to generate Lamb modes selectively. It is even more problematic
in finite element analysis since it is necessary to shorten as much as possible the
duration of the calculations.  This is typically one of the reasons that lead us to develop
our own code. In FE77 one can choose between several windows, among which the
Gaussian window as illustrated in Figure 3.7.

 3.6 CONCLUSION

Although the predictions obtained from the test cases studied in sections 3.5.1
and 3.5.2 agree very closely with the theory, they have two limitations. Firstly they are
uni-directional and the piezoelectric matrix is over simplified in order to simplify the
analytic calculations. Therefore, these results, on their own, cannot fully validate the
capability of FE77 to model electromechanical systems. However from these models it
is seen that the stiffened velocity of plane and Lamb waves are accurately predicted by
FE77. Two other models, two-dimensional this time, have also been designed to model
real transducer problems. These models were driven electrically by either alternating
electric potential applied between two electrodes on either side of the piezoelectric
device, or by application of electric charges at one electrode. The predictions from FE77
could not be validated analytically for such problems and therefore have been compared
with the predictions obtained using PZFlex® [3.10], a commercially available FE
program.

The results of the comparisons show that the predicted displacements and the
electric input impedance match very closely with those predicted by PZFLex®.
Moreover the predicted dynamic electromechanical coupling coefficients and group
velocities of the generated Lamb modes have been compared with analytic values and
once again the agreement is good. It is therefore believed that FE77 can accurately
model electromechanical problems. Added to the already-acknowledged performances
of FE77 [3.12], [3.18], [3.19], [3.20], the piezoelectric routines makes it a very general
tool for transducer design and wave propagation problems.
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TABLES

Stiffness (Gpa) Relative Permittivity Constants
C11 108.8 �xx

S 1700
C12 55.8 �zz

S 1700
C66 26.5 Piezoelectric Stress Constants (coulomb/m2)

Density (Kg/m3) ex1 40.46
ρ 2700 ex6 20

Table 3.1: Material parameters.

Stiffness (Gpa) Relative Permittivity Constants
C33 245 �xx

S 44
C11 203 �zz

S 29
C13 75 Piezoelectric Stress Constants (coulomb/m2)
C14 9 ex5 3.7
C44 60 ey2 2.5

Density (Kg/m3) ez1 0.2
ρ 4700 ez3 1.3

Table 3.2: Material parameters for lithium niobate - LiNbO3.

FE77 PZFlex® Difference
Resonance (MHz) 7.19 ± 0.01 7.27 ± 0.01 1.1% ± 0.3
Anti-resonance (MHZ) 7.29 ± 0.01 7.37 ± 0.01 1.1% ± 0.3

 k f f
fd

a r

r

�

�
2 2

2 0.167 0.164 0.6 %

Table 3.3: Comparison of the predicted resonance and anti-resonance frequencies of the
FE77 for the first mode of the LiNbO3 free strip shown in Figure 3.22.
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Electromechanical
coupling coefficients

k f f
f

a r

r

�

�
2 2

2

from FE77

Static EMCC

k e
C
z

zz
S E33

3
2

33

�

�

k E
E E

m

st d

�

2

from FE77
0.167 0.164 0.163

Table 3.4: Comparison of the electromechanical coupling coefficient predicted by
FE77 for the first mode shown in Figure 3.22 and the electromechanical coupling
coefficients calculated using one-dimensional approximations.

Stiffness (Gpa) Relative Permittivity Constants
C33 117.4 �xx

S 1700
C11 127.2 �zz

S 1470
C13 84.7e9 Piezoelectric Stress Constants (coulomb/m2)
C44 23.5e9 ex5 17

Density (Kg/m3) ez1 -6.5
ρ 7500 ez3 23.3

Table 3.5: Material parameters for PZT 5H.

Density Longitudinal velocity Shear velocity
2700 Kg/m3 6.41 mm/�s 3.04 mm/�s

Table 3.6: Material parameters for the aluminium plate.
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Figure 3.3 : FE77 program architecture
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Figure 3.4 : Schematic representation of a long slender rod submitted to an axial electric field,
E3. Elastic conditions for the calculation of fundamental mode coupling factor are:

1 2T T 0= = , 3T 0≠  and 1 2 3S S S 0= ≠ ≠ .

3

1

E3

Electrodes

Figure 3.5 : Schematic representation of a thin plate submitted to a through thickness electric
field, E3. Elastic conditions for the calculation of thickness mode coupling factor are:

1 2S S 0= = ; 3S 0≠  and 1 2 3T T 0; T 0= ≠ ≠ .
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Figure 3.6 : Schematic representation of the geometry and the coordinate system used.
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Figure 3.7 : Time history and corresponding amplitude spectrum of the 5-cycle toneburst
applied at all nodes on plane x = 0.
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Figure 3.8 : Predicted time history at x = 25 mm, when the input was designed to excite only the
longitudinal wave, (a) displacement in the x direction with no piezoelectricity, (b)
displacement in the x direction with piezoelectricity and (c) corresponding electric
potential.
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Figure 3.9 : Envelopes of the first wave packets taken from (a) Figure 3.8(a) and (b) Figure
3.8(b).
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Figure 3.10 : Predicted time history at x = 25 mm, when the input was designed to excite only a
shear wave, (a) displacement along x with no piezoelectricity, (b) displacement along x
with piezoelectricity, and (c) corresponding electric potential.
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Figure 3.11 : Comparison between the group velocity dispersion curves for aluminium and for
aluminium with the C11 stiffness constant piezoelectrically stiffened (ex1 = 40.46).



Chapter 3 Figures

Page 108

0.0                             10.0                                20.0                                 30.0                                 40.0

0.0                             10.0                                20.0                                 30.0                                 40.0

0.0                             10.0                                20.0                                 30.0                                 40.0

0.0                             10.0                                20.0                                 30.0                                 40.0

Time( s)µ

Time( s)µ

Time( s)µ

Time( s)µ

1.0

0.0

-1.0

1.0

0.0

-1.0

1.0

0.0

-1.0

(a)

(b)

(c)

(d)

A
m

pl
itu

de
 (m

)
A

m
pl

itu
de

 (m
)

A
m

pl
itu

de
 (m

)
 A

m
pl

itu
de

 (G
V

)

S0

S0

S0

S0

S0

Figure 3.12 : Predicted time history when the input was designed to excite only the S0 mode, (a)
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Chapter 4

Analytical Model

 4.1 INTRODUCTION

This chapter is concerned with the development of an analytical model of the
generation of Lamb waves by permanently attached sensors. As described in Chapter 1,
the motivation for this model is the analysis of IDTs developed for use in smart
structures. To do so we start with a simpler transducer design, the strip transducer. A
strip transducer is simpler to model than an IDT because the electrical charge
distribution under the single electrode of the strip transducer is much more simple to
model than the charge distribution under the interdigital electrodes of an IDT.
Simplifying the electrode pattern simplifies some of the mathematics associated with
the model without diminishing the physical insights we draw from it, and lessons
learned from this model will remain valid in most cases and in particular for IDTs.

A transducer structure is basically a simple stack of layers, the piezoelectric
layer(s), electrodes, adhesive bonds and possibly other layers acting as backing or delay
lines. Obviously each layer is of limited size in the three directions, however we
perform a two-dimensional analysis assuming, with reference to many works on IDTs
[4.1], [4.2], [4.3], [4.4], that the strip is long enough so that plain strain conditions are
fulfilled. This not only simplifies the study but also allows us to use the classical Lamb
wave solutions in rectangular two-dimensional coordinates. To model the interaction
between the transducer and the structure it is necessary to understand both the
mechanical and electromechanical interactions and also the internal scattering
phenomena, and it is important to propose a model that will offer the necessary
flexibility to design new transducers without having to redevelop a complete theory.
Therefore this work not only aims to predict the amplitude of the Lamb wave generated
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in the structure by a given voltage applied to the transmitter, but it also aims to do it in
such a way that different designs can be modelled without having to change the model
significantly. We also tried to keep the model analytical in order to provide physical
understanding of the key processes. Keeping the problem analytical also enables us to
determine appropriate transducer properties in order to generate a given mode with a
given amplitude in a given structure. In that respect, an analytical model is superior to a
finite element analysis.

 4.2 PERTURBATION STRATEGY

To solve our problem, there exist various possible techniques, such as Green’s
functions to solve directly the field equations [4.5], and the variational method [4.6] to
quantify the transducer admittance. They are very attractive in many respects but they
both present some serious disadvantages regarding the desired flexibility of the model
and moreover they require heavy numerical calculations. These techniques have in
common that the solution is found by calculating the electromechanical coupling
coefficient of the transducer, then the power radiated into the plate is calculated and
eventually the amplitudes of the modes that propagate in that plate is derived. The
disadvantages of such techniques come from their complexity and also from the fact
that right from the beginning the calculations are intimately linked to the shape of the
transducer and in particular to the shape of the electrode(s) which determines the
distribution of the electric field within the piezoelectric layer, and therefore the nature of
the piezoelectric coupling. In order to overcome this inconvenience we propose a totally
opposite approach based on the normal mode theory [4.7] and the perturbation method
[4.8]. We start by calculating the fields of the modes that can exist in the plate and then
we perturb them by adding layers and boundary conditions that represent the layers and
the boundary conditions inside the transducer. The main reason that justifies such a
choice is that only modes that can physically exist in the plate can be generated by the
transducer and since the system of the transducer with the plate differs only very little
from the plate alone, the perturbation induced by adding the transducer onto the plate is
weak, the action of the transducer being mainly to generate waves that are very similar
to those that are calculated for a free plate. The drawback in such a technique is linked
to the main assumption of the perturbation method, that is that the changes induced in
the free wave fields by the presence of the transducer are assumed to be weak. This
condition limits the study to thin transducers by comparison with the thickness of the
structure. Assuming that this condition is respected, the weak perturbation assumption
[4.7] allows us to separate the problem into different stages, each adding linearly. We
split the problem into three steps: mechanical perturbation, piezoelectric perturbation,
and scattering calculations. Figure 4.1(a) and (b) show schematic diagrams of how the
real transducer structure is idealised as a stack of three layers. The first layer is the
metallic plate itself; the second layer is the piezoelectric layer and the third layer is the
electrode layer. The piezoelectric layer plays a double role in this problem; firstly it has
a mechanical influence because of its material properties and its geometry. Secondly,
the electromechanical coupling occurs in this layer; because the electric fields are
quasistatic in such a problem, the mechanical influence of this layer can be dissociated
from its electromechanical influence. This point is essential in the sense that it allows us
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to split the problem into the mechanical stage and the electromechanical (or
piezoelectric) stages.

The flexibility and the simplicity of the model derive directly from this series of
stages since each can be performed independently from the others and can then be
changed if necessary. The transmitter problem that relates the voltage applied at the
electrode to the amplitude of the waves generated in the metallic plate differs from the
receiver case where the voltage at the electrical ports of the receiver is calculated as a
function of the amplitude of the waves reaching the receiving transducer. The
difference, however, lies only in the electrical boundary conditions at the electrodes.
Therefore the two problems are treated in parallel. Prior to the perturbation stages we
first need to find the analytic solutions for Lamb waves. These are the starting equations
on which the three perturbations are gradually added in order to represent the real
system. Starting from the analytic form of the Lamb waves in a free plate, the first
perturbation stage yields the calculation of guided wave fields in a layered structure
consisting of the waveguide and the piezoelectric layer. The second step concerns the
introduction of the piezoelectric coupling within the transducer. The third step consists
in approximating the scattering coefficients of the generated modes at the edges of the
transducer. At this third stage the calculations are mechanical only and use most of the
calculations made at the first stage.

4.2.1 LAMB WAVE SOLUTIONS

First we have to calculate the solutions for the free plate. The formulation of the
Lamb wave problem has been introduced in Chapter 2. The roots of the Rayleigh-Lamb
frequency equations, the transcendental equations for Lamb waves, are obtained from
the program DISPERSE [4.9], written in the NDT lab. However for a free plate in
vacuum the dispersion relations have an analytical formulation and we used the form
proposed by Achenbach [4.10] to express the displacement fields or any other fields.
Although these dispersion curves can be directly obtained from DISPERSE we prefer to
work with the analytical form of the fields rather than with a series of numerical values.
Moreover solutions provided by DISPERSE are all normalised to unit power flow in the
direction of propagation. This is advantageous in most situations but unfortunately it is
important in our calculations to have access to the power flow function at various
stages. This point is particularly important when calculating the scattering coefficients
at the limits of the transducer when mode conversion occurs. This will be developed in
more detail in section 4.7.

In this study we limit ourselves to a single and simple structure, that is a 1mm
thick aluminium plate. However it is important to appreciate that the remainder of the
model is completely independent of the choice of the structure. This is certainly one of
the main advantages of this technique. For example even if the structure is a complex
multi-layered composite plate, pipe or any other possible waveguide, provided that the
dispersion curves can be obtained, the model still provides solutions.



Chapter 4 Perturbation Strategy

Page 128

4.2.2 MECHANICAL SURFACE PERTURBATION BY AN OVERLAY

The first stage in the perturbation calculation is to consider a simple model
where the plate is entirely covered by a thin piezoelectric layer, as presented in Figure
4.1(c). Following the early work by Slobodnick [4.14] and Auld [4.7], a perturbation
formula is derived which expresses analytically the perturbation in the wavenumber of
each mode due to the presence of the coating layer. The changes in the boundary
conditions at the interface are discussed as well as the stress field in the plating layer. In
our simplified transducer description, see Figure 4.1(b), this overlay is simply the
piezoelectric layer, with the piezoelectric coupling considered as being “turned off”.
However it is possible to add extra layers such as an adhesive bond layer. This just
requires the perturbation calculation to be run a second time with the material
parameters of that new layer, as shown in section 4.3.6. The limit to the addition of
extra layers is that the overall perturbation must remain weak. Another limit concerns
the frequency regions near the cut-off frequencies of high-order modes. All modes,
except the two fundamental modes have cut-off frequencies at which they do not
propagate along the plate but instead are resonant thickness modes. The orthogonality
relationship of non-propagating modes, that is high-order modes near their cut-off
frequency, is not the same as that for propagating modes and therefore the perturbation
formula is not valid near cut-off frequencies [4.7]. Therefore the perturbation
calculations for these high-order modes is subject to large errors near their cut-off
frequencies.

4.2.3 PIEZOELECTRIC PERTURBATIONS

The fields obtained in the first step are now perturbed by the electromechanical
coupling within the piezoelectric layer, the piezoelectricity being “turned on”. The
piezoelectric effect within the piezoelectric layer is triggered by the presence of charges
at the upper free surface of the layer. Assuming that the electrode in Figure 4.1(d) is so
thin that it has no mechanical influence, its influence is purely electrical and can be
expressed as a change in the electric boundary conditions at the surfaces of the
piezoelectric layer. In the transmitter case when a voltage is applied at the electrodes,
charges appear at the surface and the electrical boundary conditions are changed in a
similar way to which the velocities and stresses were changed at the mechanical
perturbation stage. Therefore a perturbation formula is derived that allows us to
calculate the electrostatic potential associated with each mode propagating in the
layered structure.

4.2.4 INFINITE LAYERS PROBLEM

At this stage of the model, the dispersion curves and the potential for each mode
propagating in the transducer are known. However so far the calculations have been
eased by the fact that the mode has been considered to propagate freely and to be
independent of other modes. This results from having implicitly assumed that the two
layers are infinite in the direction of propagation. This is not a very realistic problem but
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it has the advantage of keeping the problem simple and giving a simple relationship
between the potential associated with the waves and their frequency-wavenumber
characteristics. If we assume that a thin electrode (having no mechanical influence) of
finite length is deposited on top of the piezoelectric layer then a transmitter or a receiver
problem can be treated. The relative simplicity of the equations so far is suitable to
make a first attempt to solve the normal mode excitation equations introduced in
Chapter 2, and to calculate the amplitudes of the different modes for a given voltage
applied at the electrode, or conversely, the magnitude of the voltage at the electrode
when a given mode of unit amplitude propagates underneath the electrode.

4.2.5 SCATTERING COEFFICIENTS

This is the final stage of the calculations, which is concerned with the effect of
the limited size of the thin layer(s) overlay. When the piezoelectric layer is of limited
size in the direction of propagation, the modes that propagate underneath the layer are
scattered at the edges of the layer. Mode conversion occurs and the energy is then
shared between different modes. It is therefore necessary to estimate the amount of
energy that is converted from one mode to another. This is done by calculating the
amplitude of the wave scattered at the edges of the overlay, which is modelled as a
rectangular thin strip. We show how the boundary conditions at the strip surfaces act as
secondary sources and how the amplitude of the scattered waves is related to the
geometrical parameters and the material constants of the “obstacle”. The so-called S-
parameters are calculated for the fundamental Lamb modes. Obviously this calculation
can be immediately extended to the study of the scattering of Lamb waves at defects.
Although this is not the purpose of this thesis, it is shown how these calculations are
amenable to the calculation of the scattering coefficients of Lamb waves incident at
surface and interior (volume) defects.

4.2.6 FINITE TRANSDUCER MODEL

The linear combination of the two perturbation stages and the scattering
calculations, as shown in Figure 4.2, leads to the entire model that describes the
electromechanical interaction between the electric potential and the amplitude of the
guided waves in the structure. Particular applications are discussed in Chapter 5 for the
transmitter case where guided waves are generated as a result of an electrical signal
applied at the transducer.

 4.3 FIRST STAGE: MECHANICAL SURFACE PERTURBATION

The first stage is concerned with the calculation of the mechanical fields of
guided waves propagating in a plate covered by a thin anisotropic layer, as presented in
Figure 4.1(c). The piezoelectric layer is, at this stage, considered as a passive elastic
material. This is achieved using perturbation calculations. The perturbation formulae,
for an elastic waveguide, are a natural extension of the normal mode theory, which has
been presented in Chapter 2. The details of the derivation of the perturbation formulae
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are not repeated here and can be found in Chapter 10 of [4.7]. The perturbation
formulae for boundary perturbations are based on the reciprocity relation, which defines
the relationship between two solutions of the same field equations. When considering
the particular problem of the perturbation induced by an overlay on a metallic plate, the
reciprocity relationship is used to relate the fields in the plate without the overlay to
those in the plate/overlay bi-layer system. These two solutions are related by the
complex reciprocity relation which is written [4.7] as:

∇ .{ }* *
2 1 1 2v .T v .T− − = 0 (4.1)

The first solution describes the particle velocity vector v and the stress tensor T of the
Lamb waves propagating in the metallic plate alone; see Figure 4.3(b). These are the
fields of unperturbed waveguide modes. For the particle velocity field, solution “1” is

nj( t x)
1 nv v (z) e ω −β=  (4.2)

This solution is assumed to be for lossless and propagating waves only, i.e. the
wavenumber βn is pure real. The second solution is the corresponding perturbed modes

nj( t ' x)
2 nv v ' (z) e ω −β=  (4.3)

4.3.1 MECHANICAL SURFACE PERTURBATIONS

If only the upper surface, z = 0 in Figure 4.3, of the metallic plate is perturbed by
the addition of a thin layer, the change in the propagation factors, expressed as a
wavenumber shift is given [4.7] by

{ }( )* '
n n z 0'

n n n
n

i v .T .z

4P
=−

∆β = β −β = (4.4)

where nβ is the wavenumber, nT is the stress tensor and nv  is the particle velocity
vector of the nth unperturbed mode. These fields are all functions of time and frequency.
β’, T’ and v’ are the corresponding perturbed fields, that is those in the bi-layer system,
as shown in Figure 4.3(c). The unit vector z is in the direction normal to the plate
surfaces and a superscript * denotes the complex conjugate vector. The denominator Pn

is the average power flow per unit width along direction x of the unperturbed mode n.
The co-ordinate system in Figure 4.3(b) differs from that for the bi-layered plate, Figure
4.3(c), because when solving the Lamb wave problem it is wise to take advantage of the
symmetry of the geometry. However the bi-layer system breaks this symmetry and in
this case it simplifies the analytical formulation of the stress boundary conditions if the
upper surface is at the z = 0 plane. However it is perfectly valid to use different co-
ordinate systems since the unperturbed Lamb wave solutions are not dependent on the
co-ordinate system. It is assumed that the solutions for the unperturbed waveguide are
well known. In order to use the perturbation formula given by Eq.(4.4) it is necessary to
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estimate the perturbed stress field. The perturbed surface traction force, '
nT .y− , can be

defined in terms of an acoustic surface impedance '
AZ  [4.7],

' ' '
n A nT .z Z .v− = (4.5)

by analogy with the shear and longitudinal acoustic impedances in isotropic materials.
The concept has been extended, see Chapter 7 of [4.7], to plane waves propagating in
any direction of a anisotropic material. From Eq.(4.5) the perturbation formula is
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4.3.2 USE OF THE PERTURBATION FORMULA

To evaluate the integral in the numerator of Eq.(4.6) it is necessary to calculate
both the perturbed and the unperturbed fields. This usually involves solving a boundary
value problem. Fields have to be determined which, added to the unperturbed fields,
enable the boundary conditions to be satisfied on the surfaces of the perturbed domain.
These additional fields must satisfy the boundary conditions on the bounding surface of
the unperturbed domain. Once the perturbed fields have been calculated or estimated,
the calculation of the perturbation in wavenumber is straightforward, although it may be
tedious. Simple examples of the kind of problem to which the perturbation formula is
applicable are [4.7], [4.11], [4.12], [4.13]:

1) A waveguide consists of a two-layered composite material. The fields in the medium
A are found. These are the unperturbed fields. The perturbation consists now in adding
material B. In the perturbed state all fields can exist but are modified, denoted by a
prime, and the problem is to choose the perturbed fields in the material B so that the
boundary conditions are satisfied at the interface between A and B.

2) One of the materials is anisotropic with an elastic-constant tensor where one of the
constants, say C’11 is approximately but not exactly equal to C12+2 C44 = C11. Then C’11

may be replaced by C12 + 2 C44, corresponding to an isotropic material and the fields are
obtained for this model. The perturbation is then the change of C11 from the assumed
value to the actual value.

3) If a waveguide contains a material that is slightly lossy, the loss may be ignored at
first, and the fields evaluated for the lossless case. The loss terms due to imaginary parts
of the elastic constants then constitute the perturbation and this case is similar to the
previous case.

4) Refinements can be made by adding the effects of thermoelastic coupling on the
propagation of Lamb wave in a piezoelectric rectangular plate. It is well known that
application of high voltage will produce heating of the electrode fingers and of the
piezoelectric plate. This can be analysed by considering the thermoelastic and
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thermoelectric effects as perturbations and calculating an attenuation coefficient, which
will be the imaginary part of the induced frequency shift.

5) The problem that consists in calculating the characteristics of the guided waves
propagating along a tapered structure is certainly not an easy problem to solve. However
if we consider the case of a plate covered by a thin overlay whose thickness is a slowly
varying function in x (the direction of propagation), it is possible to approximate the
boundary conditions within this layer and therefore to estimate the variation induced in
the wavenumber. The boundary conditions for such a problem are equivalent to the
Brekhovskikh boundary conditions [4.13].

This list is not exhaustive but presents the major cases relevant to this study,
where the piezoelectric layer is always anisotropic. In this study, because we use the
complex reciprocity relationship, the material of the substrate cannot be attenuative and
only loss-less materials are considered. However the attenuation can still be added as a
perturbation if needed.

Prior to the complex transducer case that we eventually want to model, we
present examples in order to establish the limits within which our perturbation approach
is valid. The first example concerns the calculation of the attenuation of Lamb waves
due to energy leakage into a surrounding fluid, treated as a perturbation for the plate
wave guide. Later we consider the perturbations induced on the guided modes of an
isotropic plate by, firstly a thin isotropic overlay, and secondly a thin anisotropic
overlay. These preliminary examples first establish the necessary equations but also
point up the limits of the perturbation method for such problems involving Lamb waves.
Lessons learned from these examples are used to modify the perturbation formula in
order to obtain more accurate results for the transducer problem we want to solve, that is
a plate overlaid with an anisotropic layer and possibly other layers representing the
adhesive bonds and the electrodes.

4.3.3 FIRST VALIDATION EXAMPLE : ISOTROPIC IMMERSED PLATE

In this section our aim is to validate the perturbation method for Lamb waves
rather than a particular formula. To do so a simple problem such as a plate loaded on
one side by a fluid represents an ideal case because it is simpler than the transducer
problem and solutions are already available. When a plate is loaded with water, each
mode that propagates within the plate leaks energy into the fluid and the loss of energy
is expressed as an attenuation factor which we want to estimate using the perturbation
method. Even if it is a rather specialised case, no extra assumptions being made about
the plate material or the loading medium, it enables us to test the limits of the
assumptions we will use in our transducer problem. The starting points are the Lamb
solutions in the plate, in terms of the phase velocities and the particle velocities at the
surface of the plate. The perturbation calculations relevant to a plate loaded by a gas
have been done by Slobdonick [4.14], and Jia [4.15] developed similar calculations for a
fluid loaded plate, adding in the input exciting force the contribution of the waves
reaching the plate after having been first reflected at the plate and then again at the
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surface of the transducer. In these works, the acoustic surface impedance '
AZ in Eq.(4.6)

is given as

' C C n
a '
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V V VpZ
v cos V V

ρ ρ
= =− = −

θ −
(4.7)

where p is the pressure on the plate, ρ is the density of the fluid, VC and Vn are the
phase velocities of the plane wave in the fluid and the Lamb modes in the plate. θn is the
angle of incidence of the wave in the fluid, calculated to excite the nth mode, and vy is
the particle velocity in the fluid. If the attenuation is small it is permissible to assume
that the velocity of the perturbed mode is similar to that of the unperturbed mode and
thus that the perturbed wavenumber is equal to the unperturbed one since the frequency
remains unchanged. The remaining assumption is that the Lamb modes in the immersed
plate are the same as those in a free plate. This is reasonable in all cases when the plate
is loaded with gas, but is only valid with a liquid when the impedance of the liquid is
much smaller than that of the elastic waveguide [4.7]. The attenuation of the nth Lamb
mode is related to the wavenumber variation as [4.14], [4.15],
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v
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4P
=∆β = − α α = (4.8)

where αn is the attenuation constant per unit width along the propagation direction x,
and is implicitly frequency dependent. Since the propagation constant βn is real for a
propagating mode, the leakage of energy is represented by the imaginary part of the
wavenumber, which is a well-known concept.

The attenuation of the four first Lamb modes have been computed for a 1.2mm
thick aluminium plate loaded with water. In parallel, exact calculations have been done
using DISPERSE for the same system. Figure 4.4 shows the approximate solutions and
the exact solutions. The curves are seen to be very similar at low frequency but separate
at higher frequency as was expected from the assumptions made. However for the two
fundamental modes, the curves do not have the same shape above 4.0 MHz. These
differences are not due to the approximations made but to the fact that, for this
particular system, a plate loaded by a fluid on only one face, these modes both tend to
become two surface waves, one propagating along the free boundary of the plate and the
other propagating at the plate-fluid interface. This change in the nature of the modes
cannot be taken into account with the perturbation method where it is expected that the
perturbed solutions are weakly different from the unperturbed solutions. In the
unperturbed system, the Mode A0 and S0 combine at high frequency to become a
Rayleigh wave. The mode shape grids plotted in Figure 4.4 show that at high frequency,
the mode S0 behaves as an interface wave propagating along the plate-fluid interface
yielding a very high attenuation, while the mode A0 behaves as a surface wave
propagating along the bottom surface of the plate, there is no power located near the
fluid interface leading to less and less leakage of energy in the fluid as the wavelength
decreases.
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Therefore numerical calculations show that the weak perturbation approximation
can be used for Lamb waves. It appears though that the frequency range of validity is
limited and different for each particular mode, depending on how it is affected by the
perturbation. It is shown that in an non-symmetric system where the two fundamental
modes separate at high frequencies, the perturbation method cannot predict the changes.
These limits hold for other systems and in particular for plates perturbed by the addition
of thin layers.

4.3.4 THIN ISOTROPIC LAYER OVERLAY

The problem here is to extend the metal plate structure to the metal/isotropic
layer composite structure, so as to calculate the stress and the displacement at the
interface between the overlay and the plate; the co-ordinate system is shown in Figure
4.3(a). To estimate the change in propagation factor for the bi-layer from that of the
single plate, the perturbed fields v’ and T’ or an approximation of them, must be known.
For a thin isotropic overlay, this problem is usually solved in the constant field
approximation, which states that the mechanical displacements have negligible z
variation within the thin film. Practically this means that the particle velocity fields at
the interface between the plate and the overlay are assumed to be equal to those at the
free surface of the overlay and those fields are taken to be the same as those at the free
surface of a free plate. Accordingly Eq.(4.6) becomes, [4.7]:
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No variation of the displacements or velocities through the layer thickness
implies that the variation of the stress field is linear and the first order terms of the stress
in the perturbed system, for Lamb modes with displacements in the sagittal plane yz, are
given by:
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at z = 0, where the approximation n n
'β = β  has been used. These are the Tiersten

boundary conditions [4.17] for a thin isotropic film overlay. Eq.(4.10) has been
established by expanding stress to only first order. Stresses at first order are the
derivatives of stresses at zero order, zero order stresses representing forces and first
order stresses representing moments. This expansion to only first order is justified by
the fact that because the layer is very thin, only its extensional resistance needs to be
considered [4.18]. However since the thin layer is attached to the plate, we must impose
the conditions of continuity of surface traction and mechanical displacement across the
interface [4.19], which means that the inertia of the layer must also be included, i.e. the



Chapter 4 First Stage: Mechanical Surface Perturbation

Page 135

traction force at the face of the plate is balanced by the traction at the outer face of the
layer due to the applied surface forces and the inertia force due to the mass of the layer.
The particle velocity fields in the layer have been expanded to zero order which means
taking the velocity field in the layer to be that at the free surface of the plate alone. This
also means that the free thickness-stretch motion (first order normal displacement)
which accompanies the extensional motion of the layer is ignored, as well as the
extensional motion that accompanies the thickness-stretch motion of the layer. From
Eq.(4.6) and Eq.(4.10) the perturbation formula for a very thin isotropic overlay is
derived as:
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This formula differs from that given in [4.7] because it is expressed in terms of the
Young’s modulus E’ and the Poisson’s ratio ν’ rather than in terms of the Lamé
coefficients of the thin overlay. nxv  and nyv are the particle velocity fields, in the
sagittal plane, of the nth Lamb mode propagating in the plate alone. From Eq.(4.11) it
can be seen that at first order only the mass loading and the extensional resistance of the
layer have been considered. The mass loading per unit area is introduced via the
parameter m∆ = hρ’ that appears as a multiplier of each of the particle velocities, and
the extensional resistance is introduced only as a factor of the inplane particle velocity,
via a sensitivity factor (1 - α) with
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where 
0

'
SV  is the phase velocity, at very low frequency, of the lower extensional mode

(S0) of the layer [4.20]. In practical analysis of the acoustic plate modes (APM) of a bi-
layered system, the layer thickness h is fixed and all the material parameters are known.
Therefore the wavenumber variation, for each mode, only depends on the dispersion
characteristics of the mode of interest. Considering first the S0 Lamb mode, if the layer
has similar density and Young’s modulus to the plate substrate, then the sensitivity
parameter tends to zero, the term in 2

nxv cancels and the variation in wavenumber is
only due to the mass loading. When the material properties of the layer are different
from those of the substrate, the sensitivity factor is either positive or negative.
Considering a particular mode n, if its phase velocity nV is lower than that of the S0

mode at low frequency in the layer ( 'VS0 ) than the sensitivity factor is negative and the
inplane motion in the layer acts as to reduce the wavenumber variation. Conversely if

'V Vn S0> then the effect of the mass loading and of the extensional resistance add to
increase the wavenumber variation.
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Since the phase velocity can be calculated from the frequency and the
wavenumber, i.e. n nV = ω β , the variation induced by the addition of the thin overlay
can be also expressed in term of a phase velocity relative variation using

n n

n n

V
V '

−∆ ∆β
=

β
(4.13)

where nV  and nV '  are the unperturbed and the perturbed phase velocities of the mode
“n”. Therefore an increase in the wavenumber leads to a reduction of the phase velocity.

In theory, expanding the stresses to higher order should lead to an increase of
accuracy of the perturbation formula. Following the demonstration given by Auld [4.7]
for first order expansion, we derived the stress fields to second order as:
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which shows that the second order normal stress depends on the extension of the layer
and that the second order shear stress depends on the thickness-stretch motion of the
layer. While deriving the stress expressions it is possible to show that the stress in the
inplane direction (Txx) is a function of the shear stress at first order and the inplane
stress at zero order which is another way of showing that second order derivations take
into account shearing effects that first order derivations do not consider. Similarly, it is
possible to show that third order expansion is required to take into account the rotary
inertia effect. From these new boundary conditions the wavenumber variation induced
by the overlay is:
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where '
ijS  are the compliance coefficients of the thin layer. The improvement in the

formula comes directly from the fact that at second-order the stresses are assumed to
vary as quadratic functions. Therefore in the frequency range where the stresses do not
vary linearly throughout the thickness of the layer, the wavenumber variation might
better approximated using Eq.(4.15) than the first order perturbation formula. However
for thin layers it is only at high frequencies that the stresses do not vary linearly
throughout the thickness of the layer and at high frequencies the assumption that the
wave is not significantly altered by the addition of the layer is no longer valid.
Therefore, because the velocities enter recursively into the calculations, any error in the
particle velocities would lead to higher error in the second-order formula than in the
first order formula. Consequently no general improvement may be obtained by going to
higher-order approximations and first-order predictions may be more accurate than
higher-order ones when unperturbed free-surface particle velocities are assumed.

 4.3.4.1 Limitations  of the Perturbation Formula

The perturbation formula given in Eq.(4.4) is simple to understand but is not
general since it can only be used when the wave functions are real functions of position
in the cross section of the waveguide multiplied by exp(iωt-iβx), β being real. This
condition is satisfied in non-attenuative waveguides. Furthermore for a waveguide at
cut-off, ∂β ∂ωbecomes infinite and remains large for a limited frequency range in the
neighbourhood of cut-off. Then the variation ∂β βis large and the perturbation formula
is invalid since it has been derived on the assumption that ∂β β is small.

The perturbation formula given in Eq.(4.11) is a classic solution that can be
found, for example in Auld [4.7] and which is derived from the so-called Tiersten
boundary conditions [4.17]. It has been used widely and an extensive literature can be
found for SH and Lamb waves applications [4.21], [4.22], [4.23], [4.12] with a special
emphasis on mass sensitivity sensors [4.24], [4.25], multisensing oscillators [4.26],
[4.27] and biological applications such as gas or solution concentration sensors [4.28],
[4.29]. In the transducer model Eq.(4.11) is used with great accuracy when the layers
are either the adhesive bond, considered as isotropic, and the electrode layer, made of
copper and also considered as isotropic. The two layers are very thin, of the order of 20
microns or less and Eq.(4.11) gives results that are very close to the exact solutions, as
shown below in the validation examples. However Eq.(4.11) it is not sufficient for
describing the influence of an anisotropic overlay. In our problem, the mechanical
perturbation is principally used to obtain the fields of the guided waves that propagate in
a system made of a metallic plate overlaid by a piezoelectric layer, both being infinite,
and the piezoelectric effect being neglected at this stage. A physical condition for the
existence of piezoelectricity in a material is that this material must be anisotropic [4.32].
A formulation for an anisotropic overlay has been given by Wolkerstorfer [4.30] but it
was reported [personal communication by B. A. Auld] that the formula, as given in
Auld [4.7], might be inaccurate. Moreover in the derivation of Eq.(4.11) as provided by
Auld, only the three stresses that vanish at the free surface of the layer are expanded to
first order.  However, in our plane strain problem, the stress tensor contains four non-
zero components which are Txx, Tyy, Tzz and Txz. Therefore we are missing information
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about two stress components, Tyy, the stress in the direction normal to the sagittal plane
and Txx the stress in the direction of propagation. This remark is not relevant to the
perturbation problem treated by Auld but is nonetheless extremely pertinent to the
development of the next perturbation stage, where the electric potential is calculated
from the stress fields within the piezoelectric layer. For these reasons it was decided not
to use the stress fields provided in Eq.(4.10) or Eq.(4.14) but to develop the stress fields
for an anisotropic medium.

4.3.5 SECOND EXAMPLE : PZT-5H OVERLAY

In this section the bi-layered system is made of a 1mm thick aluminium
substrate on top of which a PZT-5H piezoelectric layer is rigidly bonded. PZT-5H is a
crystal of hexagonal symmetry of class 6mm. In this study we assume that the PZT
strips are Z-cut, that is that the 6-fold axis of symmetry is the Z-crystal axis. In this
problem, to simplify the calculations we chose to have a co-ordinate system parallel to
the crystal axis as shown in Figure 4.5.

 4.3.5.1 Anisotropic perturbation formula.

The analysis of the stresses in the layer for a general orthorhombic crystal,
shows that they can be written in terms of the particle velocities at the top of the
overlay. This is done in Appendix B using a method which differs slightly from than
that used originally by Tiersten. The Tiersten perturbation series for the stress is not a
Taylor or MacLauren series, with the nth term of the form

n
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Rather, the various orders are calculated directly from the differential equation
and/or the boundary conditions. In Appendix B, a classic power series technique is used,
and the zero and first order coefficients are directly calculated by successive
derivations. The results, to first order only, and for an hexagonal material are
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where ( )nxv h  is the particle velocity in the direction of propagation, calculated at the

top of the layer and ( )nzv h  is the normal particle velocity at the top of the layer for the
mode “n”. nβ  and nV are the wavenumber and phase velocity of the unperturbed

modes. The '
ijs  are the compliances of the PZT-5H material. The linear approximations

are written out explicitly for later examination of their influence on the electric
potential. It is noted that nyyT  and nyzT vanish at the free surface as required by the
boundary conditions. Because only lower order terms of the power series have been
kept, the validity of the analysis will be limited to small values of the layer thickness h,
where the stress variations in the film are easily approximated by a power series. From
these stress expressions we derive the perturbation formula as
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where '
nβ is the wavenumber of the perturbed modes propagating in the bi-layered

system and nP  is the power flow of the unperturbed modes, that is the Lamb modes in
the aluminium plate. Material properties of PZT-5H are given in Table 4.1 in the crystal
co-ordinate system so that, for example, the compliance S33 refers to the relation
between a stress applied in the Z crystal axis and the strain in the Z crystal direction.
S’23 = S’13 since the plane XY is a plane of isotropy for a Z-cut hexagonal crystal.
Material properties of Aluminium are given in Table 4.2.

 4.3.5.2 Aluminium-PZT-5H

The system we will study in this section is a 1mm aluminium plate overlaid by a
100µm thick PZT-5H layer. Figure 4.6 shows the comparison between the exact
dispersion curves (plain lines) for this system, calculated using DISPERSE, and the
dispersion curves for a single aluminium plate (in dashed lines). This emphasises the
differences between the dispersion curves in the two systems. Because the bi-layer
system is not symmetric, the modes cannot be labelled using the classical “A” and “S”
letters representing respectively the anti-symmetric and symmetric Lamb modes. Here it
has been arbitrarily decided to label the exact modes of the bi-layer system by a “P”.
Figure 4.6 shows that the addition of the PZT-5H layer induces important changes in the
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Lamb modes of the substrate alone, among which we can notice a decrease in the phase
velocity of the lowest extensional mode (P2) at low frequency. We also notice an
inflection of the phase velocity of the lowest bending mode (P1) above 1MHz. This is
emphasised in Figure 4.7 which shows the spatial distribution of power flow for both
modes. The power flow for a mode is a quantity for the whole structure which is
calculated by integrating the power flow density along the direction of propagation,
over the thickness of the structure. To produce the curves shown in Figure 4.7 we
separated the integral over the structure thickness into a first integral over the layer
thickness and a second integral over the substrate thickness, and calculated the ratio of
the two integrals. The trend of the P1 curves in Figure 4.7 shows that when the frequency
increases, more power for mode P1 is located within the layer. This indicates that, as the
frequency increases, the mode P1 tends to behave as a surface wave propagating at the
free boundary of the PZT-5H. Concerning the mode P2, Figure 4.7 shows that above
2MHz more than 90% of the power is located in the substrate. The influence of the
overlay is therefore very weak. At higher frequencies, mode P2 will therefore behave as
a surface wave propagating along the free boundary of the substrate at the Rayleigh
wave velocity of aluminium.

If the material properties of PZT-5H are fed into Eq.(4.22) the approximate
phase velocities for the modes that propagate in the aluminium(1mm)/PZT(100µm)
system are calculated using Eq.(4.13). Figure 4.8 shows the comparison between these
approximate curves and the exact dispersions curves, obtained using DISPERSE, for the
aluminium(1mm)/PZT(100µm) system. The approximate modes are labelled with the
letters “F” and “L” where the “L” modes are derived from the symmetric Lamb modes
and the “F” modes are derived from the anti-symmetric Lamb modes. This labelling is
made by analogy with the characteristics of the S0 and A0 lamb waves at low frequency.
S0 mode is predominantly longitudinal and the A0 mode is predominantly flexural.

The first striking feature in Figure 4.8 is that the perturbation formula as given in
Eq.(4.22) does not work for the cut-off modes. Very poor agreement is found between
the exact and the approximate curves for the cut-off modes P3 and P4 at high phase
velocities in Figure 4.8. This is expected since Eq.(4.4) is derived from the complex
reciprocity relationship, see Chapter 2, on the basis of an orthogonality relationship that
does not account for the nature of evanescent modes. Auld [4.7] and Peach [4.33]
showed that the normalisation relation used in the development of the orthogonality
relationship of the propagating modes cannot be used for the resonant cut-off modes.
This problem is particularly inconvenient when considering the problem of mode
conversion at the edges of the transducers, for example, since non-propagating modes
are generated along with propagating modes. These modes are said to be bi-orthogonal
[4.31] and a new orthogonality relationship must be developed for these modes. Several
attempts have been made in optics following the work from Marcuse [4.34], and also in
acoustics, in particular for Stoneley waves [4.35] and more recently for fluid loaded
plates containing defects [4.36]. However the reciprocity relationship for propagating
modes already exists and since we are mainly interested in the two fundamental modes,
it was not a priority to develop a new reciprocity relationship for the non-propagating
modes.
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The second striking point from Figure 4.8 is that the approximate curves for the
modes L0 and F0 match correctly the exact curves for the modes P2 and P1 below,
respectively 1 MHz and 2 MHz, but differ significantly from the exact curves above
those frequencies. Let us first consider the case of F0, the lowest bending mode, below
2MHz. There are two reasons why the match is reasonably good. Firstly, at very low
frequency (below 300KHz) the dispersion curve of the mode P1 is the same than that of
the A0 mode in the aluminium plate as shown in Figure 4.6. Secondly, the perturbation
formula induces a reduction of the phase velocity of the mode A0. The reason for this is
that below 2 MHz, the normal particle velocity of the A0 mode is larger than its inplane
particle velocity, therefore the wavenumber variation (given in Eq.(4.22)), is positive
and from Eq.(4.13) the phase velocity variation is negative. Since it is seen from Figure
4.6 that the phase velocity of the mode P1 is lower than that of the mode A0, a negative
phase velocity variation is correct. Physically this means that the phase velocity of the
mode A0 depends upon the mass loading effect of the layer. At low frequency the
loading is reactive, that is not much energy is radiated into the layer. At higher
frequencies, the loading is dissipative and as the frequency increases, more and more
energy radiates into the layer, and eventually when the frequency is such that the
wavelength of this mode is much smaller than the layer thickness, the mode P1 becomes
a surface wave at the free surface of the overlay. The dispersion characteristics of such a
surface wave are very different from that of the A0 mode and these differences cannot
be accounted for by the perturbation formula.

Concerning L0, the approximated fundamental extensional mode, the agreement
below 1MHz is good. To understand why the decrease in phase velocity is well
predicted at low frequencies we must refer to the discussion in section 4.3.4 about the
significance of the mass loading term and the extensional resistance term that compose
the wavenumber perturbation formula for isotropic overlays (Eq.(4.11)). Although we
are dealing here with an anisotropic layer the principle remains the same and to
emphasise the relative importance of these two terms, we computed Eq.(4.22) in two
different partial forms.  Figure 4.9 shows the comparison between the exact dispersion
curves for the S0 mode and the P2 mode (dashed lines) and three approximate dispersion
curves for the L0 mode. Firstly we computed Eq.(4.22) ignoring the term in vy, that is
keeping only the extensional resistance term. The second L0 curve has been computed
from Eq.(4.22) but ignoring the term in vz, that is keeping only the mass loading term.
Lastly the full formula has been computed. It shows that at low frequency the phase
velocity decrease is entirely due to the mass loading term, whereas as the frequency
increases, the extensional resistance term takes over from the mass loading term. At
high frequency it is seen that the extensional resistance term over-estimates the phase
velocity decrease and the approximate L0 curve is lower than the exact P2 curve.

It is seen that above a certain frequency, which varies for each mode, the
perturbation formula does not predict the correct dispersion curves. The reason for that
is that, above those frequencies, the aluminium(1mm)/PZT-5H(100µm) system reaches
the limits of the weak perturbation assumption, but it is not clear whether the limits are
reached because the thickness of the PZT layer represents as much as 10% of that of the
aluminium plate, which is already a large perturbation, or because of the material
properties of PZT-5H for which the shear and longitudinal acoustic impedances of PZT-
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5H are close to those of aluminium. Our aim in investigating this problem is to find a
way to improve the results shown in Figure 4.8.

To understand what is really driving the limits of this system we applied
Eq.(4.22) to a closely related system, a 1mm steel plate overlaid by a 100µm thick
epoxy layer. This new system presents a large difference between the shear and
longitudinal acoustic impedances of the two materials but the substrate and layer
thicknesses are kept the same as in the aluminium(1mm)/PZT-5H(100µm). The
comparison between the exact dispersion curves and the approximate dispersion curves
for the steel(1mm)/epoxy(100µm) system is shown in Figure 4.10, for the phase
velocity. It is seen that the approximate curves (F0 and L0 modes) match very closely the
exact dispersion curves up to 3MHz. It is obvious that the accuracy of the perturbation
calculation is greatly improved by increasing the acoustic impedance mismatch between
the two materials. From this comparison we can conclude that for the two fundamental
Lamb modes, the principal factor that determines the accuracy is the ratio between the
acoustic impedances of the layer and the substrate. The physics behind this statement, in
line with the curves shown in Figure 4.7, is that the key phenomenon, for the two
fundamental modes, is the facility with which energy can be radiated and later trapped
within the layer. If the impedance mismatch is high, most of the energy carried by the
partial waves is reflected at the interface between the layer and the substrate and the
modes for the bi-layered system remain close to those of the substrate alone. This
statement does not hold for higher-order modes. As a direct consequence, by choosing a
piezoelectric material with lower acoustic impedances, the perturbation formula would
be accurate over a broader frequency range. A material such as PVDF, whose properties
are close to those of epoxy could be a good choice but such a piezoelectric material also
has a very low piezoelectric coupling coefficient and a transducer made of PVDF would
radiate much less energy within the substrate than a transducer made of PZT-5H. The
amplitude of the waves generated in the substrate would therefore be smaller than that
generated by a PZT-5H based transducer. An example of the use of PVDF is give in
Chapter 5

To produce the approximate curves shown in Figure 4.8 and in Figure 4.10,
Eq.(4.22) has been developed on the assumption that the velocity fields are those of the
aluminium plate alone (referred to as zero order velocity), and that the stress fields vary
linearly across the overlay (expansion to first order). Therefore the model could be
improved by modifying these assumptions.

 4.3.5.3 Stress and Particle Velocity Fields for the Aluminium/PZT System

Figure 4.11 shows the stress mode shapes for the modes P1 and P2, produced
using DISPERSE, across the 100µm PZT-5H layer at 0.5 MHz and 2 MHz. It appears
clearly that most of the mode shapes have linear variation of stresses across the layer.
Only the shear stress mode-shape at 2 MHz for the mode P2, in Figure 4.11(f), shows a
significant non-linear variation. Therefore developing the stress to second order as given
in Eq.(4.15) for the isotropic case would not lead to any major improvement and the
calculations that led to Eq.(4.10) are not to be reconsidered for the sake of improving
the accuracy of Eq.(4.22). Another reason why developing the stress fields to higher-



Chapter 4 First Stage: Mechanical Surface Perturbation

Page 143

orders does not lead to any major improvement is that the phase velocity and
particularly the particle velocities enter recursively into the calculations so that any error
in the first-order coefficients will be increased in the second- and higher-order stress
terms. Consequently first-order predictions are more accurate than any higher-order
ones when unperturbed free-surface particle velocities are assumed which is the case for
the curves shown in Figure 4.8. Figure 4.12 and Figure 4.13 show the exact particle
velocity dispersion curves for the fundamental modes P1 and P2 of the aluminium
(1mm)/PZT(100µm) system. Particle velocity dispersion curves are not unique like
group velocity or phase velocity dispersion curves since the particle velocity depends on
the mode amplitude. The particle velocities of Figure 4.12 and Figure 4.13 are
calculated for a mode with unit power flow. Figure 4.12 shows the comparison between
the normal particle velocity dispersion curves at the interface between the aluminium
plate and the PZT layer, and the normal particle velocity dispersion curves at the upper
surface of the PZT overlay. Figure 4.13 shows the same curves as Figure 4.12 but for
the particle velocities in the direction of propagation (inplane particle velocities). From
both Figure 4.12 and Figure 4.13 it is seen that neither the normal nor the in-plane
particle velocities vary much across the layer thickness, the solid and dashed lines for
the modes P1 and P2 being very close. This is in agreement with the assumption made to
expand the stress to first order only and was expected from the above discussion on the
linear variation of the stress mode shapes. However Figure 4.12 and Figure 4.13 also
show the particle velocity fields of the Lamb modes at the free surface and it appears
clearly that they do not match the exact particle velocity fields, either at the interface or
at the top PZT surface. This clearly shows that the use of the Lamb modes particle
velocities, for the unperturbed substrate in Eq.(4.22) is not suitable for the system we
want to study here.

 4.3.5.4 Stress Fields for the Exact Particle Velocity Fields

To derive Eq.(4.22) the surface traction forces in Eq.(4.5) have been evaluated
assuming that the particle velocity field at the surface is unchanged by the perturbation;
that is

n n nz = h z = 0 z = 0(v' )  = (v' ) (v )= (4.23)

However such an approximation is not needed if the exact particle velocity field
can be obtained. In such a case the perturbation formula is given by Eq.(4.6) and the
perturbed surface impedance Z’a is obtained through the calculation of the surface
traction forces but using the exact particle velocities. The stress fields are given in
Eq.(4.18) to Eq.(4.21). Figure 4.14 shows the comparison between the exact stress
dispersion curves for the mode P1 and the approximated stress dispersion curves for the
F0 mode obtained from the exact particle velocities. Figure 4.15 shows the same but for
the exact P2 mode and the approximate L0 mode. The stress dispersion curves were
extracted from the stress mode shapes of each mode, and calculated assuming a power
flow in the mode of 1 Watt. It is seen that in most cases the agreement is very good, at
least below 2 MHz. Therefore the exact particle velocity fields, obtained form
DISPERSE have been introduced in place of the Lamb wave fields in Eq.(4.22). The
approximate phase velocity dispersion curves for the aluminium (1mm)/PZT (100µm)
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are shown in Figure 4.16. It is seen that the agreement between the exact “P” modes and
the approximate F0 and L0 modes is much better than in Figure 4.10. The agreement is
excellent up to 3 to 4 MHz, and therefore at frequencies below the first cut-off, the
approximate wavenumber functions can be used in place of the exact wavenumber
functions. It also appears that none of the attempts to improve the accuracy of the
perturbation calculations has led to a significant improvement for the higher-order
modes. Therefore in the remainder of this thesis we will only concentrate on the two
fundamental modes, F0 and L0.

To emphasise the efficiency of this technique, the wavenumber dispersion
curves for two systems are presented in Figure 4.17 to Figure 4.20. Figure 4.17 and
Figure 4.18 show the wavenumber dispersion curves for a 50 µm PZT-5H layer
overlaying a 1mm aluminium plate. In Figure 4.17 the perturbations calculations were
obtained by using the particle velocities of the unperturbed substrate whereas in Figure
4.18 the particle velocities at the top of the PZT-5H layer have been used. Figure 4.17
shows good agreement between the exact modes (P1 and P2) and the perturbation
calculations (F0 and L0) up to 2-3 MHz, i.e. βh = 0.3 whereas Figure 4.18 shows a good
agreement up to 3-4 MHz, i.e βh = 0.5. The product layer thickness-wavenumber βh is a
parameter traditionally used to quantify the range of validity of perturbation formulae
[4.11]. Figure 4.19 and Figure 4.20 show the wavenumber dispersion curves for a 100
µm PZT-5H layer overlaying a 1mm aluminium plate. In Figure 4.19 the perturbations
calculations obtained by using the particle velocities of the unperturbed substrate
whereas in Figure 4.20 the particle velocities at the top of the PZT-5H layer have been
used. Figure 4.19 shows a good agreement between the exact modes (P1 and P2) and the
perturbation calculations (F0 and L0) up to 2 MHz, i.e. βh = 0.5 whereas Figure 4.20
shows a good agreement up βh = 0.8 which corresponds to 3 MHz for the F0 mode
(derived from the A0 mode in the aluminium plate) and 3.6 MHz for the L0 mode
(derived from the S0 mode in the aluminium plate). Overall it is clear that using the
particle velocities at the free boundary of the PZT-5H layer rather than those at the free
boundary of the aluminium substrate considered alone increases the frequency range (or
thickness-wavenumber product) over which the perturbation calculations are in good
agreement with the exact curves.

4.3.6 A MULTI-LAYERED SYSTEM TO MODEL A TRANSDUCER

Adding more than one perturbing layer is possible since the weak perturbation
assumption makes the problem linear. Here we are interested in a four-layered system,
which is basically the same as the bi-layered system studied before but to which we
added an epoxy layer between the PZT layer and the aluminium plate, and a copper
layer on top of the PZT layer. The epoxy layer represents the adhesive layer that bonds
the transducer to the plate, and the copper layer represents the electrode. Figure 4.5(a)
shows the bi-layered structure and Figure 4.5(b) shows its extension to a four-layered
structure. Permanently attached transducers are rigidly bonded to the structure using an
adhesive. Here we assume the properties of the adhesive bond to be those of epoxy. A
bond thickness can vary from few microns to a few hundreds of microns but if the
transducer is glued to the structure and pressure is applied on the transducer during the
curing of the bond, the bond may be fairly thin. For the sake of this demonstration we
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will assume that the bond is 10 microns thick. Therefore we intend to model the
complete transducer-structure system as a 4-layer system, the structure layer, the bond
layer, the piezoelectric layer and the electrode layer. Material properties of epoxy and
copper are given Table 4.2.

An iterative use of Eq.(4.22) allows us to calculate the approximate wavenumber
of the modes propagating in the four-layered system. First the influence of the epoxy
layer is calculated. The results are then used as unperturbed solutions from which, again
using Eq.(4.22), we calculate the approximate fields for the aluminium/epoxy/PZT
system. Another iteration yields the approximate fields within the four-layered system.
The comparison between the approximate and the exact wavenumber dispersion curves
are shown in Figure 4.21. It is seen that the agreement is excellent up to βh = 0.5 where
h is the thickness of the PZT layer.  Above this, we notice that there is a large deflection
for the lowest bending mode that is not correctly predicted. Redoing the calculations for
the same system but without the epoxy layer shows that the large deflection is due to the
presence of the epoxy layer. As noticed in the study of the steel(1mm)/epoxy (100µm)
system, when the mismatch of acoustic impedance between the substrate material and
the epoxy is large, the unperturbed Lamb modes of the substrate are not noticeably
affected by the presence of the epoxy layer (it is noted that it was assumed that the
epoxy layer was not attenuative). However this conclusion holds only because the upper
surface of the epoxy is free. Here the epoxy layer is sandwiched by two thicker and
stiffer materials. Therefore, this soft thin layer acts as a spring in between two masses
and large displacement variations occur across the epoxy layer which cannot be
predicted in the weak perturbation approximation. Figure 4.22(a) shows the group
velocity dispersion curves for an aluminium(1mm)/epoxy(10µm) system and Figure
4.22(b) shows the group velocity dispersion curves for aluminium(1mm)/epoxy
(10µm)/PZT(100µm) system. It clearly appears that the dispersion curve characteristics
for the P1 mode are very different. For this particular system, the stress must certainly
be expanded to second or higher-order and the exact value of phase velocity must be
introduced in the formula in order to obtain a better result. Results obtained in this
section will be used in Chapter 5 when modeling an IDT.

4.3.7 CONCLUSION

A simple divergence relation between the perturbed and the unperturbed fields
has been obtained for an anisotropic layer, in terms of wavenumber, via a formal
manipulation of the fundamental acoustic field equations. We showed that the first-
order stress fields derived from the zero-order particle velocity fields, (i.e. the particle
velocities at the free boundary of the plate alone) are accurate only over a narrow
frequency range and only for the fundamental modes. To improve the frequency range
over which the agreement between the exact dispersion curves and the approximate
dispersion curves is good, explicit analytical formulations for the stress fields and the
wavenumbers have been derived. The exact free-surface particle velocity amplitudes
and the exact phase velocities for the aluminium(1mm)/PZT (100µm) bi-layered system
have been entered in the calculation of approximate fields. Finally we have analytic
formulations for the stress fields within the layer which only require the knowledge of
the dispersion characteristics of the substrate, which is available analytically, and of the
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particle velocity amplitudes at the free-surface of the layer which may be obtained using
DISPERSE or may even be obtained experimentally, at each frequency.

Because only lower order terms of the power series have been kept, the validity
of the analysis will be limited to small values of the film thickness h, where the stress
variations in the film are limited and are easily approximated by truncated power series.
Detailed studies on the stress fields in zinc oxide films on fused silica substrates show
that the approximation should be quite valid for layer thickness of βh ≤ 0.5 and still be
reasonable for films with βh ≤ 1 [4.6].  However these studies concern surface acoustic
waves (SAW) and not acoustic plate modes (APM). For APMs in an aluminium
(1mm)/PZT-5H(100µm) structure, the agreement between the approximate and the
exact values is excellent up to βh=0.5. It is clear that the dominant effects that control
the stress mode shapes are contained in the analysis. It was clearly shown that the
perturbation formula, as derived here, does not provide good results for the higher-order
modes and in the next sections we will study only the two fundamental modes F0 and L0

between 0 and 1.5 MHz.

 4.4 SECOND STAGE: PIEZOELECTRIC PERTURBATION

The problem is to extend the aluminium plate-like structure to a composite
substrate/PZT-5H structure so as to calculate the electrostatic fields within the
piezoelectric layer and in particular at the interface between the plate and the layer (z =
0) and at the upper surface of the layer (z = h). The selected approach consists of
successive mechanical and piezoelectric perturbation calculations. The mechanical
perturbation analysis carried out in the preceding section has enabled us to establish
explicit polynomial expressions for the variation of the stresses across the layer. The
remaining task is then to introduce a piezoelectric perturbation into this system. This
problem is treated as a perturbation problem in the sense that we assume that the
stresses within the layer remain unchanged when “switching on” the piezoelectric
coupling. This is the weak perturbation approximation. From the piezoelectric
constitutive equation

TD .E d : T=ε + (4.24)

where Tε is the permittivity of the piezoelectric layer, d is the strain piezoelectric
constants, and T is the stress of the mechanical waves traveling in the piezoelectric
layer. More details about this equation are given in Chapter 2. If the piezoelectric
constants d are set to zero, then the piezoelectric coupling is “switched off” and by
setting the constants d to a nonzero value, the piezoelectricity is “switched on”. In the
mechanical problem, the constants d were equal to zero. In this section we set them to
their effective value for a PZT-5H material which are given in Table 4.1. The coupling
between the stresses in the layer and the electric fields is then established and the
knowledge of the mechanical field amplitudes yields the electrical fields.

This piezoelectric perturbation problem is very close to some electrical
perturbation problems solved in the past for SAW in piezoelectric media, [4.37], [4.38],
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[4.39] which consisted in evaluating the effect of a boundary condition change, for
example predicting the phase velocity change of a mode travelling from an electroded
region to a free region. The same principles apply to our problem and basically we
follow the main lines of the analysis carried out in these works.

In this section our primary interest is to calculate the electric potential associated
with the freely propagating acoustic modes, meaning that the electric potential is
generated by the acoustic disturbances and not by some applied electric field or charges.
It was proved in a detailed theory about the excitation of SAW by interdigital
transducers shorted at the top surface [4.6], that the magnitude of the bandwidth of the
transducer is controlled by the strength of the electrical potential of the freely
propagating acoustic surface wave at the position where the transducer would be placed.
Therefore the electric potential at the interface and its dependence on the parameters of
the layer media are important parameters for designing optimum transducer
configurations. If the free boundary of the piezoelectric layer is unelectroded and open-
circuit boundary conditions assumed, than the amplitude of the electrical potential at the
free surface (z = h) is needed to determine the amplitude of the waveguide modes
generated by applied electrical sources. One of the most important applications of
modal analysis is for analysing waveguide mode excitation by sources placed, in our
case, on the surface of the plate waveguide. The principles of these calculations are
given by Auld [4.7] and will be developed to some extent in section 4.6 which is
concerned with the transducer problem.

4.4.1 STRESS FIELDS AS  DRIVING TERMS FOR THE POISSON
EQUATION

When considering piezoelectricity in a dielectric, it is a fair assumption to
consider the electric fields to be quasistatic, and therefore the first Maxwell’s equation
[4.40] take the form

E =− ∇Φ (4.25)

and we have the auxiliary equation

.D 0∇ = (4.26)

where Φ is the electric potential and is a scalar quantity while E is the electric field
vector. The quasistatic approximation is discussed in more detail in section 4.5.
Eq.(4.26) defines the divergence of the flux density. The divergence of the vector D is
nonzero if electric free charges are present in the volume considered, i.e. the
piezoelectric layer. It is important to note that charges present at the surface of an
electrode at which a voltage is applied (transmitter case) are not free charges and
therefore the divergence is still null in such a case. A simple combination of
equations(4.24), (4.25) and (4.26) yields the well-known Poisson equation for the
electric potential in the layer [4.3],



Chapter 4 Second Stage: Piezoelectric Perturbation

Page 148

( )T. . . d : T∇ ε ∇Φ =∇ (4.27)

In the system of coordinates chosen, according to the hexagonal symmetry of the
film, and to the plane strain assumption, Poisson's equation reduces to

2 2
T T
33 112 2 T

33

1 .d : T
z x

∂ Φ ∂ Φ+ = − ∇
∂ ∂

ε ε
ε

(4.28)

Assuming propagation as j( t x)e ω −β , the partial derivative with respect to the
propagation direction x is simplified as 2 2 2x∂ ∂ =−β  and Eq.(4.28) simplifies to

( )
2

2 2
2 T

33
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∂ Φ − β = − ∇
∂ ε

γ (4.29)

where

T
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T
33

=
ε
ε

γ (4.30)

In Eq.(4.29) T are the stress fields in the piezoelectric layer. Eq.(4.29) is the
mathematical expression of the piezoelectric perturbation calculation and its solution is
the electric potential induced, through the piezoelectric coupling d, by the mechanical
waves travelling in the layer. In the weak coupling approximation T are the stress fields
in the layer calculated at the mechanical perturbation step. These are now considered as
the unperturbed stress fields and define the polarisation source for the electric potential
in the piezoelectric layer. Because of the dominance of mechanical energy over
electrical energy, the reaction of the electric potential on the waves is neglected. The
general solution of the differential equation (4.29) is

( ) ( )j x z z j x
g 1 2z e F e F e e− β −γ +γ − βΦ = Φ = + (4.31)

where γ is a constant obtained by a separation of variables with the right hand side equal
to zero. Let

j x
p (y)e− βΦ = Φ

(4.32)

be a particular solution to Eq.(4.29). The combination

( ) j x
n g p(y, z) (z) (z) e− βΦ = Φ + Φ

(4.33)

that satisfies the boundary conditions is the solution of the Poisson’s equation. The
problem is correctly conditioned since there are two boundary conditions for the two
unknowns F1 and F2. The coupling parameter, by analogy with the SAW problems can
be found using the normalized potential nΦ�
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n
n

n

( h)
p

Φ −Φ =�

(4.34)

where Pn is the power flow of the nth mode. The interactions of acoustic waves with a
transducer are controlled by the strength of the electrical potential of the freely
propagating waves at the position where the electrodes would be placed.

4.4.2 BOUNDARY CONDITIONS

This piezoelectric perturbation problem we have to solve is a boundary value
problem which is mathematically described by the Poisson’s equation (Eq.(4.29)) and
the relevant boundary conditions. In the general solution given in Eq.(4.31) there are two
unknowns and since the piezoelectric layer has two boundaries, we can set two
boundary conditions to make the problem well conditioned. The choice of the boundary
conditions controls the validity of the results. In the general case, the boundary
conditions depend on the electrical connections that are made and the surrounding
media. However in this problem we will consider only the simplest terminations. We
consider the structure to be metallic (aluminium) and we assume that in practical
experiments this structure will be grounded. Therefore at the interface z = 0 the
electrical boundary condition is

( )z 0 0Φ = = (4.35)

At the upper surface, which is mechanically free, two cases can be considered.
In the first case the space above the surface is vacuum and conductors are excluded, so
that there are no bound charges. This is known as the free-surface case and is shown in
Figure 4.23(a). In general there will be a potential in the vacuum above the surface and
many different boundary conditions can be used, including capacitance loading and also
short-circuit (Φ = 0) and open-circuit boundary conditions ( D.n 0=� ). In the second case
the surface is assumed to be covered with a thin metal layer with infinite conductivity,
which shorts out the horizontal component of the electric field at the surface but does
not affect the free mechanical boundary conditions. This corresponds to the case where
the electrode is purely passive and short-circuited, as shown in Figure 4.23(b). If
electrical connections are made with a reactive circuit, for example a wave generator or
an oscilloscope, the boundary conditions are complex. The simplest terminations to be
considered in this case are short-circuit and open-circuit.

It is well known in SAW technologies that the free-surface and the metallised
surface give different velocities and that the velocity difference gives a measure of the
coupling between the wave and the electric perturbations at the surface. This is a crucial
point in the performance of surface wave transducers.

For the free surface case, the potential in vacuum satisfies Laplace’s equation

2 0∇ Φ = (4.36)
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If the wavenumber of the mode is β, the potential Φ in the vacuum can be written

( )j t xf (z)e ω −βΦ = (4.37)

Using Laplace’s equation shows that the function f(z) has the form ( )( )z he ±β −  and since
the potential must vanish at infinity the potential is given for z ≥ h by

( ) ( )(z h) j t x
0e e− β − ω −βΦ =Φ (4.38)

where 0Φ is a constant. Since there are no free charges the normal component of the
electric displacement Dz must be continuous, so that in both the piezoelectric and the
vacuum we have

z 0D =ε β Φ , at z = h (4.39)

If the piezoelectric medium has very high dielectric constants, then it is a fair
assumption to consider that at the interface

( )zD z h 0= = (4.40)

and the boundary condition can therefore be written as

0
z

∂Φ =
∂

, at z = h (4.41)

For the metallised case the boundary conditions are

(z h) 0Φ = = (4.42)

If the metallised surface is used as an electrode, i.e. not short-circuited but wired to an
electrical generator, the boundary conditions, for the simplest terminations are

(z h) constantΦ = = (4.43)

( )
S

D.nQI dS
t t

∂∂= = −
∂ ∂� , at z = h (4.44)

where S is the surface of the electrode, I  the current, Q the charge, and n the vector
normal to the electrode.

4.4.3 SOLUTION OF THE POISSON EQUATION

The analytical solution of the Poisson’s equation is done in Appendix C using a
polynomial method. More details on that method can be found in [4.41]. The solution is
however simplified from the first order mechanical perturbation analysis. The stresses
have been developed in the form of linear polynomials, which can be written as
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5 5

I I I

T A (z h)
T A (z h) B I=1,2or 3

= −
= − +

(4.45)

The coefficients A1, A2, A3, B1, B2, B3 and A5 are obtained from equations (B.31) to
(B.34) in Appendix B, and the Poisson’s equation simplifies to

2
2 2

x5 5 zI I2 T
33

1 ( j d [A (z h)] d A )
z

∂ Φ − β Φ = − β − +
∂ ε

γ (4.46)

where summation over repeated indice I is assumed. The particular solution to Eq.(4.46)
is given by Eq.(C.11) and the solution to the homogeneous equation is given by
Eq.(4.31). Any linear combination of the general and particular solutions gives a unique
solution to Eq.(4.47). The solution can then be written as

( )z z
1 2 x5 5 zI I2 T

33

1(z) F e F e ( j d [A (z h)] d A )−γ +γΦ = + − − β − +
γ ε

    1 ≤ I ≤ 3   (4.48)

where summation over repeated indices I is assumed. It remains only to identify the
coefficients F1 and F2 from two boundary conditions. The first boundary condition is
that at the interface between the substrate and the layer. In this thesis we are interested
in modelling transducers for smart structures. In most of the cases the structure is a
metal, and therefore we assume that the substrate is a perfect conductor (i.e. infinite
conductivity) which shorts out the horizontal component of the electric field at the
surface. The boundary condition at the interface between the substrate and the
piezoelectric layer is therefore given by Eq.(4.42).

The second boundary condition is that at the upper surface of the PZT-5H layer.
We define 2 particular cases, the so-called open-circuit case and the so-called short-
circuit case, as shown in Figure 4.23.

 4.4.3.1 Metallised Top  Surface

Using  the boundary condition (z h) 0Φ = = , the solution is given by
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(4.49)

where summation over repeated indices I is assumed.
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 4.4.3.2 Free-Surface Case

If the upper surface of the layer is electrically free, then because electromagnetic
wave propagate in vacuum or in air, the electrical potential at the layer/vacuum (air)
interface must be continuous. This condition is given by Eq.(4.38) and the solution is
given as a  function of the constant Φ0
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where summation over repeated indices I is assumed. This potential constant is found
using Eq.(4.39) as
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and the solution for the potential within the layer is
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 1≤ I ≤ 3   (4.52)

If the relative dielectric constants of the piezoelectric layer are high, then it is
reasonable to assume that the potential in the vacuum half space is negligible and the
boundary condition simplifies into Eq.(4.41) and the solution is given by
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This solution applies to PZT-5H since it has a dielectric constant in the normal
direction that is 1700 times larger than the dielectric constant of vacuum. In most cases
this assumption is not very restrictive and the solution will remain representative of
many practical cases as long as the relative dielectric constant of the piezoelectric layer
is large. In the remainder of this Chapter, this solution is preferred to that given by
Eq.(4.52) firstly because of its simplicity, but also because it is derived from a boundary
condition at the upper surface that matches the electrical boundary condition available
in the piezoelectric finite element module developed in Chapter 3. In this FE model, no
external infinite element to model vacuum has been developed so far and therefore the
FE programs acts as if no wave can radiate outside the limits of the model. Therefore
validating Eq.(4.52) with the FE code would lead to errors than can be avoided by using
Eq.(4.53).

From Eq.(4.53) the electrical potential at the upper surface is given by:
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with 
T
11
T
33

= ε
ε

γ and where the summation over the indices I has been developed.

1 z1 1 z2 2 z3 3 2 x5 5(h) C (d A d A d A ) jC d AΦ = − + + + (4.55)

where C1 and C2 are constants depending only on the geometric, elastic and
piezoelectric constants of the thin layer and on the wavenumber of the mode under
consideration.
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It is noted that the term in A5 is 90 degrees out of phase with the other terms. Constants
A1, A2, A3 and A5 are the slope of the stresses in the piezoelectric layer, which are given
by the first order terms in the power series expansion. The potential is then given by

(1) (1) (1) (1)
1 z1 z2 z3 2 x5 51 2 3(h) C (d T d T d T ) jC d TΦ = − + + + (4.58)

The first order stress coefficients are functions of the particle velocities at the upper
surface, and we can rearrange Eq.(4.58) so that the particle velocity functions appear
explicitly
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with, from equations (4.18) to (4.21)
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It is seen that for z = 0, both constants C1 and C2 vanish which is in line with the
boundary condition for electric potential at the grounded interface. Eventually the
solution is explicitly given by
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By using Eq.(4.64) the electric potential was computed for the two fundamental
modes of the bi-layered system aluminium(1mm)/PZT-5H(0.1mm) and the results are
shown in Figure 4.24. The electric potential has been calculated using the particle
velocities of the modes P1 and P2 at the top surface of the PZT-5H layer.

Eq.(4.64) is the sum of 4 terms, each being a multiple of the piezoelectric
constants d. These terms arise from the integrated effect of the ( ). d : T∇ term in the
Poisson’s equation. The term in dz5 is derived from the shear stress and the terms in dzI

derive from the direct stresses TI where I can take the values 1, 2 or 3. For this reason
none of them can play an important part in generating the electric potential until the
layer is thick enough to have a significant integration volume. Such an effect is directly
dependent on the electrical boundary conditions chosen. Because the substrate is a
grounded metallic plate there is no potential within the substrate, and the potential
develops from zero at the interface to its maximum value at the top surface. When each
term in Eq.(4.64) is computed separately, it appears that the coupling, for the two
modes, is dominated by the terms arising from the normal stress. This is due to the fact
that the slope of the normal stress within the layer is the steepest one. From Figure 4.14
and Figure 4.15, it is seen that the magnitude of the normal (T3) and inplane (T1)
stresses are similar at the interface but whereas T1 varies only slightly through the
thickness of the layer, the normal stress must be zero at the top surface. Therefore its
spatial derivative is higher than that of T1 and the term arising from the normal stress
dominates the coupling. For example, at 1MHz for the mode P2, the term in dz3

represents 66% of the sum of the 4 terms.

4.4.4 FINITE ELEMENT VALIDATION

At the mechanical stage, we used the program Disperse to validate our
mechanical perturbation formulae. However Disperse does not model piezoelectric
materials, therefore to validate the analytical formula for the electrical potential, two
series of finite element models were designed in order to predict the amount of electrical
potential associated with a given mode propagating along the model. To do so we used
the finite element code presented in Chapter 3. The FE models comprised a
piezoelectric layer (PZT-5H) rigidly attached to an aluminium plate. The PZT-5H  layer
is 100µm thick and 100 mm long and is modelled with 2 elements through its thickness
and 1000 elements along its length. The aluminium plate is 1mm thick and 100mm
long. It is made of 10 by 1000 square elements as shown in Figure 4.25. The elements
used are two-dimensional, four noded quadrilaterals and the calculations are done
assuming axi-symmetry and free boundary conditions for all cases. Within the
aluminium plate, square elements, 100µm by 100µm, elements are used whereas in the
PZT-5H layer, two rectangular elements are used through the thickness of the layer.
Using only one quadrilateral element would “force” the fields to vary linearly through
the thickness of the layer. This may be convenient to validate our model but can still be
too coarse to model accurately the real behaviour of the system. Therefore 2 elements
were used through the thickness of the layer in order to make sure that the real
behaviour of the fields could be modelled more accurately than in the approximation
analysis. The models vary from each other in the centre frequency and the magnitude of
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the excitation signal applied at the nodes along the left-hand edge of the model. In all
models, the excitation signal was a 6 cycle Hanning windowed toneburst. The
bandwidth (40dB down points) of such a signal depends upon its the centre frequency.

The first series of models were designed to generate the mode P1 at various
frequencies within the range 0 to 2.5MHz. At each particular frequency, the amplitude
of the excitation signals, applied in each directions at each node along the edge of the
model, match the magnitude of the displacement mode shapes in the normal and the
inplane directions. However these mode shapes have been calculated with Disperse
what implies that they are exact but have been calculated for non-piezoelectric
materials. This procedure was repeated at several frequencies for the mode P1 and then
for the mode P2 at the same frequencies. Below 500 kHz, models have been run at every
50 kHz and above 500 kHz, models have been designed at every 250 kHz up to 2.5
MHz. This results in 19 models for each of the two modes.

The results are presented in Figure 4.26 and are compared with the perturbation
calculations obtained from Eq.(4.64). The electrical potential was monitored along the
top surface at 500 nodes. When the modes are dispersive, the signal in the time domain
looses the shape of the original 6 cycle toneburst and spreads in time. Therefore a direct
reading of the amplitude of the signals in the time domain would be erroneous at
frequencies where the modes are dispersive. Therefore the results obtained were
processed using the two-dimensional Fourier transform method (2-D FFT [4.16]). This
technique involves two Fourier transform stages. Firstly, the time domain traces from
each individual monitoring point are Fourier transformed into the frequency domain,
yielding the frequency spectrum for each monitoring point. For each frequency
component, a spatial Fourier transform is carried out encompassing all consecutive
monitoring points; this yields the wavenumber components present at each frequency.
The resulting two-dimensional array contains the amplitudes of the different frequency
and wavenumber components of the signal. The Lamb modes present have different
wavenumbers, owing to their different phase velocities, and therefore appear at different
locations on the wavenumber axis, allowing their amplitudes to be measured
independently. The electrical potential has been calculated by integrating the magnitude
of the 2D-FFT for each mode along its dispersion curve and the magnitude as a function
of frequency is shown with ‘+’ marker in Figure 4.26. The perturbation calculations are
plotted as lines in Figure 4.26 and have been obtained from Eq.(4.64). The plain lines
represents the electrical potential obtained from Eq.(4.64) when the particle velocities at
the top of the PZT-5H layer are used. The dashed lines represent the electrical potential
calculated from Eq.(4.64) when the particle velocities at the top surface of the
aluminium plate considered alone are used. To compare FE predictions and the
perturbation calculations both quantities have been normalised to a common quantity.
The electrical potential given in Eq.(4.64) depends upon the particle velocities and in
general such quantities are normalised to unit power flow in the direction of propagation
but the power flow is not a quantity easily accessible from the finite element model
because of the inaccuracies in the stress field of the finite element model. Finite element
analysis using displacement elements enforces displacement continuity at the nodes, but
there are no constraints on the continuity of the stresses across elements [4.42]. Unless
the element can exactly model the required stress distributions, which is very rarely the
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case for guided waves, there will be discontinuities in the stresses. The power flow
formula depends on the stresses in the same way as the orthogonality relationship and it
was shown by Pavlakovic [4.43] that the inaccuracy in the stress profile of guided
modes can be large enough to render the mode orthogonality relationship useless.
Therefore instead of normalising the finite element results to unit power flow they have
been normalised to a more accurately predicted field, the particle displacements at the
top surface of the plate. Therefore the electrical potential in Figure 4.26 are given for
modes having, at the top of the PZT-5H layer, a displacement amplitude, in the
direction of propagation, equal to one nanometer.

It is seen that below 1.5 MHz, better agreement between the FE predictions and
the perturbations calculations is obtained when the exact particle velocities are used in
Eq.(4.64). Thus, in maximizing the coupling the proper values of particle displacements
at the top of the layer should be sought. However, at least up to 500 kHz in Figure 4.26,
the electrical potential is well approximated using the particle velocities at the top of the
aluminium plate (the dashed lines).

Although the agreement between FE predictions and perturbation calculations
are good up to 1.25 MHz, it deteriorates above 1.5 MHz and the problem comes from
the method used to extract the FE points. As mentioned above, to generate the modes in
the models, excitation signals matching the displacement mode shapes have been
applied at one edge of the model. However this technique is inaccurate for two reasons.
Firstly the mode shapes have been calculated for a non-piezoelectric layer and not for an
active PZT-5H layer, therefore the mode shapes are inaccurate. Secondly the mode
shape magnitudes have been matched only at the centre frequency of the 6 cycle
excitation toneburst. Therefore the modes are excited over the whole bandwidth of the
toneburst and not only at the centre frequency but the excitation displacement profile
matches only the mode shapes at the centre frequency and not at the other frequencies
of the excitation bandwith. Therefore the displacements applied at the edge of the model
are not exactly those that would be needed to generate one mode only. When the modes
are well separated, as it is the case for the two fundamental modes below 1.25 MHz as
seen in Figure 4.27(a), the modeshapes are very different and only one mode is excited
although the excitation profile is not exactly matching the mode shape of the mode that
is generated.

However, above 1.25 MHz, not only the two fundamental modes but also the
cut-off modes can be generated. If the mode shapes are not perfectly reproduced by the
applied excitation then the modes present at that frequency can be generated. Figure
4.27(b) shows that the first cut-off mode appears at 1.25 MHz for the
aluminium(1mm)/PZT-5H(0.1mm) system, without considering the piezoelectric
coupling. Above 1.25 MHz, this mode is a propagating mode and can be generated.
Figure 4.28(a) shows the electrical potential associated with the mode P2 (lowest
extensional mode) after it has propagated over 67.5 mm. The shape of the signal is that
of at least two signals interfering with each other. The first signal arrival is the mode P2

and it is believed that the second is the cut-off mode P3. Figure 4.28(b) shows the signal
that would be monitored at the same location if the mode P2 was the only one to
propagate. This signal has been obtained from the program DISPERSE and takes into
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account the dispersion of the mode and the shape of the 6 cycle Hanning windowed
excitation toneburst.  If now we suppose that both the modes P2 and P3 are generated at
the same time in the model and assuming that the mode P3 has an amplitude equal to
20% of that of the mode P2, then after having propagated over 67.5 mm, the overall
signal, for at the 6 cycle Hanning windowed toneburst, with centre frequency 1.5MHz,
would look like that shown in Figure 4.28(c). This time trace is also a simulation
obtained from DISPERSE, from the dispersion curves of the aluminium(1mm)/PZT-
5(0.1mm) system. Although the piezoelectric coupling is not taken into account in the
simulated signal shown in Figure 4.28(c) it is seen that it is very similar to that in Figure
4.28(a). This indicates clearly that at 1.5 MHz the mode P2 has not been generated alone
in the FE models but the cut-off mode P3 has also been generated. Part of the energy is
carried by this mode and less energy is carried by the mode P2. Therefore when
performing the integration in the wavenumber-frequency plane along the dispersion line
of the mode P2, the energy carried by the cut-off mode P3 was not taken into account
and therefore the magnitude of the electric potential associated with the mode P2 has
been underestimated leading to the large mismatch between the FE prediction and the
perturbation calculations. This phenomenon applies at all the frequencies above the first
cut-off frequency and also to the predictions made for the mode P1. Therefore the FE
points above 1.5 MHz cannot be trusted and the predictions and the perturbation
calculations can be compared only in the range 0 to 1.25 MHz where it is seen that the
agreement is very good.

The perturbation calculations for the electrical potential have been validated for
one simple case and before proceeding with the more complex cases, it is necessary to
review the assumptions and the approximations that have been used both in the
mechanical perturbation stage and in this piezoelectric perturbation stage.

 4.5 DISCUSSION ABOUT THE VARIOUS ASSUMPTIONS AND
APPROXIMATIONS USED

In the two first stages, we made use of various approximations and we made a number
of assumptions which all contribute to limit to some extent the validity of the analysis. It
might have appeared to the reader that we made use of numerous approximations and
we think it is important to regroup them all here in order to explain in some detail the
ground on which each of them hold, and how each contributes to limit the analysis. All
the items listed below are not necessarily independent but they must be consistent if the
final perturbation expression is to have any meaning. Basically six hypothesis have been
made throughout the development of the perturbation analysis:

1 The electrostatic approximation (but using full dynamic equations).

2 The assumption of small perturbations.

3 Most of the power flow is contained in the mechanical system.

4 Acoustic stress defines the polarisation source for the potential, through
the piezoelectric strain constants d.
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5 The electrical boundary conditions are independent of the direction of
propagation.

6 The total power flow is unchanged by the addition of a shorting plane.

Item (1) is essentially assumed in treating all problems dealing with acoustic
waves in piezoelectric ceramics because the propagation constant of the acoustic waves
is 105 times larger than the value for an electro-magnetic wave. These five orders of
magnitude arise from the ratio of the velocity of electro-magnetic waves to the velocity
of acoustic waves and permit use of the quasistatic approximation for the electric
potential, while using the full dynamic format for the elastic terms. Details on the
development of Maxwell’s equations and the piezoelectric equations under the
quasistatic approximation are given in chapter 8 of [4.7]. Obviously such an assumption
has other consequences as well as conveniently simplifying the Maxwell’s equations. If
this approximation is valid it means that the magnetic portion of the electrical Poynting
vector is negligible compared to the electric portion and a degenerate form of the
Poynting energy flux may be used, which is the case in all this thesis and is implicitly
used in the mode amplitude equations derived from the modal analysis. In addition the
condition must also hold in the vacuum (or air) immediately outside the piezoelectric
body to satisfy the electric boundary conditions at the interface and consequently, the
electric equation in the vacuum in the immediate vicinity of the piezoelectric body is
Laplace’s equation (Eq.(4.36)).

Item (2) is based partly on empirical results. Numerical results for a two-layered
mechanical problem show that the stresses are weakly perturbed by the addition of a
thin layer as long as the thickness of the layer remains small compared to the
wavelength of the considered wave. This has been proved for surface acoustic waves
where it can be easily understood since the wavelength of those waves is inversely
proportional to the frequency (constant phase velocity). For plate modes however the
phase velocity changes with frequency so that the thickness to wavelength ratio can
vary significantly over a narrow frequency range. This is especially obvious near cut-off
frequencies for high-order modes but also for the fundamental modes in frequency
ranges where their group velocity is undergoing steep variations. For the
aluminium(1mm)/PZT-5H(100mm) system the wavelength to layer thickness ratio is
always above 50 below 5 MHz for both fundamental modes and is therefore high
enough to consider the small perturbation assumption valid.

Item (3) is not independent of item (2). Since the electromagnetic fields are
weakly coupled to the acoustic fields one may be tempted to assume that the majority of
the power flow is contained within the acoustic wave and hence the mechanical fields
are little affected by changes in the electromagnetic fields. For SAW it has been proved
by Lakin [4.38] that this assumption is safe even for strongly coupled materials like
LiNBO3. In Chapter 3 we derived the solutions for longitudinal and shear vertical waves
propagating in PZT-5H. We found that for quasistatic waves the elastic energy density
is much greater than the electric energy density. The assumption is that this conclusion
holds for acoustic plate modes in the bi-layered system aluminium/PZT-5H.
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Item (4) is correct as long as the acoustic stress, which creates the polarization,
is that resulting from a solution of the coupled acoustic and electromagnetic equations.

Item (5) was required to simplify the integrations leading to Poisson’s equation
but can be relaxed if the electrical impedance is varying slowly in terms of wavelengths
along the propagation direction. However this case is not considered in this study.

Based on the assumption that the stresses are the same when the top surface is
short-circuited or not, the total power flow is assumed to be unchanged by the addition
of a shorting plane. Because the total power flow of the wave is the addition of a
mechanical power flow and an electrical power flow the assumption that the total power
flow is unchanged by the addition of a shorting plane is dependent on items (1) and (3).

 4.6 TRANSDUCER PROBLEM

At this stage of the development of our transducer model,  approximate solutions
for the dispersion curves and for the potential have been found for the two fundamental
modes propagating in a substrate/piezoelectric layer system. The two layers are still
considered as being infinite in the direction of propagation so the modes propagate in
the system without being scattered. If we now assume that a thin electrode (having no
mechanical influence) of finite length is deposited on top of the piezoelectric layer, as
shown in Figure 4.29(a), then we have a transducer problem. Figure 4.29(b) shows the
new electrical boundary conditions. A voltage V is applied across the electrode attached
to the top surface of the piezoelectric layer and the interface between the piezoelectric
layer and the grounded metallic substrate. Our aim in this section is to calculate the
amplitude of the modes, generated by the electrical source,  that propagate in the system
away from the electrode.

The specific problem of the excitation of Lamb waves by external sources, being
electrical or mechanical, has been extensively studied. One of the pioneering studies has
been performed by Viktorov [4.20], who established the analytical expressions for
wedge transducers emitting in isotropic plates. In the late eighties there was much
interest in multisensing oscillators and sensors using IDTs to generate plate waves and
detect variations of their properties [4.26], [4.27], [4.44]. These works made great use of
the perturbation theory and are recommended for their detailed review of experimental
set-ups. In the nineties, the excitation of ultrasonic Lamb waves and shear-horizontal
waves in piezoelectric plates by SAW devices (IDTs in most cases) has been studied
both theoretically and experimentally. Joshi [4.5] and Jin [4.45] have studied the
excitation of Lamb waves by IDTs deposited on piezoelectric plates, using the Greens
function technique. Using the same technique the wave propagating at the interface
between a piezoelectric plate and a viscous [4.46] or dielectric liquid has been studied
by Josse [4.47]. Guided modes in loaded piezoelectric plate have been studied by Yang
and Chimenti [4.48]. Laurent [4.49] used two pairs of IDTs deposited on both sides of
the piezoelectric plate to generate selectively either the lower symmetric or the lower
anti-symmetric Lamb modes. These works, from Joshi to Laurent, use various
techniques, none of which we decided to use in this study. More recently, works have
been published on solid [4.50] and liquid [4.15] wedge transducers as well as air
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coupled transducers [4.51]. Other, more atypical excitation techniques, have also been
theoretically studied including comb transducers [4.52], buffers [4.53] and Hertzian
contacts [4.54]. The problem of piezoelectric transducers embedded in the waveguide
has been studied by Moulin [4.55] using a finite element technique. Most of these recent
works are making use of the normal mode expansion technique.

This quick review shows that the problem involving forced loading of plate-like
waveguides can be tackled using many different techniques. The most general and
powerful technique is to treat the source function as a combination of point loads and
solve the problem for a point load. Then assuming that the governing equations are
linear the overall solution is given by the linear superposition of the Green’s function of
the governing equation. This technique, which usually involves integral transform
techniques and integration in a complex plane, is cumbersome, and an example of its
complexity is given by Morgan [4.3]. Moreover it is not a versatile technique and for
each different transducer design a new solution must be sought. A more attractive
technique is the normal mode expansion technique used by Jia [4.15], Ditri [4.50] and
Degertekin [4.56]. Recent work by Moulin [4.57] emphasises the versatility of the
technique by using finite element predictions of the mechanical fields generated by a
piezoelectric transducer to predict the amplitudes of the normal modes generated by the
transducer.

The normal mode expansion technique is analogous to the eigenfunction
expansion methods discussed in many theoretical physics books [4.8], [4.58], [4.59].
Since Lamb modes are eigenmodes of a solid, infinite and stress free plate, the normal
mode expansion technique is particularly suited to predict Lamb waves as a function of
the plate excitation and the goal of this technique is to find a general expression for the
unknown amplitudes of the modes in which the fields have been expanded. The general
principles along with the main advantages of this technique are described in textbooks
by Auld [4.7], Kino [4.1], Jones [4.60] and more recently by Rose [4.61]. The details of
the derivations are given in publications made in the early seventies when many
researchers all around the word paid a considerable amount of attention to the problems
of the excitation and the reception of surface acoustic waves (SAW) and the design of
suitable excitation and reception devices. Auld derived the reciprocity relationship
[4.62], and normal mode theory [4.63] for acoustic wave guide problems to determine a
variational expression for the input admittance of an IDT. Kino [4.64] developed the
perturbation theory on the basis of the normal mode theory to study the properties of a
piezoelectric-semiconductor system in terms of a small perturbation of the unperturbed
defined as one with the semiconductor absent. Many other works followed among them
Wagers [4.65] who expanded the fields of the transducers in short-circuited modes by
contrast with the open-circuited modes used by Auld [4.7, Chapter 10]. These works are
important to our analysis since they present the theoretical basis of the normal mode
expansion technique. However they are only concerned with surface acoustic waves
(SAW) and not with Lamb waves and the important problem that constitutes the focal
point of the work presented in this chapter is the generation of Lamb waves. However
the reciprocity relationship is by no means limited to a particular mode and as pointed
out by Wagers [4.66] and Laurent [4.49], the excitation of plate modes can be solved in
the same way as surface acoustic waves.
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The efficacy of normal mode expansion depends directly on two main
considerations: completeness and orthogonality of the eigenfunctions. The question of
the completeness of the expansion is a delicate question since, to our knowledge, there
exists no proof of it even for the Lamb wave modes. However the completeness of the
set of modes is always assumed in practical problems since if the set of modes were not
complete then the solution of the governing equation might not be expressible. A
definition of completeness is given in Chapter 2. Establishing orthogonality of the
modes is essential since it is the tool by which the expansion amplitudes are determined.
In practice this means that a new orthogonality relationship (and a new normalisation
formula) must be found for each new system. Peach [4.33] derived a normal mode for
piezoelectric plates of limited extent and applied it to the prediction of the amplitude of
energy trapped resonator modes. Briers [4.35], [4.67] showed in great detail how a new
orthogonality relation can be derived for Stoneley waves. These works show that the
normal mode expansion technique can also present some difficulties despite its apparent
simplicity. However, this is a not a problem that we have to face here since the modes
that propagate in our system are Lamb modes, or perturbed Lamb modes. Therefore we
can use the orthogonality relationship for Lamb modes presented in Chapter 2.

The perturbation theory and the normal mode expansion technique are based on
similar considerations and the starting point for both theories is the reciprocity
relationship. In the following section we present a perturbation theory based on the idea
that total field of a single mode in a perturbed waveguide can be expressed as a
weighted sum of the original modes in the unperturbed medium. If we assume that the
effect of the applied excitation can be expressed as a change in the boundary condition
of an originally free waveguide, then the perturbation is a change of boundary
conditions and the amplitude of the perturbed modes can be expressed as a function of
the new boundary conditions.

4.6.1 NORMAL MODE EXPANSION

The normal mode excitation equations have been posed by Auld [4.7] and here
we only present an heuristic derivation of them, stressing the assumptions made in the
derivation. More detailed and rigorous derivation can be found in [4.62] and [4.63].

Since Lamb waves are eigenmodes of a solid infinite and stress-free plate, the
normal mode expansion method is suitable for this application. If the plate is
anisotropic, the dispersion characteristics of the normal modes are dependent on the
orientation between the wavevector of the mode and the crystallographic coordinate
system of the medium. In this section, following the example treated in the previous
section, the piezoelectric crystal is Z-cut, and the modes propagate along the x-
direction. Figure 4.30 shows the coordinate axes and the geometry of the system. In this
coordinate system, the fields of any mode propagating in the system are uniform in the
y-direction; the problem is therefore one of plane strain in the plane (x, z). The fields
propagating in the waveguide can therefore be written in the following form

j( t x)f (x, z, t) g(z)e ω ±β= (4.65)
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where g(z) represents the modal distribution, or the z-variation of the field f, and β is the
wavenumber of the mode, determined at the frequency ω, by the dispersion equation.
The frequency is real and positive but the wavenumber, which is real for the
propagating modes, can be complex for non-propagating modes.

Let us assume that the plate-like waveguide is only mechanically excited by
either an internal force field F or a surface traction field TS and let us consider two
different volume and surface excitations (F1, Ts1) and (F2, TS2) of the waveguide,
considered temporarily non-piezoelectric. In the case of harmonic excitation and
assuming a lossless material, there exists a relation, called complex reciprocity relation
[4.7], between the acoustic fields (v1, T1) and (v2, T2) generated by the two excitation
sources

* * * * * *
1 2 2 1 1 2 2 1 1 2 2 1(v .T v .T ).x (v .T v .T ).z v .F v .F

x z
∂ ∂+ + + = − −
∂ ∂

 (4.66)

where the asterisk * denotes complex conjugation. By applying it to two distinct
eigenmodes of the waveguide, with wavenumbers nβ and mβ and associated acoustic
fields (vn ,Tn) and (vm ,Tm), following Auld [4.7], the orthogonality relation is given by

nm n mP 0 for= β ≠ β (4.67)

with

( )d * *
nm m n n md

1P v .T v .T .x dz
4 −

= − −� (4.68)

where x is the unit vector for the x-direction. Thus, the plate modes in the waveguide
are demonstrated to form a set of normal modes. Therefore, the acoustic fields (v, T)
created in the waveguide by the arbitrary excitation fields (F, TS), can be expanded into
a summation over the normal modes:

m m
m

m m
m

v(x,z) a (x)v (z)

T(x, z) a (x)T (z)

=

=

�

�
(4.69)

where vm(z) and Tm(z) are the acoustic field of the mth plate mode, and am(x) is the
modal amplitude, generally complex and x-dependent. The perturbation is incorporated
in the formalism by this non-trivial x-dependency of the modal amplitude. For an
unperturbed mode, i.e. a mode propagating freely in the free waveguide, am(x) = exp(-
iβmx). A perturbed mode is a mode that exists in the waveguide plus source system. For
example if the excitation are forces applied along a finite length, the system of
waveguide plus forces is different from the waveguide without the forces and the
applied forces changes the boundary conditions. Therefore in the forced region the
waveguide is different and this difference is dependent on the length of the forced
region. It is in that sense that the x-dependence of the modal amplitude incorporates the
perturbation introduced by the excitation.
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The solution of the transducer problem is then reduced to the determination of
each modal amplitude am(x) since away from the transducer only Lamb modes can
propagate in the plate and the fields of these modes are already known. To determine
their amplitudes, we consider two solutions and apply the reciprocity relationship. The
first solution is taken to be the fields in the system perturbed by the applied source and
this first solution is expanded in terms of the original modes of the unperturbed system.

1

1

v (x, z) v(x, z)
T (x, z) T(x, z)

=
=

(4.70)

The second solution is taken to be one particular mode of the unperturbed
system, for example the nth normal mode of the unperturbed system

( )

( )

i x
2 n

i x
2 n

v (x, z) e v (z)

T (x, z) e T (z)

− β

− β

=

=
(4.71)

Solution “1” is a disturbance and the boundary conditions at the surface are unspecified
at this stage. Setting F2 = F1 = 0 in Eq.(4.66) eliminates the volume sources and the
integral over the thickness of the waveguide vanishes for all modes unless m = n due to
the orthogonality relationship. Thus from Eq.(4.66) the amplitude of the nth normal
mode is given by

( ) ( )nn n n Sn4P j a x f x
x
∂� �+ β =� �∂� �

(4.72)

with

{ }* *
Sn n S S nf (x) v (x).T (x) v .T (x) .z= + (4.73)

The second solution has been chosen to correspond to modes propagating in a free
waveguide. This implies that these modes satisfy the free surface boundary condition,
Tn.z = 0. Therefore Eq.(4.73) reduces to

{ }*
Sn n Sf (x) v (x).T (x) .z= (4.74)

which indeed is the formulation of a very well-know fact, i.e. a traction force drive
corresponds to the modal boundary condition nT .z 0= . The other possibility is obviously
to consider a clamped waveguide, in which the modes must satisfy the boundary
conditions nv 0= , and the only possibility to drive a clamped waveguide at its
boundaries, is to apply a velocity field.

Assuming that there is no excitation source outside an interval –L/2 < x < L/2 (see
Figure 4.30(a)), the solution of this differential equation Eq.(4.72) for propagating
modes traveling rightward (in the positive x-direction) is given by
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n
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j x L 2 j
n SnL 2nn
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4P

− β
− β η

−
= η η� (4.75)

We then write the forcing function explicitly in terms of the applied tractions and the
velocity components of the propagating mode at the plate surface as:

( ) ( )n n n
L 2 L 2 L 2j j x j x* *

Sn nx xz nz zzL 2 L 2 L 2
f ( )e d v (d) T x,d e dx v (d) T x,d e dx− β η β β

− − −
η η= +� � �

(4.76)

where Txz and Tzz are the lateral and normal components of the applied traction TS.
Assuming that Eq.(4.75) can be solved for each mode, the total fields in the waveguide
can be determined. However the total field can be obtained only from an infinite
summation of all modes, including the non-propagating modes. Non propagating modes
(with complex wavenumbers) will not be taken into account in this study. The error
introduced by taking only the propagating modes into consideration is only significant
near the source. The amplitude of the evanescent modes decreases exponentially in the
x-direction, so their influence decreases exponentially away from the source.

To use the formulation for the modal amplitude, the stress and velocity fields of
the unperturbed waves must be known. In the present problem, these fields are those of
the modes propagating in the bi-layered system. These fields have been determined
approximately at the previous mechanical perturbation stage. Therefore if the applied
source, i.e. the applied traction in Eq.(4.75), is known then the amplitude of the modes
is also known. The problem we want to solve in this section is a transducer problem
where the applied source is electrical and not mechanical as presented above.

This transmitter problem is in fact the combination of two problems. One
problem is the wave generation in the piezoelectric layer by a specified electrical source
(charge distribution or potential source), and the other is the electrostatic problem of
determining the charge distribution (or the electric field) on the electrode due to the
applied voltage. These problems may be treated separately and then combined by means
of an integral equation. The next section derives a relationship between the mode
amplitudes and the applied electric source. Then, section 4.6.3 presents some important
transducer characteristics and emphasises the differences between SAW devices and our
bi-layered system designed to generate plate modes. Section 4.6.4 shows how to solve
the electrostatic problem and formulae for the electrical charge distribution are derived
for a single strip. Eventually, in section 4.6.5, the amplitudes of the modes S0 and A0

generated by the applied voltage at the electrode are calculated and validated using the
finite element program.

The originality of our work is that we coupled the perturbation theory with the
normal mode expansion technique to calculate the amplitude of Lamb waves.
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4.6.2 TRANSMITTER PROBLEM

The waveguide is excited via an electrical voltage applied to an infinitely thin
electrode whose effect is only to modify the electrical boundary conditions at the upper
surface of the piezoelectric layer. The modes propagating in the piezoelectric layer are
not only described by their velocity and stress fields but also by their electrical potential
and their normal electrical displacement. The electrical fields can also be expanded in a
sum of  normal modes

m m
m

z m zm
m

(x,z) a (x) (z)

D (x,z) a (x)D (z)

Φ = Φ

=

�

�
(4.77)

In the transmitter case, the sources are electrical. The electrode can be either
driven by an applied potential ΦS or an applied normal electrical displacement DSz in
the same way that the mechanical source can be either forces or velocities. Therefore
the forcing function in Eq.(4.72) is replaced by electrical fields, yielding

( ) ( ) ( )( ) ( ) ( )( ){ }* *
nn n n n S S n

z h
4P j a x x i D x x i D x .z

x =

∂� �+ β = − Φ ω + Φ ω� �∂� �
(4.78)

where, as seen in Figure 4.29(b), the electrical drive is applied at z = h, the upper
surface of the piezoelectric layer and the thickness “t” of the electrode is considered to
be zero. Φn is the potential associated with the elastic waves propagating in the
piezoelectric layer, and Dn is the strain-induced electric displacement These quantities
correspond to the modes propagating in the bi-layered waveguide before the electrical
source is applied, i.e. the unperturbed modes. The fields of the modes in the waveguide
being known, Eq.(4.78) provides a complete formulation of the excitation problem.

 4.6.2.1 Boundary Conditions

In the same way that the modal boundary conditions and the nature of the drive
are connected in the purely mechanical case, choosing the electrical boundary condition
of the unperturbed modes to be short-circuit or open-circuit determines implicitly
whether the modes are driven by the potential or the charges. Because the normal modes
must satisfy the boundary conditions, one of the two source terms on the right-hand side
of Eq.(4.78) will vanish. If we assume that the electrical boundary condition of the
unperturbed system is short-circuit at the upper surface of the piezoelectric layer, than
the normal modes must satisfy the boundary condition

( )n z h 0=Φ = (4.79)

and the potential distribution through the thickness of the piezoelectric layer of the
short-circuited unperturbed modes is given by Eq.(4.49). Therefore the amplitude of the
modes excited by the potential drive is given by
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( ) ( ) ( )( )*
nn n n S n

z h
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x =

∂� �+ β = − Φ ω� �∂� �
(4.80)

This corresponds to the situation where the initial boundary condition, n 0Φ =  is
perturbed to make the potential finite, which occurs, for example if a gap is cut in a
metal film placed on the substrate. This condition can also be used in other situations
when it is more convenient to use a potential drive than a charge drive. Indeed finding
the distribution of the charges on a forced electrode is not always very easy depending
on the shape of the electrode, and in any case the charge has singularities at the edges of
the electrode. When seeking for a mathematically simple formulation of the admittance
of the transducer, Wagers [4.65] found it more suitable to chose the electric potential as
the function that determines the admittance, and therefore to employ short-circuited
normal modes. In general though this is not the boundary condition that is chosen. It
was customary in most of the analysis of IDTs for SAW to chose open-circuit boundary
conditions [4.63], [4.64], [4.66]. In this case the potential associated with the nth mode is

nΦ , given by Eq.(4.64), and the electrical boundary condition at the surface is that of
continuity of electrical displacement density nD .z . Then if a surface charge
distribution ( )S xρ is introduced, as would be the case if electrodes were placed on the
substrate, the boundary conditions at the upper surface are perturbed to become

( )z z Sz h
D D x+ −

=
− =ρ (4.81)

The source function therefore must represent the effect of the applied charges on the
propagating modes and the differential equation for the amplitude of the modes is given
by

( ) ( ) ( )( )*
nn n n n S z h

4P j a x x i D x .z
x =

∂� �+ β = − Φ ω� �∂� �
(4.82)

 4.6.2.2 Amplitude of the Radiated Modes

Here we attempt to find the amplitude of the plate modes generated in the bi-
layered system aluminium(1mm)/PZT-5H(0.1mm), when an AC voltage is applied
across the electrodes. The region beneath the electrode is the excitation region in which
the forward and backward travelling waves are co-existing but on each side of the
excitation region only one wave propagates as shown in Figure 4.30(b). The amplitudes
of the forward and backward normal modes outside of the excitation zone are given by
two differential equations similar to Eq.(4.82)

( ) ( ) ( ){ }*
n n n S

nn

ij a x h D x,h .z
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(4.83)
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(4.84)
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for positive and negative traveling modes respectively. Pnn is the magnitude of the total
power flow per meter of acoustic beam, DS(x, h) is the electric displacement at the
location of the electrode and ( )*

n h+Φ is the complex conjugate of the electrical potential
associated with the  nth mode propagating freely in the positive direction, and is given
by Eq.(4.64). The electrical potential is not a function of the x-coordinate. Eq.(4.83) and
Eq.(4.84) can be integrated to obtain explicit representations for the normal mode
amplitudes. In carrying out the integration use is made of the boundary conditions at the
ends of the electrode. If the ends of the electrode are x L 2= ± the positive wave is zero
at the end x L 2= − and the negative wave is zero at the end x L 2= . Direct integration
of the mode amplitude equations, following [4.7 Vol. I Chapter 6] yields

( ) ( ) ( ){ }n
n

j x L 2 j *
n n SL 2nn

i e La x e h D ,h .z d , z
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and the amplitudes of the modes are thus
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Eq.(4.83) and Eq.(4.84) give the amplitude of the modes throughout the
transducer region. To evaluate the integrals it is necessary to relate DSz to known
quantities such as the applied voltage and current.

4.6.3 TRANSDUCER ANALYSIS.

The analysis of a thin disk piezoelectric bulk wave transducer [4.70], and its
extension to normal modes [4.7], shows that it is not sufficient to calculate the
amplitude of the radiated acoustic wave in terms of the electric current or voltage
applied at the input terminals of the transducer because the acoustic field reacts back on
the electrical source and, in this way, affects the level of excitation. Back reactions
always occur when the electrical source has a finite electrical admittance and their
importance depends on the relationship between the source impedance and the input
impedance of the transducer. Therefore the calculation of the input admittance is of
crucial importance in transducer analysis. This applies directly to waveguide
transducers.
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 4.6.3.1 Quasi-Static Analysis for the Transducer Admittance.

A global description of a bulk wave transducer is usually provided in terms of
radiation conductance Ga. A dielectric layer between two electrodes is a capacitor with
admittance Yin = jωC. When the medium is piezoelectric the direct piezoelectric effect
excites acoustic waves which carry energy away and that can be expressed in terms of
radiating conductance. The eventual mechanical and electrical losses are represented by
the loss conductances, Gm and Ge respectively. The radiation conductance, Ga, is the
useful power and from it the efficiency of the transducer is deduced. The technique used
to maximize this power is to add an inductance in parallel with the capacitance to cancel
the term jωC, and to add a transformer to change the impedance of the input to match it
with the transducer impedance. Basically, the bulk wave transducer can be described as
shown in Figure 4.31.

Analogously, the conversion efficiency of the interdigital electrode transmitter is
determined by its radiation admittance Ya into a non reflecting acoustic waveguide. This
radiation admittance is in parallel with the static capacitance of the transducer. Electric
circuit theory allows us to model the receiving transducer as a constant current source I
in parallel with the input admittance (Ya + iωC) of the same transducer when used as a
transmitter. When a voltage V is applied to an isolated transducer, i.e. when there is no
incident acoustic wave and the charge density is not affected by the presence of any
other electrodes on the surface (Figure 4.32), the transducer generates a current I, and
the ratio I/V is the transducer admittance, Y. A major part of the current is due to the
electrostatic charge density ρe(z,ω), which is in phase with V and gives the capacitance
contribution to Y. This contribution is usually written explicitly, denoting the
capacitance by C, so that

( ) ( )aY  = Y  + j Cω ω ω (4.89)

with

( ) ( ) ( )a a aY = G  + jBω ω ω (4.90)

Here Ga(ω) and jBa(ω) are the real and imaginary contributions due to ρa(z,ω),
the acoustic charge density, i.e. the charge density induced by the strains. Ga is the
acoustic conductance and Ba is the acoustic susceptance. The admittance may be
represented as an electrical equivalent circuit with these three contributions in parallel,
as in Figure 4.33.

From Eq.(4.87) and Eq.(4.88), using Eq.(4.64) for the potential associated with
the nth mode and if the charge density function is known, the amplitude of the modes
can be calculated. It is the acoustic modes which carry energy away from the
transducer; for a particular mode, the power radiated is the sum of the power radiated by
the forward and the backward travelling waves

2 2 2
RAD n n n n nP a a P 2 a P+ − +� �= + =� �

� �
(4.91)
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and since we assume plane-strain boundary condition, this is the power per unit width.
The average power supplied by the source is

2
AV a

1P G V
2

= (4.92)

where Ga is the input conductance of the transducer per unit width (the subscript a
stands for acoustic). The power balance requires that the average power of the mode
radiated equals the average electrical power input (in a non lossy case), PAV = PRAD

[4.7]. From Eq.(4.87) and Eq.(4.88), the radiation conductance for the nth mode is given
by
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where

( ) ( )
n

2
L 2 Szj

n L 2

D , h
S e d

V
+ − β ξ
−

ξ
β = ξ� (4.94)

Eq.(4.93) shows that the radiation conductance for a mode is dependent only on the
applied frequency, the spectrum function S(β) and on its wave impedance defined as
follows by Auld and Kino [4.63]:

2*
nn n
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nn nn

Z
2P 2P

ΦΦ Φ= = (4.95)

The distribution of energy between the modes is obtained from the relative
magnitude of the power flow of the modes and in Eq.(4.94) this is controlled by the
power flow term in the modal impedance.

The spectrum function S(β) is the Fourier transform of the applied charges and it
is the same for all modes. As pointed out by Wagers [4.66], this is a very interesting
property of the normal mode excitation equations since if S(β) can be measured
experimentally for one mode well separated from the others, then we do not need to
derive an expression for DSz to integrate Eq.(4.94). However it is important to stress that
although S(β) is the same for all modes, formulations derived for SAW do not apply to
this problem since the charge distribution DSz on strips at the interface between two
semi-infinite media (SAW case) is not the same as that on strips deposited at the surface
of a thin and grounded piezoelectric layer. This point will be discussed in more detail in
the following sections. Therefore if the propagation constant βn of the nth normal mode
is within the bandwidth of an interdigital transducer, the mode receives the same array
(charge distribution on the fingers) effect as all other modes. The differences in energy
radiation into modes come only through the impedance. The frequency in Eq.(4.94) is
not independent of the wavenumber of the mode since they constitute a solution pair of
the dispersion relation. For one given mode, there correspond only one wavenumber at a
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particular frequency. However at least two modes correspond to one single frequency
(below the first cut-off frequency).

The imaginary part of the admittance of the modes Ba(ω) can be expressed easily
from Ga(ω) using an Hilbert transform [4.3]. In the case where the piezoelectric
coupling of the crystal is very weak, all the modal susceptances are negligible compared
to that of the static capacitance. Therefore once the capacitance and the conductance of
the modes have been calculated, the transducer performance can be determined in terms
of its admittance.

 4.6.3.2 Effective Permittivity

For problems concerning electrical excitation at the surface, the variables of
interest are the potential and the normal electrical displacement. In the vacuum above
the transducer, the potential must satisfy Laplace’s equation and must also vanish when
z approaches infinity, so

( ) n nz j xj x
n z e e e z hβ − β− βΦ =Φ = > (4.96)

and the normal component of the electric displacement is

( ) n nz j xj x
z nz n 0D D z e e e z hβ − β− β= =−β ε > (4.97)

At the interface between the vacuum and the layer, the potential must of course be the
same on both sides but the electric displacement can be different. The discontinuity is
related to the potential by the effective permittivity defined by

( )
vac pze
z z

S
D D−ε β =

β Φ

� �

�
(4.98)

in the wavenumber domain. Thus the effective permittivity gives the electrical
behaviour of the interface between the vacuum and the piezoelectric layer. If the electric
displacements are not the same at the interface this is due to the presence of electrodes.

vac
zD� is then equal to the charge density on the vacuum side of the electrode and pze

zD�  to
the charge density on the layer side of the electrode. The total charge density, for both
sides, is denoted Sρ  and thus we have

( ) S
S

ρε β =
β Φ
�

�
(4.99)

where the charge and the potential are proportional to 
( )j t xe ω −β

. In the absence of
charges (which occurs when there are no electrodes, i.e. when the modes propagate
along free surfaces), the effective permittivity ( )Sε β is equal to zero. In general Sε  is a
complicated function of the wavenumber. It will be seen that the method to evaluate

Sε using a Fourier synthesis allows us to unify the single strip transducer problem with
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the IDT problem and that the method is the same as in the electrostatic problem of
determining the charge distribution due to the applied voltage.

 4.6.3.3 Electromechanical Coupling of Lamb Waves

Eq.(4.93) is given as a function of the modal impedance Zn whereas the more
common measure of coupling is V / V∆ . It is well known that the electromechanical
coupling coefficient K plays an important role in the analysis of the surface wave IDT,
and similarly the coupling coefficient of a given Lamb mode provides a useful measure
of the relative efficiency with which that mode can be excited by the transducer.
Generally, the electromechanical coupling coefficient is defined to be the  ratio of the
stored electrical energy to the stored mechanical energy. This holds for bulk wave
transducers but the fields are not uniform within the guided wave transducers, and thus
this definition of K is not suitable [4.1]. An important result of perturbation theory is a
relationship giving the change in the velocity ∆V of a Rayleigh wave, travelling in an
isotropic substrate, due to electrical loading. The idea here is to evaluate the change of
velocity induced by the application of a conducting film to the transducer which
eliminates the storage of electrostatic energy outside the plate. Unlike acoustic waves,
electromagnetic waves can propagate in vacuum and a conducting film avoids this
leakage of energy. The magnitude of the leakage is a direct measure of the piezoelectric
coupling. It has been shown by Ingebringsten [4.68], [4.69] that

2 0V VVK 2 2
V V

−∆= = (4.100)

where V is the unperturbed phase velocity (without metallisation) and V0 is the phase
velocity of the wave perturbed by the addition of the conducting film. This formulation
is based on the so-called Ingebringsten approximation for Rayleigh waves which
provides an approximate formula for the effective permittivity ( )Sε β assuming that

( )Sε β is proportional to the wavenumber perturbation induced by short circuiting the
free surface along which the Rayleigh propagates. This approximation implies
implicitly that the analysis is carried out at constant frequencies.

 4.6.3.4 Specific Formulation for APM

The important point here is that the modal impedance Zn can be formulated as a
function of V / V∆ and since V / V∆ can be measured experimentally, it is a very
practical and simple way to access the modal impedance without having to solve the
Poisson equation in order to obtain the associated modal potentials nΦ . Therefore it is
extremely desirable to use the same technique for Lamb wave transducers. For SAW
Kino and Reeder [4.64] showed that the relationship between the velocity change and
the wave impedance Zn is

( )
n

n T
n0 p

2 VZ
V

∆=
ω ε +ε

(4.101)
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It is shown in Appendix D that the formula for plate modes is

( )( )
n

n T n0 p

V2Z
Vcoth h

∆
=

ω ε + ε γ
(4.102)

where

T
xx

n T
zz

εγ =β
ε

(4.103)

There are two differences between Eq.(4.101) and Eq.(4.102). Firstly the surface
permittivity εp is multiplied by the factor ( )T

p coth hε γ  which depends on the
wavenumber-thickness product and which comes from the fact that the lower boundary
of the layer is grounded. This term, here an hyperbolic cotangent of the wavenumber-
thickness product, will not be the same for other boundary conditions at the lower
surface of the layer. Secondly each Lamb wave has different modal parameters, which
are different from Rayleigh wave modal parameter, and they are dispersive, so that the
wavenumber is not proportional to the frequency ω. Thus it is clear that the relationship
for the wave’s impedance in term of V / V∆ is not the same for acoustic plate waves as
for the traditional case of Rayleigh waves. The same conclusion holds for the
relationship between the input conductance of the transducer and V / V∆ , which can be
derived from Eq.(4.93), using Eq.(4.95) and Eq.(4.102).

The relationship (4.100) between the electromechanical coefficient K and
V / V∆ for Rayleigh waves is not valid for Lamb waves since it is based on the

assumption that

( ) ( )T n
S 0 p

n

∆βε β ≈ ε + ε
β

(4.104)

which implies that the effective permitivity is directly proportional to the perturbation.
From Eq.(D.20) this appears to be clearly not a valid approximation for plate modes and
it is clear that the frequency dependence has to be explicitly formulated.

In general in previous works on the coupling of Lamb waves in piezoelectric
plates, the SAW relationship based on Ingebrigsten approximation has been used. In
[4.47] Josse expanded Ingebringsten formula to plate modes propagating in a
piezoelectric layer loaded by a conductive liquid. In his derivation, Josse expresses the
perturbed fields '

nD  and '
nΦ as a function of the unperturbed fields using the formula

proposed by Auld for surface waves. This clearly does not take into account the
influence of the electrical boundary conditions. Wagers in [4.66] also ignored the
influence of the bottom boundary and used the SAW formulation given by Eq.(4.101).
More recently Laurent [4.49] also directly used Eq.(4.100) to evaluate the coupling
coefficients of plate modes generated in thin piezoelectric plates and noted a strong
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disagreement between computed and experimental values but did not provide any
explanation for the discrepancies.

Eq.(4.101) and Eq.(4.102) have been computed for the two fundamental modes.
Figure 4.34 shows the curves from Eq.(4.101) in dashed lines and the results from
Eq.(4.102) in plain lines. As expected it is seen that the formula for plate modes
(Eq.(4.102)) leads to a higher coupling. It is important to keep in mind that these curves
are concerned with a piezoelectric layer which is grounded on the bottom electrode. The
results would be different in the absence of the ground plane, for example if the
substrate was another piezoelectric material or even just a dielectric material. For SAW,
Kino and Wagers showed the importance of the effect of the ground plane. In general

V / V∆ curves for SAW exhibit a single peak. In the presence of a ground plane, they
observed a second peak. In Figure 4.34 a peak occurs near h/λ = 0.05 for the mode P2,
where h is the thickness of the piezoelectric layer and λ the wavelength. This is
essentially due to a sharp peak in the partial potential term depending on the shear stress
(coupling with dx5 in Eq.(4.64)). Indeed it is seen from Eq.(4.102) that V / V∆  has the
same variation with film thickness as does the wave impedance. Therefore the study of
the potential at the free surface carried out in section 4.4.3 reveals how V / V∆ behaves.
Figure 4.34 shows results only up to h/λ = 0.15 since it is the limit beyond which the
perturbation calculations are not accurate as shown in Figure 4.20. Therefore, even by
extending the range of h/λ to higher values it is only possible to estimate that the mode
P1 has a peak around h/λ = 0.30 and such an estimate may be subject to large errors.
This nonetheless shows clearly that each plate mode has a different V / V∆ and this
must be taken into account when designing a transducer even though the calculation of

V / V∆ does not take into account the position of the electrode(s) but only the coupling
of electric field and strain for a mode propagating in the electrically unperturbed
waveguide.

4.6.4 SURFACE CHARGE DISTRIBUTION ON A SINGLE STRIP

In this section we formulate the electrostatic problem as finding the charge
distribution on the electrode on the  upper surface of the piezoelectric (but represented
as a simple dielectric) layer. A common approximation when calculating DSz in SAW
problems is to neglect the acoustic response [4.7] of the piezoelectric layer. This called
the weak-coupling approximation in which the stress field is assumed to be unchanged
by the perturbation, as described in item 3 of section 4.5. When the acoustic response is
ignored, the problem reduces to an electrostatic problem similar to the analysis of a
transmission line made of a single strip and a ground plane on opposite faces of a sheet
of dielectric material as seen in Figure 4.35(a). The metallic substrate only plays the role
of the ground electrode and is ignored in the electrostatic problem since there is no
electric field. The most important dimensional parameters are the electrode width L and
the thickness h of the dielectric sheet, as well as the permittivity ε of the dielectric. On
the grounds that the electrode is a perfect, lossless conductor the electrical influence of
its thickness is negligible and is assumed to be zero, which is in line with the
assumption that the electrode has no mechanical influence.
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If the electrodes and the piezoelectric layer were all of the same width, and with
no fringing of the electric field, the problem would be one-dimensional. However this
microstrip configuration is certainly not a parallel plate and does involve the appearance
of fringing electrical fields. This enhances the effect of the anisotropy of the
piezoelectric layer. Solutions for the microstrip configuration and for the simple parallel
plate capacitor are treated separately.

 4.6.4.1 Isolated Strip Capacitor Solution

The piezoelectric layer is very thin compared to the wavelength of the two
fundamental modes below the first cut-off frequency. Therefore it is a good
approximation to assume that the region under the electrode acts as an isolated strip
capacitor and that the piezoelectric layer is subjected to a thickness electric field
excitation. In this case, as shown in Figure 4.35(b) the electric lines are perfectly
perpendicular to electrode. A uniform time-dependent voltage is applied uniformly over
traction free faces by means of a thin perfectly conducting film,

( ) iwth, t Ve L 2 x L 2Φ = − ≤ ≤ (4.105)

where V is the constant voltage drop across the thickness. At the interface between the
layer and the substrate we have

( )0 0Φ = (4.106)

and because the lateral dimensions of the electrode are greater than the thickness of the
layer, the potential is independent of x and y and increases linearly from the ground
plane to the driven electrode

( ) z L Lz V 0 z h, x2 2h
Φ = ≤ ≤ − ≤ ≤ (4.107)

In the case where the acoustic response is omitted, the electric field is given by

( )z
d VE grad
dz h
Φ=− Φ = − = − (4.108)

Therefore the electric field is uniform between the plates and for a medium which has a
diagonal dielectric matrix,

z zz z zz
VD E
h

=ε = − ε (4.109)

and the plate at z = h has a uniform surface charge density given by

z zz
VQ dS D dS L
h

= ρ = = −ε� � (4.110)
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there being an equal and opposite distribution on the plate at z = 0. Such a solution is
well-known. However it is a coarse solution in the sense that it ignores the fringing
field. In the case where the piezoelectric layer is of finite extent, the fringing field can
be neglected because dielectric constants of the layer are much higher than that of the
vacuum outside of the layer. However at this stage of the single strip transducer design,
the piezoelectric layer is infinite and therefore on either side of the electroded region,
the dielectric constants are the same as in the electroded region and the fringing field
must be taken into account. This is usually done using the Schwarz transformation and
the solution for a thin and long parallel plate capacitor is given by

( )zz ln L hL
C 1

h L h
π� �ε

= +� �π� �
   (4.111)

Application of Eq.(4.111) to a 10 mm long electrode and a layer thickness equal
to 0.1 mm, gives an increase of 1.8% in the capacitance value due to the fringing field.
It must be noted that this value is rather high since in some text books [4.71] it is
mentioned that a good approximation of the capacitance of a finite length capacitor is to
calculate the capacitance considering that the length of the electrode is in fact extended
artificially by a distance equal to 3/8 of the thickness. This rule would lead to an
increase of only 0.375%.

 4.6.4.2 Strip Capacitor Solution Including the Piezoelectric Effect

For vibrational modes with long wavelengths and since the surface potential is
assumed to be uniform over the electrode, we may ignore the spatial variation of field
variables by setting their derivatives with respect to the x-coordinate equal to zero.
Because the problem assumes plane strain conditions (i.e. the electrodes are infinite in
the y-direction), the derivative with respect to the y-coordinate is also equal to zero.
Thus from the second piezoelectric equation

SD e : S .E= + ε (4.112)

we have, in the normal direction,

S
z z3 3 zzD e S

z
∂Φ= − ε
∂

(4.113)

and in absence of free charges the divergence of D is null, so

2 2
Sz

z3 zz2 2
ue 0
z z

∂ ∂ Φ−ε =
∂ ∂

(4.114)

The potential  is then given by

( ) ( )z3 z
S
zz

e u
A t z B tΦ = + +

ε
(4.115)



Chapter 4 Transducer Problem

Page 177

where A and B are integration constants. Substituting Φ into Eq.(4.113) leads to

S
z zzD A(t)=− ε (4.116)

The integration function A(t) can be obtained by substituting Eq.(4.115) and Eq.(4.116)
into the boundary conditions given in Eq.(4.105) and Eq.(4.106), yielding

( ) ( )( )
i t

z3
z zS

zz

eVeA(t) u h, t u 0, t
h h

ω
= − −

ε
(4.117)

Then the electric displacement is given as a function of the applied potential and the
displacements at the electrodes,

( ) ( )( )
S i t

z3zz
z z z

eVe
D u h, t u 0, t

h h

ωε
= − + − (4.118)

and the electrostatic potential at all positions in the piezoelectric layer is given by

( ) ( ) ( ) ( ) ( )( ) i t
z3 z zz3 z z3 z

S S S
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ω−
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ε ε ε
(4.119)

The current through the layer is equal to the time derivative of the integral surface
charge Q, over the whole area of a face, where

zS z h
Q D dS

=
=� (4.120)

Substituting from the two-dimensional equation of electrostatics, the surface charge is
given as

( ) ( )( )S i t z3
zz z z

eLQ V e u h, t u 0, t
h V

ω� �= −ε + −� �
� �

(4.121)

with the capacitor dimension factored out. The formula (4.121) for the total surface
charge on the electrode takes account of the action of the piezoelectric crystal both as a
capacitor and as a charge generator. If the piezoelectric coupling is “turned off”, the
total charge is then that given in Eq.(4.110) for a simple dielectric capacitor. Formula
(4.121)does not take into account the finite dimension of the piezoelectric plate. In fact
this formula is wrong is all cases. If the plate is limited in size, as it will be the case in
real experiment, lateral effects must be taken into account. Tiersten [4.17] developed a
complete theory for rectangular piezoelectric plates. We are not interested in the study
of piezoelectric resonators but it is desirable to take into account, to a certain extent, the
finite dimensions of the piezoelectric plate by artificially changing some factors in the
same way that we did for the dielectric capacitor to account for the fringing field.
Following Tiersten we can replace S

zzε in Eq.(4.121) by
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2
S S S z3
zz zz zz

33

e1
2 C

ε = ε + ε + (4.122)

where firstly the dielectric constants are artificially increased by a factor 3/2 to take into
account the fact that the capacitance is increased if the piezoelectric layer is effectively
limited in size. Secondly an additional term is added, the ratio of the square of the
piezoelectric stress constant z3e  to the stiffness constant C33. z3e  is a measure of the
piezoelectric coupling between the normal stress and the normal electric field. This
term, 2

z3 33e C , has been added to take into account the fact that the dielectric constant,
relevant to static measurement, is that measured at zero stress and not that measured at
zero strain since when an electric field is applied the piezoelectric coupling is activated
and strains are generated in the material. This can be demonstrated easily by drawing a
parallel with the demonstration posed by Auld to show the relationship between the
stiffness constant relevant to short-circuited problems and the stiffness constant relevant
to open-circuited problems [4.7 Chap. 8, Vol. I]. In the quasistatic approximation, the
first piezoelectric stress equation is given by

ET e.E c : S= − + (4.123)

from which the strain can be expressed as

( ) ( )1 1E ES c : T c : e.E
− −

= + (4.124)

Substitution into Eq.(4.112) leads to

( ) ( )1 1E E SD e : c : T e : c : e .E
− −� �= + + ε� �

� �
(4.125)

and by analogy with the second equation of the piezoelectric strain equations, setting

TD d : T .E= + ε (4.126)

we find

( ) 1T S Ee : c : e
−

ε =ε + (4.127)

which in a one-dimensional case takes the form

2
T S z3
zz zz

33

e
C

ε =ε + (4.128)

Another reason why formula (4.121) is inaccurate is that the piezoelectric layer is
infinite but not the electrode, as shown in Figure 4.35(a), so there are fringing fields on
both sides of the electroded region is in the piezoelectric layer, as shown in Figure
4.35(c). The strength of these fringing fields benefiting from the strength of the
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dielectric constant of the piezoelectric layer. A first possibility to take into account these
fields is to use Eq.(4.111). Another possibility is to solve the two-dimensional
electrostatic problem, what involves solving a two-dimensional Poisson’s equation with
boundary conditions, at the upper surface, which are aperiodic functions  of the position,
i.e. the electrode is of limited size which mean that the electrical boundary condition at
the upper boundary is not homogeneous. Fortunately solutions are available in the
literature, since such a problem has raised great interest in the domain of microstrip
transmission lines. Such solutions are available only for dielectric slabs, and not for
piezoelectric layers. Though, in the weak coupling approximation this limitation should
not be too restricting.

 4.6.4.3 Analytical Solution to the Electrostatic Problem

Solving the electrostatic problem for the two-dimensional system shown in
Figure 4.35(a) can be done using the eigenfunction expansion technique. This technique
is discussed in detail in [4.8] and a solution is provided for the short-circuited case,
where the potential at the top surface is zero everywhere except at the position of the
electrode where the potential is V. However there is very little point in developing a
new solution for this problem, based on this eigenfunction method, since very similar
problems have already been solved for microstrip transmission lines problems and a
solution to our problem can easily be derived from the solution provided for similar
configurations. Microstrip line problems have received considerable amount of attention
in the fifties and the sixties and many solutions have been found and published for many
different microstrip configurations [4.72]. However as Wheeler [4.73] pointed out even
the simple “microstrip” configuration shown in Figure 4.35(a) is resistant to solutions in
simple and easy to use forms and requires elaborate mathematical treatment, [4.74],
[4.75]. The most common technique used to solve microstrip problems is the conformal
mapping technique [4.76], [4.77] and in particular the Schwartz-Christoffel
transformation which provides a formalism for transforming a relatively complex
geometry into a simpler one where solutions of the two-dimensional Laplace’s equation
can be more easily obtained. To our knowledge no simple formulation of the
capacitance is provided in the literature for a single stripline. A complete study has been
carried out by Coquin and Tiersten [4.77] for an electrode array. They also calculated
the capacitance per unit length per electrode. However the derivation of their calculus is
extremely cumbersome and the problem can be approached by a more simple technique.
Let us consider a single stripline in a shielded box as shown in Figure 4.36(a). Cohn
[4.81] derived an analytical solution for this configuration, which is expressed in a
simple form of the ratio of two elliptic integrals,

( ) ( )
( )1 2

K k
C 2

K k '
= ε + ε (4.129)

where K(k) is the complete elliptic integral of first kind and k its modulus [4.82]. The
form of Eq.(4.129) is very general and the capacitance for similar configurations can
always be expressed in a similar form.  Tables of elliptic integrals such as [4.83] allow
us to evaluate the capacitance without having to compute directly the elliptic integrals.
From Eq.(4.129) it is then straight forward to derive a solution for a single stripline
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between two parallel ground planes, as shown in Figure 4.36(b), just by extending the
lateral sides of the rectangular shielded box to infinity. Then we can imagine the case
where the dielectric constant ε2 is much larger than the dielectric constant ε1 so that all
the flux is in the stronger dielectric medium. If no flux is in the upper dielectric, the
effect of the upper ground plane is negligible. This is representative of the system
shown in Figure 4.35(c) where a single strip line is suspended over a dielectric layer
grounded at its lower surface, and where the upper medium is vacuum. The difference
between all the solutions available is in the modulus k of the elliptic integrals. Adapting
Eq.(4.129) to our problem can then be done by taking the modulus derived by Coquin
and Tiersten [4.77].

For a 10 mm long electrode over a 0.1mm thick PZT-5H layer, the static
capacitance at constant strain given by Eq.(4.111) is 1.24 micro-farad per meter of
electrode in the y-direction. It is increased to 1.26 micro-farad per meter of electrode in
the y-direction if the fringing field is taken into account. If the piezoelectric effect is
taken into account, the capacitance calculated from Eq.(4.121) is then equal to 1.29 µf
for the mode P1 and 1.30 µf for the mode P2. These values are given at 500 kHz, and
vary very little with frequency. They are also given without considering any fringing
field. Direct computation of the capacitance derived by Coquin and Tiersten [4.77] leads
to the capacitance values of 1.29 µf for the mode P1 and 1.31 µf for the mode P2. It is
clear that the main effects are taken into accounts in the simple static formula with less
than 5% errors. However the error depends on the ratio of the electrode length to the
thickness of the dielectric layer, and in IDTs the electrode length is likely to be much
less than 10mm. The fringing field is increased as the electrode length is decreased, as
shown by Eq.(4.111), and it is necessary, for IDTs, to have an electrostatic solution as
exact as possible.

4.6.5 FINITE ELEMENT VALIDATION

In order to validate the amplitudes na calculated from direct integration of
Eq.(4.87), we compared them with finite element predictions. The magnitudes of
displacements in the x- and in the z-directions have been monitored at the top surface of
a finite element model reproducing the design of the problem, as shown in Figure 4.37.
In the model, the modes P1 and the mode P2 are generated simultaneously when a
voltage is applied to a single 10mm long electrode deposited at the upper surface of the
infinite bi-layered system PZT-5H(0.1mm)/Aluminium(1mm). The models are similar
to those designed in section 4.4.4, with the same mesh density and the same through
thickness dimensions. However in this case, the applied signals are not mechanical
displacements applied along one edge of the models, but a series of voltage tonebursts
applied at the location of the electrode. The electrode is exactly in the middle of the
model so that the model is perfectly symmetrical and the magnitudes of the
displacements are identical at the left and at the right of the electrode. The electrode has
not been modelled as an extra layer but has been replaced by connecting together all
nodes along 10 mm (101 nodes) at the position where the electrode should be. Therefore
in the model the electrode has no mechanical effect and the electrical and mechanical
boundary conditions are exactly those used to derive Eq.(4.64). The potential at the
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location of the electrode varies accordingly to the toneburst window for the duration of
the input signal and zero after. A series of 10 models was run in steps of 100 kHz
between 100 kHz and 1MHz. These frequencies correspond to the centre frequency of
the input voltage toneburst which was made up of at least 5-cycles in the non dispersive
regions and up to 10 cycles in the regions where at least one of the modes is dispersive.
The dimensions of the model and the duration of the calculations have been adjusted for
each case in order to avoid multiple reflections of the modes.

The mechanical displacements at the top surface of the piezoelectric layer have
been monitored in the x- and in the z-directions at evenly spaced positions, along a
distance at least equal to 10 times the longest wavelength, i.e. that of the mode P2 at the
lowest frequency of the input frequency bandwidth. Close to the electrode, the two
modes are interfering with each other and a direct reading of the amplitude of each
mode is not possible in the time domain. Separating the two modes in the time domain
to measure their amplitudes would have been achievable only at a prohibitive cost in
computational time and in any case, a direct reading of the amplitude of the signals in
the time domain would be erroneous at frequencies where the modes are dispersive.
Therefore the results were processed using the two-dimensional Fourier transform
method (2-D FFT [4.16]), procedure which is the same as that used earlier in section
4.4.4.  The magnitude at each frequency is shown in Figure 4.38 for the mode P1 and in
Figure 4.39 for the mode P2. The amplitudes of the normal modes have been calculated
by integrating Eq.(4.87). This integration is extremely simple in the case where the
electric displacement is not a function of position. Therefore the integral leads to a term
in ( )nsin L 2β . When the wavelength of the mode is an integer multiple of half of the
electrode length, there is a cancelling effect which is modelled by the sine term going to
zero. Once the modal amplitudes have been obtained from Eq.(4.87), the amplitude of
the particular field at any location through the thickness of the system is obtained from
the normal mode expansion formalism given by Eq.(4.70). In Figure 4.38 the amplitude
of the normal particle displacement for the mode P1, and in Figure 4.39, the amplitude
of the inplane particle displacement for the mode P2, at the top surface of the PZT-5H
layer, is shown as functions of frequency. Changing the electrode length will change the
curves since the frequencies at which the zeros in amplitude occur will change.

 Figure 4.38 and Figure 4.39 shows very good agreement between the normal
mode theory and the FE predictions. Therefore the amplitude of any field associated
with the mode P1 and P2  can be predicted accurately using our analysis.

4.6.6 ALTERNATIVE CALCULATIONS

Another way to calculate the amplitude of the modes is to use the second source
term of Eq.(4.78) and to model the strip transducer as being driven by the applied
potential. From Eq.(4.49) we computed the electrical displacement field associated with
each mode and we computed the source function

( ) ( )( ){ }*
sn S n

z h
f x i D x .z

=
= Φ ω
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for the short-circuited normal modes. However no improvement was achieved using this
source function. Some other possibilities to formulate the surface excitation have not
been investigated. In particular a “secondary source” concept may be likely to be valid.
The idea is to formulate the source function as being a that a volume source and to
integrate it over the thickness of the piezoelectric layer. The equation is given by Auld
[4.7, page 162, Eq. 10.136] with the free charge density replaced by the
piezoelectrically induced "bound" charge density. This secondary source concept is
detailed in the following section on scattering parameters and the methodology of this
equivalent volume source approach is given in the papers from Bowler [4.99], [4.100]
for indent cracks and volumetric flaws detection by Eddy current.

4.6.7 CONCLUSION

The above finite element validation shows clearly that the perturbation analysis
developed to predict the amplitude of plate waves generated when applying a AC
voltage at the strip electrode, yields very good results. At this stage the piezoelectric
layer is infinite and the plate modes propagate freely in the bi-layered system
aluminium/PZT-5H.

The problem of a strip transducer on an aluminium substrate can be derived
from the problem just treated above by evaluating the scattering coefficients at both
sides of the strip. In the following section these scattering coefficients are evaluated
approximately by using a perturbation approach. This is only an approximation and by
no mean an exact solution to the scattering problem since only the mode conversion
from propagating mode into propagating modes is considered. It is however well-known
that at the scatterer, not only propagating modes are generated but also a set of
evanescent modes are generated and their presence must be taken into account in the
energy balance. The approximation we are making in the following section is that, since
far from the scatterer only propagating modes can remain, it may be a fair
approximation to neglect the effect of evanescent modes. It is beyond the scope of this
thesis to discuss the validity of this approximation. We are only aiming to obtain an
approximation of the main effects due to the reflections at the end of the strip.

 4.7 SCATTERING

At this stage, the piezoelectric layer is still infinite which is not a very realistic
situation. A much more probable design for the transducer is that the piezoelectric layer
and the electrode are of similar lateral extent, as shown in Figure 4.40. The amplitude of
the modes generated by the transducer when the piezoelectric layer is infinite have been
calculated in the previous section. When the layer is finite, the modes generated under
the electrode are scattered at the edges of the electrode and they convert into other
modes. Therefore the amplitude of the modes propagating away for the transducer are
not correctly approximated by the formula derived in Eq.(4.87) and Eq.(4.88). It is
necessary to take into account the scattering effects. In this section these scattering
coefficients are evaluated by using a perturbation approach based on the S-parameter
formalism.



Chapter 4 Scattering

Page 183

The method presented here is only an approximation and by no mean an exact
solution to the full scattering problem since only the mode conversion from propagating
mode into propagating modes is considered. It is well known that the reflection of a
Lamb wave from the end of a plate is very often accompanied by the generation of
additional localized disturbances. For example, the mode of A0 normally incident at the
perfectly square edge of a plate do not convert and reflects in A0, with a reflection
coefficient amplitude of unity. Close examination shows that there are additional
motions near the edge of the plate as the reflection takes place and that phase delays
occur in the reflections. This is due to the presence of non-propagating modes, which
exist solely in the material near the end of the plate, and which are present only during
the time it takes for the Lamb wave to reflect. The role of the non-propagating modes
can usually be explained by the fact that, at the surface of the scatterer, there is no linear
combination of incident and reflected modes which can satisfy the boundary conditions.
For example at the end of the plate, the requirement that both the normal and the shear
component of the stress are zero across the end of the plate is not matched by the linear
combination of incident and reflected A0 modes. It is then of course the presence of
non-propagating modes which help in satisfying the boundary conditions. Therefore
when applying normal mode superposition techniques, it is necessary to consider these
modes in order to properly account for all contributions to the field around a
discontinuity. Such problems have been studied and reported quite extensively, see for
example [4.7], [4.85], [4.86], [4.87]. The approximation we are making in this section is
that, since far from the scatterer only propagating modes remain and since non
propagating modes have a null power, it may be a fair approximation to neglect the
presence of the evanescent modes in the normal mode expansion.

The usual method to solve scattering problems is to consider problems described
over a domain extending to infinity, as a consequence of which the eigenvalues form a
continuous spectrum. It is the relationship between the behaviour of the wave function
near infinity and the properties of the medium in which the wave propagates which is of
greatest interest. At large distances from the scattering region we observe both scattered
and incident waves as shown in Figure 4.41. The general formulation of the problem, in
term of an inhomogeneous scalar Helmholtz equation for a wave decomposed into
incident and scattered fields and satisfying the boundary conditions [4.8], is
cumbersome. However the result to keep in mind is fairly simple and can be
summarized as follows: a wave function which satisfies the boundary condition at
infinity incidentally gives a value for the scattering amplitude. In other words when
considering the particular case where a wave is partially reflected, the volume (or the
surface) of the defect can be treated as a source term for the scattered waves and thus
we can calculate the amplitude of the scattered wave. This important observation allows
us to use a much more simple approach to calculate the scattering coefficients, based on
the normal mode expansion. This method is referenced later as the secondary source
method. The main advantage in using this technique at this stage of our analysis is that
the most of calculations required have already been performed in the preceding sections.
It is only a matter of reformulating the problem to express the scattering parameters.
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4.7.1 THEORETICAL BASIS

The starting point of the derivation is once again the reciprocity relationship
which provides a rigorous starting point to derive the scattering theory in terms of the
fields produced by the transducer. The derivation of the scattering matrix from the
complex reciprocity relationship is detailed by Auld in his book [4.7] and also in [4.88].
Other important papers on the subject have been written by Kino [4.89] and Qu and
Achenbach [4.90], among many others. The paper by Thompson [4.91] is particularly
recommended since it presents a clear and simple interpretation of the reciprocity
relationship via a one-dimensional example.

 4.7.1.1 Reciprocity Relationship for Ultrasonic Scattering

Following Ditri [4.92] and Auld [4.7], let us assume that we want to calculate
the scattering coefficients of waves propagating in a planar waveguide in which there is
a defect as shown in Figure 4.42 and consider the reciprocity relationship

( )1 2 2 1. v .T v .T 0∇ − = (4.130)

Solution “1” is the incident mode from the left, with the flaw removed in Figure 4.42(a)
and solution “2” is an incident mode from the right with the flaw present in Figure
4.42(b). As described by Ditri [4.92], expressions for the scattering parameters are
obtained by integrating Eq.(4.130) over the volume enclosed between the outer dashed
surface

l B1 r B2S S S S+ + + (4.131)

and the inner dashed surface SF in Figure 4.42(b). One difference between this
description and that made by Ditri [4.92] is that the defect is not restricted to a crack but
is taken to be generalised flaw, including cracks, voids, inclusions, strips, grooves,
corrosion, etc. Therefore the inner surface in Figure 4.42(b) is labelled SF. Following
Ditri [4.92] again, the volume integral of Eq.(4.130) is converted to a surface integral
over the inner and outer surfaces in Figure 4.42(b). The integrals over SB1 and SB2 are
zero so the result of the integration relates the incident and scattered wave amplitudes at
the planes Sl and Sr to the fields near the flaw at SF. In this way the scattering
amplitudes are found to be proportional to

{ }
F

1 2 2 1
S

S v .T v .T .n dS≅ −�
� (4.132)

where different scattering parameters are obtained by suitably choosing solutions “1”
and “2” in Eq.(4.132). The above treatment is particularly suited to defects in the form
of cracks. For volumetric flaws (inclusions) it is appropriate to reformulate Eq.(4.132)
as a volume integral by using the reciprocity theorem [4.88] in the inverse sense. Thus
the scattering amplitudes are proportional to
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{ }
F

1 2 2 1
V

S . v .T v .T .n dV≅ ∇ −�
� (4.133)

 4.7.1.2 S-Parameter Formalism

The general principle is that the change in the transmission induced by the
presence of the scatterer is given as a function of the fields propagating in the
waveguide in the absence of the flaw and the fields propagating in the waveguide in
presence of the flaw. The S-parameters of a scatterer are coefficients that relate the
scattered mode amplitudes to the incident mode amplitudes, at referenced planes on
either sides of the scatterer. Therefore they clearly depend on the modes involved but
also the direction (positive or negative) in which they propagate and the location
(reference plane) at which the S-parameter is calculated. Therefore one difficulty in the
use of S-parameter formulation from the normal modes propagating in a waveguide is
the formal nature of the derivation. Thorough derivation of the S-parameter formalism
can be found in the second edition of [4.7]. Ditri [4.92] also provides a very detailed
development of the formalism and gives extended explanations on the notations. Instead
of reproducing their derivations, let us imagine a simple situation such as that shown in
Figure 4.42. We define two planes at the left and the right of the scatterer and we label
them “l” for left and “r” for right. These planes are far away enough from the flaw so
that the non propagating modes have vanished before reaching the planes. The fields
propagating in the waveguide can be expanded in a complete set of orthogonal modes as
shown in section 4.6.1. Let us imagine that only the mode “m” is incident at the left
plane. If the velocity and stress fields (vm, Tm) of that mode are know, the fields of any
other mode generated by mode conversion at the scatterer are given from the incident
fields (vm,Tm) and the scattering parameters S. For example if we assume that the mode
A0 is incident at the left plane, the amplitude of the converted mode S0 at the left plane
is given by

0 0 0 0S l S l,A l A lb S a= (4.134)

The amplitude of the S-parameter is given from the reciprocity relationship between the
two modes. If, for example, the flaw is a vertical notch, and assuming that the surfaces
of the notch are traction free, the stresses in the presence of the notch, T2, are zero at the
surface SF and the S parameter is given by,

� �{ }0 0 0
0

S l,A l 2 A
A S

jS u .T .z dS
4P

ω= � (4.135)

where TA0 is the stress of the mode A0 propagating in the waveguide in absence of the
crack. � �2u is the difference of the displacements of the left and right faces of the notch.
In general, the term PA0 at the denominator is ignored since it is set to unity. However it
is important to understand that the fields are power normalised upon the incident mode,
that is the mode in the unperturbed waveguide and propagating rightward (here we
introduce the idea that the flaw can be seen as a perturbation of an unflawed waveguide
as we will discuss later).
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The subscripts of the S-parameter are important. In Eq.(4.135) this S-parameter
is a measure of the reflection coefficient of the A0 mode into the S0 mode. Changing S0

for A0 would give the reflection coefficient of the A0 mode into itself. Changing the
subscript l associated with the mode S0 for r, leads to the transmission coefficient,
calculated at the right plane, of the mode A0 into the mode S0, etc. The general
formalism is therefore given by,

{ }
F

M ,N N M M N
NN S

1S v .T v .T .z dS
4Pλ λ = −� (4.136)

where M is the incident mode, N the scattered mode, and “λ” indicates the plane at
which the S-parameter is calculated, either “l” or “r”. In the analysis, the modal fields
are normalized to unit average power flow through the cross-section of the waveguide.
However, non-propagating and inhomogeneous modes do not carry power. Therefore
they cannot be normalized in the same manner. Some researchers used the complex
power flow instead, noting that non-propagating modes can be normalized to the
imaginary unit [4.93]. In this section, the propagating modes which have purely real
wavenumbers are normalized, to unit power flow. Eq.(4.136) provides the surface
integral format of the S-parameter formula where integration of the fields in the curved
brackets has been performed over the surface of the flaw. A volume integral format can
be derived from the surface integral format. For more detailed treatment of the
mathematical development the reader should refer to Auld’s book, [4.7 Vol2, pp. 190-
201], and to Ditri’s paper [4.92].

 4.7.1.3 Methods of Solution

So far we have a very elegant and concise formula to calculate the transmission
and reflection coefficients of the waveguide modes, but the most important information
is still missing. Indeed, to evaluate Eq.(4.135) we need to know what the displacements
at the crack faces are. In the general case, the velocity and stress fields at the surface of
the flaw must be known to calculate the S-parameters. There are basically two methods
of solution.

The first method is based on the reciprocity relationship. If the flaw is a crack
for example, the surface integral format must be used and the quasistatic approximation
[4.94], [4.88]  is used for the crack opening displacements. Tables of COD under given
stress are available and this method has been used recently with success by Lowe [4.97],
[4.98]. If the flaws are considerably larger than the wavelength of the incident mode, the
Kirschoff approximation can be used to compute the scattering parameters [4.95],
[4.96]. If the flaw is an inclusion, the volume integral format is used and the perturbed
fields can be approximated by the Born approximation, which allows us to approximate
the perturbed fields by the unperturbed fields if the compliances of the unperturbed and
the perturbed media are not too different.

The second method of solution, which we will use in this section, is based on the
secondary source concept. In the volume integral format the scattering parameters,
normalized to unit power are given by,
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{ }
F

Ml,Nr 1 2 2 1
V

iS . v .T v .T .n dV
4P
− ω= ∇ −�

� (4.137)

This result can be made more physical by using the identity

( ) S. v.T v. .T T : v∇ = ∇ + ∇ (4.138)

and applying the acoustic field equations, which for i te ω time dependence are given by

( )S.T i v and v i S i s : T∇ = ωρ ∇ = ω = ω (4.139)

to solutions “1” and “2” in Eq.(4.137), yielding

( ) ( ){ }
F

Ml,Nr 2 2 1 1 2 2 1 1
V

iS v . .v T : s s : T dV
4P
− ω= ρ − ρ − −� (4.140)

where the solution “1” corresponds to the mode “N” incident from the left in absence of
the flaw, and solution “2” to the mode “M” propagating in the waveguide with a flaw.
In Eq.(4.140) ( )2 1 1.vρ − ρ  and ( )2 1 1s s : T−  are taken to be the secondary sources. The

normal mode amplitude equation Eq.(4.72) can then be applied with ( )vn 2 1 nf .v= ρ − ρ

as the secondary body force source and ( )sn 2 1 nf s s : T= −  as the secondary strain

source. The development and position of a strain source in the field equations is
sketched in Eq.12.65 page 303 of [4.7 Vol.2]. In this approach the modes radiated by
the secondary source are calculated for a given assumed incident mode. By varying the
incident mode a set of coupled mode equations is obtained. These in turn are converted
into a set of S-parameter equations by normalising the mode field distribution function
to unit transmitted power. The methodology of the equivalent source approach is given
by Bowler [4.99], [4.100] both for volumetric or indent cracks. The advantage of the
secondary source  method is that it works for any shape of the flaw, in contrast to with
the method based on the reciprocity relationship under the quasistatic approximation,
where the opening of the crack must be small.

4.7.2 PROBLEM STATEMENT AND SOLUTION

The theoretical analysis above shows how the S-parameter can be calculated,
using the mode equations, from simple considerations of the boundary conditions at the
interface between the transducer and the substrate. It is also shown how the strip can be
treated as a volume source. Both method are shown to be identical. The S-parameters
will be computed for the two fundamental modes A0 and S0. The results are then
compared to FE predictions.

A 10mm long PZT-5H strip, 100 mm thick, is deposited at the top surface of an
infinitely long aluminium plate. A propagating waveguide mode is incident from the left
section of the waveguide and will be scattered and mode converted at the edge of the
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PZT-5H strip, as shown in Figure 4.43. Two different approaches to solving the
problem will be taken in the following both using the S-parameter formalism, and it will
be shown that both lead to the same scattering results.

Once again, we use the perturbation theory to evaluate the so-called perturbed
fields. If the fields in the perturbed waveguide were known, the perturbation feature
being a thin layer as in section 4.3, or piezoelectrically induced charges as in section 4.4
or a strip as we discuss here, then the equations derived from the complex reciprocity
relationships would lead to exact results. The equations to solve in this problem are
given by Eq.(4.136) and Eq.(4.140). In these, the fields in the waveguide with the strip
are labelled “N”. We  use the Born approximation to approximate the fields of the mode
“N” by those of the mode “M”.

 4.7.2.1 Datta-Hunsinger Boundary Conditions

The problem we want to solve is indeed very similar to that of Rayleigh waves
propagating at the surface of a piezoelectric medium and scattered at metallic strip
electrodes. The problem of mechanically (and also electrically) induced surface acoustic
wave reflections has been tackled in many different ways. Solie [4.39] reviewed
reflection filters and Blotekjaer [4.101] using the effective permittivity method
developed by Ingebringsten [4.68], proposed a theory that allows the calculation of the
amplitude and the phase of the scattered Rayleigh waves at periodic metal strips. Chen
and Haus [4.102] utilized the variational principle to derive expressions of the reflection
coefficients. The technique we use in this section is based on that presented by Datta
and Hunsinger [4.103] for SAW. Datta and Hunsinger derived the mechanical reflection
coefficients for an isotropic overlay on an arbitrary substrate using first order
perturbation theory. This method is based on a former one proposed by Auld [4.7 1st ed.,
Chap. 12], in which the normal and tangential stresses generated by the strip at the
interface between the substrate and the strip, are used as source terms in normal mode
amplitude equations. In his development, Auld used the Tiersten boundary conditions
given by Eq.(4.10), which provide an approximate but analytical expression for the
stresses at the interface between a substrate and a thin isotropic overlay. In other words,
the stresses of the mode propagating in the waveguide with a strip, in Figure 4.43(a) are
now known as a function of the particle velocity fields of the modes propagating in the
waveguide without the flaw, just as explicitly shown by Eq.(4.10). This simplification,
i.e. expressing the perturbed field in terms of the unperturbed fields, is allowed in the
Born approximation. Therefore in solving the scattering problem of the waves incident
at the strip, the problem reduces to that shown in Figure 4.43(b) where the stress fields
replace the strip. The task is then to find the amplitudes of the modes generated by these
stress fields. If we assume that the fields in the strip-less waveguide are known, under
the small perturbation assumption we also know the fields of the modes in the
waveguide with the strip. Therefore the amplitudes of the modes generated by the
presence of the stresses can be calculated in the same way that the amplitude of the
modes due to the presence of charges has been calculated in section 4.6.2.2 but
replacing the electrical source function by its mechanical equivalent given by Eq.(4.73),
yielding
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( ) ( ) ( ){ }*
n n n S
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1j a z v 0 .T z,0 .y
x 4P+ +
∂� �+ β = −� �∂� �

(4.141)

( ) ( ) ( ){ }*
n n n S

nn

1j a z v 0 .T z,0 .y
x 4P− −
∂� �− β = − −� �∂� �

(4.142)

in the region -a/2 < z <a/2 in Figure 4.43(b). This uses the stress free boundary
condition of the unperturbed modes, i.e. the second term (vS.Tn ) in Eq.(4.73) is zero.
The unperturbed wave has been chosen to be a positive travelling mode with unit
amplitude, ( ) nj z

nv v y e− β
+= , and therefore ( ) nj z

nv y e β
−  is the particle velocity field of

a negative travelling mode with unit amplitude, and the relationship between the
negative and positive travelling mode is given by

( ) ( )( )*n nv y v y− += − (4.143)

Therefore, knowing the stresses at the interface, the mode amplitude equations can be
integrated and the amplitudes of the positive and negative travelling modes calculated.
Thereafter simple ratios of amplitudes lead to the scattering coefficients. Despite its
simplicity, this method cannot be used as it is since by using the Tiersten boundary
conditions as an approximation for the stress fields in the perturbed waveguide, it is
implicitly assumed that the strip is modelled only by a mass and a stiffness change. This
means that the limited size of the strip is not explicitly formulated, which has the
advantage of not introducing in the source term a function of the position along the x-
axis and therefore simplifying greatly the integral. However this simplification that
assumes that the stresses under the strip are the same as those under an infinite overlay
is however inaccurate. Datta and Hunsinger [4.103] showed that in addition to these
uniform stress components, shear stresses are generated at the edges of the strip. These
discontinuities can be mathematically modelled and introduced in the source term TS in
Eq.(4.142) and Eq.(4.141). This is done by introducing two delta-function shear
stresses. Datta and Hunsinger [4.103] gave the boundary conditions for an isotropic
strip.

However for two reasons we cannot use the Datta-Hunsinger boundary
conditions exactly as they are given in [4.103]. Firstly, Datta and Hunsinger considered
only strips of constant thickness. Here we introduce a normalised function g(x) which
defines the strip geometry as a function of the x-direction,

x / , 0 x
g(x) 1, l x L

(L x) / l, L x L

ε < < ε�
�= ± ≤ ≤�
� + ε − < < + ε�

(4.144)

The strip shape is defined by h.g(x) where h is the thickness of the strip, and as the slope
parameter ε � 0 the strip geometry approaches a rectangular shape. The sign of the
function g(x) is positive if we want to define a strip but can be defined as negative if we
want to define a filled groove. Secondly, in our problem the strip is made of PZT-5H
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which is anisotropic, and the Datta-Hunsinger boundary conditions have been
established for an isotropic strip. In Appendix B, we already established expressions for
the interfacial stresses between an aluminium plate and a PZT-5H strip, so amending the
Datta-Hunsinger boundary conditions is straight forward and eventually the normal and
shear component of the interface traction forces between the PZT-5H strip and the
aluminium plate are given by,

( ) ( )1
z 0T '.z T .z= ≡ (4.145)

with

( ) ( )( ) n1 j x
zz z nT j 'hg x v e− β

+= ωρ (4.146)

( ) ( ) ( )( )( ) n1 j x
xz n x nT j hg x ' x v e− β

+= ω ρ − α (4.147)

where

( ) ( )11 11
n 2 2 2 2 2 2

n 11 12 n n 11 12

d xs s1x
V s s V s s

� � � �
α = +� � � �� � � �− β −� � � �

(4.148)

and

( ) ( ) ( )d x x a / 2 x a / 2=δ + − δ − (4.149)

where the stresses are expressed in the coordinate system shown in Figure 4.43(a). In
general the solution for the boundary conditions is not be affected by the coordinate
system in which it is calculated but because the strip is a piezoelectric material,
attention must be paid to which stiffness constants must be used in Eq.(4.147) which
have been developed for a Z-cut hexagonal crystal.

Finally, from the above, the mechanical term in the integrand of Eq.(4.136) can
be written, following Auld,

{ } ( ) Nj2 x
M N M Nv .T .z v .B x .v e− β

+− =− (4.150)

where, for Lamb waves,

( )
( )n' x 0 0

B x 0 0 0
0 0 '

ρ − α� �
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� �ρ� �

(4.151)

The scattering parameters are then given by,
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− β
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−

= − −�  (4.152)

where the incident mode is the mode M travelling in the positive x-direction, and the
mode N is the scattered mode.

In this section we made use of the surface integral format assuming that the strip
can be modelled as a surface disturbance. But a strip can also be considered as an
inhomogeneity in the plate waveguide and the S-parameters are derived assuming the
inhomogeneity is in the bulk of the material and leaves the boundary conditions on the
two surfaces of the plate waveguide unaffected. Such perturbations are called volume or
interior perturbations and are not limited to a flaw with a clearly defined surface and can
be used to approximate the influence of global quantities such as, for example viscosity.
The volume perturbation approach is derived in Appendix E.

Integrating Eq.(4.152) gives the S-parameters. The velocity fields do not depend
on the x-direction so if g(x) = 1 over the strip length, the integral is reduced to that of
exponential and delta function terms, which both lead to sine functions. Example of the
details of the integration is given in Appendix E.

4.7.3 FINITE ELEMENT VALIDATION

Finite element models provide only raw data, basically absolute displacement
amplitudes at local positions, and because displacement is a vector, the displacements
have to be monitored in a given direction. Therefore the displacement amplitude
monitored in the FE models, and hence the scattering coefficients calculated from these
displacements depend on the position in the thickness at which the displacements have
been monitored and on the direction in which they have been monitored. In other words
the ratio of the displacements of two different modes monitored at the top of the plate is
not equal to the ratio of the displacements monitored in the middle of the plate. The
reason for this is that the mode shapes are not constant through the thickness and are
different for each mode. The normal mode amplitudes come from the normal mode
expansion formalism where each field associated with the waves is decomposed into the
product of a x-dependent amplitude by a z-dependent field, for example for the particle
displacement,

( ) ( ) ( )n nu x, z a x u z= (4.153)

Therefore the modal amplitudes ( )na x are independent of the direction and the position
in the thickness. Therefore the ratio of displacement monitored in the FE models cannot
be compared, in the general case, with the ratio of normal mode amplitudes and mode
shape information must be taken into account.

The validating example used in this section is shown in Figure 4.44. By applying
along the left hand edge of the model displacement profiles that match the mode shape
of a particular mode, this mode propagates alone toward the 10 mm long, 0.1 mm thick,
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PZT-5H strip. This mode is then scattered a first time at the left edge of the strip and the
part that is transmitted is reflected again at the right edge of the strip. Displacements
have been monitored in both directions in the region between the forced edge and the
left corner of the strip. This allowed us to monitor both the amplitude of the incident
mode and the amplitude of the reflected modes generated by mode conversion at the
strip. Two models were designed, one with the mode A0 incident and the other with the
mode S0 incident. The first model gives the reflection coefficient for the A0 mode
incident and the A0 mode reflected, and also the reflection coefficient for the A0 mode
incident and the S0 mode reflected. The second model provides also two reflection
coefficients but this time for the S0 mode incident. These models were then run at
different frequencies. As already explained in the previous FE validation (see section
4.6.5 ) what we mean by frequency here is the central frequency of the applied
toneburst. The FE models provide only discreet values for the reflection coefficients
whereas the theory provides a continuous function of frequency. The same technique
(integration in the wavenumber-frequency domain) as discussed in section 4.6.5, has
been used to process the FE results. Comparison between the FE predictions and the S-
parameter theory are shown in Figure 4.45(a) for the S0 mode incident and the S0 mode
reflected. Figure 4.45(b) shows the comparison for the S0 mode incident and the A0

mode reflected. Figure 4.45(c) shows the comparison for the A0 mode incident and the
S0 mode reflected and Figure 4.45(d) shows the comparison for the A0 mode incident
and the S0 mode reflected. It is seen that agreement between the theory and FE
predictions is good. Therefore it is believed that the S-parameter calculations (in the
Born approximation) provide accurate approximations for the scattering coefficients and
mode conversion of the two fundamental modes at an anisotropic thin strip.

 4.8 CONCLUSION

In this Chapter, a method has been presented that allows us to model the
amplitude of the fields generated by a single strip transducer when a voltage is applied
across the electrodes of the transducer. This method based on the normal mode
expansion technique has been derived analytically step by step. Each step has been
validated so that each step on its own provides reliable results. The mechanical
perturbation technique developed in section 4.3 allows us to obtain accurate analytical
dispersion curves for a multilayered system. In section 4.4 a technique has been derived
that allows the potential associated with plate modes travelling in piezoelectric layers to
be calculated. In section 4.6 it has been shown how the amplitude of modes generated
by a piezoelectric transducer can be calculated with very good precision. Finally in
section 4.7 we showed how the classical S-parameter technique can be simplified to
provide accurate analytical formulations for the scattering coefficients of Lamb waves,
including mode conversion. Only the mechanical effect of the strip has been modelled
in section 4.7, however it is easily extended to calculate the reflection coefficient due to
a change in the electrical boundary conditions by using Eq.(D.21) and the electrical
surface impedance concept introduced in section4.6.3.

It is the combination of these steps that leads to the final results. In the next
Chapter, this method is applied to the particular case of a single PZT transducer on an
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aluminium plate. This straight forward application of all the results presented in the
present Chapter, provides a “unit cell” solution that is later used to analyse the
behaviour of interdigital transducers.
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TABLES

Compliances (10-12 m2/newton) Stiffness (1010  newton/ m2)
S11 16.66 S33 20.7 C11 12.6 C33 11.7
S12 -4.78 S44 43.5 C12 7.95 C44 2.3
S13 -8.45 S55 43.5 C13 8.41 C55 2.3
S23 -8.45 S66 42.88 C23 8.41 C66 2.35

Piezoelectric Strain
Constants

(10-10

coulomb/newton)

Piezoelectric
Stress Constants

(coulomb/m2)

Relative
Permittivity

Constant Stress
�0 = 8.854 10-12

farads/m

Relative
Permittivity

Constant Strain
�0 = 8.854 10-12

farads/m
dx5 7.41 ex5 17 �xx

S 3130 �xx
T 1700

dy4 7.41 ey4 17 �yy
S 3130 �yy

T 1700
 dz1 -2.74  ez1 -6.5 �zz

S 3400 �zz
T 1470

 dz2 -2.74  ez2 -6.5 Density (Kg/m3)
dz3 5.93 ez3 23.3 7500

Table 4.1: Material parameters for Z-cut PZT-5H.

Density
(Kg/m3)

Longitudinal
velocity

(m/s)

Shear velocity
 (m/s)

Aluminium 2800 6370 3100
Epoxy 1100 2700 1100
Copper 8930 5010 2200

Table 4.2: Material parameters.
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Figure 4.11 : Stress mode shapes in 100µm the PZT-5H layer. (a),(c) and (e) show the mode
shapes for the mode P1, (b), (d), (f) show the mode shapes for the mode P2.  (a) and (b)
inplane stress mode shapes, (c) and (d) normal stress mode shapes and (e) and (f) shear
stress mode shapes. Plain lines represent the stress at 0.5 MHz and dashed lines
represents the stress at 2MHz.
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Figure 4.12 : Normal particle velocity dispersion curves for the aluminium(1mm)/PZT(100µm)
system. Comparison between dispersion curves at the top surface of the PZT layer and
the dispersion curves at the interface between the aluminium and the PZT layer. The
dispersion  curves for the single 1mm aluminium plate are also shown. All curves have
been calculated for a mode with unit power flow.
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Figure 4.13 : Inplane particle velocity dispersion curves for the aluminium(1mm)/PZT(100µm)
system. Comparison between dispersion curves at the top surface of the PZT layer and
the dispersion curves at the interface between the aluminium and the PZT layer. The
dispersion  curves for the single 1mm aluminium plate are also shown. All curves have
been calculated for a mode with unit power flow.
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Figure 4.14 : Stress dispersion curves for the modes F0 and P1. Comparison between the exact
stress dispersion curves and the approximate stress dispersion curves for the
aluminium(1mm)/PZT(100µm) system. The approximate dispersions curves have been
obtained using the exact velocity fields. (a) Inplane stress at the top surface of the PZT
layer, (b) inplane stress at the interface between the aluminium plate and the PZT layer.
(c) normal stress at the interface and (d) shear stress at the interface. All curves have
been calculated for a mode with unit power flow.
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Figure 4.15 : Stress dispersion curves for the modes L0 and P2. Comparison between the exact
stress dispersion curves and the approximate stress dispersion curves for the aluminium
(1mm)/PZT(100µm) system. The approximate dispersions curves have been obtained
using the exact velocity fields. (a) Inplane stress at the top surface of the PZT layer, (b)
inplane stress at the interface between the aluminium plate and the PZT layer. (c)
normal stress at the interface and (d) shear stress at the interface. All curves have been
calculated for a mode with unit power flow.



C
hapter 4

Figures

Page 217

P1

P2

P3 P4

0.0

2.0

4.0

6.0

8.0

10.0

Ph
as

e 
ve

lo
ci

ty
 (K

m
/se

c)

Frequency (MHz)

0.0                         1.0                          2.0                        3.0                       4.0                            5.0                      6.0

Approximate Curves ( with Exact Velocities)
modes F                     modes L
Exact Curves : Modes P

Steel (1mm) + Epoxy (100 m)µ

Figure 4.16 : C
om

parison betw
een the exact dispersion curves and the approxim

ate dispersion
curves using the exact velocity fields for the steel(1m

m
)/epoxy(100µm

) system
.



Chapter 4 Figures

Page 218

P 1
F 0

L 0
P 2

0
1

2
3

4
5

Fr
eq

ue
nc

y 
(M

hz
)

A
pp

ro
xi

m
at

e 
C

ur
ve

s (
w

ith
 Z

er
o 

O
rd

er
 V

el
oc

ity
)

m
od

es
 F

   
   

   
   

   
   

   
m

od
es

 L
Ex

ac
t C

ur
ve

s :
 M

od
es

 P

A
lu

m
in

iu
m

 (1
m

m
) +

 P
ZT

-5
H

 (5
0

m
)

µ

10

Real Wavenumber (rad/mm)

2468 0

βh
 =

 0
.3

Figure 4.17 : Comparison between the exact wavenumber dispersion curves and the
approximate wavenumber dispersion curves for the aluminium(1mm)/PZT(50µm)
system. The approximate dispersions curves have been obtained using the zero order
particle velocity amplitudes.
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Figure 4.18 : Comparison between the exact wavenumber dispersion curves and the
approximate wavenumber dispersion curves for the aluminium(1mm)/PZT(50µm)
system. The approximate dispersions curves have been obtained using the exact free-
surface particle velocity amplitudes.
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Figure 4.19 : Comparison between the exact wavenumber dispersion curves and the
approximate wavenumber dispersion curves for the aluminium(1mm)/PZT(100µm)
system. The approximate dispersions curves have been obtained using the zero order
particle velocity amplitudes.
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Figure 4.20 : Comparison between the exact wavenumber dispersion curves and the
approximate wavenumber dispersion curves for the aluminium(1mm)/PZT(100µm)
system. The approximate dispersion curves have been obtained using the exact free-
surface particle velocity amplitudes.
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Figure 4.21 : Comparison between the exact wavenumber dispersion curves and the
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Figure 4.23 : Electrical boundary conditions in (a) the free-surface case, (b) the metallised case
at the upper surface. In both cases the metal plate is grounded and the potential is zero
at the interface.
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Figure 4.24 : Electric potential at the top surface of the PZT-5H layer.



Chapter 4 Figures

Page 226

G
ro

un
d 

El
ec

tro
de 10

0 
m

m

M
on

ito
rin

g 
lo

ca
tio

ns

Applied displacement amplitudes

Tr
av

el
in

g 
m

od
e

10
0 

m µ
PZ

T-
5H

 la
ye

r

Figure 4.25 : Schematic diagram of the finite element model used to monitor the electric
potential at the top surface of the PZT-5H layer.
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Figure 4.26 : Comparison between finite element predictions and perturbation theory
calculations for the electric potential at the top surface of the PZT-5H layer, normalised
to a wave amplitude of 1 nm in the direction of propagation. Dashed line curves were
obtained using the particle velocities at the top of the aluminium plate alone and plain
line curves were obtained using the particle velocities at the top of the PZT-5H layer.



Chapter 4 Figures

Page 228

1.0

1.0

0

0

2.0

2.0

3.0

3.0

4.0

4.0

5.0

5.0

Frequency (MHz)

Frequency (MHz)

G
ro

up
 V

el
oc

ity
 (K

m
/s

)
Ph

as
e 

Ve
lo

ci
ty

 ( K
m

/s
)

P2

P4

P4

P3

P3

P1

P2

P1

Aluminium(1mm)/PZT-5H(100 m)µ

Aluminium(1mm)/PZT-5H(100 m)µ

-1

0

0

2

2

4

4

6

6

1.25
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Figure 4.28 : Time domain traces of the inplane displacement of the mode P2, at 1.5 MHz, after
it has propagated over 67.5 mm. (a) Finite element prediction. (b) Simulation with the
mode P2 propagating alone. (b) Simulation with the modes P2 and P3 propagating
together.
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top electrode. (b) Electrical boundary conditions and coordinate system.
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Figure 4.31 : Simplified representation of a bulk wave transducer without electrical and
mechanical losses. The inductance is added to cancel the capacitance.
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Figure 4.32 : Uniform interdigital electrode arrays and circuit interactions. The finger width is L
and the spacing between two finger pair is L.
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Figure 4.33 : Equivalent circuit for interdigital transducer.
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Figure 4.34 : V V∆ for a PZT-5H thin layer (h= 0.1mm) on a grounded plane, as a function of
the thickness to wavelength ratio, for the plate modes P1 and P2. V V∆ calculated
using the formula for APM in plain lines, V V∆ calculated with the formula for SAW
in dashed lines.
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Figure 4.35 : (a) Microstrip structure, (b) cross-field approximation of the electric field, (c)
electric field pattern showing the flux lines from the edge of the strip.
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Figure 4.36 : Geometry of a single stripline between two different dielectric media surrounded
with (a) a shielded box and (b) two infinite parallel ground planes. (c) Geometry of
single stripline suspended over a ground plane.
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Figure 4.37 : Schematic diagram of the finite element model used to monitor the mechanical
displacements in the x- and z-directions at the top surface of the PZT-5H layer when a
voltage is applied at all nodes along a 10 mm long electrode.
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Figure 4.38 : Comparison between finite element predictions and normal mode amplitude
calculations for the displacements at the top surface of the PZT-5H layer, in the normal
(z) direction for the mode P1 (lowest flexural mode).
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Figure 4.39 : Comparison between finite element predictions and normal mode amplitude
calculations for the displacements at the top surface of the PZT-5H layer, in the inplane
(x) direction for the mode P2 (lowest longitudinal mode).
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Figure 4.40 : Schematic representation of a single strip transducer. (b) Shows the cross section
in the plane (xz) and the waves generated by the transducer.
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Figure 4.41 : (a) Schematic representation of incident and scattered wave, (b) Schematic
representation of one-dimensional transmission-reflection problem
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Figure 4.42 : Definition of S-parameters, (a) solution “1”, without the flaw, (b) solution “2”,
with the flaw. (From Auld [4.7])
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Figure 4.44 : Schematic diagram of the finite element model used to monitor the mechanical
displacements in the x- and z-directions at the top surface of the PZT-5H layer for the
modes reflected at a 10mm long electrode.
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Figure 4.45 : Comparison between finite element predictions (empty square markers) and S-
parameter calculations (plain curves) for the reflection coefficients of the mode S0 into
(a) the mode S0, and into (b) A0. Reflection coefficients for the mode A0 reflected into
(c) S0 and into (d) A0.
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Chapter 5 

Interdigital Transducer for Acoustic Plate Modes 

This Chapter, the last before we conclude, presents two direct applications of the
analytic model developed in Chapter 4 and we use the FE program presented in Chapter
3 to validate some of the results. The first example is the single strip transducer. Since
most of the intermediate calculations have been validated in Chapter 4, only the final
result is presented and validated here. Following the single strip transducer, we apply
our model to the IDT case. The amplitude of the waves and the impedance of the
transducer are derived analytically and a preliminary analysis of a transmitter-receiver
set-up is investigated both experimentally and using the FE model.

 5.1 SINGLE STRIP

We have two concurrent motives to develop a model for single strip transducers.
The first motive is in the perspective of the IDT model. IDTs, for both SAW and Lamb
waves, can be seen as a series of “unit cells”. In SAW applications, a cell comprises two
electrodes since, because of the absence of a ground plane, the electric field can develop
only between two neighbouring electrodes. In plate mode applications, this motivation
is partly removed since the main electric field is between the electrodes and the ground
plane when the piezoelectric layer is thin. It is not our intention here to deny the
existence of lateral electric fields between the electrodes but this lateral field is of
second order compared to the through thickness one. Therefore IDTs for Lamb waves
can be built as a series of single strip transducers. Hence building up a model for a strip
transducer has already achieved most of the work to be done to build a model for IDTs.
Moreover it is important to estimate the accuracy of the model on a simple pattern
before adding extra assumptions and simplifications.
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The second motivation is practical. It is concerned with the need to improve the
design of bonded transducers in order to increase the amount of inplane motion
generated over that of out-of-plane motion. Initial experiments carried out at Imperial
College showed that PZT discs bonded to the surface of a plate generate mainly modes
with large out-of-plane surface displacement. Unfortunately, the A0 Lamb mode is not
suitable for long-range inspection of liquid loaded and coated structures since it is very
highly attenuative at low frequency-thickness products [5.1]. Figure 5.1 shows a plot of
the attenuation of the first four Lamb modes in an aluminium plate immersed in water.
It is seen that below the A1 Lamb mode cut-off frequency, the S0 Lamb mode is much
less attenuated than the A0 Lamb mode, and will therefore propagate over longer
distances in coated or fluid loaded plate-like structures. This particular attribute of the
S0 Lamb mode, i.e. low coupling with surrounding media, is the main reason why the S0

Lamb mode at low frequency-thickness products is a suitable candidate for long range
inspection. The possibilities to improve the design of basic transducers are limited. One
possibility is of course to use piezoelectric materials that will enhance the coupling in
the inplane direction. This is a very well documented subject and for example
Berlincourt [5.2] provided an extensive review of the characteristics of piezoelectric
ceramics. Our model would however bring a further advantage since the interaction
with the substrate is modelled. Varying the values of the piezoelectric constants in the
model would allow multiple piezoelectric configurations to be tested and the relative
amount of each generated mode could be compared. Once the piezoelectric material has
been chosen, a further possibility to improve the transducer design to increase the
coupling with the S0 mode, is to vary the thickness of the adhesive bond. A study of the
influence of the bond thickness on the relative amplitude of the A0 and S0 modes has
been presented at the QNDE conference [5.3]. This study has been conducted using
finite element models. Using the analytical model, each finite element case can be
advantageously replaced by a model case with a finite epoxy thickness. Running the
model takes few seconds on a desktop PC whereas each finite element case using the
same computer took several hours, not counting the time necessary to process the output
of the finite element program. The analytic model would not only reproduce the study in
less time but would also bring insights on particular features which cannot be identified
with the finite element models. In particular the modes in the transducer can be
computed, with and without the scattering effect. This could prove to be extremely
helpful in numerous situations.

5.1.1 PROBLEM STATEMENT

For these two reasons, we develop here a model for a single strip transducer in
order to compute the ratio of the amplitude of the S0 mode to the amplitude of the A0

mode when a voltage is applied across the electrodes of a single strip transducer. The
transducer is a 100µm thick piezoelectric plate, 10 mm long as shown in Figure 5.2. The
electrode at the interface between the strip and the substrate is grounded and an AC
voltage is applied at the top electrode. Due to the applied electric voltage, the
piezoelectric layer is strained and motion is transmitted to the aluminium plate. On
either side of the transducer Lamb waves travel. Because we operate the transducer
below 1 MHz, only the S0 and the A0 modes can propagate in the plate away from the
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transducer. The analytical results are validated with FE predictions. For simplicity the
model presented in this section ignores the adhesive bond layer and the electrode is
assumed to be infinitely thin. In the IDT model presented later, extra layers have been
incorporated.

5.1.2 FULL TRANSDUCER MODEL

In Chapter 4, all the necessary calculations have been developed and validated
separately. The dispersion curves for the aluminium plate and the dispersion curves for
the substrate/piezoelectric layer system have been computed so that we know which
modes propagate in the transducer and away from it. In section 4.6.2, the amplitude of
the modes generated in the bilayered system have been accurately calculated, and in
section 4.7 the scattering coefficients at the edges of the transducer have been calculated
with good accuracy. However a step has been neglected that precludes form building the
single strip transducer model directly from these results. Indeed when calculating the
scattering coefficients we have been looking at a situation where a mode is incident at
the transducer, and not the case where the wave is generated in the transducer and
diffracted on its “way out”.

 5.1.2.1 Scattering Problem

The situation modelled in section 4.7 is depicted in Figure 5.3(a). The scattering
of a Lamb mode at a strip can be described globally by five waves. A given wave “I” is
incident at the left of the strip. Part of it is the reflected and part continues to propagate
rightward. The waves reaching the other end of the transducer are also reflected and
transmitted. The wave “R” represents the added effects of all the waves propagating
leftward, due to the reflection of the incident wave but also to internal reflections and
transmissions of the waves “A1” and “A2”. The sum of all transmitted waves is the
wave “T” and the reflections in the strip region can be described by two waves
propagating in opposite directions, “A1” and “A2”. The scattering coefficients
calculated in section 4.7 give directly the reflection and transmission coefficient for
each incident mode. However, when the transducer is acting as a transmitter, the
incident waves are in the excitation region. To find the correct scattering coefficients in
that situation, we can consider the situation depicted in Figure 5.3(b). Two waves an-

and an+ are travelling under the transducer. When they reach the edges of the transducer,
they are reflected into anR- and anR+ and also transmitted into anT- and anT+. It is clear that
the situation in Figure 5.3(b) is very similar to that in Figure 5.3(a). Both situations are
in fact the same if we consider the simple case where the amplitude of the incident wave
in Figure 5.3(a) is equal to zero and if we add the contribution of the waves generated
by the transmitter, an+ and an-. We know those amplitudes from the transducer case with
an infinite piezoelectric layer, solved in section 4.6.2. The amplitudes of the reflected
waves inside the excitation region are then readily deduced form the former by adding
the phase delays due to their extra distance of propagation. Detailed examples of similar
calculations are given in [5.4, Vol. I, Chap. 6 & 8] for bulk waves. Eventually, knowing
the amplitudes of the modes an- and an+ and knowing the scattering parameters at the
edges of the strip, the amplitudes of the modes anT- and anT+ have been calculated.
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 5.1.2.2 Finite Element Validation

From the magnitudes of the reflections and mode conversions shown in Figure
4.45, it is not expected that the amplitude of the modes propagating away from the
transducer are very different from those calculated in case when the layer was
considered infinite. However we designed a series of FE models to validate this last
stage of calculations. The models are basically the same as those used in the FE
validation section 4.6.2.2. The only difference, as shown in Figure 5.4, is the limited
size of the piezoelectric layer. This has been chosen to be 10mm long, the size of the
electrode. The strip is placed in the middle of the plate. An AC voltage is applied at all
the nodes along the top surface of the piezoelectric strip, using a Hanning windowed
toneburst. The number of cycles has been chosen to be the best compromise between a
very narrow band signal and too long a signal. In general 6 cycles have been used at the
lowest frequencies, and that number has been increased up to 8 cycles at 1MHz. 18
models have been computed, from 150 kHz up to 1 MHz in 50 kHz steps. For each
model, a series of 200 time histories have been recorded every 0.5mm. The length of the
monitoring zone, 100mm corresponds to several wavelengths of each mode. The time
histories have been recorded every 0.05 µs over 40 µs. For each model, a two-
dimensional Fourier transform has been performed. The 2D-FFT technique allows us to
separate each mode propagating in the model, and to identify its direction of
propagation.

The ratio of the displacements of the S0 mode to the displacements of the A0

mode have been calculated. Figure 5.5 shows the magnitude of the ratio of the inplane
displacements. As expected from the behaviour of the two fundamental modes, the ratio
is greater than one since the S0 mode has predominantly inplane motion and the A0

mode is a bending mode with large normal motion and little compressional motion. The
agreement between the normal mode theory and the FE predictions is good. The
maxima in the curves are due to the amplitude of the A0 mode approaching zero, as
shown in Figure 4.38, and the ratio becomes ill-conditioned.

5.1.3 CONCLUSION

The single strip transducer is probably the most basic transducer design in
rectangular coordinates. Its experimental use is certainly limited although its shape
makes it very attractive if the transducer is to be embedded in the structure, for example
in between two layers of a composite structure as described by Moulin [5.5]. Other
geometries, such as platelet transducer [5.6] could also benefit from the model
developed for a single strip. Our primary motivation in studying this particular design
was to simplify the transducer as much as possible in order to be able to develop a
model which we could test and validate easily. The finite element validations presented
in the preceding section show that, despite the number of approximations used along the
derivation of the analysis, our model can predict the behavior of a transducer attached to
a waveguide with good accuracy. All the intermediate calculations have also been
successfully validated what means that each step standing on his own can be used
separately for any other purpose.
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Starting from one strip transducer, we can now build an array of evenly
separated strips. In the next section we will show how the calculations performed for a
single strip can be used to analyze the behaviour of an array of strips.

 5.2 INTERDIGITAL TRANSDUCER ON A METALLIC PLATE

Interdigital transducers are used in all practical surface-wave devices, and in
many of them the performance of the transducer is the main factor determining the
device performance. In recent years the IDT technology has been extended to other
geometries and in particular to smart structures and NDT devices but the principles of
operations are the same. The literature on the operation of IDTs for SAW is huge.
Reference books on the subject are those from Morgan [5.7] and Mattews [5.8].
Dieulesaint [5.9] recently proposed a condensed although very complete review of the
techniques used to model IDTs but the simpler descriptions proposed by Ristic [5.10]
and Kino [5.11] are recommended for readers who are not familiar with these devices.

At Imperial College, my colleagues R. Monkhouse [5.12] and P. Wilcox [5.13]
developed cheap and flexible PVDF transducers for the generation and detection of
Lamb waves in large structures. These IDTs are different from the SAW ITDs because
the piezoelectric film is very thin and bonded to a non-piezoelectric thin substrate.
These works have been essentially directed toward the development and the practical
design of the transducers. Wilcox studied in detail the behaviour of these transducers
[5.14] in several experimental situations, and also developed a one-dimensional
piezoelectric model [5.15]. The conclusion of his work was that the frequency response
of these PVDF transducers restricted them to high order modes when used on structures
thicker than 2mm. However it was clearly shown that they work very efficiently as
transmitters and receivers of the A0 mode in 1-2 mm thick plates with which we are
concerned in this thesis. Using the model developed for single strip transducers, we will
present here a simple model for the analysis of the behaviour of these transducers. It
will be shown that in addition to being suitable for exciting and receiving the A0 mode,
they can also selectively generate the S0 mode.

5.2.1 PLATE MODE EXCITATION BY INTERDIGITAL TRANSDUCERS

Interdigital transducers (IDTs) consist of uniformly spaced sets of strips, which
are generally sufficiently long so that their electric fields may be closely approximated
by the fields of an infinite periodic array. The operation of these devices is based on the
launching and reception of waveguide modes by distributed transducers, each finger
acting as a single strip transducer. Due to the electric potential applied on the electrodes,
acoustic waves as well as electromagnetic waves are generated in the piezoelectric film.
When the finger spacing is equal to half of the wavelength of the signal and the two
electrodes of a single finger pair are driven differentially, the waves add constructively
and the amplitude of the overall signal is the sum of the signals generated by each finger
pair. It is well-known for SAW devices that for such transducers the frequency response
may be expressed by simple consideration of an element factor describing the behaviour
of a single finger or finger pair, and it is sufficient to know the element factor for the
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case of a single finger at finite potential with all other fingers earthed, as a simple
superposition of these terms will furnish the element factor for any electrode
arrangement based on the infinite periodic array [5.16].

 5.2.1.1 Application of the Single Strip Analysis to the Element Factor of  an
Interdigital Transducer

An even simpler technique can be applied to combine element factors to
evaluate the response of a plate mode IDT made of a 100µm thick piezoelectric layer
deposited on top of  a 1mm aluminium  substrate. Indeed in SAW devices the electric
field lines are curves starting at one finger and ending at the neighbouring finger driven
with an opposite voltage, whereas in a plate mode transducer device, the thickness of
the piezoelectric layer is much smaller than the distance between neighbouring fingers,
hence the main electric lines are vertical between the each finger and the ground
electrode. An experimental study of a plate mode IDT made of interdigital electrodes on
top of a PZT film deposited on a metallic substrate [5.17] showed that when a voltage is
applied to the electrodes at the upper surface of the piezoelectric layer, the electric field
under the electrodes is almost parallel to the normal direction, whilst in the gap between
the electrodes the strength of electric field is much weaker. The ground electrode
behaves like a mirror for the electric field, which results it in being concentrated under
the electrodes. This difference in behaviour compared to SAW devices is due to the
presence of the bottom electrode. For a given potential difference, the strength of the
electric field depends on the distance between the electrodes. Typically in IDTs, the
fingers are a quarter wavelength wide and the gap between the fingers is also equal to a
quarter of the wavelength for which the transducer has been designed. Figure 5.7 shows
the ratio of the quarter-wavelengths for the S0 and A0 modes of a 1mm thick aluminium
plate to the thickness of the piezoelectric layer (100µm). This ratio is always above 4
below 1.5 MHz, and as high as 10 and 30 at 500 kHz for the A0 and the S0 modes
respectively. Therefore the normal component of electric field under the electrodes is
much larger than the transverse component between the electrodes. In PZT, this
difference is increased further by the fact that the dielectric and piezoelectric constants
associated with the normal electric field are larger than the constants associated with the
transverse component of the electric field, as seen in Table 4.1. Therefore the grounded
electrode serves to concentrate the rf fields in the piezoelectric layer, increasing the
transducer impedance and the coupling to the acoustic wave. Comparison between the
magnitudes of the curves in Figure 4.34 and values for the coupling of SAW given in
the literature [5.4, Vol. II, Appendix 4] clearly shows that the coupling to the acoustic
waves is much higher for the plate modes in a grounded piezoelectric layer than for
surface waves propagating at the surface of a semi-infinite piezoelectric solid. This
property has also been used to develop Rayleigh wave amplifiers [5.18]. Therefore we
will approximate the capacitance of the IDT as being equal to the sum of the
capacitance under each fingers and therefore, determining the impedance of an IDT
transducer bonded to a metallic plate can be done in the same way as developed for a
single strip transducer. Equations (4.87) and (4.88) in section 4.6.2.2 give the
amplitudes of the modes propagating away from the transducer region and to evaluate
them it is necessary to relate the electric displacement DSz to known quantities such as
the applied voltage and current. As seen in section 4.6.3, knowledge of the modal
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amplitudes give direct access to the radiation conductance of the transducer. The only
problem that is therefore left for us to solve is to find the distribution of the electric
fields due to the applied charges at the fingers of the IDT. This is a much more complex
problem than the one-dimensional problem solved in section 4.6.4.1.

 5.2.1.2 Electrical Field Spatial Distribution

To our knowledge the first paper in which the electrostatic problem, of
determining the distributed charges due to a voltage applied to electrodes deposited on a
piezoelectric substrate, is that of Coquin and Tiersten [5.19]. In this paper the conformal
mapping technique was used to find the potential induced on the electrodes by SAW for
an IDT system and also for a system of two identical electrodes. The electrical
capacitance of an electrode pair was also calculated. In this paper, as in many other
papers concerned only with SAW, the only capacitance is the transverse capacitance. In
our thin piezoelectric layer configuration, the main capacitance is that between the
electrode and the metallic substrate. Milsom [5.20] and Joshi [5.21] used the classic
Green’s function technique to solve the electrostatic problem. In this approach the
charge distribution over each electrode is approximated by a function with unknown
values at a number of discrete points. The problem is then reduced to solving an
algebraic system of equations, the number of which being proportional to the number of
electrodes and the number of discrete points; the more points the more accurate the
calculations. Another technique to solve the electrostatic problem is the analytic
function theory, which is based on the property that analytical functions are solutions of
Laplace’s equation. The problem is therefore reduced to finding the appropriate analytic
function. It is a very elegant technique and a solution for IDTs has been given by
Goryshnick [5.22]. Recent work by Biryukov [5.23] reports some of the early Russian
results, and Peach [5.24] also proposed an analytical investigation of the electrostatic
problem for a discrete number of electrode pairs.

The case of an infinite periodic structure of identical electrodes at alternating
potentials has been treated by Joshi [5.25] and by Engan [5.26]. The solution proposed
by Engan, which is very often referred to in IDT problems, is based on a Fourier series
expansion. More details can be found in an earlier work from Chu [5.27] on the
propagation of waves in helical waveguide where a similar boundary problem is solved.
We used the same method as Engan to find the distribution of the electric field but
because the boundary conditions in our problem are different from those for a SAW
problem we had to redo all the calculations, starting right from the beginning. It must be
pointed out that this analysis will involve rather long and complicated calculations.
Most of them are developed in Appendix F and in this section we only present the
principles and emphasise the differences between our solution and the well-know
solutions for SAW. Therefore, readers who are ready to accept the validity of the
solutions for SAW and also that the same IDTs developed for SAW do launch plate
waves when the boundary conditions are changed may wish to omit the mathematical
validation in the appendix.

The entire IDT problem is solved if we can obtain a relationship between
( )SzD x, h , the electric displacement, and the applied voltage V. The electric
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displacement can be written as the gradient of the potential (from Eq.(4.108) and
Eq.(4.109)) and the potential obeys Laplace’s equation in an insulator in absence of free
charges. Therefore solving Laplace’s equation for the potential gives the electric
displacement and from it the amplitudes of the modes. At the upper surface of the
piezoelectric layer, the alternation of the electrodes implies (for an infinite electrode
array) that the boundary condition, at that plane z = h, is periodic, as shown in Figure
5.8(b)

( ) ( )
( ) ( )
x,h 0 for d 1 a 2 x d 2

x,h V for 0 x d 1 a 2

�Φ = − < <�
�
Φ = < < −��

(5.1)

with

( ) ( )
( ) ( )
x d, h x, h

x 2d,h x,h

Φ + = − Φ��
�
Φ + =Φ��

(5.2)

It is this periodicity of the boundary condition that allows us to find an analytical
solution to Laplace’s equation. Indeed, the boundary condition being a periodic function
in the variable x, the solution can be sought using the separation of variables technique
and expanding the function of the x variable in Fourier series, the difficulty being in
finding the coefficients Fm of the Fourier series. The reason why the solution for SAW,
found by Engan [5.26], cannot be used here is that in this problem we have another
boundary condition: the electric potential is zero at the grounded lower surface of the
piezoelectric layer,

( )x,0 0Φ = (5.3)

This boundary condition not only changes the solution but even precludes using
the same technique as that used for SAW problems. Indeed, although it is not clearly
specified in Engan’s paper, Engan’s solution has been sought and developed for
symmetric electrical boundary conditions: the electrode array is at the interface between
two semi-infinite spaces, the crystal and the vacuum. In our particular problem the
electric field is grounded at the interface between the piezoelectric layer and the
metallic plate and therefore the problem is no longer geometrically symmetrical. The
symmetry of the boundary conditions in the SAW problem has major consequences.
Mathematically this implies that the Fourier coefficients Fm are the same in the crystal
and in the vacuum but it also has a very important physical meaning, which we will
discuss in the following section.

 5.2.1.3 Shielding Problem

Let us imagine a typical SAW device configuration, with two different semi-
infinite media above and below the electrodes. If the interface between the two media is
assumed to be free electrically, than the electric fields must be continuous at the
interface, that is, labelling the vacuum medium I and the piezoelectric medium, medium
II,
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I II
z zD D= (5.4)

( ) ( )I IIx, z 0 x, z 0Φ = =Φ = (5.5)

where z is the direction normal to the interface. The divergence of the electric
displacement is null in each medium and the continuity at the interface implies

I I II II
I I II II
xx xz xx xzx z x z

∂Φ ∂Φ ∂Φ ∂Φε + ε =ε +ε
∂ ∂ ∂ ∂

(5.6)

and from Eq.(5.5) we have

I I II II
xx xz xx xzx z x z

∂Φ ∂Φ ∂Φ ∂Φε + ε =ε + ε
∂ ∂ ∂ ∂

(5.7)

and if I II
xz xz 0ε = ε = , which is the case for all hexagonal crystals (and therefore for PZT

ceramics), then the boundary interfacial condition imposes

I II
xx xxε = ε (5.8)

and the solution obtained for z > 0 (medium I) is similar to the solution obtained for the
region z < 0 (medium II). Hence the symmetry of the problem implies that the effect of
the media is implicit. This symmetry of SAW devices is broken in the Lamb wave
problem by the presence of an extra electrode (the ground electrode) and in order to
solve the electrostatic problem in the same way as it has been done for SAW devices, it
is necessary to “recreate” that symmetry. The simplest solution consists in introducing a
shielding electrode, above the transducer, at a distance equal to the thickness of the
piezoelectric layer, as shown in Figure 5.8(c). Resorting to this trick allows us to have a
problem with symmetric electrical boundary conditions which we can now solve in the
same way SAW problems were solved. This is done in Appendix F.

For an interdigital array of infinite length, the electric displacement is given by
the Fourier representation

( ) ( )T
Sz p 2n 1

n 0
D (h, z) coth h 2n 1 F sin 2n 1 z

d d

∞

+
=

π π� � � �= ε γ + +� � � �
� � � �

� (5.9)

with

T
xx

n T
zz

εγ =β
ε

and T T T
p zz xxε = ε ε (5.10)

and



Chapter 5 Interdigital Transducer on a Metallic Plate

Page 256

( )( )
( )( )

n
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P cos aVF
d K sin a 2+

ππ=
π

(5.11)

The coefficients Fm are the ratio of a Legendre polynomial Pn to an hyperbolic
function K of first kind, and only the odd coefficients of the Fourier series are non null.
Numerical values for both functions can be found in mathematical tables. Therefore the
amplitude of the Lamb modes generated by the IDT is given by

( ) ( )n

T *
p n L 2z h j

n 2n 1 L 2nn n 0
a coth h 2n 1 F je sin 2n 1 d

4P d d
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The integral is given by [5.4]

( )

( )( )

( )

( )

( )( )

( )

( )

n n

n
j 2n 1 L 2

n
L 2 j j

L 2
n

j 2n 1 L d

n

2n 1
sin L

d
e

2n 1
L

d
e sin 2n 1 d jLe

d 2n 1
sin L

d
e

2n 1
L

d

+ π

+ − β ξ β ξ
−

− + π

� �+ π� �
β +� �� �
� 	� �

� �+ π� �
� �β +� �
� �π � � 	 �� �+ ξ ξ= 
 �� �

� 	 + π� �� �β −� �� �
� 	� �−

� �+ π� �
β −� �� �

� �� 	� 


�

(5.13)

and near the fundamental resonance of the IDT, where

nd / 2≈ λ and n / dβ ≈ π (5.14)

only the second term in Eq.(5.13), with n = 0, makes a significant contribution,
therefore the amplitude of the positive travelling wave is
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and the number, N, of finger pairs in the transducers can be introduced using L = Nd.

5.2.2 RADIATION CONDUCTANCE OF THE TRANSDUCER

The calculations performed in Appendix F also provide two quantities much
needed in the evaluation of the transducer performance, the capacitance of a single
finger pair, and the radiation conductance. For a transducer with equal finger widths and
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spacings, and for N pairs of fingers, the radiation conductance of the transducer is given
by

a n2
16R Z

w
=

π
(5.16)

where w is the finger width in the direction perpendicular to the sagital plane. The
model has been developed on the plane strain assumption, and therefore w is set to 1,
but in the capacitance calculations it can be set to its actual value. This formula is very
well known in SAW problems [5.4], [5.7], [5.8], [5.28], [5.29],[5.30] and the difference
between the SAW and the plate modes comes in the form of the impedance,
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and the capacitance of N finger pairs can be approximated, near the fundamental
resonance, by
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In the case where the piezoelectric layer is extremely thin compared to the finger
spacing, ( )coth h 1 hγ → γ  and the capacitance is given by

T
zz

dwC 0.14
h

≈ ε (5.19)

This compares with the use of the assumption that the field is uniform under the
electrodes leading to the results

T
zz

dwC 0.125
h

= ε (5.20)

Thus the approximation is reasonable.

 5.3 EXPERIMENTAL VALIDATION AND FINITE ELEMENT
INVESTIGATION

The amplitude of the mode generated by the IDT can be obtained using Eq.(5.15).
This equation is very similar to that developed by Auld for SAW IDTs. For SAW the
modal amplitude equation has been successfully validated [5.28]. Moreover the single
strip model has been successfully checked in section 5.1, validating both the principle of
the model and also the accuracy of the amplitude calculations for plate modes.
Therefore rather than specifically validating Eq.(5.15) by designing a specific finite
element model, we decided to compare the model predictions with experimental data.
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In 1999 we conducted a study on a set of PVDF interdigital transducers, an
emitter and a receiver optimised to generate and receive the mode S0. Our primary
interest was to investigate whether such transducers could generate predominantly
inplane motion. Moreover we also wanted to validate some design ideas and investigate
the degree of precision to which a complete finite element model could predict the real
behaviour of such a smart structure. The test sample is depicted in Figure 5.9(a). Two
interdigital transducers are deposited on a 1.2mm thick rectangular aluminium plate,
200 mm long and 70 mm wide. Both transducers comprise a single piezoelectric PVDF
sheet and a pattern of 16 electrodes embedded in a thin layer of polyamide, each
component being bonded using an epoxy based adhesive. The difference between the
transducer used in transmission mode and the transducer used as a receiver lies in the
shape of the electrodes. The emitter electrode pattern is apodised in the direction of
propagation whereas the receiving electrodes are all of the same size. Normal
mechanical displacements in between the emitter and the receiver have been measured
using a Laser probe. We also measured displacement amplitude on the transducers
themselves in order to have an insight on the generation process and also on the
attenuation of the waves propagating underneath an IDT.

A finite element study has also been conducted using PZFlex at Strathclyde
University before our finite element program FE77 was developed. The dimensions of
finite element model, as shown in Figure 5.9(b), have been based on those of the
sample. However modelling a 200 mm long plate would have multiplied uselessly the
number of elements constituting the model. Hence the distance between the transducer
was reduced to 30 mm and the plate does not extend behind the transducers. To avoid
unwanted extra reflections from the end of the plate, absorbing boundaries have been
used at each end of the aluminium plate.

5.3.1 PVDF MATERIAL CONSTANTS

An important issue when modelling PVDF based transducers is to find the
mechanical, dielectric and piezoelectric constants of that material. Some are provided
directly by the manufacturing companies and one can also find papers on bulk wave
properties [5.31]. To date there seem to have been very few papers on the application of
PVDF to surface or plate waves that also provide detailed material constants and, if they
do, the data are unusable because of very specific conditions of application (very low
temperatures or very high frequencies) [5.32]. There is a major difficulty in performing
a theoretical analysis of plate wave propagation in PVDF (and in this sense a finite
element model has the same requirements as a theoretical analysis): the very
considerable amount of previous work on PVDF has been directed at the study of length
expander and thickness longitudinal modes. Thus only a few crystal constants are
available and we had to determine the others ourselves.

PVDF is orthorhombic. It has the symmetry properties of point group mm2 and
thus has 18 independent constants: C11 C12 C13 C22 C23 C33 C44 C55 C66, e31 e32 e33 e24 e15,
ε11 ε22 ε33 and the density ρ. Most of these constants are not experimentally accessible.
In developing the set of data we have assumed that PVDF is isotropic in the plane
perpendicular the axis of poling. This is similar to assuming that PVDF is a hexagonal
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Z-cut crystal. Under these conditions we could reduce the number of independent
constants by setting C22 = C11, C12 = C13 = C23, C55 = C66, and C44 = 0.5*(C11 - C12).
When assuming that PVDF is hexagonal we implicitly assume that it is not uni-axially
stretched. Fortunately measurements of longitudinal and shear waves velocities in the
XY plane made at Imperial College proved that, at least on the sheets of PVDF we
bought form AMP [5.34], this effect was not strong. Moreover since the model is two-
dimensional any other assumption would have led to the same apparent conclusions.
Also, comparing our measurements with data provided by ITAG we have assumed that
the polymer used here is a low draw homopolymer. For our calculations, we have taken
some of the constants provided by ITAG [5.33], AMP [5.34] and we have determined
the others by matching theoretical data with our experimental values and our
assumptions. The constants that we finally used are given in Table 5.1.

5.3.2 EXPERIMENTAL AND FINITE ELEMENT SETUP

Interdigital transducers are spatially selective, thus only certain modes can be
excited by a given IDT. This selectivity is achieved when the electrode spacing matches
the wavelength of a mode that can propagate in the structure. In the present case the
structure is a 1.2mm thick aluminium plate and the modes that can exist and propagate
in that plate can be predicted either analytically or using DISPERSE.

The interdigital transducer we used was designed to generate waves having 4mm
wavelength, that is the width of a finger pair was set to 4mm. Since the wavelength is
the ratio of the phase velocity to the frequency, there is at the most one frequency at
which each mode will have a wavelength that will match the electrode spacing. Figure
5.10(a) shows the phase velocity dispersion curves of the first four Lamb modes for a
1.2 mm thick aluminium plate. It is seen that all four modes could be generated using a
4mm wavelength IDT at respectively 0.5 MHz, 1.3 MHz, 1.8 MHz and 2.4 MHz, for
modes A0, S0, A1 and S1. However Figure 5.10(b) shows that the mode S1 is very
dispersive at 2.4 MHz and will not propagate over long distances.  All other modes are
in weakly dispersive regions and could be generated. Figure 5.10(c) shows the
dispersion curves in a frequency versus wavenumber view.

The emitting transducer is driven with a 8 cycle rectangular toneburst at 1.3
MHz to generate the S0 mode. Figure 5.11(a) shows the applied voltage time variation.
Its frequency spectrum is shown in the diagram on the right. Since a rectangular
window was used in the time domain, the frequency spectrum exhibits a number of side
lobes. The highest sidelobe of a rectangular window is only 15dB down from the
maximum of the spectrum which is a disadvantage but on the other hand the main lobe
bandwidth is narrower than for any other window [5.35]. Figure 5.11(b) shows the
charge variation with time on the 1st electrode and Figure 5.11(c) shows the time
variation of the charge on the bottom electrode which in the case of a metal structure is
the structure itself. This is displayed as a time-frequency plot in Figure 5.11(d).

For most metal substrates it is reasonable to assume infinite conductivity so that
a static electric field cannot be maintained in the interior of the substrate. This field does
exist in a perfect dielectric medium. It is seen in Figure 5.11(b) that the charge does not
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go to zero instantaneously after the volatge drops down to zero and this could first be
seen as an effect of bad conductivity of the electrodes. However in the FE model the
voltage is not applied on the top of the electrodes but the electrodes are virtually defined
at the interface between the copper electrodes and the PVDF layer. Hence the tail in
Figure 5.11(b) is due to the presence of induced electric charges in the vicinity of the
electrode in the piezoelectric layer. This pattern is indicative of resonace occuring in the
IDT when the electrodes are not connected to any external electric circuit. During the
time the voltage is applied, charges are present at the location of the electrodes. In this
model the voltage is directly applied to the electrode. When the driving signal is
switched off, the charges are in an unstable state. If there was a resistance, i.e. an
electrical extrenal circuit, the charges would be dissipated, but since no electrical loss
has been included in the model, the charges propagate back and forth between the
electrodes with a frequency corresponding to the resonant frequency of the electrode
pattern until they reach an equilibrium state or dissipate. When the excitation ends the
system continues to oscillate. If there are no losses at all it will oscillate indefinitely.

The charge at the bottom electrode carries useful information about the nature of
the piezoelectricaly stiffened acoustic waves that propagate within the piezoelectric
layer. Going back to the assumption, used to derive the analytic model, that an
interdigital transducer can be seen as a periodic succession of capacitors, during the
time the IDT is driven, the presence of charges under the electrodes induces charges of
the opposite signs on the bottom electrode. According to the sinusoidal variation of the
applied voltage the charge distribution on the driven electrodes and on the bottom
electrode vary periodically. When the excitation is switched off the standing wave is no
longer sustained and separates into two waves that propagate in opposite directions. The
signal shown in Figure 5.11(c) is the result of the interference between these two waves.
These waves are piezoelectricaly stiffened acoustic waves whose properties depend on
the crystalline symmetry of the piezoelectric material [5.4]. This interference pattern is
highlighted in Figure 5.11(d) which shows a contour plot of the charge signal at the
bottom electrode in time-frequency space. This time-frequency graph represents the
power spectrum of the signal at a given time, that is a measurement of the energy at
various frequencies at a given time. It can be seen that the maximum of each peak
occurs at the same frequency which is 1.3 MHz. This means that the interfering waves
have the same centre frequency which is the necessary condition for two waves
travelling in opposite directions to combine to form a standing wave. Hence once the
excitation is switched off two waves of centre frequency 1.3 MHz, having a wavelength
matching the charge distribution on the top electrodes, i.e. 4 mm, travel in the
aluminium plate.

5.3.3 PROCESSING OF THE FINITE ELEMENT RESULTS

In this model we were mainly concerned with mechanical results such as surface
particle displacements in order to compare them with experimental values. The results
have been grouped in 3 series, one for the surface particle displacements predicted and
measured on the emitting transducer, one for the surface particle displacements
predicted and measured on the plate itself between the transducers, and finally one
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series for the surface particle displacements predicted and measured on the receiving
transducer.

 5.3.3.1 Transmitting IDT

Figure 5.12(a) to (d) show some examples of snapshot views at different times
during the time when the excitation signal was applied to the transducer. The diagrams
on the right of each snapshot show the part of the input voltage applied so far.
Snapshots (a) and (b) show that the electrodes start to move as rigid bodies and as the
pulse starts to be constituted significant motion starts to appear between the electrodes
as shown in Figure 5.12(c) and (d). This is indicative of the formation of the travelling
piezoelectricaly stiffened acoustic modes.

Figure 5.13(a) shows the absolute out-of-plane surface displacements measured
using the laser interferometer on each electrode and between each electrode of the
transmitting IDT. The electrodes have been numbered and can be related to Figure
5.8(a) It can be seen that the displacements are sometimes greater between the
electrodes than on the electrodes. Also the displacement pattern is not symmetric with
respect to the centre of transducer. This is due to poor signal-to-noise ratio due to low
reflectivity of the polyamide and also, but less significantly, to the fact that the upper
surface of the IDT is not perfectly flat.

Figure 5.13(b) shows the predicted out-of-plane surface displacements and direct
comparison with the measured values is possible. Also dotted lines trace the electrode
pattern so that it clearly appears that the maximum displacements occur on the
electrodes while the displacements are a minimum between the electrodes. The even
numbered electrode and the odd numbered electrodes were driven in opposite phase (+V
and -V) but this does not make any difference since only absolute values of the
displacements are plotted. The predicted values shown on Figure 5.13(b) have been
obtained by first plotting snapshot views of the out-of-plane surface particle
displacements at different times and then by extracting for each node the maximum
displacement. It can be seen that the FE predictions are not symmetric with respect to
the centre of transducer; symmetry would be expected since the IDT launches waves in
both directions and the electrode pattern is geometrically symmetric. However at the
scale of the finite elements constituting the model, the IDT is not symmetric since an
even number of nodes has been used.

The mean value of the measured displacements is 2.54 nm and the mean value
of the predicted displacements is 3.22 nm as seen in Figure 5.13(b). Considering the
likely differences between the PVDF materials properties and the material constants
defined in the FE model, that attenuation of the PVDF and epoxy have not been
modelled and also considering that laser measurement accuracy is affected by the
reflectivity of the surface when the magnitude of the displacements is of the order of the
noise level, these results are surprisingly good.
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 5.3.3.2 Displacements at the Surface of the Plate.

The two transducers are 30 mm apart in the model and surface displacements in
two directions were monitored at each surface node. Because of very slow propagation
in the PVDF sheet the element size has to be as small as 0.05 mm making the time step
very small also (5.6 10-8 s). In order to perform 2 dimensional Fourier transforms in the
in-plane and the out-of-plane directions and to obtain sufficient resolution to separate
modes that could propagate in the aluminium plate, we have monitored the longest
possible distance, i.e. 30mm, over a period of 30 µs. (a) shows a 3 dimensional view of
the 2D-FFT performed in the direction normal to the plate. It can be seen that there is
one major mode and traces of two other modes. The 2D view shown in (b) allows
dispersion curves to be superimposed. The usual FFT transforms the time domain into
the frequency domain. Performing a second FFT on the spatial data, i.e. along the
monitored nodes, transforms the spatial domain into the wavenumber domain. Hence a
2D-FFT provides a view in the frequency-wavenumber plane and dispersion curves
have to be traced in this plane (see Figure 5.9(c)) before being overlaid on the 2D-FFT
view. In  (b) it immediately appears that the main mode propagating in the plate is the
S0 mode.  Modes A0 and A1 also propagate but with a very low amplitude.

2D-FFT are performed from a series of time traces monitored at different nodes
along the direction of propagation of the waves. Figure 5.15(a) to (c) show time
histories of the signal that propagates from the emitter toward the receiver at the surface
of the plate, at different locations along that direction. The interference phenomena seen
in these figures can be explained by the multi-mode propagation. Each mode propagates
with a different group velocity and interferes constructively or destructively at different
moments in time.

Experimental measurements of out-of-plane surface displacements have been
done using the laser interferometer. Figure 5.16 shows the comparison between these
measured absolute displacements and the maximum of each of the time traces
monitored at each node between the emitter and the receiver. The absolute amplitude of
the S0 mode, calculated from Eq.(5.15) is also shown as a single line. It is very
encouraging that the mean values from the experiments, finite element predictions and
analytical calculations are within 0.3nm of each other, given the rough nature of the
experiments and the number of simplifications made in the models.

 5.3.3.3 Receiving IDT

The last series of measurement and predictions concern the receiving IDT. This
one was passive and, in the finite element model was not connected to any electrical
external circuit. Only mechanical degrees of freedom have been monitored.

Figure 5.17 shows snapshot view of the displacement measured at nodes along
the receiver. Considering the group velocity of the S0 mode, 7 to 8 µs should be the time
needed for the S0 mode to reach the receiver. In Figure 5.17(a) we see that the S0 mode
has been preceded by another signal. Figure 5.17(b) shows the arrival of the pulse. It is
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clearly seen that the acoustic signal is preceded by an electromagnetic signal that
activates the piezoelectric effect.

Figure 5.18(b) shows the displacements measured on and between the
electrodes. It is seen that the amplitude decays from the first electrode (on the emitter
side) toward the last electrode. Displacements are between 1 and 3 nanometers whereas
they are between 1 and 5 nanometers on the emitting transducer (see Figure 5.13(b)).
Also it is seen that displacements on the top of the receiver are 1 to 3 times larger than
displacements on the plate, hence the receiver does not act only as an electro-
mechanical converter but also as an amplifier.

Figure 5.18(a) shows the predicted surface displacements on and between the
electrodes together with the measured displacements. Once again the mean value are
very close and the shape of the predicted curve reproduces that of the measured curve.
However the predictions are much sharper than the measurements. There are two
explanations for that. First the laser spot has a dimension that is not negligible compared
with the width of the electrodes, so no more than one or two measurements have been
done on each electrode. Secondly, each electrode has been modelled with 15 nodes so
the displacement distribution on each electrode is indicative of the charge density
distribution underneath each electrode. At the edges of the electrode there is a
concentration of the charges and the charge distribution follows the shape of a quadratic
or cubic function of minimum magnitude at the middle of the electrode and maximum
magnitude (theoretically infinite) on the sides. The FE predictions seem to show such a
distribution.

In Figure 5.18(b) one can notice the small displacement measured on the first
electrode whereas it is predicted to be very large. This is due to the fact that during the
manufacturing process some adhesive spread beyond the transducer making
measurements on the first and last electrodes very difficult.

It also can be seen in Figure 5.18(a) and in Figure 5.18(b) that the magnitude of
the displacement decays dramatically along the transducer. Both measurements and
predictions exhibit a large decay of the displacements. It is particularly interesting to
notice that the material attenuation of PVDF and epoxy have not been modelled. Hence
the decay of the predicted amplitude is only due to some internal phenomena. It is
believed that internal scattering as well as mechanical and electrical loading (MEL)
[5.7] are responsible for this decay.  The analytical model we are developing should
take these effects into account.

Figure 5.19 shows the predicted displacements at the upper surface of the IDT
and the predicted displacements at the interface between the plate and the IDT. The
amplification effect is still noticeable. The ratio at each node of the displacements at the
upper surface to the displacements at the interface has been calculated and is shown on
the same graph. This ratio is similar for each finger pair and is a maximum at the
electrodes and minimum between the electrodes. Hence it is believed that this ratio is a
representation of both the direct piezoelectric effect and the indirect piezoelectric effect.
The average magnitude of this effect is 2.35. The effect is non zero between the
electrodes and this is believed to be a representation of the coupling between the
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electrodes, in other words each electrode does not act as an simple capacitor but the
electric field is affected by the presence of neighbouring electrodes. This point is to be
kept in mind when solving the receiver problem. The analytical model developed can
easily be used to model the receiver, since there is a reciprocity relationship between the
fields emitted by the transmitter and those received by the receiver. However the
transmitter model has been developed on the assumption that each finger acts as a strip
capacitor and the FE results show that this is not quite the case in a real receiver.

 5.4 DISCUSSION

In the first part of this Chapter the single strip model has been validated very
successfully. In the second part, an initial investigation of an IDT transmitter gave very
encouraging agreement between finite element predictions, analytical analysis and
experiments. However this was only a preliminary study and more work would be
needed to validate thoroughly for their complex nature and to investigate different
possible sources of errors. Previous studies of SAW devices showed that the phenomena
that influence the behaviour of these devices can be classified into first-order and
second-order effects [5.7]. For SAW, second-order effects have been shown to have
limited effect on the overall performance of the transducer. However their probable
existence in plate mode IDTs may explain the discrepancies between the analytical
results, the experimental measurements and the finite element predictions.

The receiver case shown good agreement between finite element predictions and
experiments, however an analytical model must still be developed for this case.
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TABLES

Stiffness (109  newton/ m2)
C11 4.94 C33 9.6
C12 2.46 C44 3.57
C13 2.46 C55 3.57
C23 2.46 C66 1.24

Piezoelectric Stress
Constants

(coulomb/m2)

Relative Permittivity at
Constant Strain

�0 = 8.854 10-12   farads/m
ex5 -0.207 �xx

T 12.4
ey4 -0.207 �yy

T 12.4
 ez1 0.216 �zz

T 12.4
 ez2 0.216 Density (Kg/m3)
ez3 -0.339 1100

Table 5.1: Material parameters for PVDF.
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Figure 5.1 : Exact attenuation dispersion curves for a 1.2mm thick aluminium plate loaded with
water on one face.
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Figure 5.2 : Schematic representation of a single strip transducer. (b) Cross section in the plane
(xz) and the waves generated by the transducer.
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Figure 5.4 : Schematic diagram of the finite element model used to monitor the mechanical
displacements in the x- and z-directions at the top surface of the PZT-5H layer for the
modes reflected at a 10mm long electrode.
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Figure 5.6 : Schematic diagram of an interdigital electrode transducer on a thin metallic plate.
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Figure 5.11 : (a) Input voltage signal, i.e. a 8 cycle sinusoidal toneburst of centre frequency 1.3
MHz. (b) Time evolution of the electrical charge distribution on the 1st electrode. The
diagrams on the right show the frequency spectrum. (c) Average charge distribution on
the grounded bottom electrode. (d) Time-frequency plot of the charge on the bottom
electrode.
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a) Time = 0.5 s                                                                                                 Voltage at 0.5 sµ µ
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Figure 5.12 : Examples of snapshots of the normal displacements on the upper surface of the
transmitting IDT at different moment in time during the application of the input signal.
The electrode pattern is shown on each snapshots. Diagrams on the right of each
snapshot show the part of the input voltage signal applied so far.
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Figure 5.13 : Experimental and predicted out-of-plane displacements on the upper surface of the
transmitting IDT. (a) Displacements measured experimentally using a laser probe on
each of the electrode (black columns) and between them (gray columns). (b)
Comparison between these experimental results and the displacements predicted using
the finite element model. The apodised electrode pattern is superimposed.
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Figure 5.14 : Measurement of the normal displacement of Lamb modes propagating in a 1.2 mm
thick aluminium plate. (a) Normalised 3D plot and (b) contour view of the 2D FFT
results.
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Figure 5.15 : (a), (b) and (c) out-of-plane surface displacements versus time for a 1.2mm thick
aluminum plate at three different locations on the plate between the transmitter and the
receiver.
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Chapter 6 

Conclusion

An analytical model for acoustic plate modes generated by piezoelectric
transducers has been presented in this thesis. In this concluding chapter, a review of the
thesis is presented which highlights the main findings. The interest in the model, along
with its limitations, and some suggestions for future work are discussed. Lastly the main
contributions of the thesis are summarised.

 6.1 REVIEW OF THE THESIS

Chapter 1 described the motivation and set out the objectives of this work. The
motivation was originally provided by a group of UK companies who required novel
developments in smart structure applications. Among the solutions investigated were
thin, permanently attached, interdigital transducers, designed to selectively generate
Lamb waves in thin metallic structures. The thickness of the piezoelectric layer was in
the range from few microns to 0.25 mm. These transducers being permanently attached
to the structure under investigation could not be studied without considering their
interaction with the structure and due to their geometries, one-dimensional models were
not able to predict the amplitude of the Lamb waves excited by the transducer.
Therefore there was a need for modelling tools. Two models have been developed, a
finite element program and an analytical model. The main objective of both models was
to take into account the electromechanical interaction between the electrical input and
the guided waves. The different phases of the development of the tools and theories
needed to investigate the behaviour of piezoelectric transducers were summarised in
Chapter 1.
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Lamb waves, which are the guided waves excited by the transducers have been
reviewed in Chapter 2, where attention was focused on their modal properties. The
model was built on two theories, the normal mode theory and the perturbation theory
which have also been reviewed. Lastly, piezoelectricity and piezoelectric transducers
were presented.

The development and validation of a finite element formulation that includes the
piezoelectric effect alongside the dynamical matrix equation was described in Chapter
3. It was shown in detail how the equations of piezoelectricity were reduced to the well-
known equation of structural dynamics, based on an adaptation of the condensation
technique to the piezoelectric equations. Practical incorporation of these equations into
an already existing finite element code was also discussed and practical examples were
investigated and served as validation examples.

In Chapter 4, an analytical model has been developed on the basis of normal
mode theory and perturbation methods. The structure of the model was detailed step by
step and each of these steps was thoroughly validated using the finite element program.
Firstly the mechanical influence of the transducer on the guided waves of the structure
was studied. Secondly the electrical potential associated with the plate modes
propagating in the transducer region was derived analytically. Then a first transducer
model was derived, emphasising the differences with SAW transducers and a specific
formulation for Lamb waves was developed. The third and last step was concerned with
scattering coefficients. Calculation of the S-parameter for the fundamental Lamb modes
at rectangular strips have been derived analytically and validated numerically.

Two applications of the finite element and of the analytical models have been
presented in Chapter 5. The first example was a single strip transducer bonded to a 1mm
thick aluminium plate. The amplitudes of the two Lamb waves generated by the
transducer were predicted over a 1 MHz frequency range.  The finite element and the
analytical results were shown to be in good agreement with each other. The second
application was concerned with the modelling of a practical interdigital transducer. A
preliminary investigation has been carried out, first experimentally and then using the
finite element and the analytical models. The theoretical investigation gave results very
close to the experimental results concerning the amplitude of the generated modes, and
several important features for the future design of IDT have been identified.

 6.2 EVALUATION

Significant progress has been made on the understanding of the normal mode
theory and the perturbation formalism. Electromagnetism and electrostatics have been
studied and piezoelectric problems involving guided waves can now be approached
from an electrical point of view without the use of over-simplified approximations.
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6.2.1 FINITE ELEMENT MODEL

The implementation of the piezoelectric constitutive equations in the existing
finite element program, FE77, has been performed. Excellent agreement has been found
with a commercial package, PZFlex®. Several features have been identified using this
finite element tool. In particular the electromechanical coupling of Lamb waves has
been investigated. Although piezoelectric finite element packages already exist, only
simple systems involving plate modes and piezoelectricity have been studied in the past.
It has been shown that our finite element program is perfectly designed for the study of
guided waves and presents several advantages over commercially available packages.

6.2.2 ANALYTICAL MODEL

Previous studies of the generation of Lamb waves by piezoelectric transducers
have either used simplified models or very accurate but cumbersome solutions. Here a
physical model has been developed. The solution procedure that we imagined is original
in the sense that the model has been considered back to front, starting with the modal
properties of the guided waves to be generated, and working out, step by step, all the
coupling and transduction processes to eventually establish a relationship between the
applied voltage and the amplitude of the modes.

The use of the normal mode formalism for the study of the excitation of Lamb
waves is recent and has not been done for complex structures and most of our results are
innovative. The use of the perturbation method for acoustic plate wave problems has
been fully reviewed and it has also been shown how this method can be used for closely
related problems, such as the propagation of guided waves in structures that cannot be
modelled exactly.

All along the development of the model, our approach has been to break down
complex problems into simple ones by using simplifying approximations. In particular
this technique has been used to look at the scattering of Lamb waves at surface defects.
A new and simple solution has been found that allows us to estimate with good
accuracy the reflection coefficient of each Lamb mode, and also to predict the mode
conversion of one mode into another one.

An analytical solution has been found for the case where the charges are applied
uniformly over the surface of the transducer. Electrostatic solutions for the charge
density on the electrodes of the transducer have been given for a thin and grounded
piezoelectric layer mounted with either one single electrode or with an infinite array of
evenly spaced electrodes. A new expression for the electromechanical coupling
coefficient of the Lamb modes has been given in terms of the well-known ∆V/V
coefficient, the fractional change in velocity when the surface on which the transducer is
to be applied is short-circuited, originally developed for SAW.
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6.2.3 WAVE AMPLITUDE AND TRANSDUCER PERFORMANCE

It was shown that the analytic model gives very good approximations of the
amplitudes of the Lamb modes generated by a piezoelectric transducer. Using both the
analytical model and the finite element program, we have appreciated some limitations
of the actual design of permanently attached PVDF interdigital transducers. Preliminary
results demonstrated the relative inefficiency of apodisation in the direction of
propagation and also the influence of flaws due to the manufacturing process such as
debonding and presence of inclusions (copper chips or air bubbles trapped between two
electrodes). Eventually it was shown that cheap IDTs can generated predominantly the
S0 mode in thin structure.

 6.3 SUMMARY OF MAIN CONTRIBUTIONS

The major contribution of this thesis is that a complete analytical model
developed for permanently attached piezoelectric transducer has been shown to provide
good predictions of the amplitude of the two fundamental Lamb modes generated by the
transducers.

The structure of the model is original and novel in the way that it is has been
developed starting from the modal properties of the Lamb modes of the structure and
the influence of electrical sources has been added through successive perturbations. This
model presents a great advantage over other models based on integral methods. It is
very flexible and versatile. Many further developments can be considered.

In the development of this model, some theoretical points have been clarified
and adapted to the specificity of Lamb waves.

In first place, it was demonstrated that the accuracy of the first order
perturbation calculations for a thin overlay depends more on the mismatch between the
acoustic impedances of the layer and the plate than on the conventionally used “βh”
parameter. It was also shown that the first order expansions are more suitable than
higher-order expansions as long as the exact particle velocities are used.

It was also shown that each plate mode has a different coupling parameter
V / V∆ , and this difference must be taken into account when designing a transducer.

This formulation of the coupling parameter is novel and has been neglected in previous
studies of the generation of Lamb waves using piezoelectric transducers.

The use of the perturbation theory for the prediction of scattering coefficients of
Lamb waves at arbitrary flaws has been investigated and our results can be used directly
for many different NDT applications.

It has been shown at some points thorough the development of the mechanical
perturbation technique how results could be used in order to solve guided wave
problems that have not yet been successfully solved.
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 6.4 FUTURE WORK

The future work on this project falls into two main categories. The first category
involves direct improvement of the finite element and the analytical models, including
the experimental applications. The second category involves the investigation of a new
transducer design and also derivative uses of some calculations presented in this thesis
for purposes other than transducer design. This section only attempts to address issues
that have been mentioned at some point of this thesis but have not been developed to
their full extent.

6.4.1 FINITE ELEMENT MODEL

A strong limitation in the present possibilities of the piezoelectric module of
FE77 is the impossibility to model the influence of the external circuitry on the
transducer. In the same way that mechanical mass and springs can be added locally it
would be desirable to be able to attach resistances and inductances at some nodes. The
use of resistances in particular would be extremely useful in order to provide a way out
for the charges generated in the piezoelectric layer, and therefore avoid the ringing
phenomenom observed in section 5.3.3. In addition to these electrical terminations, it
would be desirable to be able to model electrical losses. The difficulty here is to adapt
the time marching algorithm so that the damping matrix does not need to be inverted.

6.4.2 TRANSDUCER MODEL

 6.4.2.1 Alternative Calculation

We mentioned at various stages of the development of the model, that the source
function used to solve the normal mode amplitude equations is not unique and
alternative forms of this source function can be used. An example of the use of the
volume integral formulation (instead of the surface integral formulation) has been given
at the scattering stage of the model. Using this technique for the transducer problem
would allow us to solve the problem of piezoelectric transducers embedded in the
structure. Such a study would be completely novel.

 6.4.2.2 Second order effects

The analytical model for plate modes has been developed to take into account
the first-order effects only. First-order effects are the piezoelectric coupling, the
mechanical scattering at the edges of the transducer and the mechanical loading of the
transducer. Second-order effects such as the electrical and mechanical scattering at each
electrode, the beam diffraction due to the finite width of the transducer and also the
presence of spurious modes have been quantified for SAW devices. Although our
analytical model does not take these effects into account, its modular nature allows us to
add extra effects in a relatively easy way. The charges under the electrodes act on the
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piezoelectric wave in the same way that a thin overlay does on mechanical waves.
Therefore the good agreement obtained for the mechanical scattering coefficients
definitely warrants the development of electrical scattering coefficients. The problem of
spurious modes is, in theory much more difficult to tackle, but recent works reported
that a mode orthogonality relationship has been established for non-propagating Lamb
modes. Starting from this, the model can be amended to account for the presence of
these modes.

6.4.3 NEW  TRANSDUCER DESIGNS

The IDT results indicate clearly that it is possible to design a transducer that
would generate only the mode S0. We believe that a cheap and powerful S0 transducer
can be manufactured by designing a clever electrode shape that would introduce a field
modulation in a way similar to that of the IDT. Developing our model to investigate this
new design can be done without undue effort since there is an extensive literature on the
subject of electrode dicing and shaping.

6.4.4 SCATTERING CALCULATIONS

The results we obtain for the scattering parameters of the two fundamental Lamb
modes are extremely encouraging and there is a real need in NDT for simple and
efficient models capable of determining rapidly the magnitude of scattering at given
defects. The first step in the future would be to run more validation cases in order to test
the limits of the approximations, developing the calculations for complex defect shapes
in order to establish a database of possible defect shapes. The analytical model provides
almost immediate results which makes it extremely attractive compared to a finite
element program. For a given surface defect, the scattering coefficients for all possible
Lamb modes, at all frequencies can be extracted in less than a minute.

6.4.5 COUPLING OF THE ANALYTICAL MODEL AND THE FINITE
ELEMENT PROGRAM

In this thesis we developed two different models, each having strong advantages
and strong limitations. A perfect solution to almost all NDT problems would be to
couple these models. The finite element program is far to slow too become a design
tool. However if its use is restricted to small local areas, it could become extremely
efficient. As seen in the analytical model, the amplitude of the modes generated by the
transducer or at a scatterer can be found using the same equation, only the source
function being different. This source function is basically the product of two fields,
electrical or mechanical. It is the finding these fields that makes the problem difficult.
The finite element program could therefore be used to predict for example the charge
distribution at the electrodes or the displacements at the surface of the scatterer. These
fields could then be fed back into the analytical model and the amplitude of the waves
could be calculated immediately. This idea is not new, and we already considered
coupling the program DISPERSE with our finite element package. However DISPERSE
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is concerned only with free propagation and therefore computes only the dispersion
properties of the modes and not their amplitudes. Our analytical model can do that.



Appendix A FE77 Input File

Page 295

Appendix A FE77 Input File

FE77 INPUT TEXT COMMENTS

DATABASE 'Strip' 

BOOK new 'Metal_Book'

ATTRIBUTES
2-dimensional plane strain

GEOMETRY 'Metal_Plate'

Regional Coordinates <x y 1 20>
     0.0,0.0        100e-3,0.0
     0.0,1e-3      100e-3,1e-3

Material ALUMINIUM 
Region   QSTR 1,2,3,4  1000   10
Element  QD04

ASSEMBLE
Set stiffness
Diagonal mass

BOOK new 'Piezo_Book'
ATTRIBUTES 2-dimensional scalar

GEOMETRY 'Piezo_Strip'

Regional Coordinates <x y 1 20>
475e-4,1e-3     525e-4,1e-3
475e-4,3e-3     525e-4,3e-3

Material PZT_5H
Region   QSTR 1,2,3,4   50  20
Element  QD04

SUPPORT onplane   
475e-4,10e-4    525e-4,10e-4
475e-4,30e-4    525e-4,30e-4

Open new database with name STRIP

Start mechanical book

2-Dimenasional model in plane strain
conditions

Start defining the mesh geometry for the
plate.
Mesh defined in the plane xy.
Defining the regions in 4 global
positions(1,2,3,4)

Metal region made of  aluminium
Quadrilateral region made of 1000 (direction
x) by 10 (in direction y) 4-noded square
elements

Assemble Mass and Stiffness global
matrices for the d.o.f of the first region
(mechanical).
Mass matrix is diagonalised.

Start Piezoelectric book
2-D mesh for scalar d.o.f (potential φ)

Start defining the mesh geometry for the
strip.
Mesh defined in the plane xy.
Defining the regions with 4 points
(x,y coordinates)

Piezoelectric  region made of PZT-5H
Quadrilateral region of 50 (in direction x) by
20 (in direction y) 4-noded square elements

Set φ = 0 at the interface between the PZT
strip and the plate and at the top surface of
the PZT strip, these 2 planes  define 2
ground  electrodes,
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ASSEMBLE Capacitance

LOAD onplane
VOLTAGE 200 
475e-4,30e-4    525e-4,30e-4

COUPLE 'metal_book' 'piezo_book'

AWAVE

Solution Central Difference

Step Time   0   13.0e-6  10.0e-09

Step Cycle   0.9e6    5

Step Node 1  1, -1, V

Monitor   9501   x
Monitor   9501   y

end job

Assemble the capacitance matrix for this
region

Apply 200 volts along one of the supported
electrode (define as a plane in the xy
coordinates)
The other electrode remains at potential zero
(grounded  electrode)

Couple the two books

Call the time marching solution routine

Using the Central difference algorithm

Start time marching with 10 nano-sec time
step for a total of 13 µs.

Applying a 5-cycles toneburst at 0.9 MHz

Load is applied as a voltage toneburst to all
nodes along the electrode defined in the
Load module

Monitoring results as displacements,
    At node  9,501 monitor x displacements
    At node  9,501 monitor y  displacements
Displacements are saved in the database
STRIP

End the job at time 13 µµµµs
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Appendix B Determination of the Stress Fields

The stress T and the particle velocity v fields in the piezoelectric film are found
by expanding the fields as power series in the variable in the coordinate y normal to the
upper free surface and keeping only the lower order terms. In calculating the stress in
the film, the effect of piezoelectricity within the PZT-5H layer is neglected while the
anisotropic nature of the crystal is included in the stress-strain relationship. Since the
majority of the power flow in a plate mode is mechanical, neglecting the piezoelectric
response of the crystal is not a seriously limiting approximation.

In the following we assume the plate modes to be harmonic, assuming
propagation as ( )i t xe ω −β . The starting equations are the equation of motion and the
constitutive relation given in symbolic notations [4.7]:

v.T
t

∂∇ = ρ
∂

(B.1)

s
Sv
t

∂∇ =
∂

(B.2)

S s : T= (B.3)

where [ ].∇ is the divergence operator for a second rank tensor and [ ]s∇ is the symmetric
gradient operator. In this problem we assume propagation occurs only in the sagittal
plane (that is excluding SH waves) and along the direction z, therefore there is no
displacement along the direction y. Therefore the operator for this problem simplifies to

[ ] [ ]T
s

x 0 0 0 z 0
. 0 0 0 z 0 x

0 0 z 0 x 0

∂ ∂ ∂ ∂� �
� �∇ = ∂ ∂ ∂ ∂ = ∇� �
� �∂ ∂ ∂ ∂� �

(B.4)

Here we will treat a fairly general case, limiting the anisotropy of the crystals to
only orthorhombic materials. The form of the stiffness and compliance matrices for
anisotropic materials depends on the microscopic symmetry properties of the medium.
If the medium itself is symmetric with respect to a particular transformation of
coordinates, then the compliance and stiffness matrices must themselves be unchanged
by the same transformation. Each crystal symmetry group is a class and various classes
are grouped in systems. Orthorhombic systems have nine independent stiffness
constants that reflect the fact that such lattices are unchanged only through 180 degrees
rotations or mirror operations. The compliance matrix is
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11 12 13

12 22 23

13 23 33

44

55

66

s s s 0 0 0
s s s 0 0 0
s s s 0 0 0
0 0 0 s 0 0
0 0 0 0 s 0
0 0 0 0 0 s

� �
� �
� �
� �
� �
� �
� �
� �
� �� �

(B.5)

In Eq.(B.1) to (B.3), T, S and s are used in their matrix representation.
Substituting for the operators in Eq.(B.1) and Eq.(B.2) and multiplying out the
equations, we obtain

4
6

Tj T 0
z

∂− β + =
∂

(B.6)

23
5 3

T
j T u

z
∂

− β + =− ρω
∂

(B.7)

25
1 1

T
j T u

z
∂

− β + = − ρω
∂

(B.8)

1 1j u S− β = (B.9)

3
3

u
S

z
∂

=
∂

(B.10)

1
3 5

u
j u S

y
∂

− β + =
∂

(B.11)

2 4 6S S S 0= = = (B.12)

where 3u  and 1u  are the displacements in the  z and the x directions. Concerning the
stress tensor, contracted notations have been used. 1 xxT T=  and 3 zzT T=  are the direct
stresses in the directions x and z. 4 yzT T= , 5 xzT T=  and 6 xyT T=  are the shear
stresses. Equations (B.9)-(B.12) can be combined with the constitutive relationship
Eq.(B.3), yielding the displacement in terms of the nonzero stresses:

3 13 22 12 23 22 33 23 23
1 3

22 22

u s s s s s s s s
T T

z s s
∂ − −

= +
∂

(B.13)

13 22 23 1311 22 12 12
1 1 3

22 22

s s s ss s s s
j u T T

s s
−−

− β = + (B.14)

1
3 55 5

uj u s T
z

∂− β + =
∂

(B.15)
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From 2 4 6S S S 0= = = , 4 6T T 0= =  and 2T  has been expressed in terms of 1T  and 3T :

12 1 23 3
2

22

s T s T
T

s
− −

= (B.16)

Equations (B.7), (B.8) and equations (B.13) to (B.16) form an homogeneous system in
six unknowns. We substitute power series approximations for the stresses and particle
displacements

m
(n) n

I I
n  0

m
(n) n

i i
n  0

1T (z)    T (y h)
n!

1u (z)    u (y + h)
n!

=

=

= +

=

�

�

where i = 1 or 3 and I=1,2,3 or 5 (B.17)

Then by evaluating successive derivatives of the equation of motion and the constitutive
relation at the upper surface y=-h, we obtain a set of recursive relations for the power
series coefficients. These follow in Eqs.(B.18) to (B.23):

(n 1) (n) (n 1)2
5 3 3j T T u− −− β + =− ρω (B.18)

(n 1) (n) (n 1)2
51 1j T T u− −− β + =− ρω (B.19)

(n) (n 1) (n 1)13 22 12 23 22 33 23 23
3 1 3

22 22

s s s s s s s s
u T T

s s
− −− −

= + (B.20)

(n) (n) (n)13 22 23 1311 22 12 12
1 1 3

22 22

s s s ss s s s
j u T T

s s
−−

− β = + (B.21)

(n 1) (n) (n 1)
55 53 1j u u s T− −− β + = (B.22)

(n) (n)
12 23(n) 1 3

2
22

s T s T
T

s
− −

= (B.23)

Making use of the boundary conditions at the upper surface, the power series
coefficients can be expressed in terms of two unknowns, the particle displacements.
Then the coefficients may be inserted into equations (B.18) to (B.23) to give the spatial
variation of stress in the layer as a function of the particle displacements. We give here
the details for the derivation of the stresses to first order only. The boundary conditions
at the free surface of the layer are

( )3T h 0− = (B.24)

( )5T h 0− = (B.25)
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and at first order,  from Eq.(B.17) the non zero stresses in the layer are

(0) (1)
1 1 1T T T (y h)= + + for 0 z h< < (B.26)

(0) (1)
2 2 2T T T (z h)= + − for 0 z h< < (B.27)

(1)
3 3T T (y h)= + for 0 z h< < (B.28)

(1)
5 5T T (y h)= + for 0 z h< <  (B.29)

From Eq.(B.18), the only nonzero coefficient for the normal stress in the layer, at first
order, is

( )(1) 2
33T u h= − ρω (B.30)

and then from Eq.(B.28) the normal stress in the layer,  to first order is given as

{ } ( )2
3 3T (z h) u h= −ρω − (B.31)

The shear stress coefficient at first order is found from equations (B.19) and (B.21), and
from Eq.(B.29) the shear stress in the layer is given by

( )2 2 22
5 1

11 22 12 12

s
T (z h) u h

s s s s

� �� �� �= −ρω + β −� �� 	� �−� �
 �� 

(B.32)

The inplane stress does not vanish at the upper surface so at first order two coefficients
must be found. The zero-order coefficient comes from Eq.(B.21) posing n=0 and the
first order coefficient comes from equations (B.21), (B.22) and (B.18) posing n=1. From
Eq.(B.26) the inplane stress in the layer is given by

( ){ }

( )

1
22

1 2 2 13 22 23 13
11 22 12 12 3

22

u h j
s

T s s s ss s s s u h (z h)
s

− β� �
� �

� �� �= � �−	 	− + β +ρω −
 �� 
� �
 �
	 	� �� �� �� �

(B.33)

and eventually, from Eq.(B.23) the coefficients for the stress normal to the sagittal plane
are found yielding

( ){ }

( )

1

12
2 2 2 11 23 13 22 23 13 12 232

311 22 12
12 22

u h j
s

T s s s s s s s s
u h (z h)s s s

s s

− β� �
� �− � �� �� � � �= − − +	 	


 �β +ρω + −
 �− � �� 

 �
 �� �	 	� �� �� �� �

(B.34)
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Hence the stress fields are known to first order at the coordinate (z - h). It is
noted that the stresses in the layer can all be predicted by knowledge of the layer
material properties, the dispersion relation (β,ω) and the particle velocity amplitudes at
the free surface (z = h) of the mode under consideration. These expressions have been
developed for orthorhombic crystals. Most of the piezoelectric ceramics available on the
market are made of hexagonal crystals which have a higher symmetry order than
orthorhombic crystals. PZT-5H ceramics, before poling, are hexagonal systems of class
6mm which means that in addition to a 6-fold Z-axis it is also unchanged through mirror
operations. Therefore the compliance matrix shows extra simplifications and only 6
constants are independent

11 12 13

12 11 13

13 13 33

44

44

66

s s s 0 0 0
s s s 0 0 0
s s s 0 0 0
0 0 0 s 0 0
0 0 0 0 s 0
0 0 0 0 0 s

� �
� �
� �
� �
� �
� �
� �
� �
� �� �

(B.35)

and the stresses to first order are

( ){ }

( )

1
11 2

1 2 2 13 11 132 2
311 12

11

u h j
s

T s s s
u h (z h)s s

s

− β� �
� �

� �� �= � �−	 	+ β +ρω −
 �− � 
� �
 �
	 	� �� �� �� �

(B.36)

( ){ }

( )

1

12
2 2 2 11 12 13112 2

3 1311 12
12 11

u h j
s

T s s ss
u h s (z h)s s

s s

− β +� �
� �− � �� �� � � �= + −−	 	


 �β +ρω + −
 �− � �� 

 �
 �� �	 	� �� �� �� �

 (B.37)

{ } ( )2
3 3T (z h) u h= −ρω − (B.38)

( )2 2 11
5 12 2

11 12

s
T (z h) u h

s s

� �� �� �= −ρω + β −� �� 	� �−� �
 �� 

(B.39)

If one supposes that the layer is made of an isotropic material, the coefficients in the
matrix (B.35) simplifiy with 33 11s s= , 13 12s s=  and 44 66s s=  and then from

11
2 2
11 12

S 4 ( ) 3 21
2 2S S

� �µ λ + µ λ + µ= = µ +� �λ + µ λ + µ− � �
(B.40)

equations (B.38) and (B.39) become equivalent, but expressed in a different system of
coordinates, to those given by Auld (Chapter 12 [4.7]) for the normal and shear stresses.
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Appendix C Solution of the Poisson Equation

The electric displacement, for an insulator, obeys the Poisson equation

( )T. . . d : T∇ ε ∇Φ =∇ (C.1)

In the general case the permittivity matrix is fully populated but for most of the
piezoelectric materials and in particular for PZT-5H it is a diagonal matrix

T
xx

T T
yy

T
zz

0 0

0 0

0 0

� �ε
� �
� �ε = ε
� �
� �ε� �

(C.2)

Therefore the left-hand side of Eq.(C.1), under plane strain conditions in the plane xz,
develops as

2 2
T T T

11 332 2. .
x z

∂ Φ ∂ Φ∇ ε ∇Φ = ε + ε
∂ ∂

(C.3)

Similarly, for PZT-5H, the right-hand side of Eq. (C.1) develops into

( ) ( ) ( ) ( )y4 4x5 5 z1 1 z2 2 z3 3d Td T d T d T d T
. d : T

x y z

∂∂ ∂ + +
∇ = + +

∂ ∂ ∂
(C.4)

since the piezoelectric strain matrix is

x5

y4

z1 z2 z3

0 0 0 0 d 0
d 0 0 0 d 0 0

d d d 0 0 0

� �
� �= � �
� �
� �

(C.5)

Hence the Poisson’s equation for a PZT-5H layer in the xz plane is

2
2 2

x5 5 zI I2 T
33

1 ( d T d T )
x zz

∂ Φ ∂ ∂− β Φ = +
∂ ∂∂ ε

γ 1 ≤ I ≤ 3 (C.6)

where summation over repeated indices is assumed. TI are the three direct stresses and
T5 is the shear stress within the piezoelectric layer.

A general solution and a particular solution must be found to obtain a unique solution
for this problem. Finding the particular solution of the Poisson equation can prove in
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certain cases to be extremely difficult but in the present case the charge distribution, i.e.
the right-hand side of Eq.(C.6), is known and moreover is of simple analytical form. In
the general case where all orders are kept, the stresses are power series expansions and
the general equation to solve is

( ) ( )nq2
2 2

2
n 0

z h
a I,n

n!z =

−∂ Φ − β Φ =
∂

γ � (C.7)

where

(p)I
IT

33

d
a(I, n) T=

ε
(C.8)

with

q m 1, p n 1, 0 n m 1 for 1 I 3= − = + ≤ ≤ − ≤ ≤ (C.9)

q m, p n, 0 n m for I 5= = ≤ ≤ = (C.10)

and thus a particular solution to Eq.(C.6) is given by a power series whose coefficients
must be determined

( )nq

p
n 0

z h
b(I,n)

n!=

−
Φ =� (C.11)

By substituting Eq.(C.11) into Eq.(C.7) we obtain recursion relationships for each
power of (z – h)

( )n 1q

n 1

n z h
b(I, n)

z n!

−

=

−∂Φ =
∂ � (C.12)

( )( )n 2q2

2
n 2

n n 1 z h
b(I,n)

n!z

−

=

− −∂ Φ =
∂ � (C.13)

then from  
( )

( )
n n 1 1

n! n 2 !
−

=
−

, Poisson’s equation becomes

( ) ( )
( )

( )n n 2 nq q q
2

n 0 n 2 n 0

z h z h z h
a(I, n) b(I,n) b(I, n)

n! n 2 ! n!

−

= = =

� � � � � �− − −
� � � � � �= − γ
� � � � � �−
� � � � � �

� � � (C.14)

and performing the index change r = n-2, this equation becomes
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( ) ( ) ( )r r rq q 2 q
2

r 0 r 0 r 0

z h z h z h
a(I, r) b(I, r 2) b(I, r)

r! r! r!

−

= = =

� � � � � �− − −
� � � � � �= + − γ
� � � � � �
� � � � � �

� � � (C.15)

Thus the coefficients of the particular solution are

2
a(I,q)b(I,q) −=
γ

(C.16)

2
a(I,q 1)b(I,q 1) − −− =

γ
(C.17)

( ) ( )2
1b(I, r) a I, r a I, r 2 0 r q 2−= − + ≤ ≤ −� �� �γ

(C.18)

At first order, m 1, q 1= =  and

2

2

a(I,0)b(I,0)

a(I,1)b(I,1)

−� =� γ�
� −� =
� γ�

(C.19)

and at second order

( )2

2

2

1b(I,0) a(I,0) b(I,2)

a(I,1)b(I,1)

a(I, 2)b(I,2)

� −= −�
γ�

� −� =�
γ�

� −=�
γ��

(C.20)

with

(0)I
IT

33

d
a(I,0) T 1 I 3= ≤ ≤

ε
(C.21)

(1) (0)x5I
I 5T T

33 33

dd
a(I,1) T T 1 I 3= + ≤ ≤

ε ε
(C.22)

(2) (1)x5I
I 5T T

33 33

dd
a(I, 2) T T 1 I 3= + ≤ ≤

ε ε
(C.23)
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Appendix D Electrical Boundary Perturbation

Here we derive a simple electrical perturbation calculation and show that the
impedance of the normal modes generated in the bi-layered system by the applied
electrical source can be evaluated by a simple measure of V V∆ . The system we are
investigating here consists in a metallic substrate coated with a thin piezoelectric layer.
Both the substrate and the layer are infinite in the direction of propagation. Since the
metallic substrate is grounded the electrical problem reduces to that in the layer only.
The bottom surface of the layer is grounded and let us assume that the electrical
perturbation is the imposition of some electrical condition on the upper surface (z = h),
and that this perturbation leaves the stress field in the layer unaffected. In this case the
perturbation formula as given by Auld [4.7] is

( ) ( )** ' '
n n n n

z h
n

nn

j D j D .z

j
4P

=

� �Φ ω +Φ ω� �
� �

∆β = (D.1)

and relations between the perturbed electrical quantities '
nD  and '

nΦ and the known
unperturbed quantities nΦ  and nD  on the plane z = h are needed. In the piezoelectric
layer the electrical potential must satisfy Poisson’s equation where the free charges are
the piezoelectrically induced charges ( ). d : T∇ as shown in Eq.(C.6). This is true for the
potential in the unperturbed system and also for the potential in the perturbed system.
Therefore because the equation is linear, this is also true for the difference between the
perturbed and the unperturbed potential,

'Ψ =Φ −Φ (D.2)

and if we assume that the stress in the layer are not affected by the perturbation, then
substracting the Poisson equation for the perturbed system and that for the unperturbed
system cancels the stress terms and the potential difference needs to satisfy only
Laplace’s equation,

T. 0∇ ε ∇Ψ = (D.3)

A general solution to this equation, assuming that all quantities have a propagation term
j xe β  is

( ) ( )j x z z j xz e Ae Be e− β −γ γ − βΨ = Ψ = + (D.4)

where A and B are constants and
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T
xx

n T
zz

εγ =β
ε

(D.5)

when the dielectric tensor is diagonal which is the case of most piezo-ceramics such as
PZT. From Eq.(D.2) the relationship between the perturbed and unperturbed quantities
can be established as

'Φ = Ψ + Φ (D.6)

TD ' D .= − ε ∇Ψ (D.7)

The problem now is to find the constants A and B that satisfy the perturbed electrical
conditions. In both the perturbed and the unperturbed system the potential at the lower
boundary of the layer is grounded so the potential is zero and from Eq.(D.4) we have

A+B=0 (D.8)

and the potential difference is now given by

( ) ( ) ( )z zz A e e 2Asinh z−γ γΨ = − =− γ (D.9)

Therefore the perturbed quantities at the upper boundary are

( ) ( ) ( )' h h 2A sinh hΦ = Φ − γ (D.10)

( ) ( ) ( )' T
z n pD h D h 2A cosh h= + β ε γ (D.11)

where

T T T
p zz xxε = ε ε (D.12)

The constant A as yet not been determined but can be eliminated by expressing the
normal displacements is term of the potentials and vice versa. Let us assume that the
unperturbed problem has free electrical boundary condition at the upper surface, so that
the electrical fields are continuous at that boundary. In the vacuum above the layer, the
electrical unperturbed potential satisfies Laplace’s equation and must vanish away from
the interface,

( ) n nz j xj x
n z e e e z hβ − β− βΦ =Φ = >

(D.13)

and the normal component of the electric displacement is

( ) n nz j xj x
z nz n 0D D z e e e z hβ − β− β= = −β ε > (D.14)
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Following Auld [4.7] we introduce an electrical surface impedance that is a convenient
way to express the boundary condition

( ) ( )
( )E

z

h
Z h

j D h
� �Φ

=� �� �ω� �
(D.15)

For the unperturbed system, the free electrical boundary condition is then given by

( )E
n 0

1Z h
j

� �−=� �ωβ ε� �
(D.16)

Now the electrical surface impedance of the perturbed boundary condition can be
normalised to the unperturbed electrical surface impedance giving a relationship
between the perturbed and the unperturbed electrical boundary conditions,

( )
( )

( )
( )

' '
' E

n 0E '
E z

Z h h
z j

Z h D h

� �Φ
� �= = − β ε
� �
� �

(D.17)

Eliminating A from Eq.(D.11) and Eq.(D.10), and making use of the electrical surface
impedance gives

( ) ( )
( )

( )
T

0 p''
E ' T

0 pE

coth h
h jz h

jz coth h

� �ε + ε γ
� �Φ =− Φ
� �ε − ε γ� �

(D.18)

and from Eq. (D.17)

( ) ( )
( )

( )
T

0 p'
z n 0 z' T

0 pE

coth h
D h D h

jz coth h

� �ε + ε γ
� �=− β ε
� �ε − ε γ� �

(D.19)

The perturbed fields are expressed as a function of the unperturbed fields and of the
electrical surface impedance. Substitution in the perturbation formula (D.1) gives

( )
( ) ( )

( )( ) ( ) 2'
TEn n

0 0 p' T
n n nn0 pE

h1 jz hV coth h
V 4Pjz h coth h

� � Φ+∆β ∆
� �= − =ωε ε + ε γ
� �β ε − ε γ� �

(D.20)

and when the perturbation is due to an electrical short circuit on the boundary the
velocity change is given by the short circuit perturbation

( )( ) ( ) 2
Tn

0 p
n nnSC

hV coth h
V 4P

Φ� �∆ =ω ε + ε γ� �
� �

(D.21)
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Equation (D.21) is derived from Eq.(D.20) by posing '
Ez 0=  which corresponds to a

short circuit boundary condition. An open boundary condition would correspond to
'
Ez = ∞ . Defining a quantity Zn with the dimension of an impedance

( ) ( )*
n n

n
nn

h h
Z

2P
Φ Φ

= (D.22)

it follows that

( )( )
( ) ( )

( )

' T
0 pE n

n 'T n0 00 p E

jz h coth h V2Z
Vj z hcoth h

� �ε − ε γ ∆
� �= −
� �ε + εω ε + ε γ � �

(D.23)

Thus the impedance of the piezoelectric modes is directly proportional to the
quantity V V∆ , the relative change in acoustic phase velocity when an infinitesimally
thin metal conductor shortcuts the upper surface of the piezoelectric layer. However it is
not proportional to the frequency unlike in the traditional Rayleigh wave case.
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Appendix E Interior Perturbation Approach to
the S-Parameters

In this section we derive the S-parameters for Lamb waves incident at a groove
using the volume integral approach. A groove is the “negative” of a strip and these
calculations are in all points comparable to those carried out in section 4.7.2.1. The
groove shape is a perfect rectangle, of constant depth h.

One viewpoint is to consider the groove as having caused a change in the
boundary condition of the plate. Hence the perturbation is replaced by the unperturbed
plate with changed boundary conditions, the Datta-Hunsinger boundary conditions, over
the region of the groove. Alternatively, a groove can also be considered as an
inhomogeneity in the plate waveguide. Consider a local inhomogeneity that has mass
density ρ’ and stiffness constant c’. In the following section the perturbed field will be
denoted by a prime. An inhomogeneity is in the bulk of the material and it leaves the
boundary conditions on the two surfaces of the plate waveguide unaffected. Such
perturbations are called volume or interior perturbations. The known parameters in such
perturbations are the material constants in the inhomogeneous region. A groove can be
considered to be an inhomogeneity with ρ’ = 0 and c’ = 0, but the method remains valid
for other values. The compliance and the density of the perturbed region are given by:

'(z) (z)
s '(z) s s(z)
ρ = ρ + ∆ρ

= + ∆
(E.1)

In the absence of body forces, the perturbed field equations for time-harmonic fields
yield the differential amplitude equation. This defines the scattered wave fields, which
are driven by distributed “volume source” terms calculated from the zero-order fields.
This forced wave equation can be solved by the normal mode method. Invoking ρ’ = 0
and c’ = 0, from Eq.(E.1), it can be shown that the differential amplitude equation
reduces to

g * *
n n n n

nn

j hf (x)
j a (x) . v (0).v '(0) S (0) : c : S'(0)

z 4P
− ω∂� � � �+ β = ρ −� � � �∂	 


(E.2)

where S is the strain tensor and : is the tensor product. To solve for the coefficient an(x)
of the scattered field, one needs to know the total scattered fields v’(0) and S’(0) in the
previous equation. If an exact calculation for the perturbed problem is available, the
perturbation calculation is unnecessary. Otherwise it is necessary to seek an
approximate solution for the perturbed fields. This is always the central problem in
employing the perturbation theory. Here we make the assumption that for shallow
grooves the power carried by the incident wave is not depleted very much as it
propagates through the groove perturbation. Since the coefficient of the incident wave
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does not change very much from its initial value, we can also assume that the
amplitudes of other modes do not build up to large values. Hence, we assume that v’(0)
and T’(0) can be replaced by the known incident wave field v(0) and T(0). This
perturbation assumption is reasonable as long as the right-hand side of Eq.(E.2) is small
by virtue of a small value of h, the perturbation parameter.

Let us label the incident wave “M” by the scattered modes “N”, so from
Eq.(E.2) the amplitudes an and an- of the forward and backward travelling waves excited
by sources in the perturbed region (0 ≤ x ≤ w) are given by,

M Nn

w
j( )xj z

N N
0

a (x) e f (x)e dx− β − β− β
+ += α � (E.3)

N R N

w
j x j( )x

N N
0

a (x) e f (x)e dxβ − β + β
− −= − α � (E.4)

where

* *
N N M M M

NN

j v (0).v (0) S (0) : c : S (0)
4P+
− ω � �α = ρ −

� �
(E.5)

* *
N N M N M

NN

j v (0).v (0) S (0) : c : S (0)
4P− − −

ω � �α = ρ −
� �

(E.6)

The simplest application is to calculate the amplitude of the reflected and
transmitted part of the incident mode, therefore replacing aN(x) by aM(x), we obtain the
scattered amplitudes travelling as

Mj x
M Ma (x) e w− β

+ += α for x > w (E.7)

( )
M Mj x

M M
M

sin w
a (x) e w

w
β

− −
β

= − α
β

for x < 0 (E.8)

Therefore the reflection coefficient at x = 0 is

( )MM
11 M

M M

sin wa (0)S
a (0) w

−
−

β
= = −α

β
(E.9)

and the transmission coefficient from x = 0 to x = w is

Mj wM
21 M

M

a (w)
S 1 (1 w )e

a (0)
− β+

+
+

= + = + α (E.10)
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Appendix F Electric Field Spatial Distribution

Figure 5.8 shows the geometry of the transducer and the coordinate axes. The
electrode fingers are sufficiently long so that the problem can be considered in two
dimensions and plane strain conditions assumed. The thickness of the metal electrode is
supposed to be negligible and we assume that the material is isotropic in the plane of the
electrodes, i.e. the xy plane, what corresponds, for example, to a piezoelectric crystal of
class 6mm or a piezoceramic whose axis of symmetry is parallel to the axis z, as it is the
case for a Z-cut PZT ceramics and uniaxial PVDF sheets poled along the axis z. At the
electrodes a sinusoidal voltage is applied:

( )j t
0V v e ω= (F.1)

and the boundary conditions, as shown in Figure 5.8(c), are

( )1x ,0 0Φ = (F.2)

( )1x ,2h 0Φ = (F.3)

( )1 1
d d(x ,h) 0 for 1 a x
2 2

Φ = − < < (F.4)

( )0
1 1

v d(x ,h) for 0 x 1 a
2 2

Φ = < < − (F.5)

with

1 1(x d,h) (x ,h)Φ + =− Φ (F.6)

1 1(x 2d,h) (x ,h)Φ + =Φ (F.7)

and in the quasistatic approximation the electric fields is the gradient of the electric
potential Φ:

( )j t
i i(x ,t) (x )e ωΦ =Φ for i = 1,2,3 (F.8)

The electric displacement D in an insulator must satisfy Poisson’s equation

.D 0∇ = (F.9)
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and assuming a small electromechanical coupling, the electric displacement is only due
to the static electric field

S S
i ij j ij

j
D E

x
∂Φ=ε = − ε
∂

for i = 1,2,3 (F.10)

Therefore the electric potential must satisfy Laplace’s equation

2
S
ij

i j
0

x x
∂ Φε =

∂ ∂
for i = 1,2,3 (F.11)

which in two dimensions in the plane (xz) and for a diagonal permittivity matrix can be
simplified as

2 2
S S
11 332 2

1 3
0

x x
∂ Φ ∂ Φε + ε =
∂ ∂

(F.12)

Solutions to Eq.(F.12) are sought in the form of

( ) ( )1 3 1 3(x ,x ) f x g xΦ = (F.13)

leading to

S
233

S
11

f " g"
f g

ε= − =−χ
ε

(F.14)

where χ  is a constant, pure real in order to allow the function f to be a periodic function
of the variable x1. This condition is imposed by the succession of electrodes in an
infinite array as given by Eq.(F.6) and (F.7). Therefore the functions f(x1) and g(x3) are
given by

( ) ( ) ( )
( ) ( ) ( )

1 1 1 2 1

3 1 3 2 3

f x F cos x F sin x

g x G exp x G exp x

= χ + χ

= −γχ + γχ
(F.15)

with

S
33
S
11

εγ =
ε

(F.16)

The function f(x1) is anti-symmetric about x = 0 since the potential is
alternatively positive and negative, therefore

f (0) 0= and F1 = 0 (F.17)

Hence the potential is given by

( ) ( ) ( ) ( )1 3 1 1 3 2 3x , x Fsin x G exp x G exp xΦ = χ + δ −γχ + γχ� �� � (F.18)
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where δ is a phase constant which must be determined. The periodic condition Eq.(F.6)
on the potential can be also given as:

1 1f (x d) f (x )+ = − (F.19)

yielding the condition

( )1
d d2Fsin x cos 0
2 2

� � � �χ + δ +χ χ =� � � �
� � � �

(F.20)

This condition restricts the allowed values for χ :

( )m 2m 1
d
πχ = + m = 0, 1, 2,…  (F.21)

and because the electric potential is the same in every period we can introduce

0δ = (F.22)

F.1 Modal Expansion to Satisfy the Boundary Conditions

The potential given by:

( ) ( ) ( ) ( )1 3 1 1 3 2 3x , x Fsin x G exp x G exp xΦ = χ −γχ + γχ� �� � (F.23)

does not satisfy all the boundary conditions and in particular the periodicity of the
voltage at the plane z = h. A solution can be provided by an infinite number of solutions
having the form as in Eq.(F.23) and satisfying the boundary conditions on the planes x =
0, x d= ± , z = 0, z = 2h..

Eq.(F.21) shows that only the odd multiples of the basic periodicity d
occur. Therefore the solution can be search as a Fourier expansion of any anti-
symmetric function and, for example, in sine series. The superposition principle makes
clear that any linear combination of the solution given by Eq.(F.23) is also a solution,
therefore if we let Am and Bm be arbitrary coefficients, a general solution is given by

( ) ( ) ( ) ( )1 3 m 1 m m m 3 m m 3
m 0

x , x sin x A exp x B exp x
∞

=
Φ = χ + δ −γχ + γχ� �� ��  (F.24)

where mχ has been assigned values such that the function f(x1) satisfies the conditions
of symmetry in the variable x1, what is similar to assign values such that a sine function
is zero at the planes x = 0 and x = d. Now we want to adjust the coefficients Am and Bm

so that the boundary conditions at the plane z = h are satisfied.

The strength of the separation of variables technique is that it results in solutions
that are orthogonal. To make use of this orthogonality property we first reformulate
Eq.(F.24) in terms of hyperbolic functions:
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( ) ( ) ( ) ( )1 3 m 1 m m 3 m m 3
m 0

x , x sin x A sinh x B cosh x
∞

=
Φ = χ γχ + γχ� �� �� (F.25)

and since the potential is zero at the plane z = 0, Bm = 0, and Eq.(F.25) becomes

( ) ( ) ( )1 3 m m 1 m 3
m 1

x , x A sin x sinh x
∞

=
Φ = χ γχ� (F.26)

To evaluate Am, we first evaluate the potential at the electroded plane, z = h, and
we use the orthogonality property of the sine functions. This is done by multiplying
both sides of Eq.(F.26) by ( )p 1sin xχ  where p is an integer. Then we integrate both

sides of the expression over the width of the system, yielding

( ) ( ) ( ) ( ) ( )d d
1 p 1 1 m m m 1 p 1 10 0

m 1
x , h sin x dx A sinh h sin x sin x dx

∞

=
Φ χ = γχ χ χ�� �  (F.27)

The sine functions are orthogonal, therefore the integral

( ) ( )d
m 1 p 1 10

I sin x sin x dx= χ χ� (F.28)

is zero unless p = m

d
1 1 10

0 m p
2p 1 2m 1sin x sin x dx dd d m p

2

≠�+ + �� � � �π π =�� � � � =� 	 � 	 �

� (F.29)

Thus all terms in the right hand side of Eq.(F.27) vanish, except for the term p = m. Of
course “m” can be any integer and therefore we can solve Eq.(F.27) for the mth

coefficient and then replace p by m. the amplitude coefficient  Am is then given by

( )
d

m 1 1 10

2 2m 1A x ,h sin x dx
2m 1 dd sinh h

d

+� �= Φ π� �+� � � �γ π� �
� �

� (F.30)

The potential in vacuum outside the crystal may be written in a similar way with
all the diagonal elements of the dielectric tensor replaced by 0ε . Since the potential
must be continuous for x3 = h, the expression coefficients Am must be the same for both
media, as discussed in section 5.2.1.3. These constants are determined by the electric
boundary conditions at the free surface. The tangential component of the electric field
E1 must be zero at the conductive electrodes and the normal electric displacement must
be continuous between the electrodes. These two boundary conditions can be expressed
in term of the electric potential as
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( )1
1

1

(x ,h) d d0 for 1 a x
x 2 2

∂Φ
− = − < <

∂
(F.31)

( )
3

1 3 0
1

3 x h

(x ,x ) v dfor 0 x 1 a
x 2 2=

∂Φ
− = < < −

∂
(F.32)

These conditions lead to

( ) ( ) ( )

( )

m 1
m 0

1

2m 1
2m 1 A sinh h cos 2m 1 x 0

d d d

d dfor 1 a x
2 2

∞
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+� �π π� �+ πγ + =� � � �
� �� �

− < <

�
 (F.33)

( ) ( )

( )

m 1
m 0

1

2m 12m 1 A cosh h sin 2m 1 x 0
d d d

dfor 0 x 1 a
2

∞

=

π + π� � � �+ γ πγ + =� � � �
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< < −

�
    (F.34)

Equations (F.33) and (F.34) are satisfied only if Am is equal to the Legendre polynomial
of first kind Pm [F.1], [F.2]. This part of the calculation is very similar to that carried out
for SAW by Engand [5.26]. Following Engan, we can relate the coefficients Am to the
voltage applied at the electrodes, that is

( )
( )d 1 a

20 1 1 3 10

dv 2 x 1 a , h E (x h)dx
2

−� �= Φ = − = − =� �� � � (F.35)

and we find

( )( )
( )( )

m
m

P cos aVA
d K sin a 2

ππ=
π

(F.36)

where the parameter ( )sin a 2π as been introduced. This parameter, the modulus of the
elliptic function K, is also the complementary modulus of the Legendre polynomial. It
introduces the dependency of the coefficients Am on the ratio “a” of the electrodes width
to the half period “d”. When the electrode width is equal to the inter-electrode gap (a =
0.5) all harmonics vanish except the first. Experiments on SAW carried out by
Dieulesaint [5.9] show this analysis is true for low coupling constant materials such as
PVDF but is no longer true for strongly piezoelectric materials such as PZT ceramics.

The derivations carried out by Engan [5.26] provide another quantity: the
transducer capacitance. This may be found by calculating the total charge per unit
length on the electrodes. This charge is separated into two charges on either sides of the
electrodes. The charge on the crystal side is
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( )
( )

d
2

3 3 1d 1 a
2

Q 2 D x h dx−

−
=− =�       (F.37)

where the minus sign as a superscript of h indicates the electric displacement is
calculated in the crystal. This yields

( )p

aK sin
2Q coth h
aK ' sin

2

π� �
� �
� �=ε γ

π� �
� �
� �

(F.38)

and including the charge on the vacuum side the total capacitance per unit width is
given by

( )( )T
0 p

aK sin
2C coth h
aK ' sin

2

π� �
� �
� �= ε + ε γ

π� �
� �
� �

(F.39)

[F.1] Engan, H., ELAB Report TE-91, Electronics Res. Lab., Norvegian Institute of
Technology, Trondheim, Norway, 1967.

[F.2] Erdelyi, Higher transcendental Functions, Vol. 1, New York, McGraw-Hill,
p.166., 1953.
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