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Abstract

In recent years there have been several examples of the successful commercial ex-

ploitation of guided acoustic waves for long range inspection of large structures. One

such successful application of guided wave has been the screening of long sections

of pipework. This application employs guided waves essentially as a screening tool,

and hence research has been driven by the need to maximize coverage which has

necessarily been achieved at the expense of sensitivity. However, there is a clear

need for a high sensitivity guided wave technique that can perform accurate defect

sizing while still being deployed some distance away from the inspected region. Such

a system will be utilized for inspecting critical regions of a structure to which direct

access, and hence inspection by conventional local NDE techniques, is not possible.

The aim of the work presented here is to develop a pipe inspection tool that is

capable of detecting, locating and then sizing defects that may be present in the

pipe section under test. The work is primarily directed towards quantifying any

improvements that can be made to the current commercially available system by

using synthetically focused imaging algorithms. All of the work presented here uses

torsional type wave modes for inspection.

It is found that a version of the Common Source Method of imaging which has

been modified to deal with cylindrical pipe geometry works well for imaging the

reflectors in the pipe. The system has been rigorously tested using data from 3D

finite element model predictions. The performance of the system is established in

terms of detection sensitivity to circumferential cracks, resolution and robustness

towards set up errors. It is found that cracks of circumferential extent larger than

around 1.5λSH can be directly sized from the image. This result is valid for any

inspection frequency, axial defect location and pipe size. Laboratory validation

experiments give results which show excellent agreement with the finite element

predictions. Amplitude gains of around 18 dB over an unfocused system have been

observed experimentally in 8 inch pipe.
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Chapter 1

Introduction

There are millions of kilometres of pipelines throughout the world. Many of these

pipelines carry hazardous or valuable liquids such as nuclear reactor coolant or

petrochemicals. The environmental and economic ramifications of any leakage of

these substances are often very severe. Therefore, a clear need for defect detection

exists to avoid the risk of failure and its consequences. Non-destructive testing

of pipelines is used to detect defects that are smaller than a given critical size

before they lead to failure and has become an important discipline for infrastructure

management.

1.1 Guided Wave Pipeline Inspection

The use of ultrasonic guided waves is potentially an attractive method for the in-

spection of pipelines and has received considerable research interest and successful

commercial exploitation. Inspection of structures with guided waves requires knowl-

edge of how the waves propagate in the structure. The solution to wave propagation

in cylinders was first obtained by Gazis in 1959 [1] and will be reviewed in chapter 2

of this thesis.

Guided waves can potentially propagate long distances axially from the excitation
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area [2]. Changes in acoustic impedance in the structure, for instance a cross sec-

tional area step caused by a weld cap or a crack in the pipe wall, will cause reflections

of the guided waves. These reflections can be received by the same transducers used

for excitation of the guided waves or another sensor. These scattered signals contain

information about the size and location of the pipe features which caused the reflec-

tions. Heuristically, it is the reflection arrival time that gives an indication of the

axial location of the reflecting feature and the amplitude of the reflection that gives

an indication of the severity of the cross sectional area change. However, guided

wave propagation in pipes and their interaction with defects is complex, making

accurate information about defects difficult to extract from the reflected signals.

The first work on guided wave inspection of pipes was for small diameter heat ex-

changer tubes. Mohr and Höller [3] used axially symmetric (axisymmetric) longitu-

dinal guided waves to detect transverse failures in ferritic tubes of diameter around

20 mm. Torsional guided waves were used to inspect for longitudinal defects. Excita-

tion and reception of the guided waves was achieved with Electro-Magnetic Acoustic

Transducers (EMAT) at around 500 kHz. They were able to detect flaws of around

5% of the wall thickness. Thompson et al. [4, 5] then suggested an EMAT device

to inspect from the inside of the tubes and also a piezoelectric transduction system

was proposed by Silk and Bainton [6]. There has also been more recent work on the

inspection of tubes using guided waves [7, 8].

Following the initial work on small diameter tubes, research attention shifted to the

inspection of larger diameter pipes. The main areas of research were guided wave

mode choice, their excitation and the interaction of these guided waves with defects.

1.1.1 Axially Symmetric Mode Inspection

There has been successful commercial deployment of pipe guided wave inspection

using axisymmetric guided wave modes [9–12]. Axisymmetric modes are generally

easier to excite and are uniform around the pipe circumference allowing more even

inspection. A more detailed discussion of guided wave modes follows in chapter 2.
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The commercial systems were first developed for applications where the removal of

all of the pipe insulation would be prohibitively expensive. Rapid screening of tens

of metres of pipe in either direction is possible from a single test location where

the insulation is removed [13, 14]. Subsequently, the system has been employed in

other applications where external access to the pipe is limited, such as road crossings

where the pipe is buried, or offshore risers where the some of the pipe is submerged

in water.

The first axisymmetric mode used was the longitudinal L(0,2) mode [15]. More

detail on the guided wave modes in pipes will be given in section 2.3. An ad-

vantage of the L(0,2) mode is that it achieves 100% pipe wall coverage since it is

axisymmetric and has a near constant mode shape through the wall thickness at

the frequencies used [16]. This means that defects at any circumferential position

and anywhere through the pipe wall thickness can be detected. Heuristically, this

method of inspection uses the time of arrival to estimate the defect axial location

and the amplitude of reflection to roughly estimate the severity of the defect.

The L(0,2) mode is dispersive but has been employed in relatively non-dispersive

frequency regimes around 50-100 kHz [9]. These low frequencies suffer little atten-

uation and hence can propagate for long axial distances without significant loss of

signal strength. Another advantage of the low frequency regime is that far fewer

propagating modes exist which makes excitation of the chosen guided wave mode

much easier without exciting other unwanted guided wave modes which can signifi-

cantly complicate signals [17,18].

More recently, the fundamental torsional guided wave mode T(0,1) has received

considerable research interest and has been employed at lower frequencies (10-

50 kHz) [19,20]. This mode has similar advantages to the longitudinal L(0,2) mode in

terms of ease of excitation and full pipe-wall coverage due to axisymmetry. T(0,1)

is entirely non-dispersive making post-processing of signals less complex than for

L(0,2).

The T(0,1) mode is significantly less sensitive to liquid loading of the pipe than the
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L(0,2) mode, which can excite waves in the liquid. These waves carry energy away

from the pipe causing ’leakage’ of guided wave energy [21]. Since liquids cannot

support shear waves, then there is no energy leakage into the fluid for the T(0,1)

mode which consists of shear displacement only. However, both guided wave modes

are susceptible to energy leakage into the surrounding medium if it can support shear

waves, for example, if the pipe is buried in soil. The conditions for energy leakage

in multi-layered systems are reviewed by Lowe [22]. In addition, there is only one

torsional axisymmetric mode at these low frequencies and so the transduction is less

complex than for an L(0,2) system where the transducer system must be carefully

designed to suppress the unwanted concurrent excitation of the L(0,1) mode [20].

For these reasons, the work presented in this thesis will concentrate on the torsional

type guided wave pipe modes.

There has been considerable effort to selectively excite a desired guided wave once

an inspection mode has been chosen [18]. Alleyne et al. [23] suggested a transducer

array of dry coupled piezoelectric shear transducers clamped around the outer pipe

wall to excite the axisymmetric guided wave modes. The shear transducers could

either be angled perpendicular to the pipe axis (i.e. in a circumferential direction)

to excite a torsional mode, or parallel to the pipe axis to excite longitudinal modes.

If the system is to excite a pure axisymmetric mode then the transducer spacing

∆ around the pipe must satisfy the Nyquist-Shannon sampling criterion (∆ < λ/2,

where λ is the wavelength of the inspection mode) at the frequencies used for in-

spection.

The transducers are held in place and forced onto the pipe wall by either a fixed or

flexible collar. The collar is designed to push each individual transducer onto the

pipe with a comparable force thus allowing even coupling of the transducers’ energy

into the pipe wall. The transducers can be dry coupled to the pipe because of the

low operating frequencies [23]. Defects that remove around 5% of cross sectional

area (CSA) can be reliably detected using this method [9]. Recently, permanently

installed transducer collars have been developed for long term integrity monitoring

of pipelines [24].
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Magnetostrictive sensors (MsS) have been suggested for excitation and reception of

guided waves in pipes [12,25] as well as electromagnetic transduction [5,26]. Comb

transducers and angle beam wedges have also been investigated for transduction of

specific guided wave modes [27–29]. A phased piezoelectric transducer array for the

excitation of certain modes was implemented by Li et al. [30].

In the torsional commercial systems that employ piezoelectric transducer collars as

described above, two rings of transducers are arranged around the pipe, separated

by a quarter of the wavelength to be used [20]. This allows the system to achieve

directional control. A guided wave mode can be excited in only one axial direction

by applying a phaseshift to the excitation of the two rings so that the energy is

summed in one direction and cancels in the other. In reality, the two transducer

rings are fired separately and the phase shifts are applied to the recorded data post-

acquisition prior to summation to synthetically achieve the desired directionality

control. The data is then analysed for each axial direction in turn.

The scattering of the longitudinal L(0,2) and torsional T(0,1) axisymmetric guided

wave modes by defects has been well covered in the literature. Ditri [31] derived ex-

pressions for the modal backscattering amplitudes of any arbitrary mode incident on

a circumferential crack in a pipe wall. It was found that non-axisymmetric features

in the pipe wall will backscatter to non-axisymmetric modes even with axiymmetric

incidence on the feature. There have also been finite element studies investigating

the scattering from notches of varying circumferential extent, depth and axial extent

with L(0,2) incidence [17, 32] and T(0,1) incidence [19] of varying frequency. The

finite element studies showed that the scattering is extremely complex due to mode

conversion at the defect. These findings will be discussed in more detail in chapter 4.

The guided wave screening tool is typically used as the first step in a two stage

inspection procedure, since the defect information recovered is generally not accurate

enough to make a decision as to the likelihood of pipeline failure. The second stage is

to use a more local inspection technique such as Ultrasonic Thickness (UT) gauging

in problematic areas which have been identified using the guided wave screening

tool. However, these problematic areas of the pipe may still be inaccessible and
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hence there has been considerable work to improve the defect sizing ability of the

screening tool.

1.1.2 Measuring Mode Conversion

A major barrier to the effectiveness of pipe inspection using guided waves was the

difficulty of differentiating between defect reflections and non-problematic pipe fea-

tures such as weld caps. The reflection amplitude of the T(0,1) mode increases

roughly linearly with the change in wall cross sectional area (CSA) [19]. A deep

but circumferentially local crack will produce a comparable T(0,1) reflection to that

from a shallow weld cap which covers the entire circumference. This had already

been observed in site trials using the L(0,2) mode [33]. In order to distinguish be-

tween the two scenarios, one needs an estimate of the circumferential extent of the

scattering feature. This would subsequently lead to a more accurate estimate of the

depth of the feature.

The NDT group at Imperial College, London suggested that since defects are gen-

erally not axisymmetric they will scatter the incident axisymmetric mode into higher

order modes and this could be used as an indicator to the presence of non-axisymmetric

defects [17]. The torsional piezoelectric transducer collar was therefore segmented

into four quadrants which meant that the received signals could be separated into an

axisymmetric torsional mode T(0,1) reflection and an antisymmetric flexural F(1,2)

mode reflection using a normal mode expansion concept [19].

Demma et al. [14] proposed that the ratio of the antisymmetric flexural reflection to

the axisymmetric reflection could be used to estimate the circumferential extent of

the defect. In a similar fashion, mode conversion to the flexural antisymmetric F(1,3)

mode is observed from L(0,2) incidence [17]. However, for small circumferential

defects, the flexural to axisymmetric mode ratio is not very sensitive to small changes

of the circumferential extent for both the torsional and longitudinal systems. This

means that it is difficult to determine whether a defect extends over 5% or 10%

of the circumference. The subsequent depth estimate could then be incorrect by a
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factor of two.

1.1.3 Focused Inspection

In addition to the axisymmetric mode excitation inspection systems described above,

there has been considerable work on non-axisymmetric excitation. Ditri and Rose [27]

employed a normal mode expansion method, similar to that initially used by Gazis [1],

to explain the excited guided wave structure in a pipe as a function of the ap-

plied transduction. The excitation of various guided wave modes by specific non-

axisymmetric loading was discussed [34]. From this, a natural focusing concept de-

veloped whereby a transducer with a given circumferential extent and axial length

would naturally focus guided wave energy at a focal point some distance downstream

of the transducer [28]. The concept of the angular profile of a transducer was intro-

duced [35] which is the field at a given axial distance as a function of circumferential

position. The transducer could be designed to physically focus energy at a given

point on the pipe wall which would subsequently cause a larger defect reflection, if

a defect is present at the focal point [36].

Arrays of transducers located around the pipe circumference have also been used

to physically focus energy at a desired test location in the pipe wall. Amplitude

coefficients and time delays are calculated prior to inspection using a deconvolution

algorithm developed by Li [36, 37] and are then applied to the transducer array.

The transmitted wave packets from each transducer then form a beam which sums

coherently at the chosen focal point, thus increasing the probing signal at this point.

This kind of phased array focusing has shown 7 dB defect reflection improvements

over the unfocused system using four focused transducers on a 16 inch pipe [35].

However, it was found that good focusing only occurred at the design frequency and

decreased significantly away from this frequency [38, 39]. Li [40] suggested that an

array of wedge transducers placed around the pipe circumference could be used to

find the circumferential disposition of defects by focusing at several points around

the pipe circumference at a fixed axial distance. However, only 8 transducers were

used and the circumferential resolution was not sufficient for reliable circumferential
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defect sizing. Recent testing of a 12 transducer focused system showed only a 4.5 dB

increase in defect reflection amplitude over an unfocused system [41].

The phased array concepts developed from the study of non-axisymmetric mode

excitation show good potential for increasing the defect reflection amplitude from

small defects [35,36]. However, the method has many problems. Firstly, the angular

profile tuning design of transducers must be achieved at a given frequency and axial

focal distance. This means that the field they produce will vary with excitation

frequency and axial distance [34, 38]. Secondly, the hardware required to drive a

phased array is costly since separate signal generation and amplification is required

for each transducer in the array. Thirdly, the phased array system will produce wave

packets other than the desired focused packet [38] due to the simultaneous excitation

of unwanted modes. These other wave packets may reflect from other non-critical

features such as welds. These spurious signals will be interpreted as defect reflections

from the focal point. This may lead to false calls at the focal point. Lastly, and

most importantly for practical inspection purposes, the focusing must be carried

out physically for each axial and angular position of interest on the pipe wall. This

will be extremely time consuming and will lead to very long acquisition times for

full coverage of the pipe wall. The inspection time will be directly proportional to

the area to be inspected. Thus, the initial advantage of guided waves to be able to

inspect large areas of structure quickly and efficiently is lost. However, the phased

array techniques are still remote techniques and should still work under insulation

or pipe burial conditions, although this has yet to be proved.

One way of reducing the inspection time required for the phased array technique is to

limit the inspection area to problematic areas where defects may be suspected. These

problematic areas can be found using the simpler guided wave screening system

described above. The combination of these two tools could be implemented using

the same transducer ring. The pipe circumference would be inspected using the

phased array process only at axial distances flagged by the screening tool. However,

this method would not improve the likelihood of detection of small defects as the

improved sensitivity of the phased array tool would not be afforded at the initial
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screening stage.

More recently, data recorded from an array of transducers has been processed offline

post-acquisition. The idea is that the beam-forming time delays and amplitudes used

for physical focusing of the phased array system can be emulated in post-processing.

The advantage of such methods is that the acquisition time is minimized since the

data is only recorded once. The focusing laws are then applied to the recorded data

set for every point of interest for inspection. This process is known as synthetic

focusing since the focusing is carried out post-acquisition. If this synthetic focusing

is carried out at each point of the object under inspection then the result is an image

of the reflectivity of the object.

Post-processing of array data in this manner has received considerable interest in

the NDE community due to the reduction in acquisition time over conventional

phased array methods. Most of the previous work has employed bulk waves in

the MHz frequency range, for example [42–44]. Synthetic focusing algorithms have

also seen wide use in radar [45] and sonar [46] applications. Recently, Holmes et

al. [47] investigated synthetic focusing of array data for imaging cracks in steel blocks

using bulk waves. They found that the only disadvantage of the synthetic focusing

compared to conventional phased array inspection was that there was a reduction

in signal to random noise ratio. However, this could be improved through averaging

of the data acquired. Despite increasing the acquisition time, the averaging still

required significantly less time than phased array focusing at every point in the

block.

Synthetic focusing has also been applied in guided wave applications for the imaging

of defects in metal plates. Work by Wilcox [48, 49] used a circular array of EMAT

transducers exciting the S0 Lamb mode. The phase shifts were calculated so that

the array would synthetically focus in each direction in turn. A system using piezo-

electric transducers exciting the A0 Lamb mode at frequencies of around 150 kHz

and similar post-processing was also built [50].

Work by Sicard et al. [51, 52] used a single wedge transducer to excite S0 Lamb
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waves in a plate at around 1 MHz. The transducer was then scanned linearly to

create a synthetic aperture, recording a pulse-echo data set. The post-processing

algorithm used was similar to that used by Busse [53] for bulk wave imaging but

was successfully employed here for imaging using guided waves by adding dispersion

compensation.

Work on synthetic focusing of guided waves for pipe inspection has been minimal

so far but the improvements observed using phased array techniques make it an

attractive possibility. Hayashi et al. [26] used an EMAT sensor to record back-

scattered defect signals after excitation of the T(0,1) mode by a magnetostrictive

transducer at frequencies of 30-70 kHz in 4 inch pipe. The EMAT was mechanically

scanned around the pipe circumference and recorded signals at 8 different evenly

spaced circumferential positions. The data from this circumferential synthetic array

was processed using a time-reversal technique to form an image of the defects in

the pipe wall. It was possible to identify holes of the order of 1.5% CSA in the

reconstructed images under laboratory conditions. The resolution of the system im-

proved with increasing frequency of inspection. The performance of the system was

not fully defined but this appears to be a promising technique for higher resolution

guided wave pipe inspection.

1.2 Motivation and Methodology

The work on guided wave pipe screening has, to date, been primarily devoted to

maximising the coverage of the screening tool and this has necessarily been achieved

at the expense of sensitivity. The screening tool works well but the flagged problem-

atic areas are often still buried, inaccessible or heavily coated making local inspection

impossible. There is therefore a clear need for the development of a pipeline inspec-

tion tool that is capable of sizing defects from a remote location. Recent attempts

to improve sensitivity to small defects whilst retaining the remote inspection advan-

tage of guided waves using phased arrays [35] are extremely time consuming for full

coverage of the pipe.
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The aim of the work presented in this thesis is to develop a guided wave inspection

tool, based on the current guided wave hardware, that has improved sensitivity to

defects and also improved sizing resolution. In this respect, the system must achieve

three distinct targets:

• Detection of the defect

• Location of the defect

• Sizing of the defect

Here, it is proposed to use synthetic focusing techniques to create a representative

reconstruction of the scattering features in the pipe wall. The imaging process will

make use of all of the back scattered defect information available and this should

improve the sensitivity and defect sizing ability. Information about the location and

severity of the defect will be measured from the image itself. The ability to size

defects from a remote location is of great importance and will be tested thoroughly.

In order to receive all of the back-scattered information, the transducers in the

pipe transducer collar will be individually addressable. These transducers will form

a circumferential array around the pipe circumference and enable the system to

record all of the reflected defect information available. It is proposed to carry out the

inspection at similar frequencies to the screening tool. The low frequency advantages

of simple guided wave mode structure, low attenuation and fewer propagating modes

will therefore remain.

The imaging of plates using synthetic focusing with a linear array of transducers

will be investigated in chapter 3 following a discussion of guided waves in plates in

section 2.2. Three synthetic focusing algorithms for use with a linear array of sensors

will be introduced and evaluated. The algorithms differ only in the data that must be

recorded for the reconstruction of the image. This affects the data acquisition time,

the hardware complexity and the reconstructed image quality. The performance of

the synthetic focusing algorithms is analysed using optics theory, data from finite

element models and some simple plate validation experiments.
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Guided waves in pipes and their similarities to certain guided wave modes in plates

will be discussed in the following chapter. It is proposed that the plate imaging

algorithms discussed in 3 are directly applicable to the imaging of pipes due to the

similarity of wave propagation of the torsional-flexural guided wave modes in pipes

with the shear horizontal modes in plates established in section 2.3.4. The synthetic

focusing algorithms are thoroughly tested using extensive finite element modelling

studies of circumferentially oriented cracks and notches in chapter 4. The perfor-

mance of the most applicable focusing algorithm is defined with varying frequency

of excitation, pipe size and defect axial location.

The robustness of the pipe imaging system to possible setup errors of the transducer

ring is evaluated in chapter 5. An example of such errors is coupling variation around

the pipe circumference. The robustness will be tested with synthetically corrupted

finite element data.

After quantifying the likely performance of the pipe imaging tool built using a

circumferential array of transducers, the real performance is experimentally tested in

chapter 6. The defects are circumferentially oriented notches, of vary circumferential

extent and through-wall depths. The experimental results are compared to the finite

element predictions of chapter 4.

The thesis conclusions follow in chapter 7. Details of performance improvements

over the current guided wave pipe inspection technology are given in terms of defect

sensitivity and defect sizing ability. Some options for further work are also presented.
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Chapter 2

Guided Waves

Prior to being able to image a structure using ultrasonic waves, a thorough under-

standing of how waves can propagate in the medium to be imaged is necessary. Bulk

waves can only travel in regions away from any boundaries where the longitudinal

and shear waves are uncoupled. At boundaries of the material, bulk waves will

interact with these boundaries by means of reflection and refraction. Also, mode

conversion between bulk longitudinal and bulk shear waves can occur. It is these

interactions of bulk waves with the boundaries of the material that lead to the

development of guided waves in the material structure.

The propagation of bulk waves is dependent only on the material properties. In

contrast, guided waves are dependent on the material properties and the material

boundaries. Therefore, the solution to any guided wave problem must satisfy the

governing equations of motion and some physical boundary conditions, such as trac-

tion free surfaces of the bounded medium. There are generally an infinite number

of solutions to the boundary conditions applied by a given finite material structure.

Historically, certain guided wave problems have been solved and the solution has

taken the name of the investigator. Rayleigh waves are free waves on the surface of

a semi-infinite solid [54]. The boundary conditions for this problem are a traction-

free surface and the waves must decay with depth from the surface. Lamb waves

are plane-strain solutions to the free plate problem [55]. The traction forces must
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be zero on the top and bottom surface of the plate. Stoneley waves are the waves

that occur at the flat interface of two media [56]. The solutions must match at the

interface and waves must decay away from the interface.

The solution to the Shear Horizontal (SH) modes and Lamb modes in plates will

be outlined in this chapter after briefly reviewing wave propagation in unbounded

media. The standard method of solution for the pipe case, originally proposed by

Gazis [1], will then be introduced. The resulting pipe dispersion curves are compared

with the corresponding plate curves.

A method for simplifying the pipe problem is presented for the case of the torsional-

flexural modes (F(n,2)) which involves unrolling the pipe and analysing it as a

flat plate. The discrepancies between these two approaches are evaluated and the

maximum error is quantified. The regime in which this simplified plate approach is

valid is discussed.

2.1 Wave propagation in unbounded media

Wave propagation in elastic infinite media is well documented in textbooks, for

example [57–59] and is merely briefly outlined here.

The equation of motion for an isotropic elastic medium in the absence of body forces

(Navier’s equation) is,

(λ + µ)∇∇ · u + µ∇2u = ρ(
∂2u

∂t2
) (2.1)

where u is the three dimensional displacement vector, ρ is the material density, λ

and µ are Lamé constants and ∇2 is the three dimensional Laplace operator.

Using the Helmholtz decomposition, u can be expressed as the sum of a compres-

sional scalar potential, φ, and an equivoluminal vector potential, Φ

u = ∇φ +∇×Φ, (2.2)
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with

∇ ·Φ = 0. (2.3)

Substitution of these potential functions into Navier’s equation (2.1) means that

the equation of motion can be separated into two equations for the two unknown

potentials

∂2φ

∂t2
= c2

l∇2φ, (2.4)

which governs longitudinal waves and

∂2Φ

∂t2
= c2

s∇2Φ, (2.5)

which governs shear waves. cl and cs are the velocities of longitudinal and shear

waves in the infinite isotropic medium.

cl =

√
λ + 2µ

ρ
, (2.6)

cs =

√
µ

ρ
. (2.7)

This reveals that there are only two types of wave which can propagate in an un-

bounded isotropic medium. Equations 2.4 and 2.5 are independent of each other

meaning that longitudinal and shear waves can propagate without interaction in

unbounded media. The general solution to equation 2.4 and equation 2.5 which

fully describes the propagation of the the two waves is

φ = φ0e
i(kl·z−ωt), (2.8)

Φ = Φ0e
i(ks·z−ωt), (2.9)

where φ0 and Φ0 are arbitrary initial constants and kl and ks are the longitudinal

and shear wavevectors.

2.2 Guided Waves in Plates

The solution to the free plate problem will now be briefly reviewed. The two most

common methods of solution are the potential method and the method of superposi-
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Figure 2.1: Free-plate schematic showing geometry and internally reflecting bulk waves.

tion of partial waves. For a more detailed insight into the methods see, for example,

Auld [60] or Rose [59].

2.2.1 Shear horizontal guided waves in plates

The geometry of the free isotropic plate is shown in figure 2.1. The plate thickness

is b. The surfaces at y = b/2 and y = −b/2 are considered to be traction free. These

are the boundary conditions to the free plate problem. The solution to the free

plate problem by the method of potentials is simple and seeks to solve equations 2.4

and 2.5 for the two potentials φ and Φ respectively. This method is similar to that

which will be outlined for the pipe case in section 2.3. Solutions when the scalar

potential φ vanishes are known as Shear Horizontal (SH) plate modes.

If the assumption is made that the guided wave solution will propagate in the z

direction then the solution to (2.5) will take the form

Φ = Φ0(y)ei(kz ·z−ωt) (2.10)

The solution is constant across y and represents travelling waves in the z direction.

Substitution of the assumed potential solution into (2.5) yields an equation for the
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unknown potential in terms of through-thickness sinusoids

Φ0(y) = A sin(kyy) + B cos(kyy) (2.11)

where

k2
y = k2

s − k2
z (2.12)

where ks = ω/cs is the bulk shear wavenumber and cs is the bulk shear velocity

defined by (2.7). The strain-displacement relations are used to find the strains in

terms of the unknown vector potential Φ. Then Hooke’s law is used to find the

stresses in terms of the strains and hence in terms of the unknown potential. The

boundary conditions state that the surfaces are traction free which leads to the

condition that

(λ + µ)
∂vx

∂y
= (λ + µ)

∂

∂y
(

∂

∂y
Φz + ikzΦy) = 0 (2.13)

at y = b/2 and y = −b/2. For a more thorough analysis see [60]. Substitution of

the potential (2.11) shows that (2.13) is satisfied when

ky =
pπ

b
, p = 0,1,2,3,... (2.14)

Substituting (2.14) into 2.12 gives the plate SH dispersion relation

k2
z = (

ω

cz

)2 = (
ω

cS

)2 − (
pπ

b
)2 (2.15)

The physical meaning of equation 2.15 is represented graphically in wavevector space

in figure 2.2. The arrow represents the bulk shear wave inside the material. The

plate boundary condition means that the through-thickness wavenumber ky can only

take discrete values (2.14). The propagation wavenumber kz can therefore also only

take discrete values as described by (2.15).

The SH mode dispersion curves for the first few modes generated using equation 2.15

are shown in figure 2.3 for mild steel (cS = 3260 ms−1). Note from figure 2.2 that

for p = 0 then ky = 0 and kz = k. Therefore the fundamental Shear Horizontal

mode, SH0, is non-dispersive as seen in figure 2.3. All higher order SH modes are

inherently dispersive. It is also important to note that the number of propagating

modes increases with the frequency-thickness product.
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Figure 2.2: Wavevector graphical representation of the free plate dispersion relation for

SH modes.
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Figure 2.3: SH mode dispersion curves for the mild steel isotropic free plate.
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2.2.2 Lamb modes in plates

Other guided wave modes can be formed from the combination of vertically polarised

shear (SV) waves and longitudinal waves (P). SV and P waves cannot exist individ-

ually in the free plate case but are coupled, making the solution more complex. The

stress-free surfaces at y = ±b/2 on free-plate problem leads to the condition that

both SV and P wave vectors must have the same wavevector component in the z di-

rection kz,s = kz,l [60]. The problem is illustrated graphically in figure 2.4. The two

wavevectors prescribe two different circles of radii ks and kl whose axial component

kz must match for a propagating modal solution. Some geometric algebra, see for

example [60], leads to the Rayleigh-Lamb frequency equations

tan kysb/2

tan kylb/2
= − 4k2

zkyskyl

(k2
ys − k2

z)
2

(2.16)

for the through-thickness symmetric solutions and

tan kysb/2

tan kylb/2
= −

(k2
ys − k2

z)
2

4k2
zkyskyl

(2.17)

for the antisymmetric solutions. The transverse wave vector components are linked

to ω and the z component of the wave vector by

k2
ys = k2

s − k2
z = (

ω

cS

)2 − k2
z (2.18)

and

k2
yl = k2

l − k2
z = (

ω

cL

)2 − k2
z (2.19)

The dispersion relations for these Lamb waves can then be obtained by substitut-

ing (2.18) and (2.19) into (2.16) for symmetric solutions (S modes) or (2.17) for

antisymmetric solutions (A modes). The dispersion relations are transcendental

and are solved numerically, for example, using DISPERSE [61]. Figure 2.5 shows

the Lamb wave dispersion curves for the symmetric and antisymmetric modes for
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Figure 2.4: Wavenumber graphical representation of the free plate dispersion relation for

coupled SV and P partial waves.

mild steel plate with cL = 5960 ms−1 and cS = 3260 ms−1 (cL/cS = 1.83) up to

a frequency-thickness product of 10 MHz-mm. As with the SH modes, there exist

more propagating modes with increasing frequency thickness. Note that all Lamb

modes are dispersive but there are regions of frequency-thickness product which are

comparatively non-dispersive.

2.3 Guided Waves in Pipes and similarities with

the Plate case

The propagation of guided waves in pipes, or hollow cylinders, has been the subject

of extensive investigation, for example [1,62,63] and the solution can be found in a

variety of textbooks, for example [59,60]. The problem was analytically formulated

in three-dimensional cylindrical coordinates by Gazis in 1959 [1]. The method is

broadly similar to the solution of the free-plate case of section 2.2 using a set of
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Figure 2.5: Lamb wave phase velocity dispersion curves for mild steel plate.
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Figure 2.6: Schematic of pipe geometry and cylindrical coordinate set.

assumed potential functions for φ and Φ (defined in equations 2.8 and 2.9). The

geometry of the pipe case and the cylindrical coordinate set is shown in figure 2.6.

The propagation of waves in unbounded media was outlined in section 2.1. For the

case of cylindrical geometry Gazis suggested the following form for the scalar poten-

tial φ and directional components of the vector potential Φ defined by equations 2.8
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and 2.9.

φ = f(r) cos nθ cos(ωt + kzz)

Φr = gr(r) sin nθ sin(ωt + kzz)

Φθ = gθ(r) cos nθ sin(ωt + kzz) (2.20)

Φz = gz(r) sin nθ cos(ωt + kzz)

where kz is the component of the wavevector in the axial direction and n is the

circumferential order. Substitution of (2.20) into equations (2.8) and (2.9) results

in solutions for the unknown potentials f, gr, gθ and gz in terms of Bessel functions

with arguments of either krlr or krsr where

krl
2 =

ω2

cl
2
− k2

z

krs
2 =

ω2

cs
2
− k2

z (2.21)

Expressions for the displacement field can be found by substituting 2.20 into (2.2).

The strain-displacement relations for cylindrical coordinates are

εrr =
∂ur

∂r

εrz =
1

2
(
∂ur

∂z
+

∂uz

∂r
) (2.22)

εrθ =
1

2
[r

∂

∂r
(
uθ

r
) +

1

r

∂ur

∂θ
]

and Hooke’s Law relates the stresses to the strains of equation 2.22

σrr = λ∆ + 2µεrr

σrz = 2µεrz (2.23)

σrθ = 2µεrθ

where ∆ = ∇2φ is the dilation. The boundary conditions for the pipe geometry, for

free motion are

σrr = σrz = σrθ = 0 at r = ri and r = ro = ri + h. (2.24)
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The stress components (2.23) in terms of the displacement potentials (2.2) and

their derivatives are entered into the boundary condition equations (2.24) yielding

a six by six characteristic, or dispersion equation, formed by the determinant of the

amplitudes of the Bessel functions:

|cij| = 0 i,j = 1 to 6 (2.25)

The components cij of equation 2.25 can be found in [1] and are coefficients of the

circumferential order n and the radial components of the longitudinal and shear

wavevectors krl and krs. For a hollow cylinder of given dimensions and fixed elastic

constants, equation 2.25 is an implicit transcendental function of h/λ and fh
cs

, where

λ is wavelength, f is frequency, h is wall thickness and cs is the bulk shear velocity.

The roots of the characteristic equation fh
cs

can be computed by fixing h/λ or vice

versa. The solution was achieved numerically by Gazis in 1959 [1]. For a detailed

insight into the numerical issues of the pipe solution, see [64].

In order to determine the guided waves in arbitrary multilayered system, a general

purpose software tool DISPERSE was developed by Lowe [22] and Pavlakovic [61,

65]. This uses the global matrix method proposed by Knopoff [66], later refined by

Schmidt and Jensen [67].

There are certain cases where the six by six characteristic equation (2.25) degenerates

to simpler, lower dimensional forms. These cases occur when the axial wavenumber

kz or the number of waves around the circumference n are equal to zero.

The case of kz being equal to zero is equivalent to the motion being independent of

z. The axial wavelength (λz = 2π/kz) is infinite and the modes can either be plane-

strain vibrations as discussed in [68] or longitudinal shear vibrations, involving only

longitudinal displacements uz.

The limiting case of n = 0 means that motion is independent of circumferential

position θ and is axially symmetric. There are two types of pipe guided wave modes

that have motion independent of circumferential position. These are longitudinal

modes (L) and torsional modes (T).

42



2. Guided Waves

2.3.1 Longitudinal pipe modes

Longitudinal modes can have displacements ur and uz which are independent of θ

and are similar to the Lamb modes in plates discussed in section 2.2. The charac-

teristic equation (2.25) to be solved for the longitudinal modes is now a four by four

determinant [1]. The dispersion characteristics of the longitudinal pipe modes are

similar to the Lamb-type plate modes described by equations 2.16 and 2.17.

The longitudinal dispersion curves are shown in figure 2.7 for a mild steel (cL =

5960 ms−1 and cS = 3260 ms−1) pipe of 10mm internal radius and 1mm wall

thickness. Also shown in the figure are the plate Lamb modes for a 1mm thick plate

of the same material. Note that the pipe dispersion curves are almost identical

to the Lamb mode dispersion curves with the exception of the very low frequency

region where the pipe modes deviate from the plate modes. The Bessel functions

which describe the pipe modes match the exponential functions which describe the

plate modes for large frequency-radius product but differ more and more as the

frequency-radius product is decreased and the wavelength becomes comparable to

the circumference.

The longitudinal modes are numbered L(0,m) where m is the mode number and

the zero refers to the fact that the modes have zero circumferential order (motion is

independent of circumferential position). This is the notation of Silk and Bainton [6].

2.3.2 Torsional pipe modes

Torsional pipe modes involve displacements uθ only and are similar to the Shear

Horizontal (SH) plate modes discussed in section 2.2. The solution determinant is

now two by two. The torsional dispersion curves are shown in figure 2.8 for a mild

steel (cL = 5960 ms−1 and cS = 3260 ms−1) pipe of 10mm internal radius and 1mm

wall thickness. The torsional dispersion curves are exactly identical to the Shear

Horizontal dispersion curves for a 1mm thick plate of the same material since the

torsional modes have particle displacement in the θ directions only. The modes are
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Figure 2.7: Longitudinal mode dispersion curves for a mild steel pipe of 10mm internal

radius and 1mm wall thickness.

numbered T(0,m) where m is the mode number (which increases with the frequency

at which the mode appears) and the zero refers to the fact that the modes have zero

circumferential order.

2.3.3 Flexural pipe modes

The other family of modes which can exist in a pipe are called flexural modes,

F(n,m). Flexural modes are not axisymmetric and hence have circumferential order

n and mode family number m. The solution to flexural modes involves the full

six dimensional determinant (2.25) since all three displacement components ur,uθ

and uz can exist. Flexural modes will converge to either a longitudinal or torsional

mode at high frequencies where the wavelength to radius ratio is small. For example,

F(n,1) modes converge to L(0,1), F(n,2) modes converge to T(0,1), F(n,3) converge

to L(0,2) and so on. The phase velocity dispersion curves of these three mode

families are plotted in figure 2.9 up to the 5th order.
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Figure 2.8: Torsional mode dispersion curves for a mild steel pipe of 10mm internal

radius and 1mm wall thickness.
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Figure 2.9: All dispersion curves up to fifth circumference order for a mild steel pipe of

10mm internal radius and 1mm wall thickness.
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Pipe guided wave inspection typically operates at frequencies at which the wave-

length is much larger than the pipe wall thickness. It was found in section 2.2

for plates that at these frequencies there exist only three fundamental guided wave

modes, S0, SH0 and A0. In this frequency regime, only the modes which converge to

the fundamental torsional mode (T(0,1)), the fundamental symmetric mode (L(0,2))

and the fundamental antisymmetric mode (L(0,1)) can propagate in the pipe, as was

shown in figure 2.9. However, for reasons which were discussed in the thesis intro-

duction, it is the torsional type modes which will be investigated here. Hence, the

F(n,2) flexural mode family, which converges to the fundamental torsional mode

T(0,1) which will henceforth be termed the torsional-flexural mode family will be

investigated more thoroughly.

2.3.4 Torsional-Flexural pipe modes and their plate analogy

The following analysis aims to simplify the complex pipe guided wave solution for the

torsional-flexural mode family by assuming plate-like behaviour. This is based on the

assumption that the cylinder contour has negligible effect on the wave propagation.

The SH0 propagation in a plate is described by the bulk shear wavenumber ks in any

direction of propagation. Therefore, the assumption for the plate-like pipe analogy

is that the wavevector kα for any direction of propagation α is equal to the bulk

shear wavenumber ks

kα = ks =
ω

cs

(2.26)

This allows one to unroll the pipe and think of it as an isotropic plate. The pipe

and its plate-like unrolled surface are shown in figure 2.10. A similar simplification

procedure for calculating the axial phase velocities of the longitudinal-flexural pipe

modes based on their similarities with plate Lamb modes was presented by Li and

Rose [37].

However, there is an extra boundary condition to be solved for this problem in

addition to the traction free surfaces that were considered for the plate solution

of section 2.2. This extra boundary condition occurs along the axial cut made in
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Figure 2.10: Schematic showing the pipe and unrolled pipe analogy.

the pipe in order to unroll it and states that the two solutions at either side of the

unrolled plate (A and A’ in figure 2.10) must match. Satisfying this condition means

there are no discontinuities made by unrolling the pipe. A diagram of this situation

is shown in figure 2.11a. The diagram shows the plane wavefronts propagating at

angle α from the axial direction z. If the solution at A is to match that at A’,

then there must be an integer number of wavelengths nλS between the matching

wavefronts shown. Note that if the wavefronts are propagating with α = 0 then

there is no circumferential variation and the circumferential order is zero. In this

case, T(0,1) is the axially propagating guided wave mode. If α = π/2 then there is

no variation in the z direction and kz = 0.

Figure 2.11b shows the right-angled triangle used to find the possible solutions for

propagating wave modes. Using simple trigonometry we get

sin αn =
nλs

2πrc

(2.27)

where n is the mode order and rc is the pipe wall centre radius. Assuming that the

plane wavefronts are travelling with wavenumber ks = 2π/λs then the expression

for the possible circumferential wavenumbers is

kcirc = ks sin αn =
n

rc

(2.28)

The partial wavevector components are linked by

k2
s = k2

z + k2
circ (2.29)
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Figure 2.11: Diagram showing the necessary boundary condition for modal propagation

in the plate-like pipe analogy; (a) full schematic, (b) right-angled triangle used to find

modal solutions.

as demonstrated graphically for forward propagation (kz is positive) in figure 2.12.

Hence the axial wavenumber is

kz = ks cos αn =

√
k2

s − (
n

rc

)2. (2.30)

Propagating solutions for kz therefore require that n/rc < ks. This accounts for the

finite discrete number of propagating modes at a given frequency. The axial phase

velocity cz is linked to the axial wavenumber (equation 2.30) by

cz =
ω

kz

(2.31)

where ω = 2πf is the angular temporal frequency of the wave. Substituting 2.30

into 2.31 gives the dispersion relation for the wave modes assuming isotropic plate-

like behaviour

cz,n =
ω√

k2
s − ( n

rc
)2

(2.32)
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Figure 2.12: Graphical representation of wavevector showing circumferential and axial

wavevector components for pipe geometry.

where ks = ω/cs is the bulk shear wavenumber. The resulting axial phase velocity

dispersion curves for an 8 inch schedule 40 (rc = 0.10546 m and t = 8.18 mm)

mild steel pipe are plotted in figure 2.13 for the frequency region of interest for

pipeline inspection. The dispersion curves calculated using DISPERSE [61,65] which

numerically solves the six dimensional characteristic equation (equation 2.25) are

also shown up to the 18th order mode. It can be seen that there is generally very good

agreement between the two methods apart from some differences for the lower order

modes at low frequencies. These discrepancies can be quantified by calculating the

difference in phase velocity between the two methods for each direction of possible

propagation αn,D where the subscripts refer to the circumferential mode order and

the fact that the values are calculated using DISPERSE.

The direction of propagation αn of each mode of order n can be calculated from the

DISPERSE curves at a given frequency ω using

αn = arctan(
kcirc

kz,n,D

) = arctan(
n/rc

ω/cz,n,D

) (2.33)
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Figure 2.13: Dispersion curves for the F(n,2) flexural mode family in an 8 inch schedule

40 mild steel pipe; solid lines: DISPERSE results; dotted lines: Results calculated using

the simplified plate analogy.

where cz,n,D is the axial phase velocity from DISPERSE for the nth mode and kz,n,D =

ω
cz,n,D

is the axial wavenumber of that mode. Note that αn is frequency dependent

so a given mode will travel in different directions at different frequencies. The

wavenumber of the nth mode kαn,D in the direction of propagation αn is

kαn,D =
√

k2
circ + k2

z,n,D (2.34)

and so the phase velocity cαn,D in the αn direction calculated using the Disperse

software package is

cαn,D =
ω

kαn,D

=
ω√

k2
circ + k2

z,n,D

(2.35)

The assumption made when unrolling the pipe to the plate-like case was that the
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Figure 2.14: % variation of the phase velocity calculated using DISPERSE from the bulk

shear velocity against angle of propagation from the axial direction for an 8 inch schedule

40 mild steel pipe.

phase velocity is equal in all directions (equation 2.26). This hypothesis can be

tested for a given frequency by calculating the variation in phase velocity from the

bulk shear velocity using equation 2.35 for all possible propagation directions defined

by (2.33).

Figure 2.14 shows the percentage variation of the the phase velocity calculated using

DISPERSE from the bulk shear velocity against angle of propagation from the axial

direction at 25 kHz, 50 kHz and 100 kHz for the 8 inch pipe whose dispersion curves

were shown in figure 2.13. At 25 kHz, up to the 5th order mode exists. At 50 kHz,

up to the 10th order mode exists and up to F(20,2) exists at 100 kHz. Figure 2.14

shows velocity errors for each mode at the chosen frequencies apart from F(19,2) and

F(20,2) at 100 kHz since DISPERSE [65] can plot up to the 18th order mode only.

Note that the maximum deviation from the bulk shear velocity occurs at around

α = 45o for all cases tested. The axial phase velocity (α = 0) is simply the phase

velocity of the T(0,1) mode and is the bulk shear velocity for the material.
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At 25 kHz, ks = ω/cs = 48.18 and there are 5 propagating modes of the torsional-

flexural family. These are labeled in figure 2.14. The F(5,2) mode has kcirc = 47.41

and propagates at α5 = 80o. The worst variation from the bulk shear velocity is

+1.9% for the F(3,2) mode which propagates at 40o from the axial direction. The

data point in the circumferential direction, α = 90o was found using Disperse for

a SH wave propagating in a circumferential direction. The solution to the wave

equation in the circumferential direction was studied in detail by Fong [69] and

Gridin [70] and will not be covered here.

At 50 kHz, there are twice as many propagating modes since the wavelength has

halved from that at 25 kHz. The bulk shear wavenumber is ks = ω/cs = 96.37

and there exists up to the tenth order mode of the torsional-flexural family, F(10,2)

for which kcirc = 94.82. This mode propagates at an angle of 80o from the axial

direction at this frequency. At 50 kHz, the mode with the largest variation from the

bulk shear velocity is F(7,2) which propagates at 43o from the axial direction. The

velocity deviation is +0.52% from the bulk shear velocity.

At 100 kHz, the highest order propagating mode in the 8 inch pipe is F(20,2).

However, the software package will calculate up to circumferential order n = 18

only. There are therefore no velocity predictions for n = 19, 20 available from

Disperse. The largest velocity deviation is 0.14% at F(14,2) at α14 = 43.6o.

The same analysis was carried out for a 16 inch schedule 40 (rc = 0.19847 m and

t = 9.53 mm) mild steel pipe at 25 kHz and 50 kHz. 100 kHz analysis was not

carried out due to the large number of modes (up to F(38,2)) that can propagate

in this larger pipe at this frequency. The velocity deviation from the bulk shear

velocity is plotted against propagation angle α for the 25 kHz and 50 kHz cases in

figure 2.15. Also shown on the figure are the 50 kHz and 100 kHz cases for the 8

inch pipe from the above analysis. The velocity deviations for the 25 kHz 16 inch

and the 50 kHz 8 inch cases are almost identical, as are the 50 kHz 16 inch and

100 kHz 8 inch cases. The maximum deviations from the bulk shear velocity err%

for each case studied are summarized in table 2.1.
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Figure 2.15: % variation of the phase velocity calculated using DISPERSE from the bulk

shear velocity against angle of propagation from the axial direction for a 16 inch schedule

40 mild steel pipe.

The maximum velocity deviations are plotted against (cs/ωrc)
2, which is a dimen-

sionless parameter, in figure 2.16. The data points fit accurately to a line. The line

of best fit is also plotted and has gradient of 49. The predicted maximum velocity

error is therefore

err% = 49(
cs

ωrc

)2 = (
7

ksrc

)2 (2.36)

where ω = 2πf . Note that this prediction is restricted to frequencies below the SH1

cutoff in a plate of thickness equal to the pipe wall thickness or below the T(0,2)

mode cutoff in the pipe (f > 2cs

h
). Equation 2.36 predicts that the velocity error

will decrease with increasing frequency-radius product and will be zero for a pipe of

infinite radius, which is effectively a plate. However, there will be a velocity error,

albeit a small error, for all finite pipe sizes in the frequency region of interest for

inspection purposes.

The maximum error prediction (2.36) is extremely useful since it can be used to
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Table 2.1: Cases studied for the pipe-plate analogy and their respective maximum devi-

ation from the bulk shear velocity

Pipe size f, kHz nmax maximum err%

8 inch 25 5 1.9

50 10 0.51

100 20 0.144

16 inch 25 9 0.56

50 19 0.149

define the frequency-radius (frc) region where the pipe-plate analogy can be used

for a given maximum velocity error errMAX

frc >
7cs

2π
√

errMAX

. (2.37)

As an example, the lowest frequency flim for which the pipe-plate analogy can be

used for an 8 inch pipe (rc = 0.10546m) for a maximum allowable velocity error of

errMAX = 1% is

flim =
7cs

2πrc
√

errMAX

=
7× 3260

2π × 0.10546×
√

1
= 34.4 kHz (2.38)

2.4 Guided Wave Conclusions

Bulk waves can travel in two ways, as a shear wave and as a longitudinal wave;

the two wave types are uncoupled in an infinite medium. In a finite medium the

bulk waves will interact with the boundaries of the medium and these interactions

give rise to the formation of guided waves. The guided wave solution can be found

by assuming a certain type of solution and substituting it into the given boundary

conditions to find the unknown coefficients in the assumed solution. This is known

as solution by the method of potentials.
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Figure 2.16: Maximum velocity errors for all cases examined.

A brief overview to the solution of the Shear Horizontal (SH) guided wave family

in plates by the method of potentials was given in section 2.2.1. The solution for

Symmetric and Antisymmetric plate modes was then outlined in section 2.2.2.

Wave propagation in pipes is complex but can be fully described by solving a six

dimensional determinant (equation 2.25) whose solutions are described by Bessel

functions. This can be solved numerically by, for example, DISPERSE [61]. There

are various situations in which the pipe guided wave solution is simplified. These

cases arise when there is either no variation along the pipe axial direction or no

variation around the pipe circumference. The latter axisymmetric modes may be

longitudinal or torsional in nature. The longitudinal modes can be either symmetric

or antisymmetric through the pipe wall. These longitudinal modes are similar to

the symmetric (S) and antisymmetric (A) plate modes with discrepancies at very

low frequencies. The torsional (T) modes in a pipe correspond exactly to the shear

horizontal (SH) mode solutions in a plate.

Flexural modes involve displacements in all directions and require solution of the full

six dimensional pipe determinant. The flexural mode family whose dispersion curves
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tend to the bulk shear velocity at higher frequencies (F(n,2)) have been thoroughly

investigated. This family of modes is relevant for the torsional type inspection which

is the main topic of this thesis.

It has been proposed, for this torsional-flexural family of modes, that one may

think of the pipe as a plate-like structure whose solution is described by exponential

functions instead of the Bessel functions. There is, however, an extra boundary

condition over the isotropic plate case which states that the plate-like solution at

the two edges which would be joined to form the pipe structure must match. It is

this extra boundary conditions which accounts for the finite number of propagating

modes at a given frequency in the pipe. Each mode, of circumferential order n, can

be thought of as a plate plane wave propagating in a direction at a fixed angle αn to

the axial direction. It is important to note that the angle of propagation in a given

pipe size will be different for each temporal frequency.

The extent to which the pipe modal solution for the torsional-flexural (F(n,2)) mode

family converges to the plate SH0 case was investigated. The SH0 propagation

in the plate case has phase velocity cs in all directions. The phase velocity in all

possible modal propagation directions αn was found for 8 and 16 inch pipes at various

frequencies of interest using DISPERSE [61, 65] which solves the full pipe guided

wave problem. The maximum phase velocity deviation from the bulk shear velocity

occurred at a propagation angle of α = 45o. The maximum velocity deviation was

quantified and is proportional to (cs/ωr)2. The pipe solution therefore tends to

the plate-like solution with increasing frequency-radius product. The worst phase

velocity errors occur at lower frequencies and were 1.9% at 25 kHz for an 8 inch

schedule 40 pipe and 0.5% at 25 kHz for a 16 inch pipe.

The similarity of the results from the two methods of creating dispersion curves for

the F(n,2) torsional-flexural mode family means that the plate imaging algorithms

which will be introduced in the following chapter should be easily modified for use

in pipe imaging over the frequency-radius product of interest for inspection. It

also means that one can apply the extensive work which has been done for defect

scattering in plates [71–78] to the case of defect scattering in a pipe, which is often
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a difficult problem to analyse [14,17].
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Chapter 3

Plate Imaging

3.1 Synthetic Focusing

In this chapter, synthetic focusing algorithms will be derived and tested for imaging

of plates using guided waves. The aim of the algorithms is to create a representa-

tive reconstruction of a real object space which contains local changes in acoustic

impedance. These local changes will be referred to as scatterers and could be caused

by, for example, changes in plate thickness due to corrosion. The reconstructed im-

age is generally not a perfect reproduction of the object space due to diffraction

effects of the wave propagation. This limits the resolution of the reconstruction as

will be demonstrated in the following sections of this chapter. The steps for imaging

are:

• Excite a known wavefield in the object space

• Record the scattered field from the object space

• Apply a reconstruction technique to image the object space

The first two steps are the acquisition or data-capture phase. For imaging using

ultrasonic sound waves, the first step of exciting a probing wavefield is known as

insonification of the object space. The third step is the reconstruction phase and
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Figure 3.1: Geometry of the plate case studied.

aims to synthetically invert the wave propagation of the first two steps leading to

coherent summation of recorded signals at the scatterer locations in the image. The

image reconstruction is achieved for the entire object space post-acquisition and

hence these methods can be termed synthetic focusing methods.

The geometry of the plate case studied is shown in figure 3.1. The z direction is

perpendicular to a linear array, into the object space, and will be referred to as the

axial direction. The x direction, or lateral direction, is parallel to the array, with

the origin at the centre of the array. The aperture a has linear sampling ∆x and

contains N = a/∆ + 1 sensors. The sensors, or transducers, are assumed to be

able to excite and receive a chosen guided wave mode. The sensors are assumed

to be phase sensitive, meaning they can record both amplitude and phase of the

backscattered signal. This is not an unreasonable assumption since the measurement

time is negligible compared to the temporal period of the wave fields considered.

The object space is essentially two dimensional over (x, z) after the behaviour of the

guided waves through the plate thickness (y) has been explained using the analysis

of section 2.2.

The image reconstruction algorithms which will be investigated in this chapter for

plate imaging and in the following chapter for pipe imaging differ in their transmit-
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receive geometries. These differences arise due to the type of array architecture that

is available and subsequently allows different data sets to be recorded. The different

architectures require varying amounts of hardware and their data acquisition times

vary significantly. Therefore, it is important to test the performance of the differ-

ent options to ascertain whether more complex and expensive hardware or longer

acquisition times is worthwhile.

The three transmit-receive geometries that will be considered here are shown in fig-

ure 3.2. They each require a different inversion algorithm to achieve the optimum

synthetic focusing of the recorded backscattered data set and this will lead to differ-

ences in imaging performance [79]. Figure 3.2a shows the transmit-receive geometry

used for the imaging algorithm which we have called the Common Source method

(CSM). One transducer is fired and backscattered reflections from the object space

are recorded at each sensor in the array in a pitch-catch arrangement [79]. Note

that normally all of the transducers would be fired simultaneously to increase the

input power into the object space during the acquisition phase.

The Synthetic Aperture Focusing Technique (SAFT) requires only the pulse-echo

data set as shown in figure 3.2b. This means that the data set can be acquired using

a single scanned transducer [44, 52, 80] or by individually addressing each sensor in

the array in turn [42].

The Total Focusing Method (TFM) uses data from all possible transmit-receive com-

binations [47]. That is to say, that a time trace is recorded at each receiver for each

firing transmitter. This is often referred to as Full Matrix Capture (FMC) since the

transmit-receive matrix is filled. In fact, the matrix is symmetric due to reciprocity

so only the lower or upper triangular part of the matrix need be recorded as shown

in figure 3.2c. The rest of the data matrix can then be filled by symmetry [79].

The CSM and SAFT data sets are in fact, subsets of the full matrix. Various other

subsets of the full matrix have been investigated using subapertures [43, 81, 82] but

this will not be investigated here.
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Figure 3.2: Transmit-receive matrices for the imaging algorithms; (a) CSM; (b) SAFT;

(c) TFM.

Section 3.5 discusses the implementation of CSM, SAFT and TFM. Their data-

capture complexity, hardware requirements and acquisition times are also discussed.

The inversion algorithms associated with each transmit-receive geometry of interest

are derived in the following sections of this chapter. The analysis makes extensive

use of the angular spectrum method which formulates diffraction theory into a form

which resembles the theory of linear systems [83]. This approach involves analysing

the complex field recorded across the sensor aperture at z = 0 in terms of its Fourier

components. The Fourier transform of the recorded field is called the recorded an-

gular spectrum. The Fourier components of the recorded angular spectrum can be

identified as plane waves travelling in different directions away from the measure-

ment plane (see appendix A for more detail). An extremely important property of

this approach is that the angular spectrum at a plane which is parallel to the mea-

surement plane can be calculated by adding the contributions of these plane wave

components, taking due account of the respective phase shifts they have undergone

during their propagation [83]. Similar approaches are used for imaging with radar,

for example [84] and seismic imaging [85], where the algorithm are referred to as

Fourier migration algorithms.

The monochromatic inversion algorithm for CSM will first be derived for an infi-

nite aperture with continuous sampling in section 3.2.1. Its performance with the

limiting case of a finite aperture with discrete sampling will then be investigated
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in section 3.2.2. Sections 3.3 and 3.4 examine SAFT and TFM respectively and

investigate their theoretical imaging performance.

The theoretical response to a point scatterer in the object space will be analysed

for each algorithm. This response is called the Point Spread Function (PSF) which

would ideally be a Dirac delta function in the image at the scatterer location having

infinitesimal width and no sidelobes. In reality, the PSF has finite width and side-

lobes due to diffraction and finite array aperture effects. The width of the main lobe

of the PSF can be used as a measure of resolution of the imaging algorithm [80].

The width of the main lobe can be measured using the Full Width at Half Maximum

(FWHM) which is also called the 6 dB Width (W6dB) of the main lobe since the

half maximum amplitude is at -6 dB. It is hoped that the width of the PSF main

lobe will prove a useful measurable quantity to indicate the lateral size of a finite

sized defect. The relative amplitude of the PSF sidelobes give useful information as

to the coherent noise rejection of the algorithm.

The separation required between two point scatterers in order for them to be resolved

is also evaluated for each algorithm presented. In the context of this plate imaging

study, the amplitude of the defect response is not of interest. The amplitude of the

defect response will be investigated in more detail in the following chapter for the

imaging of pipes as a way of estimating the defect depth.

The algorithms are tested using data from a plate finite element model of a crack

oriented parallel to the array using the SH0 guided wave mode in section 3.6.

Imaging results from simple validation experiments on a mild steel plate using the

A0 guided wave mode are given in section 3.7. Conclusions for the imaging of plates

using synthetic focusing of guided waves are given in the final section of this chapter.
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3.2 Common Source Method (CSM)

3.2.1 CSM for a continuously sampled infinite aperture

The CSM involves firing all of the transducer elements simultaneously and then

receiving at each sensor individually. In order to derive the algorithm to perform

the inversion of this propagation, consider the simplified case of a continuously

sampled infinite aperture along the x-axis (z = 0). The recorded angular spectrum

F (kx, z = 0) of a monochromatic field f(x, z = 0) recorded along the aperture is

defined as

F (kx, z = 0) =

∫ ∞

−∞
f(x, z = 0)e−jkxxdx. (3.1)

The recorded field can then be written as the inverse Fourier transform of the re-

ceived angular spectrum

f(x, z = 0) =

∫ ∞

−∞
F (kx, z = 0)ejkxxdkx. (3.2)

Suppose a scattering distribution of s(x, zs), located along a line at axial distance

z = zs away from the array in the object space, whose angular spectrum is S(kx, zs).

In this case, the scattering distribution refers to changes in local acoustic impedance

which will cause scattering of probing wave. Changes in local acoustic impedance

can be caused by deviations in density or compressibility [86]. For example, a hole

is a sudden local change in density from that of the background medium to zero

(strictly, the local density is that of the gas which occupies the hole but this will be

significantly less than the background medium).

The recorded spectrum is the scattered spectrum S(kx, zs) phase shifted to take

account of the propagation of the probing plane wave from the array to the scattering

plane and the scattered plane waves propagating in the background medium back

to the array (see [83] or appendix A).

F (kx, z = 0) = e−jkzsS(kx, zs)e
−jkzzs . (3.3)
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where k = 2π/λ is the wavevector of the probing plane wave in the background

medium and kz are the wavevector components in the z direction of the returning

plane waves and is given by

kz =
√

k2 − k2
x kx < k,

kz = i
√

k2
x − k2 kx > k, (3.4)

The condition kx > k in (3.4) corresponds to evanescent waves which decay within

a few λ of propagation. The propagation in the background medium therefore acts

as a low pass filter which suppresses spatial frequencies larger than k = 2π/λ. It

is this low pass filtering which will limit the resolution of any conventional imaging

system as only the propagating waves can be used for remote image reconstruction.

The propagating solutions of kz in (3.4) are illustrated in figure 3.3. kx = 0 is the

DC component of the angular spectrum which corresponds to kz = k and is a plane

wave travelling perpendicular to the array, and hence has no variation across the

aperture.

The first exponential terms of (3.3) accounts for the phase shift of the probing plane

wave which travels from the aperture with kz = k to the scattering line at z = zs.

The probing plane wave is generated by exciting the entire aperture simultaneously.

The second exponential term in (3.3) accounts for the phase shifting of the scattered

plane waves as they travel back to the array at z = 0. Both positive and negative

values of kx must be propagated in order to account for all of the plane waves

travelling from the scatterer. The propagation of the angular spectrum in (3.3)

neglects any interaction of the propagating waves with other scatterers present in

the medium. This is the Born approximation and assumes that the propagation is

not distorted by the object structure as the waves travel through it.

Substituting (3.3) into (3.2) gives the recorded field in terms of the scattering spec-

trum

f(x, z = 0) =

∫ ∞

−∞
u(kx/k)e−jkzsS(kx, zs)e

−jkzzsejkxxdkx (3.5)
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Figure 3.3: Wavenumber graphical representation. β is the propagation angle.

where u(kx/k) denotes a top hat spatial frequency filter over kx which removes

spatial frequencies for which |kx| > k and is shown in figure 3.4. This accounts for

the spatial frequency filtering due to the propagation in the background medium

discussed above.

The proposed imaging method is to use the angular spectrum method to backproject

the recorded spectrum to lines parallel to the array aperture at axial distance z = ζ.

The lateral image I(x, ζ) is the inverse Fourier transform of the recorded angular

spectrum phase shifted to take into account the propagation of the probing waves

to z = ζ and the propagation of all of the scattered plane waves back to the array.

For the plane wave insonification of CSM, the proposed lateral image slice at z = ζ

is

I(x, ζ) =

∫ ∞

−∞
ejkζF (kx, z = 0)ejkzζejkxxdkx (3.6)
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The exponential phase shifting terms of (3.6) are chosen to cancel the effects of

the propagation of the probing plane wave to the axial distance of interest and the

scattered waves propagating back the aperture. Substituting (3.3) into (3.6) and

taking account of the spatial frequency filtering of propagation in the background

medium (3.4) gives

I(x, ζ) =

∫ ∞

−∞
ejkζ [u(kx/k)e−jkzsS(kx, zs)e

−jkzzs ]ejkzζejkxxdkx (3.7)

=

∫ ∞

−∞
u(kx/k)S(kx, zs)e

jk(ζ−zs)ejkz(ζ−zs)ejkxxdkx. (3.8)

It is clear that the only axial distance ζ where there is coherent summation over all

spatial frequencies kx is at the scatterer axial location ζ = zs. At this axial location,

synthetic focusing has been achieved. The algorithm of equation (3.6) will produce

an image peak at the scattering location ζ = zs where the lateral image slice will be

I(x, zs) =

∫ ∞

−∞
u(kx/k)S(kx, zs)e

jkxxdkx (3.9)

The integral over kx can be identified as the inverse Fourier transform of the low-pass

filtered version of the actual scattering object S(kx, zs). The convolution theorem

states that (3.9) can be written as

I(x, zs) = s(x, zs)⊗ h(x) (3.10)

where h(x) is the inverse Fourier transform of u(kx/k):

IFTkx [u(kx/k)] =
sin kx

x
(3.11)

The image slice at the scattering axial location z = zs can then be written as

I(x, zs) = s(x, zs)⊗
sin kx

x
. (3.12)

It is clear that the image I(x, zs) is not an exact representation of the scattering

distribution s(x, zs) but is blurred by the removal of higher spatial frequencies (kx >
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k) by the background medium. The probing plane wave used for CSM provides no

lateral resolving power and all of the lateral resolution obtained can be attributed

to the focusing on reception.

If a point scatterer is located at (x, z) = (0, zs) then the scattering distribution is

simply a Dirac delta function at x = 0 and s(x, zs) = δ(0). The lateral image slice

at the scatterer axial location is

PSF = δ(0)⊗ sin kx

x
=

sin kx

x
. (3.13)

This is the Point Spread Function (PSF) for the CSM using an infinite aperture

which is continuously sampled, the modulus of which is shown in figure 3.5. The

FWHM and maximum sidelobe amplitude are marked on the figure. The first zero

of equation 3.13 occurs when kx = π or x/λ = 0.5 giving a main lobe width of

1λ. The Full Width at Half Maximum (FWHM) can be measured from figure 3.5

and is ≈ 0.6λ. Another important factor in determining the performance of an

imaging algorithm is the coherent noise rejection. This can be measured by the

amplitude of the sidelobes of the PSF. Here, the amplitude of the first and largest

sidelobe is measured relative to the scatterer peak and is 0.22 or -13 dB as marked on

figure 3.5. The shape of the PSF is not dependent on axial location and is therefore

space invariant for this infinite array case with a linear object s(x, zs) parallel to the

aperture. The PSF would not be space invariant if the object function s(x, z) was

2-dimensional.

The Rayleigh criterion [87] states that two separate scatterers will be resolved when

the maximum response of one scatterer is at the same location as the first zero of the

other PSF. This separation distance for the infinite aperture CSM case described

above would be λ/2. However, for the case when the two scatterers are insonified

in phase, as would be the case if they were both an equal distance from the array

(i.e. the probing plane wave has the same phase ϑ = jkzs at both scatterers) then

the Rayleigh separation is not sufficient to be able to distinguish the two scatterers.

A more general resolution criterion is the Sparrow separation [88] which is the sep-
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Figure 3.5: CSM lateral Point Spread Function for infinite array and array sampling of

∆ < λ/2.

aration distance between two point scatterers at which they just become resolvable

and a dip appears between the two image peaks. Two point scatterers with coher-

ent insonification, separated by the Rayleigh separation are shown in figure 3.6a

and cannot be resolved. Figure 3.6b shows two scatterers separated by the Sparrow

separation which can just be resolved. Figure 3.6c shows two scatterers separated

by more than Sparrow separation which can clearly be resolved. The CSM Sparrow

separation is δres = 0.7λ for the infinite aperture case.
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Figure 3.6: The two-point resolution for CSM with coherent insonification. (a) Rayleigh

separation of 0.5λ: unresolvable, (b) Sparrow separation of 0.7λ: peaks are just resolvable,

(c) Separation of more than Sparrow separation (1λ): peaks are clearly resolvable.

3.2.2 CSM response with a sampled finite aperture

The imaging response for CSM was defined in the previous section for a continuously

sampled infinite aperture along the x-axis at z = 0. Now the effects of a finite

aperture of length a with a regular sampling step of ∆ will be evaluated. Firstly,

the response to a plane wave incident orthogonal to the aperture will be evaluated

theoretically. Then the analysis will be extended to that of a plane wave incident at

any angle β to the aperture; the PSF for the finite array case will also be examined.

The imaging performance can be studied by analysing the angular spectrum F (kx, z =

0) of the measured field f(x, z = 0). The measured field can be expressed as

f(x, z = 0) = s(x, z = 0)p(x)g(x), where s(x, z = 0) is the backscattered wave

field along the x-axis, p(x) is the aperture pupil function and g(x) is a sampling

function which is periodic with ∆ such that

g(x) = δ(x− n∆) (3.14)

where n is an integer, ∆ is the array sampling interval and δ(.) denotes the Dirac

delta function. The spatial spectrum F (kx) of f(x) is the convolution of the Fourier

transform of the pupil function p(x), P (kx), with that of the sampling function g(x),
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G(kx) with the incoming wave spectrum S(kx, z = 0)

F (kx, z = 0) = S(kx, z = 0)⊗ P (kx)⊗G(kx). (3.15)

Since g(x) is periodic with period ∆, it can be written as a Fourier series

g(x) =
+∞∑

n=−∞

ei n2π
∆

x (3.16)

whose Fourier transform is a simple summation of delta functions

G(kx) =
+∞∑
−∞

δ(kx − n
2π

∆
). (3.17)

If the aperture is a square pupil function defined by

p(x) = 1 |x| < a/2,

p(x) = 0 |x| > a/2, (3.18)

then the Fourier transform of p(x) is a sinc function

P (kx) =
2 sin(a

2
kx)

kx

, (3.19)

whose main lobe width (to first zero) is 4π/a. P (kx) will tend to a Dirac delta

function for an infinite array.

In order to evaluate the array response, consider a plane wave field impinging on

the linear aperture at normal incidence. The angular spectrum S(kx, z = 0) of the

incoming plane wave is a Dirac delta function centred at kx = 0, i.e. there is no

variation across the aperture. Therefore, the recorded spectrum is now simply

F (kx) = δ(0)⊗ P (kx)⊗G(kx) = P (kx)⊗G(kx). (3.20)

The convolution of P (kx) with G(kx) leads to periodic repetitions of the sinc func-

tions (3.19) separated by 2π/∆. Figure 3.7 shows the recorded angular spectrum
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(3.20) for an incident wave orthogonal to the aperture of length a, uniformly sam-

pled by ∆. Note that the ideal recorded angular spectrum would be a delta function

at kx = 0. The width of the sinc functions depends on the size of the aperture a

only, whereas the position of the repeated peaks is defined by the sampling interval

∆ only. In order to approach the ideal case of F (kx) = δ(0), it is clear that the

aperture size a must tend to infinity and the aperture sampling ∆ must tend to zero.

The repeated peaks in F (kx) caused by convolution with G(kx) shown in figure 3.7

will amplify any plane waves associated with kx = n2π/∆. It is these undesired

amplifications of certain plane waves in the backprojection procedure that leads to

grating lobes in the reconstructed image. Since waves with kx > k are evanescent,

the condition for no grating lobes in the reconstructed image is that no extra peaks

can exist in F (kx) in the range k < kx < k, where k = 2π/λ. Therefore, for no

grating lobes, the aperture sampling should satisfy

∆ < λ, (3.21)

which holds for an incident plane wave orthogonal to the aperture. In the more

general case, with a plane wave incident at an angle β to the normal of the aperture,

the incoming scattered spectrum S(kx) becomes a Dirac delta function at kx =

k sin β. Therefore, F (kx) is shifted by k sin β. This leads to the condition for no

grating lobes to become

2π/∆ > k + k sin β (3.22)

∆ <
λ

1 + sinβ
(3.23)

which, to be satisfied for all β, requires

∆ <
λ

2
(3.24)

which is the standard Nyquist-Shannon sampling theorem and must be observed to

avoid grating lobes in the reconstructed image. If this sampling criterion is met then

the sampling spectrum G(kx) of (3.20) can be ignored.
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Figure 3.7: The recorded angular spectrum F (kx) = P (kx) ⊗ G(kx) for a plane wave

incident orthogonal to the aperture.

For the more general case of a linear scattering distribution at axial distance zs whose

spatial Fourier spectrum is S(kx, zs), the recorded spectrum, assuming sufficient

array sampling, is

F (kx, z = 0) = P (kx)⊗ [e−jkzsS(kx, zs) u (kx/k)e−jkzzs ] (3.25)

where the two exponential terms account for the phase shifting due to the propaga-

tion of the probing plane wave and the backscattered plane waves respectively.

In order to assess the effect of the finite aperture, consider a finite sized array and

a point scatterer located at (x, z) = (0, zs), as shown in figure 3.8. The maximum

angle βmax of plane wave that can be received by the finite-sized array is the angle

between the aperture normal and the ray path to the scatterer

βmax(zs, a) = arctan(
a/2

zs

) (3.26)

where a is the aperture of the array and zs is the distance of the scatterer from the

array. In this case the received angular spectrum F (kx) is limited to components of
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kx such that |kx| < k sin βmax, where sin βmax is known as the numerical aperture [83].

The lateral spatial frequencies available for imaging are shown in figure 3.9. In this

respect, the finite aperture p(x) has the effect of further low pass filtering the lateral

spatial frequencies kx which is more severe than the low pass filtering as a result of

propagation in the medium, and even less of the backscattered information can be

received by the aperture. The expression for the recorded angular spectrum becomes

F (kx) = u(
kx

k sin βmax

)e−jkzsS(kx, zs)e
−jkzzs (3.27)

where the top hat function u accounts for the limited lateral spatial frequencies that

can be received (|kx| < k sin βmax) by the finite aperture.

Substituting (3.27) into the CSM (3.6) leads to the image at axial distance ζ

I(x, ζ) =

∫ ∞

−∞
u(

kx

k sin βmax

)ejk(ζ−zs)S(kx, zs)e
jkz(ζ−zs)ejkxxdkx (3.28)

As for the infinite array case (3.7), coherent summation over all spatial frequencies

occurs only at the scattering axial location, ζ = zs where the lateral image is

I(x, zs) =

∫ ∞

−∞
S(kx, zs) u (

kx

k sin βmax

)ejkxxdkx. (3.29)

Recognising the integral over kx as an inverse Fourier transform, the image slice at

z = zs can be written in a similar form to (3.12) for the infinite array

I(x, zs) =
sin([k sin βmax]x)

x
⊗ s(x, zs) (3.30)

where the sinc function is the inverse Fourier transform of the top hat function

u( kx

k sin βmax
).

The PSF is the lateral image for the case of a point scatterer at (x, z) = (0, zs).

Setting s(x, zs) = δ(0) gives

PSFβmax =
sin ([k sin βmax]x)

x
. (3.31)
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Figure 3.8: Geometry of finite-sized array situation showing maximum recordable an-
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Figure 3.9: Wavenumber graphical representation of limited array aperture limiting the

maximum recordable lateral wavenumber kx.
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Figure 3.10: CSM FWHM against maximum recordable angle, βmax.

The first zero of the PSF occurs at x = λ
2 sin βmax

. The sidelobe amplitude remains

unchanged from the infinite aperture case of equation (3.13) and is 0.22. The FWHM

for the finite array case is

FWHMβmax =
0.6λ

sin βmax

. (3.32)

The FWHM is plotted against βmax in figure 3.10. Note that the FWHM will

change with axial scatterer position zs and aperture size a as described by (3.26).

The limiting case of βmax = 90o corresponds to an infinite aperture and the resulting

PSF is the same as (3.13) shown in figure 3.5.

Consider a specific array setup with aperture a = 20λ and a point scatterer located

10λ from the array at (x, z) = (0, 10λ). The maximum receivable angle, using

equation (3.26) is βmax = arctan(20/2
10

) = 45o and the numerical aperture is

sin βmax = 1√
2
. The resulting PSF for this situation is shown in figure 3.11. The

sidelobes are the same amplitude as those predicted for the infinite array case shown

in figure 3.5. The FWHM for this case can be measured from figure 3.11 to be 0.85λ
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Figure 3.11: The CSM PSF for aperture a = 20λ and distance to scatterer d = 10λ.

which is equal to that predicted using (3.32).

The Sparrow 2 point separation for the finite array case, assuming sufficient aperture

sampling and plane wave probing signal, is

δres(βmax) =
0.7λ

sin βmax

. (3.33)

3.3 Synthetic Aperture Focusing Technique (SAFT)

It was shown in section 3.2.1 that the optimal monochromatic synthetic focusing

phase shifts for image reconstruction with plane wave insonification was F (kx, ζ) =

ejkζF (kx, z = 0)ejkzζ which forms the CSM (3.6). The ejkζ term simply accounts for

the probing plane wave and provides no lateral resolving power. The second phase

shifting term accounts for the propagation of all spatial frequencies kz =
√

k2 − k2
x

from the scattering location back to the array. Note that a propagator of ejkzζ used

alone gives synthetic focusing onto a source in the object space since no probing

wave is required to insonify a source.

76



3. Plate Imaging

The Synthetic Aperture Focusing Technique (SAFT) only records the pulse-echo

data set, as shown in figure 3.2b. The CSM monochromatic imaging algorithm of

(3.6) can be modified to account for this pulse-echo data set by removing the prob-

ing plane wave propagator (ejkζ) and modifying the scatterer backpropagator term

(ejkzζ) to account for propagation of the outgoing probing waves and the returning

backscattered waves.

The distance from a point on the array to any point in the object space and back

to the aperture is simply double the distance from the aperture to the object point.

Therefore, the pulse-echo nature effectively doubles the distance travelled. This has

the effect of halving the apparent propagation velocity which doubles the effective

wavenumber (keff )

keff =
ω

c/2
= 2k, (3.34)

the SAFT partial wavevector relation is

k2
eff = (2k)2 = k2

x + k2
z,SAFT (3.35)

and hence

kz,SAFT =
√

(2k)2 − k2
x (3.36)

The monochromatic algorithm of SAFT is therefore

I(x, ζ) =

∫ ∞

−∞
u(

kx

2k
)F (kx, z = 0)ejkz,SAFT ζejkxxdkx (3.37)

Note that only one phase shifting operator is required to synthetically focus on

transmission and reception. The low pass filtering of the SAFT algorithm u(kx

2k
)

allows spatial frequencies up to |kx| = 2k which is double those allowed by CSM

(3.9).

The PSF of SAFT for a continuously sampled infinite array will therefore be

PSF = δ(0)⊗ sin 2kx

x
=

sin 2kx

x
. (3.38)
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and is shown in figure 3.12. Note that the effective doubling of spatial frequencies

available for image reconstruction halves the width of the CSM PSF. The sidelobe

amplitude is equal to the CSM sidelobe amplitude of 0.22 or -13 dB.

It can readily be shown that the effects that were seen in section 3.2.2 for the

CSM with a linearly sampled finite array will be comparable for SAFT. Therefore,

assuming sufficient aperture sampling, the PSF for the finite array case is

PSFβmax =
sin ([2k sin βmax]x)

x
. (3.39)

where βmax is defined by (3.26). The SAFT main lobe is half the width of that of

CSM (3.31) giving a Full Width at Half Maximum (FWHM) of

FWHMβmax =
0.3λ

sin βmax

. (3.40)

The predicted Sparrow 2 point separation for SAFT with a finite aperture is

δres(β) =
0.35λ

sin βmax

. (3.41)

which is half that of the CSM (3.33).

3.4 Total Focusing Method (TFM)

The Total Focusing Method (TFM) uses the full matrix of data and every transmit-

receive combination is recorded (figure 3.2c). In this respect it is possible to synthet-

ically focus the received backscattered waves on transmission and reception to pro-

duce coherent summation at scatterer locations. Assuming transmission from point

x = xT and reception at x = xR the recorded angular spectrum F (kxT
, kxR

, z = 0)

is 2 dimensional over kxT
and kxR

The elemental plane waves associated with all combinations of kxT
and kxR

of the

recorded angular spectrum must be backpropagated to account for both transmission
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Figure 3.12: Point Spread Functions for a continuously sampled infinite aperture, solid

line: CSM; dotted line: SAFT; dashed line: TFM.

and reception. The propagator ejkzζ with kz =
√

k2 − k2
x was used in CSM to

synthetically focus the backscattered waves at an axial location ζ after that location

had been insonified with a probing plane wave. The same propagator can be used

to synthetically focus on transmission due to reciprocity of the system.

The proposed TFM algorithm is therefore

F (kxT
, kxR

, ζ) = ejkzT
ζF (kxT

, kxR
, z = 0)ejkzR

ζ (3.42)

The first exponential propagator synthetically focuses over spatial frequencies as-

sociated with transmission (kxT
) where kzT

=
√

k2 − k2
xT

. The second exponential

propagator of (3.42) synthetically focuses over spatial frequencies associated with

reception (kxR
) where kzR

=
√

k2 − k2
xR

. Both transmission propagation and re-

ception propagation will remove spatial frequencies above |kxT
| > k and |kxR

| > k

respectively. It can be shown that the phase shifts of (3.42) will produce coherent

summation at the scatterer locations using a similar argument used in the preceding

sections of this chapter for CSM and SAFT. Assuming the phase shifts invert the
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propagation correctly, the image at ζ = zs is the 2D inverse Fourier transform of

(3.42) which leads to

I(xT , xR, zs) =
sin kxT

xT

sin kxR

xR

⊗ s(xT , xR, zs) (3.43)

Noting that for the geometry under consideration xR = xT = x the lateral image

for TFM is simply

I(x, zs) = (
sin kx

x
)2 ⊗ s(x, zs) (3.44)

Therefore, a point scatterer at (x, z) = (0, zs) giving s(x, zs) = δ(0) will give the

PSF for TFM

PSF = (
sin kx

x
)2 (3.45)

The TFM PSF is therefore the CSM PSF (3.13) squared. This has the effect of

narrowing the main lobe and reducing the relative sidelobe amplitude. The TFM

PSF is shown in figure 3.12 for the infinite aperture case along with the those of

CSM and SAFT. The TFM PSF main lobe is clearly narrower than that of CSM

but not as narrow as that of SAFT.

The finite aperture case with maximum recordable angle βmax as defined by (3.26)

will give a TFM PSF of

PSFβmax = (
sin ([k sin βmax]x)

x
)2. (3.46)

The Full Width at Half Maximum (FWHM) of the TFM finite aperture case is

FWHMβmax =
0.44λ

sin βmax

. (3.47)

The predicted Sparrow 2 point separation for TFM with a finite aperture is

δres(βmax) =
0.45λ

sin βmax

. (3.48)
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The TFM sidelobe amplitude is just 0.048 or -26 dB, compared to -13 dB for CSM

and SAFT, making the two point resolution comparable to the FWHM due to the

reduced coherent noise in the image.

3.5 Implementation of Imaging Algorithms and

their complexity

The imaging algorithms used to reconstruct the image along a line parallel to the

array aperture have been derived in the previous sections of this chapter; (3.6) for

CSM, (3.37) for SAFT and (3.42) for TFM. In order to build the full image the

recorded angular spectrum must be backprojected to each axial slice of interest for

each temporal frequency of interest.

The Common Source Method (CSM) is the simplest of the three imaging algorithms

studied here since there is only one firing during the acquisition phase. This makes

the data capture very fast. Subject to sufficient parallel receiver amplifier channels,

backscattered reflections are recorded at each transducer in the array simultaneously.

If parallel reception is not possible then the receiver amplifier channel can be mul-

tiplexed across the array, requiring N firings for an N element array. The number

of separate transducer firings required for each algorithm are listed in table 3.1.

The SAFT requires only the pulse-echo data set which can be acquired by scanning

a single transducer to synthetically create the full aperture. For N transducer loca-

tions there are N recorded time traces. For a fixed array, the acquisition is achieved

by addressing each transducer in turn.

The recorded data set for CSM and SAFT is a set of N time traces for an array of

N transducers, f(x, z = 0, t). These traces form a two dimensional data set sampled

over x and t with sampling steps of ∆ and δt respectively. Here, x represents the

positions of the transducer along the aperture, z = 0 indicates that the data are

recorded along the x-axis and t is the time.
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Performing a 2D Fourier Transform over x and t of the recorded data set gives the

recorded Angular Spectrum, F (kx, z = 0, ω). More detail on the angular spectrum

can be found in appendix A or [83]. For each frequency, ω, The Angular Spectrum

is a superposition of plane waves with component wavenumbers kx in the x direction

F (kx, z = 0, ω) = FTx,t[f(x, z = 0, t)]. (3.49)

The Fourier transform is a Discrete Fourier Transform since the aperture is sampled

with N points. The number of discrete values of lateral spatial frequencies kx is

N . kx will take N discrete values between −π/∆ and π/∆ where ∆ is the aperture

sampling interval. Note that the largest value of recordable kx must be larger than

k to accurately measure all backscattered waves. This leads to the same sampling

criterion derived earlier (3.24)

kxmax =
π

∆
> k =

2π

λ

∆ <
λ

2
(3.50)

The recorded angular spectrum is then backprojected into the object space in order

to find the angular spectrum at each axial slice (z = ζ) of interest for each frequency

ω ∈ Ω where Ω is the chosen bandwidth. The total angular spectrum F̄ (kx, ζ) at

z = ζ is the summation of all the angular spectra within the chosen temporal

frequency bandwidth

F̄ (kx, ζ) =
∑
ω∈Ω

F (kx, z = 0, ω)ejkzζ (3.51)

where kz = k+
√

k2 − k2
x for CSM, where the k accounts for the probing plane wave,

and kz =
√

(2k)2 − k2
x for SAFT and k = ω/c is the wavenumber of the guided wave

in the background medium. For certain guided wave modes, the phase velocity is

not constant as was discussed in chapter 2. This dispersion can be accounted for

automatically by using k(ω) = ω/c(ω) where c(ω) is the frequency dependent phase

velocity of the guided wave mode being used for inspection.
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Table 3.1: Acquisition and image reconstruction complexity as functions of the number

of transducers in the array N

Complexity CSM SAFT TFM

Acquisitions with multiplexed reception N N (N − 1)N/2

Acquisitions with parallel reception 1 N N

imaging formation using DFTs ∝ N2 ∝ N2 ∝ N3

imaging formation using FFTs ∝ N log N ∝ N log N ∝ 2N2 log(N)

The final image at z = ζ is the inverse discrete Fourier transform of (3.51) over kx

I(x, ζ) = IFTkx [F̄ (kx, ζ)]. (3.52)

The complexity of the image reconstruction process as a function of the number of

transducers in the array N is listed in table 3.1 for each algorithm.

Since the TFM uses the full data matrix (FMC) then the data acquisition is nec-

essarily more complex. It was shown in figure 3.2c that due to reciprocity, only

(N − 1)N/2 time traces need to be acquired for an N element array. The rest of the

data matrix can then be filled by symmetry. If N parallel receiver amplifier chan-

nels are available then the acquisition can be achieved with N firings and hence the

acquisition time is comparable to that of SAFT but at the expense of the extra re-

ceiver channels. Without parallel reception capabilities, FMC will take significantly

longer than SAFT or CSM acquisition.

The FMC is a set of N2 time traces for an array of N transducers, f(xT , xR, z = 0, t).

These traces form a three dimensional data set sampled over xT , xR and t with

sampling steps of ∆ over the array and δt over time. Here, xT is the transducer

position and xR is the receiver position, z = 0 indicates that the data are recorded

at z = 0 and t is the time. Performing a 3D discrete Fourier transform over xT , xR

and t of the recorded data set gives the TFM Angular Spectrum

F (kx,T , kx,R, z = 0, ω) = FTxT ,xR,t[f(xT , xR, z = 0, t)] (3.53)
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For each temporal frequency ω the Angular Spectrum is two-dimensional over kxT

and kxR
. The angular spectra for each frequency within the chosen bandwidth

ω ∈ Ω must be backpropagated to each axial slice of interest at z = ζ. The total

angular spectrum F̄ (kxT
, kxR

, ζ) is the summation of all the angular spectra within

the temporal frequency bandwidth

F̄ (kxT
, kxR

, ζ) =
∑
ω∈Ω

F (kxT
, kxR

, z = 0, ω)ejkzζ (3.54)

where kz =
√

(k)2 − k2
xT

+
√

(k)2 − k2
xR

.

Taking the 2D inverse Fourier transform of (3.54) over kxT
and kxR

gives an image

matrix over xT and xR for the axial slice at z = ζ. The physically meaningful

solution occurs when xT = xR = x and so the image for the axial slice at z = ζ is

simply the leading diagonal of this matrix

I(x, ζ) = diag(IFTkxT
,kxR

[F̄ (kxT
, kxR

, ζ)]). (3.55)

3.6 Imaging of Cracks in Plates with Finite Ele-

ment Data

A simple plane stress finite element model of an aluminium plate was made using

Abaqus software [89] in order to test the imaging algorithms derived in the previous

sections of this chapter. Membrane elements were used, assuming infinitesimal plate

thickness. The plate model was evenly meshed with square elements. A schematic

of the FE model is shown in figure 3.13.

The excitation signal was a 5 cycle Hanning-windowed toneburst centred at 100kHz.

The excitation was applied to individual nodes at the locations of the transducers

int he array in a direction parallel to the array. This type of source excites both

compressional S0 and shear horizontal SH0 in the plate model. Both modes are

non-dispersive due to the membrane elements used. The peak S0 wave is in the
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direction of excitation and the peak SH0 wave is perpendicular to the direction of

excitation. It is therefore mainly the SH0 mode that travels in the direction of the

crack. Note that membrane elements cannot support antisymmetric wave modes

and hence there is no A0 mode. The phase velocity of the S0 wave is

cS0 =

√
E

ρ(1− ν2)
(3.56)

and the phase velocity of the SH0 wave is

cSH0 =

√
E

2ρ(1− ν)
(3.57)

where E is the Young’s modulus, ν is the Poisson’s ratio and ρ is the density of

the material. For aluminium, cp = 6320 ms−1 and cs = 3130 ms−1. The overall

plate model size was chosen so that the earliest edge S0 reflection arrived after the

slowest SH0 crack reflection, and hence could be time-gated out. The wavelength of

the SH0 mode at the excitation centre frequency of 100 kHz is 31.3mm.

A crack of length lcrack = 2.06λSH oriented parallel to the array was modelled by

disconnecting adjacent elements at a distance of d = 5λSH from the array. 33 nodes

were used to model the array of aperture a = 8λSH giving a transducer separation

of ∆x = 0.25λSH which satisfies the sampling criterion of (3.24). The element size

was 2mm which is λSH/16 at 100 kHz.

Full Matrix Capture (FMC), which is required for TFM (see figure 3.2c), was

achieved by running 17 separate finite element jobs of the same FE model but

with individual excitation at each of the transducer nodes on one side of the array

in turn. The backscattered waves from the crack were received across the entire

array (N = 33) for each of the 17 transducer locations. Only 17 runs were necessary

since the model is symmetric about the z-axis as shown in figure 3.13. The SAFT

data set (pulse-echo only, figure 3.2b) is the leading diagonal of the FMC. The CSM

data set (pitch-catch) is the summation of columns of the FMC which is equivalent

to firing all of the transducers simultaneously.
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Figure 3.13: Plate finite element model schematic.

The time domain data set was processed using CSM, SAFT and TFM with the

processing described in section 3.5 and phase velocity equal to that of the SH0 wave

mode (3.57). The temporal frequencies used for processing were 80 kHz to 120 kHz,

which is roughly the bandwidth of the excitation toneburst. In order to model

different aperture sizes, varying subsets of the full data set were processed. The

array aperture was varied from a = 1λSH using the centre 5 transducer elements

to the maximum available a = 8λSH using all 33 transducer elements in 1λSH

increments. Varying the aperture changes the maximum recordable reflection angle

from the crack, β, as defined by equation 3.26. From the theoretical analysis of the

finite array case of the preceding sections of this chapter, the resolution is expected

to be better for larger apertures for all of the imaging algorithms.

Figure 3.14 shows the computed finite element crack FWHM against the aperture

used for CSM. Also shown are the actual crack length and the theoretical FWHM

of a point scatterer (3.32). The FWHM obtained from processing the finite element

data is a reasonable estimator of the actual crack length when the point scatterer

FWHM is less than the actual crack length. This means that when the main lobe

of the PSF (3.31) is smaller than the actual crack size, accurate size estimates for

cracks can be obtained. Therefore, equation (3.32) can be used to define the smallest

sizable crack using CSM for a given array setup. This sizeable crack length decreases
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Figure 3.14: FWHM for plate finite element study using CSM; solid line: measured from

FE image; dashed line: point scatterer prediction from theory .

as the aperture is increased or when the crack is closer to the array.

Figure 3.15 shows the measured finite element crack FWHM against the aperture

used for SAFT. Also shown are the actual crack length and the theoretical FWHM

of a point scatterer using SAFT (3.40). The predicted point scatterer FWHM is half

that predicted for CSM. As was observed for CSM, the measured FWHM is a rea-

sonable estimator of actual crack length when the predicted point scatterer FWHM

is less than the actual crack length. However, this occurs for a smaller aperture than

CSM since the predicted FWHM of SAFT is smaller, as defined by (3.40) which can

be used to calculate the minimum sizeable crack size for a given array setup. Note

that the FWHM curve for the finite element data does not monotonically decrease.

This occurs since the crack does does reflect the probing waves equally in all direc-

tions and may exhibit reflectivity peaks in certain directions [76,77]. As the aperture

size is increased, these peaks will be received by the array and will cause distortions

in the shape of the crack image, leading to variations in the measured crack FWHM.

The ripple effect is more pronounced for SAFT than CSM since the probing signals

are incident on the crack at different angles and hence there are larger variations in
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Figure 3.15: FWHM for plate finite element study using SAFT; solid line: measured

from FE image; dashed line: point scatterer prediction from theory .

directional reflectivity than for the simple probing plane wave of CSM.

Figure 3.16 shows the measured finite element crack FWHM against the aperture

used for TFM. The predicted point scatterer FWHM (3.47) is between those of CSM

and SAFT as can be seen from the PSFs of figure 3.12. Once again, the measured

FWHM is a reasonable estimator of the actual crack length providing the predicted

point scatterer FWHM is smaller than the crack length. Equation 3.47 can be used

to define the smallest sizable crack length using TFM for a given array setup. It

should be noted that the TFM image FWHM overestimates the actual crack length

for all apertures considered here. However, using the FWHM to estimate crack

length is arbitrary and another measure of the width of the crack image may give a

more accurate estimate of the actual crack length.

3.7 Validation Experiments

Experiments were carried out in order to validate the theoretical and finite element

results of the preceding sections. The results of imaging of finite element data agreed
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Figure 3.16: FWHM for plate finite element study using TFM; solid line: measured from

FE image; dashed line: point scatterer prediction from theory .

well with the theoretical predictions of sections 3.2 to 3.4 for the SH0 mode. The

theoretical predictions should be valid for any guided wave mode and will now be

compared with experimental results using the A0 mode. The A0 mode was chosen

due to its ease of excitation and reception using simple transduction methods. Also,

the A0 mode is dispersive in this frequency region (see figure 2.5) which will give the

opportunity to test the ability of the imaging algorithms to deal with this common

guided wave phenomenon.

A single PZT disc was used for transduction and was manually scanned across a

0.9mm thick mild steel plate to simulate an array. The transducer disc was 2mm

thick, had a diameter of 5mm and was bonded to a 6mm thick brass backing mass of

the same diameter to increase input power to the plate. The transducer was held in

place on the plate by a light spring. The PZT disc acts as an omni-directional point

source for the fundamental antisymmetric guided wave mode (A0). The Poisson

effect in the PZT disc may also cause some excitation of the S0 extensional mode

but this is greatly reduced by gel-coupling the transducer to the plate since the fluid

does not support shear forces.

89



3. Plate Imaging

tx

rx

N synthetic array points

Targets

∆

Aperture  = a

scanned laser detector

scanned piezo transducer

Steel plate

zT

Figure 3.17: Plate experimental setup.

The reflected field was measured using a Polytec [90] OFV505 heterodyne laser inter-

ferometer with a Polytec OF5000 vibrometer controller. The laser was mechanically

scanned across a line in front of the transduction line to simulate a receiver ar-

ray. The receiver laser was angled perpendicular to the plate so it only recorded

out-of-plane movement which greatly reduced its sensitivity to the S0 wavemode

which has very little out-of-plane motion at the frequencies used here. The reflected

signal was recorded at all receiver locations for all source locations for Full Matrix

Capture (FMC) meaning that all three imaging algorithms could be used to process

the experimental data. The experimental setup is illustrated in figure 3.17. Each

time trace was recorded several times and averaged to sufficiently remove random

noise. A five cycle Hanning-windowed toneburst centred at 50 kHz was used for the

excitation signal and is shown with its frequency spectrum in figure 3.18. At 50 kHz,

the A0 wavelength is 13.1mm. All dimensions quoted in λ are in λA0 at 50 kHz.
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Figure 3.18: Excitation signal for plate experiments: (a) 5 cycle Hanning-windowed

toneburst centred at 50 kHz; (b) Its frequency spectrum.

In order to validate the theoretical results for the point spread functions a single

brass rod of diameter 5mm (0.38λ) was bonded to the surface of the plate. The rod

creates a local change in acoustic impedance and hence causes a reflection of some of

the incident wave. Measurements were taken 108mm (zT = 8.24λA0 at 50 kHz) from

the target using an aperture of 56mm (a = 4.27λ) and aperture sampling of 7mm

(∆ = 0.53λ) using 9 transducer locations (N = 9). In the second experiment, two

5mm (0.38λ) holes were drilled through the steel plate to test the 2 point resolution

of the imaging algorithms. The centres of the holes were separated by 11mm (0.84λ).

Another experiment was carried out with a 35mm (2.67λ) slit at 140mm (10.7λ) cut

parallel to the array aperture . The slit was 1mm wide (0.08λ). Table 3.2 shows

the setup of each of the three experiments. Note that the size of the plate was

sufficiently large to be able to time gate out any edge reflections which arrive after

the backscattered target reflections.

The time domain data from the experiments was transformed into the temporal

frequency ω and lateral spatial frequency kx domains and used to create images of

the targets as described in section 3.5. The temporal frequencies processed were

40-60 kHz which is comparable to the bandwidth of the input toneburst as shown

in figure 3.18b. The phase velocities used for processing at these frequencies were

calculated using DISPERSE [61, 65] which solves the dispersion relation for the
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Table 3.2: Plate Experimental Setup

Target a, λ ∆, λ N zT , λ βmax, deg

1 brass rod 4.27 0.53 9 8.24 14.6

2 drilled holes 10.7 0.53 21 7.7 33.0

2.5 λ slit 10.7 0.38 29 10.7 26.6

fundamental antisymmetric guided wave mode (equation 2.17) as described in sec-

tion 2.2.2.

Figure 3.19 shows the CSM image around the single rod scatterer and its lateral

image slice. There is excellent agreement with the theoretical CSM PSF evaluated

using (3.31) at 50 kHz which is also shown on the lateral image slice. The main lobe

is almost identical to the prediction but the sidelobes of the experimental image are

slightly smaller than the prediction. This is due to the broadband processing em-

ployed which effectively increases the coherent summation of the main lobe whilst

reducing the coherent summation of the sidelobes. This occurs because the wave-

length varies with frequency and hence the sidelobes are not in the same position

at every frequency in the bandwidth (ω ∈ Ω) used to create the image.

Figures 3.20 and 3.21 show the images and lateral image slices around the brass

rod location for SAFT and TFM respectively. Also shown are the theoretical PSF

predictions evaluated using (3.39) and (3.46) at 50 kHz. There is excellent agree-

ment between the predictions and the experimental PSF for both SAFT and TFM.

Once again, the amplitude of the experimental sidelobes are slightly less than the

monochromatic prediction due to the broadband processing. Note that the experi-

mental CSM and SAFT have similar amplitude sidelobes but those of the TFM are

significantly reduced in amplitude as was predicted.

The axial extent of the main lobe of the image of the rod, which was not evalu-

ated analytically, appears to be comparable for all algorithms at around 2.5λ. It is

interesting to note that the axial sidelobes are small compared to the lateral side-
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Figure 3.19: CSM for single rod scatterer plate experiment; (a) CSM image, circle

denotes scatterer location; (b)lateral CSM PSF; solid line: experimental PSF; dotted line:

theoretical PSF.
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Figure 3.20: SAFT for single rod scatterer plate experiment; (a) SAFT image, circle

denotes scatterer location; (b)lateral SAFT PSF; solid line: experimental PSF; dotted

line: theoretical PSF.
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Figure 3.21: TFM for single rod scatterer plate experiment; (a) TFM image, circle

denotes scatterer location; (b)lateral TFM PSF; solid line: experimental PSF; dotted line:

theoretical PSF.

lobes. This is due to the input toneburst, and hence also the frequency spectrum

available for image reconstruction, being Hanning-windowed as shown in figure 3.18.

The windowing of temporal frequencies reduces the axial sidelobe amplitude. The

theoretical Sparrow two-point separations δres for the array setup of the two-hole

experiment can be calculated using equations (3.33), (3.41) and (3.48) for the CSM,

SAFT and TFM respectively. The maximum recordable angle β for the two-hole

experiment was 33o giving separation distances of 1.29λ for CSM, 0.64λ for SAFT

and 0.83λ for TFM. Therefore, the actual holes, separated by 0.78λ, should be eas-

ily resolvable with SAFT, just resolvable with TFM and not resolvable with CSM.

Figures 3.22, 3.23 and 3.24 show a section of the processed images around the two

holes for the CSM, SAFT and TFM respectively. The lateral PSF are shown in

figure 3.25 and it is clear that the resolvability predictions were correct.

It was shown in the previous section that, for finite element data, the FWHM of the

crack image could provide a reasonable estimate of the crack length, providing the

crack was larger than the theoretical point scatterer FWHM. The theoretical PSFs

for the geometry of the slit experiment have FWHM of 1.56λ,0.78λ and 1λ for the

CSM, SAFT and TFM respectively using (3.32),(3.40) and (3.47). The experimental
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Figure 3.22: Experimental CSM image around two holes.
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Figure 3.23: Experimental SAFT image around two holes.
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Figure 3.24: Experimental TFM image around two holes.
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slit is larger than the PSF FWHM for each algorithm and hence the experimental

FWHM should estimate the actual slit length accurately. The measured experi-

mental FWHM from the images produced using the three imaging algorithms were

2.3λ,2.3λ and 2.5λ for the CSM, SAFT and TFM respectively. Therefore, all the

algorithms provide a slight underestimate of the actual slit length with the exception

of TFM which exactly estimates the lateral extent.

3.8 Plate Imaging Conclusions

Three synthetically focused imaging algorithms have been introduced within the

context of plate imaging: Common Source Method (CSM), Synthetic Aperture Fo-

cusing Technique (SAFT) and Total Focusing Method (TFM). The performance of

the three algorithms was investigated theoretically and it was found that SAFT

produced the narrowest Point Spread Function (PSF), half that of the CSM, and

hence achieved the best two-point resolution. However, SAFT and CSM both suffer

from substantial sidelobes in the image. The TFM has significantly smaller sidelobes

and FWHM between those of CSM and SAFT. Table 3.3 shows the image quality

metrics for the three algorithms for the infinite aperture case.

It should be noted that TFM requires significantly more complex acquisition and

subsequent image formation time. This means that, if the acquisition time for TFM

is to be comparable with CSM or SAFT then parallel reception of the backscattered

waves at all sensors will be required, necessitating a more expensive hardware ar-

chitecture. However, for plate imaging, it appears that TFM would be worth the

extra acquisition time or hardware expense due to the significantly reduced sidelobe

amplitude and a two-point separation criterion which is comparable with that of

SAFT.

The lateral crack sizing ability of the imaging algorithms was tested using data from

a finite element model using the SH0 guided wave mode at 100 kHz for inspection.

It was found that all of the algorithms were capable of reliably estimating the crack

length so long as the crack size was larger than the width of the theoretical PSF.
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Table 3.3: Image quality metrics for the infinite aperture case

Metric CSM SAFT TFM

shape of PSF sinc(kx) sinc(2kx) sinc2(kx)

FWHM, λ 0.6 0.3 0.44

δSparrow, λ 0.7 0.35 0.45

Sidelobe amplitude, dB −13 −13 −26

The width of the theoretical PSF can therefore be used to define the smallest sizable

crack.

Several plate experiments using the A0 guided wave mode at 50 kHz were carried

out. The image results of the experimental data showed excellent agreement with

the theory and the finite element study. It was found that broadband processing

slightly reduced the sidelobe amplitude. The experimental results also showed the

ability of the imaging techniques presented to deal with dispersion effects.

The results for lateral sizing of cracks and slits using synthetic focusing techniques

is encouraging for the goal of circumferential sizing of defects in pipes, which will

be investigated in the following chapter.
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Chapter 4

Pipe Imaging

4.1 Pipe Imaging Introduction

Three synthetic focusing algorithms were evaluated in detail for plate imaging in

chapter 3. It was found that the Total Focusing Method (TFM) had excellent

coherent noise rejection but required more extensive data acquisition than the Com-

mon Source Method (CSM) or Synthetic Aperture Focusing Technique (SAFT). All

of the imaging algorithms were capable of estimating the lateral extent of cracks

parallel to the array aperture if the crack was larger than the predicted Full Width

at Half Maximum (FWHM) of a point scatterer at the crack location. SAFT had

the smallest point scatterer FWHM, followed by TFM, and CSM had the largest

point scatterer FWHM. In this chapter, the three algorithms will be tested for use

with pipe geometry.

The analogies between the propagation of guided waves in plates and the propa-

gation in pipes was discussed in chapter 2. It was noted that the complex wave

propagation of torsional-flexural (F(n,2)) pipe modes of interest here can be ade-

quately approximated by assuming plate-like behaviour. This simplified approach

allows one to assume constant phase velocity equal to the phase velocity of the cor-

responding plate Shear Horizontal guided wave mode in all directions of propagation

α. An extra boundary condition along the axial cut made in the pipe in order to
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unroll it means that the pipe guided waves can only propagate at fixed angles which

can be found using (2.27).

If the wavefield f(circ, z = 0, t) around the pipe circumference at z = 0 is sampled

with N transducers with equal spacing of ∆ such that N∆ = 2πr, then the two

dimensional discrete Fourier transform over circumferential location (circ) and time

(t) yields the angular spectrum at each temporal frequency ω

F (kcirc, z = 0, ω) = FTcirc,t[f(circ, z = 0, t)]. (4.1)

the components of the recorded angular spectrum at any temporal frequency have

circumferential wavenumbers kcirc of −N/2r to N/2r in steps of 1/r. Note that

these values of circumferential wavenumber correspond exactly to the propagating

solutions for the torsional-flexural guided wave modes which were analysed in sec-

tion 2.3.4 where kcirc = n/r where n is the circumferential order of the mode. If all

of the propagating modes are to be received without aliasing then twice as many

transducers as propagating modes are required N > 2nmax. This is equivalent to

sampling of ∆ < λ/2 where λ is the wavelength of the SH0 plate mode at the high-

est excitation frequency. If this circumferential sampling criterion is met then the

recorded angular spectrum can be thought of as a decomposition of the received

wavefield into the propagating pipe modal solutions. This is entirely analogous to

the decomposition of the recorded wavefield along a linear array on a plate into plane

waves which formed the basis of the imaging algorithms discussed in the previous

chapter. Therefore, the imaging algorithms whose implementation was outlined in

section 3.5 for plate geometry can be directly applied to the pipe geometry of inter-

est here. Each component of the recorded angular spectrum must be backprojected

axially along the pipe as was the case for the plane wave components for plate imag-

ing. The only change is that the x direction (lateral direction) is now termed the

circumferential direction.

Firstly, the imaging response of the algorithms will be tested using a simple finite

element model with no defects present in the pipe. After evaluating the end-wall

response from this model, a decision as to the most suitable of the three algorithms
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for pipe imaging using a circumferential array of transducers can be made.

Following this decision, the chosen algorithm is tested using data from a simple

analytic model for a point scatterer assuming the plate-like behaviour investigated

in section 2.3.4. The circumferential Point Spread Function (PSF) is evaluated as a

function of inspection frequency, axial distance from the array and pipe diameter.

The lateral defect response for plate imaging was investigated in the previous chap-

ter. In this chapter, the circumferential defect response will be evaluated for circum-

ferentially oriented cracks in 8 inch diameter pipes modelled with finite elements.

The analysis will be extended beyond the scope of the plate imaging work to include

part depth cracks and part depth notches. The finite element results will then be

generalised to different axial defect locations, frequency of inspection and pipe size.

4.2 Imaging response to a pipe end wall

A 3D pipe model was made using Abaqus version 6.5 [89]. The pipe modelled

was an 8 inch schedule 40 mild steel pipe (internal diameter= 202.7 mm, external

diameter= 219.1 mm). The mild steel is defined by its Young’s Modulus, E =

216.9 GPa, its Poisson ratio, ν = 0.2865 and its density, ρ = 7932 kgm−3.

The model was run with no features present in a 1.2m long pipe in order to test

the response of the imaging algorithms to a pipe end. 2 elements through the

pipe wall thickness, 360 elements around the circumference and 480 elements along

the length were used. The element size was therefore around 4mm thick, 3.5mm

circumferentially and 2.5mm axially. Solid brick 8 node linear elements were used.

The input is a 5 cycle Hanning-windowed toneburst centred at 50 kHz. The toneb-

urst and its temporal frequency spectrum were shown in figure 3.18. The smallest

wavelength is the shear wavelength, which at the highest frequency with significant

energy (70 kHz) is 46mm. Therefore, the largest element dimension is around one

twelfth of the smallest wavelength present. In order to sample the pipe circumference

adequately (∆ < λSH/2) at 50 kHz, 20 transducer locations are required. However,
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due to the bandwidth of the toneburst, 24 transducer nodes were used which were

evenly spaced every 15o around the outside of the pipe wall satisfying the spatial

sampling criterion (3.24) up to 60 kHz. This also mimics the actual hardware setup

which was available for experiments.

The defect-free pipe model is symmetric about the pipe axis (axisymmetric) and so

the backscattered response would be identical from each transducer node. Therefore,

excitation of only one transducer node is necessary. The backscattered reflections

are then monitored at all transducer nodes. The full data matrix which is required

for the Total Focusing Method (see figure 3.2) can subsequently be filled by taking

advantage of the the axial symmetry of the situation. The SAFT data set is the

leading diagonal of the full matrix. The CSM data set can be found by summing the

full data set over the transmitter dimension. This synthetic summation is equivalent

to firing all of the transmitters simultaneously.

The forced excitation was applied in a circumferential direction at the single trans-

duction node. This has a similar effect to the excitation of the plate finite element

model described in section 3.6. The loading produces a shear-horizontal (SH) prob-

ing wave packet whose principal direction is axial (α = 0) and a compressional (S)

wave packet whose principal direction is circumferential (α = 90o). The circumfer-

ential signals will travel around the pipe circumference and will be received at the

other transducer locations and at the excitation transducer after an integer num-

ber of circumferential passes. The backscattered wavefield is also monitored in a

circumferential direction at all of the 24 transducer nodes.

Figure 4.1 shows the pulse-echo time trace which will be used by SAFT from the

finite element model with amplitude normalised to that of the input toneburst.

Marked on the figure are the excitation toneburst, the first and second circumfer-

ential signals and the end wall reflection. Note that the circumferential signals are

larger than the end wall reflection.

Figure 4.2 shows the time trace recorded at transducer 5 with excitation at trans-

ducer 1 as an example of the data used by TFM. The direct pass circumferential
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Figure 4.1: Pulse-echo time trace with pipe end at 1.2m.

toneburst is visible but subsequently the end wall reflection is masked by the many

different circumferential signals.

Figure 4.3 shows the time trace recorded at one transducer from excitation at all

24 transducers, as would be the case for CSM. The amplitude is normalised to

that of the excitation signal. Note that there are no circumferential signals, just

the end wall reflection being visible. The end wall reflection is 1/24 of the input

signal amplitude, as expected from monitoring at just one of the 24 firing transduc-

ers. The effect of firing all of the transducers simultaneously is to excite only the

T(0,1) axisymmetric torsional mode. This is effectively a plane wave propagating

perpendicular to the array, as was the case for the infinite aperture CSM plate case

discussed in section 3.2.1.

Note that the phase velocity of the propagating T(0,1) mode can be evaluated using

the time trace shown in figure 4.3. The finite element phase velocity in the axial

direction was found to be 3230 ms−1 showing a 0.8% variation from the theoretical

phase velocity of 3260 ms−1. This is comparable to the velocity errors found by
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Figure 4.2: Time trace recorded at transducer 5 from excitation at transducer 1 with pipe

end at 1.2m.

Drozdz [91] in a detailed analysis of such finite element modelling errors. This value

of phase velocity will be used for all subsequent imaging of finite element data.

The finite element time traces from the defect-free model were processed using the

three imaging algorithms that were described in section 3.5. Temporal frequencies

of 40-60 kHz were processed, roughly corresponding to the −6 dB bandwidth of the

excitation toneburst (figure 3.18b). Figure 4.4 shows the CSM image of the pipe

with an end wall at 1.2m, figure 4.5 shows the SAFT image and figure 4.6 shows

the TFM image. The images are scaled to the image peak amplitude.

The axial slices through the CSM, SAFT and TFM images are shown in figure 4.7a,

4.7b, 4.7c respectively. The amplitude scale has been normalised to that of the input

signal.

The CSM image of figure 4.4 shows the end wall in the correct location and of the

same amplitude as the input probing signal. This amplitude would be expected

since all of the T(0,1) transmitted mode is reflected by the pipe end. The first axial
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Figure 4.3: CSM time trace with pipe end at 1.2m.
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Figure 4.4: CSM image of pipe end at 1.2m.

sidelobes are around -17dB in amplitude and occur at axial positions of 1.08m and

1.32m. These are 0.12m (1.85λSH at 50 kHz) axially from the end wall image peak.

It is clear that the circumferential signals observed in figures 4.1 and 4.2 are seriously

detrimental to the quality of the images produced by SAFT and TFM for pipe

imaging. The end wall amplitude of the SAFT image of figure 4.5 is masked almost

entirely by the noise bands produced from the circumferential signals. The end wall
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Figure 4.5: SAFT image of pipe end at 1.2m.
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Figure 4.6: TFM image of pipe end at 1.2m.
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Figure 4.7: Axial slice through image of pipe end at 1.2m in dB: (a) CSM; (b) SAFT;

(c) TFM.
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amplitude of the TFM image of figure 4.6 is slightly greater than the CSM end wall

amplitude but the noise in the image from the circumferential signals is still around

-6dB.

Therefore, the SAFT and TFM algorithms which produced the best quality images

for plate imaging, are not suitable for pipe imaging due to the unwanted excitation of

circumferential signals which are received by the transducer array. These undesired

signals are confused with feature reflections and hence cause coherent noise in the

reconstructed SAFT and TFM images. For this reason, SAFT and TFM will no

longer be investigated here for use with the proposed circumferential array. However,

it may be possible to suppress the unwanted circumferential guided wave excitation

using several separate circumferential arrays located at different axial positions and

this is currently receiving research attention [92].

4.3 Imaging response with Synthetic Data

4.3.1 A simple synthetic scattering model

In order to further test the CSM pipe imaging algorithm, a simple analytic scatter-

ing model was used to create data for a point scatterer at some axial location zd.

The model assumes plate-like behaviour of the pipe as discussed in section 2.3.4,

allowing one to unwrap the pipe and think of it as a plate. The assumption made

in section 2.3.4 was that the shear horizontal wave propagation had phase velocity

equal to the bulk shear velocity in all directions. In order to account for all possible

helical ray paths, one must consider an infinite number of repetitions of the pipe

circumference. Figure 4.8 shows the geometry of the unrolled pipe and the first

two circumferential repetitions considered. The direct ray path from the defect to a

single transducer, as well as the first two helical paths to the same transducer, are

also shown on the figure.
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The monochromatic signal Utr, recorded at transducer number tr is

Utr = e−jkszd

+∞∑
p=−∞

Rtr,p · Ttr,p ·G(ks, dtr,p) (4.2)

where the first exponential term explains the phase shifting of the probing plane

wave (T(0,1)) which occurs between the array and the defect location zd when all

transducers are fired simultaneously. Rtr,p is the reflectivity coefficient for transducer

tr and path number p. Ttr,p is the transducer amplitude scaling factor for transducer

tr and path number p. G is the Green’s function describing the propagation of the

backscattered waves from the defect. For the 2d case, such as this assumed plate-

like behaviour, the Green’s function is a Hankel function of distance travelled d and

wavenumber k but can be approximated in the far-field by

G(ks, dtr,p) =
e−jksdtr,p√

dtr,p

(4.3)

where dtr,p is the distance from the defect to the transducer tr for the path index of

p and ks = ω
cs

is the bulk shear wavenumber and cs is the bulk shear phase velocity.

The summation in (4.2) exists since all helical paths from the point scatterer back

to the transducer must be considered. The index p refers to the number of times the

ray path considered has traveled around the pipe circumference, in a clockwise (p is

positive) or anticlockwise (p is negative) direction, as illustrated in figure 4.8. The

distance travelled by each respective ray path from the defect back to the transducer

tr for path number p is

dtr,p =
√

z2
d + (circtr + 2πr · p)2. (4.4)

where circtr is the circumferential position of transducer number tr and 2πr is the

pipe circumference. The angle which the returning ray path from the point scatterer

makes to the axial direction is

βp = arctan(
circtr + 2πr · p

z
). (4.5)

In the limits, the returning angle will be β−∞ = −π/2 and β∞ = π/2.
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The reflectivity model R used here is a simple function of the angle β of the backscat-

tered ray path to the axial direction

R = cos(β
π/2

βmax

) for |β| < βmax

R = 0 for |β| > βmax (4.6)

where βmax is the maximum angle of backscattered reflection from the defect and

is predefined in the model. This model is a simple approximation to the reflection

observed experimentally from small defects in a plate with plane wave incidence nor-

mal to the crack face [76,77]. Using the plate-pipe analogy, the reflectivity function

R can be thought of as a model for mode conversion from the probing plane wave

(T(0,1)) to higher order torsional-flexural modes (F(n,2), n = 1, 2..) which propa-

gate with angles defined by (2.33). The reflectivity function R is plotted against

backscatter angle β for a maximum backscatter angle of βmax = π
4

in figure 4.9.

The transducer amplitude scaling factor T accounts for the ability of the transducers

to measure in a circumferential direction only. The transducer will measure shear

waves which are incident perpendicular to the array β = 0 with no amplitude scaling

since the shear waves have motion perpendicular to their direction of propagation.

Shear waves propagating in a circumferential direction β = π/2 around the pipe will

not be measurable at all. The transducer amplitude scaling factor is defined by

T = cos(β). (4.7)

The transducer scaling factor Tp is plotted against the returning ray path angle β in

figure 4.9. Note that, in theory, all helical paths from p = −∞ to p = +∞ should

be considered in (4.2) but the limits are practically constrained by the reflectivity

function R (4.6) since any path where Rp is zero need not be considered. Clearly,

the number of paths that must be considered will increase for a given pipe size with

increasing βmax or axial defect distance zd.
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Figure 4.9: Directional windows plotted against angle of propagation. solid line: Trans-

ducer directionality coefficient T ; dotted line: Reflection coefficient R for βmax = 45o.
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4.3.2 Imaging response with varying maximum backscatter

angle

The synthetic data model described in the previous section was first used to cre-

ate CSM data sets for a single point scatterer at a fixed axial location zd = 1m

but varying the maximum angle of backscatter βmax. The angle of backscatter was

varied from 5o up to the maximum possible 90o. The radius of the pipe was set

to r = 0.10545m (8 inch schedule 40). The number of transducers was chosen so

that the Nyquist sampling criterion was satisfied for the highest frequency of interest

around the pipe circumference. This is equivalent to being able to measure the high-

est order mode without aliasing effects, as discussed above. Data was synthesized

using (4.2) for frequencies in the range of 40 kHz to 60 kHz requiring 24 transducer

locations around the pipe circumference. The temporal frequency bandwidth was

amplitude windowed using a Hanning window in order to synthesize some form of

time domain windowed input toneburst centred at 50kHz.

The synthetic data were then processed using CSM as described in section 3.5. Note

that the recorded angular spectrum will have components for the propagating pipe

modes only, as was discussed in the introduction of this chapter. Figure 4.10 shows

an example image created from the synthetic data set with βmax = 45o. Figure 4.11

shows the circumferential slice through the defect axial location (z = zd = 1m). Also

shown on the figure is the circumferential slice through the defect axial location using

(4.2) with no reflector direction dependence (R = 1 for all β). This PSF is almost

identical to the PSF derived for the infinite aperture plate case of section 3.2.1,

having FWHM of 42mm (0.64λ) and sidelobe amplitude of 0.18 (-15dB). The main

lobe is slightly wider than the PSF plate prediction (3.13) since the transducer

directionality function T has reduced the effect of the higher circumferential spatial

frequencies kcirc = ks sin β. The effect of the directionally dependent backscatter

function R (4.6) is extra windowing of circumferential spatial frequencies kcirc which

further reduce the sidelobe amplitude but with a broadening of the main lobe. The

FWHM for the case of βmax = 45o shown in figure 4.11 is 72mm (1.11λ).
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Figure 4.10: CSM image from synthetic data with βmax = 45o in 8 inch pipe.

Figure 4.12 shows the FWHM, measured from the image at the axial location of the

defect, against the maximum angle of backscatter, βmax. It is clear that a defect

which backscatters over a large range of angles will appear in the reconstructed CSM

image with a smaller circumferential extent than a defect which only backscatters

over a small range of angles. Note that an axially symmetric feature will reflect only

the probing plane wave (T(0,1)) and no mode conversion will occur. The image

will also be axisymmetric since no circumferential spatial frequencies are available

for image reconstruction. This is equivalent to R = a for β = 0 and R = 0 for all

other β, where a is the reflectivity of the axisymmetric feature. The reflectivity will

depend on the temporal frequency and the depth and axial extent of the feature.

4.3.3 Imaging response with varying axial distance

The synthetic data model (4.2) was then used to create data sets for point scatterers

at varying axial distances zd of 0.1m to 8m from the array. It was found that the PSF

were identical for any defect distance tested for a constant maximum backscatter

angle βmax. The FWHM is plotted against axial defect distance in figure 4.13 for

βmax = 30o, 45o and 60o. Therefore, figure 4.12 is valid for defects at any axial

location.

The axial invariability of the defect response for pipe imaging contrasts with that

of the plate imaging case evaluated in chapter 3. The PSF for the plate case (3.31)
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Figure 4.11: Circumferential image slice through defect location using synthetic data

model; dashed line: from figure 4.10 with βmax = 45o in 8 inch pipe; solid line: with no

reflector directionality.
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Figure 4.12: FWHM against maximum backscatter angle, βmax for a defect at 1m from

the transducer array on an 8 inch pipe with 50 kHz excitation.
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Figure 4.13: FWHM against axial distance of defect from transducer ring. Solid line:

βmax = 30o; dashed line: βmax = 45o; dotted line: βmax = 60o.

was dependent on the axial distance of the scatterer and the array aperture which

limited the maximum recordable backscattered angle. The pipe geometry allows all

of the backscattered information from the defect to be received by the array and this

can be subsequently used for image reconstruction. This allows the best possible

PSF for any axial defect location. The pipe array itself is the length of one pipe

circumference but the unwrapping of the pipe as a plate gives an infinite number of

aperture repetitions (see figure 4.8). This effective infinite aperture allows all of the

helical paths from the defect to the array to be received for a defect at any axial

location in the pipe.

4.3.4 Generalisation of synthetic data results to different

pipe sizes and excitation frequencies

Synthetic data was then created using (4.2) for point scatterers at a fixed axial

location, z = 2m whilst varying the maximum angle of backscatter, α for 8 inch
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(r = 0.10545m), 16 inch (r = 0.2m) and 24 inch (r = 0.305m) pipes with excitation

centred at frequencies of both 25kHz and 50kHz.

The measured FWHM of the defect images produced against maximum backscatter

angle from all six cases are shown in figure 4.14. It is clear that the pipe size does

not affect the FWHM. In contrast, the frequency of excitation greatly affects the

FWHM; doubling the frequency halves the FWHM for all pipe sizes tested.

The measured FWHM are plotted in shear wavelengths (λs) against maximum

backscatter angle in figure 4.15 and all of the curves are almost identical. The

small discrepancies between the curves are most likely due to the way in which the

data is synthesized by summing contributions from discrete paths. The similarity

of the curves means that the FWHM, measured in wavelengths of the input signal

(λSH), does not depend on pipe size, axial defect location or frequency of excitation

but only on the backscatter characteristics of the particular defect. However, it is

important to note that some defects will have a frequency dependent backscatter

characteristic. This will be investigated in more detail with finite element modelling

later in this chapter.

4.4 Finite Element modelling of circumferential

cracks and slots in 8 inch Pipe

In order to further test the performance of CSM for pipe imaging a 3D pipe model

was made using Abaqus version 6.5 [89] similar to that used to test the response to

an end wall in section 4.2. The pipe modelled for this study was an 8 inch schedule 40

mild steel pipe. An 8 inch pipe was chosen since the prototype imaging system which

was already under construction was to be an 8 inch transducer ring. The model

had axial length= 2.2 m, internal diameter= 202.74 mm and external diameter=

219.1 mm. The mild steel is defined by its Young’s Modulus, E = 216.9 GPa, its

Poisson ratio, ν = 0.2865 and its density, ρ = 7932 kgm−3. Excitation and reception

was carried out at 24 nodes equally spaced around the outside edge at one end of
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Table 4.1: Circumferential extent of the cracks modelled

degrees mm λSH % circumference

10 18.4 0.28 2.8

20 36.8 0.56 5.6

40 73.6 1.13 11.1

60 110.4 1.69 16.7

90 165.6 2.54 25.0

130 239.3 3.67 36.1

the pipe.

The axial element size was 2.5mm, giving 880 elements along the 2.2m length. The

model was circumferentially divided into 360 elements giving a circumferential ele-

ment length of around 1.8mm. 6 elements modelled through the pipe wall thickness

giving an through-thickness element length of 1.36mm. Solid brick 8 node linear

elements were used.

4.4.1 Circumferential cracks at 1.2m in 8 inch Pipe

The aim of this finite element study was to test the response of CSM to circumfer-

entially oriented cracks in the pipe wall. The cracks were formed by disconnecting

adjacent elements in the pipe wall at 1.2m from the transduction end of the pipe.

The 3D model allowed variation of the crack size in both circumferential extent, lcrack

and depth, dcrack. Crack depths from one-sixth wall thickness on the outside surface

of the pipe to through-wall thickness were possible since the model had six elements

through the wall thickness. Crack circumferential extents of 10o, 20o, 40o, 60o, 90o

and 130o were modelled for each of the six possible depths giving a total of 36 sep-

arate defect models. The circumferential extents of the cracks that were modelled

in FE and subsequently imaged are shown in table 4.1.
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Figure 4.16: CSM image of 20 degree through-thickness slot at 1.2m, end wall at 2.2m.

The input wave signal was excited in the model by applying a time varying circum-

ferential force to the 24 transduction nodes on the outer pipe surface at the end

of the pipe length. The input signal was a five-cycle Hanning-windowed toneburst

centred at 50 kHz. The displacements were monitored in a circumferential direc-

tion at all of the 24 transducer locations independently for each finite element run

giving 24 time traces for each of the 36 finite element models. This time domain

finite element data from each model was then processed with CSM as described in

section 3.5.

An example image produced from the finite element data set of a through-thickness

crack of 20o circumferential extent using CSM is shown in figure 4.16. The image

shows the defect in the correct location at 1.2m and the end wall at 2.2m. The end

wall axial sidelobes, as seen for the end wall only case of figure 4.4, are still visible

but are no longer axially symmetric due to wave interaction with the crack.

The defect amplitude and Full Width at Half Maximum (FWHM) were recorded

from each image produced for all of the 36 defect cases. The defect amplitude is

the peak in the circumferential profile of the image at the defect axial location.

The circumferential profile through the defect axial location of 1.2m for the 20o

through-thickness crack using CSM of figure 4.16 is shown in figure 4.17. The

defect amplitude and the FWHM are marked on the figure. Also shown is the

circumferential profile through the end wall axial location. Note that the end wall

circumferential profile is not axisymmetric. This is due to the interaction of the

probing wave with the defect and the subsequent interaction of the defect reflection
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Figure 4.17: Circumferential profiles through CSM image of 20 degree through-thickness

crack at 1.2m; solid line: through defect location; dashed line: through end wall location.

with the end wall reflection. These multiple interactions are not accounted for by

the imaging algorithm which operates under the Born approximation [93] and leads

to an image which is not simply the linear combination of the two separate features.

The corresponding axial profile through the defect peak of figure 4.16 is shown in

figure 4.18.

Figure 4.19 shows the defect amplitude normalised to the input signal amplitude

against crack circumferential extent for all of the defect cases using CSM. For all

crack depths, the defect image amplitude exhibits two distinct regimes. In the small

circumferential extent regime below around 1.5λ, the defect amplitude increases from

zero to an amplitude peak at around 1.5λ. Above this peak the amplitude remains

relatively constant for each crack depth tested. The image defect amplitude of more

than unity for the through-thickness cracks of circumferential extent around the

transition between the two regimes can be explained by the interaction of crack tip

diffraction with the crack face reflection. These phenomena have been investigated

in detail by Rajagopal [76] for cracks in plates. The interaction of the tip diffractions
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Figure 4.18: Axial profile through defect location of CSM image of 20 degree through-

thickness crack at 1.2m.

with the backscattered reflection from the crack face itself also explains the non linear

increase in amplitude for cracks of small circumferential extent and the rippling effect

observed in the crack image amplitudes for larger circumferential extent cracks.

The reflection of the torsional axisymmetric T(0,1) mode from cracks in pipes has

been thoroughly investigated by Demma et al. [19]. The T(0,1) reflection ratio from

through-thickness cracks was found to be equal to the crack circumferential extent

as a fraction of the pipe circumference. The T(0,1) reflection amplitude is plotted

against crack circumferential extent for the through-thickness crack sizes modelled

along with the through-thickness crack CSM image amplitudes in figure 4.20. The

focused image amplitude is larger than those of the unfocused system (T(0,1) for

transmission and reception) for all crack sizes modelled. The ratio of the focused

image amplitude to the unfocused T(0,1) reflection amplitude for the 8 inch pipe

studied is plotted in figure 4.21. The greatest improvement in image amplitude over

the unfocused system is around 18 dB for this pipe case and occurs for cracks of

circumferential extent between 0.5λS and 1λS. For cracks above this circumferential

extent, the amplitude ratio will gradually decrease to unity for a pipe end wall,
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Figure 4.19: CSM defect amplitude against crack length for all crack depths. Defects at

1.2m.

where there is no advantage of focusing since no mode conversion from T(0,1) to

higher circumferential order modes occurs.

The actual defect amplitude improvement from focusing will depend on the crack

size (which affects the backscatter characteristics), pipe radius and wavelength of

the probing wave λS. For a through-thickness crack of circumferential extent 1λS,

the defect image amplitude is around unity and the T(0,1) reflection ratio would be

λS

2πr
where r is the pipe radius. The greatest improvement in defect sensitivity is

Gamp =
Ampfocused

AmpT (0,1)

≈ 2πr

λS

(4.8)

The gain from focusing will therefore increase with pipe size and frequency of in-

spection. However, larger pipes and higher frequencies will require more transducers

around the pipe circumference in order to satisfy the λ/2 circumferential sampling

criterion. Lower frequencies are also preferred practically due to the greater propa-

gation distances attainable as discussed in the thesis introduction.

The defect image FWHM against crack circumferential extent using CSM are shown
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Figure 4.20: T(0,1) defect reflection amplitudes and CSM defect amplitudes against crack

length for through-thickness cracks.

0 0.5 1 1.5 2 2.5 3 3.5
0

2

4

6

8

10

12

14

16

18

20

circumferential length, λSH

G
ai

n,
 d

B

Figure 4.21: The ratio of the focused image amplitude to the T(0,1) defect reflection

amplitudes for an 8 inch pipe with 50 kHz excitation.
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in figure 4.22. The FWHM curves also exhibit two distinct regimes. For circum-

ferential extents larger than about 1.5 λSH , the FWHM is a good estimate of the

actual circumferential extent of the crack for all cracks modelled with the exception

of the one sixth depth cracks whose image amplitudes are comparable to the axial

sidelobe amplitude of the end wall, making their FWHM unreliable. This is also

the case for the smallest of the two sixths depth cracks, and this case is not shown

on the figure. In the low circumferential extent regime below 1.5λ, the FWHM is

constant at around 1.4λ and hence cannot be used to estimate the actual crack

circumferential extent for any depth cracks.

The circumferential extent at which it becomes possible to measure crack circum-

ferential extent from the image is therefore the resolution limit for the CSM system

below which the circumferential extent of cracks cannot be sized directly from the

image. This resolution limit of the pipe imaging system derives from the limited

plane wave backscattering characteristics of the defects, as was predicted using syn-

thetic data in the preceding section of this chapter. Using figure 4.12 for synthetic

data, the maximum backscatter angle βmax which gave a FWHM of 1.5λ for the sim-

ple synthetic data model was around 35o. This corresponds to the scattering of plane

waves from small defects in plates which has been observed in the literature [77].

The pipe imaging circumferential sizing limit of 1.5λ is larger than that of the infinite

aperture plate case which has a theoretical minimum lateral sizing limit of around

0.6λ for CSM (from the PSF of (3.13)). However, this theoretical plate imaging

limit was not validated with finite element models or experiments. It is unlikely

that this limit is practically obtainable due to the limited angles of backscattering

observed from cracks in pipes here.

It should be noted that, using an unfocused system (T(0,1) transmission and re-

ception only), circumferential sizing is not possible and reliable depth estimation is

only possible for axisymmetric defects. The improvement in circumferential sizing

ability is therefore

Gcirc =
2πr

1.5λS

(4.9)
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Figure 4.22: CSM FWHM against crack length for crack depths of two sixths to through-

thickness. Cracks at 1.2m. One sixth depth cracks not shown since off the vertical scale.

where r is the pipe radius and λS is the wavelength of the probing signal. The gain

in using the focused system will increase with pipe size and frequency of inspection

as was the case for the improvement in sensitivity (7.1). For the 8 inch pipe with

50 kHz excitation studied here, the gain in resolution is 6.8 or 16.6 dB.

The circumferential image profiles for the different depth cracks of 60o circumferen-

tial extent are shown in figure 4.23. The shape of the circumferential profile is very

similar for all of the different depths but the peak amplitude varies significantly.

Figure 4.24 shows the defect amplitude normalised to the input amplitude against

the crack depth for all of the six circumferential extents modelled. This is the

same information as was shown in figure 4.19. The defect amplitude increases with

increasing crack depth for all crack circumferential extents. Note that the ampli-

tude against crack depth curve is comparable for all circumferential extents above

1.5λSH . This would have been expected given the plateau in amplitude for larger

circumferential extents observed in figure 4.19. This means that if the crack has

circumferential extent larger than around 1.5λ then the crack depth can be esti-
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Figure 4.23: CSM circumferential profiles at defect location for 60o (1.7λ) circumferential

extent cracks of various depths at 1.2m with excitation at 50 kHz.

mated directly from the defect image amplitude. Figure 4.25 shows the crack depth

plotted against the measured image defect amplitude for the 2.5λ circumferential

extent crack and this curve can be used to estimate the defect depth using the image

amplitude for any cracks of circumferential extent larger than 1.5λ. This curve is

comparable to the reflection amplitudes observed from axisymmetric cracks with

T(0,1) mode incidence [19] and L(0,2) mode incidence [18].

In addition to the increased sensitivity to small defects, imaging of the pipe using

synthetic focusing also means that the simple curve of figure 4.25 can be used to

estimate the defect depth for any circumferential extent larger than the 1.5λ limit.

Using an unfocused system, this is only possible for axisymmetric defects. For cracks

of circumferential extent less than the 1.5λ limit the measured defect amplitude is

a function of both defect depth and circumferential extent. Therefore, they cannot

be directly estimated from either image defect amplitude or the FWHM, as is the

case for non-axisymmetric defects using an unfocused system.
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Figure 4.24: CSM defect amplitude against crack depth for different crack lengths ex-

pressed in shear wavelengths. Defects at 1.2m with excitation at 50 kHz.
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Figure 4.25: Crack depth against defect image amplitude for crack lengths larger than

1.5λ. Defects at 1.2m.
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4.4.2 Imaging Response to Half-Depth Slots at 1.2m in 8

inch pipe

It has been shown that the axial extent of part-depth defects in pipes has a significant

effect on the reflection amplitudes of the T(0,1) mode [14, 19]. This is due to the

interaction of reflections from the front and back sides of the defects. The effect

of defect axial extent on the imaging response will not be evaluated in detail here.

However, a validation case of half-depth slots of 3mm axial extent will be investigated

in order to compare with the previous work on T(0,1) reflectivity [19]. This axial

extent was chosen since a 3mm cutter was to be used to mill defects for the validation

experiments of chapter 6.

Half-depth slots were formed in the 8 inch finite element pipe model by removing el-

ements instead of simply disconnecting elements as for the crack cases modelled pre-

viously. Half-depth (4.1mm) slots of 3mm axial extent were modelled for a range of

circumferential extents. The models were excited with a 5 cycle Hanning-windowed

toneburst centred at 50 kHz. At this frequency of excitation, the axial extent of the

slot is 0.046λs. The time domain finite element data from each slot model was then

processed with CSM as described in section 3.5.

Figure 4.26 shows the defect image amplitude against the slot circumferential extent.

Also shown on the figure is the defect amplitudes of the half-depth cracks from the

previous finite element modelling study. It can be seen that the slot image ampli-

tudes are around double the half-depth crack image amplitudes for all circumferential

extent modelled. This is comparable to the increase in reflection amplitudes of the

T(0,1) mode from axisymmetric slots of similar axial extent (0.046λs) over those

from axisymmetric cracks reported by Demma [14,19]. Note that through-thickness

slots would have the same defect image amplitudes as through-thickness cracks since

there is no transmission past the front of the slot and hence no subsequent reflection

from the back of the slot.

Figure 4.27 shows the FWHM measured from the CSM slot images against the

slot circumferential extents. Also shown in the figure are the FWHM for the half-
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Figure 4.26: Image defect amplitude against circumferential extent. Solid line: half-depth

slots of 0.046λ axial extent; dashed line: half-depth cracks..

depth cracks from the previous modelling results. The crack cases and the slot

cases have comparable FWHM for all circumferential extents modelled. The smaller

circumferential cracks have slightly larger FWHM than the slot cases and this is due

to the FWHM being affected by the end wall axial sidelobes because of the smaller

amplitude crack response.

4.4.3 Imaging through a weld cap

A simple finite element model was created to test the imaging performance through

a weld cap. A through-thickness slot of circumferential extent 45 degrees (1.27λ at

50kHz) was modelled by removing elements from the pipe model at 1.2m from the

transduction end. A crude model of a weld cap was created by adding an extra layer

of elements onto the outside surface of the pipe at 1m from the transduction end of

the 8 inch pipe model. The weld cap was 3mm thick and of 12mm axial extent. The

reflection from this crude square profile model is likely to be more severe than a real
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Figure 4.27: FWHM against circumferential extent. Solid line: half-depth slots of 0.046λ

axial extent; dashed line: half-depth cracks..
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Figure 4.28: CSM image of 45o circumferential slot at 1.2m with weld cap at 1m.

weld cap which would have a rounded profile. However, the aim here is to investigate

the performance of imaging beyond the weld cap, not to study the reflections from

weld caps themselves. Another model, with the weld cap directly in front of the slot

at 1.2m, was also run. Figure 4.28 shows the CSM image produced from the model

with the slot placed behind the weld cap and figure 4.29 shows the CSM image for

the slot located at the weld cap. Note that there is quite significant distortion of

the end wall image due to the large slot.
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Figure 4.29: CSM image of 45o circumferential slot at 1.2m with weld cap also at 1.2m.

Table 4.2: Imaging results for slot with weld cap finite element data

FE case Defect Amp. FWHM, λSH

no weld cap 1.11 1.32

slot at weld cap 1.14 1.21

slot after weld cap 1.01 1.32

Figure 4.30 shows the circumferential slices through the image at the defect locations

for the case of the slot with no weld cap, the slot behind the weld cap and the slot at

the weld cap. The weld cap gives around a 30% reflection, or -10.5 dB. The defect

image response is very similar for all three cases. The FWHM and normalised defect

image amplitudes are shown in table 4.2. The case with no weld cap has FWHM

and defect amplitude as would be expected from the results of section 4.4.1. There

is a slight narrowing of the defect response when the slot is just behind the weld

cap location and a 3% increase in amplitude. The FWHM for the case with the

slot after the weld cap is identical to the case with no weld cap but there is a 9%

amplitude reduction due to the weld cap. These results are encouraging since the

defect response is changed very little by the presence of the severe weld cap in the

finite element model.
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Figure 4.30: Circumferential image slice through defect location. Solid line: slot after

weld cap; dashed line: no weld cap ; dotted line: slot at weld cap.

4.5 Generalisation of Finite Element results

4.5.1 Generalisation to different Axial Locations

It was shown for synthetic data in section 4.3.3 that the imaging response of CSM

was constant with varying axial defect distance from the transducers. This pre-

diction was tested with finite element modelling of a through-thickness crack of

20o circumferential extent (0.55λ at 50kHz) at various axial positions in an 8 inch

pipe model. The probing wave was excited at the end of the pipe model at 24

nodes spaced evenly around the pipe circumference, as before. 24 time traces were

recorded at the same nodes. The received data from each axial monitoring location

model was then processed using CSM.

Table 4.3 shows the image defect amplitudes and FWHM of the CSM images cre-

ated from the finite element data of the three axial locations modelled. The image

amplitude is relatively constant around 0.46 for all axial defect locations which is
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Table 4.3: Imaging results for 20o through-thick cracks at various axial locations

Axial location, m FWHM, λSH Amplitude

1 1.38 0.47

2 1.41 0.46

3 1.44 0.45

the value expected from the previous finite element studies at an axial defect loca-

tion of 1.2m of section 4.4.1. However, there is a slight decrease in amplitude with

increasing axial defect location. The FWHM is relatively constant around 1.4λ with

axial defect location as expected from the earlier finite element case at 1.2m shown

in figure 4.22. However, there is a slight increase in FWHM with increasing axial

defect location.

The increasing FWHM and corresponding decrease in image defect amplitude with

increasing axial defect location can be explained by small velocity errors in the finite

element models. The axial phase velocity error discussed previously was −0.8% but

there are additional phase velocity errors which are directionally dependent due

to the cubic elements used in the finite element model. As the direction of wave

propagation varies, so does the apparent element length, and this varies the velocity

error. The worst velocity error is in the direction of the element diagonal, where the

apparent element length is largest. For elements of the sizes used here, Drozdz [91]

who has analysed these phenomena in detail, has reported velocity errors of up to

around −2% across the element diagonal.

The assumption made by the imaging algorithm is that the phase velocity is con-

stant in all directions of propagation. The velocity errors introduced by finite ele-

ment modelling are significantly larger than those due to the pipe-plate analogy of

section 2.3.4. This means that the higher order mode components of the recorded

angular spectrum are processed with a velocity slightly different to their velocity

of propagation in the finite element model. Therefore, the coherent summation of

all the components of the recorded angular spectrum at the defect location will be
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reduced. This means that the higher circumferential spatial frequencies (the higher

order modes) have less effect in the image reconstruction for larger axial defect lo-

cations since any velocity error has an increased effect with increasing propagation

distance. This reduction of higher spatial frequencies explains the decreasing ampli-

tude and increasing FWHM with increasing axial defect location. The robustness of

the imaging system to systematic errors, such as velocity errors, will be investigated

in more detail in the following chapter.

The velocity errors introduced by the plate-pipe analogy of section 2.3.4 are small.

However, the errors increase for situations with smaller frequency-radius product

(2.36). For these situations, the imaging algorithms of section 3.5 could be im-

plemented with an angularly dependent phase velocity. The phase velocity of any

received mode at the frequencies of interest could be found using DISPERSE and

subsequently used for backprojection of the received modes to build the final image.

In addition to the finite element cases above, more extensive finite element studies

were carried out with various cracks at 0.3m and 1m from the transducer array.

Half-depth and through-thickness circumferential cracks of circumferential extents

up to 90o (2.6λ at 50kHz) were modelled firstly at 0.3m (4.6λS at 50kHz) axially

from the transducer ring position and then at 1m (15.4λS) from the transducer

position.

The resulting CSM image defect amplitudes are plotted against crack circumferential

extent for all defect cases in figure 4.31. The amplitude curves are very similar at

both axial defect positions for both through and half-depth cracks.

Figure 4.32 shows the measured FWHM against crack circumferential extent for

both defect axial locations. The FWHM curves are comparable for both through-

thickness and half-depth cracks at both axial locations as predicted with synthetic

data processing. The slight differences between the results at the two different axial

locations are most likely due the small finite element velocity errors discussed above.
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Figure 4.31: Defect amplitude against crack circumferential extent. Solid lines: cracks

at 1m; dashed lines: cracks at 0.3m.
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Figure 4.32: FWHM against crack circumferential extent. Solid line: through-thickness

cracks at 1m; dashed line: half-depth cracks at 1m; circles: through-thickness cracks at

0.3m; crosses: half-depth cracks at 0.3m.
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4.5.2 Generalisation to different frequencies of excitation

The 8 inch pipe finite element model was then excited using a five cycle Hanning-

windowed toneburst centred at 25 kHz. Cracks were modelled by disconnecting

elements at 1m, as above. Eleven different crack circumferential extents were mod-

elled for both half-depth and through-thickness cracks. The image defect amplitude

and the FWHM were recorded from the resulting CSM images produced from the

finite element data.

Figure 4.33 shows the measured image defect amplitude against crack circumferen-

tial extent in degrees for the 25 kHz excitation. Also shown are the image defect

amplitudes from the previous finite element study with 50 kHz excitation. It can be

seen that the 25 kHz defect amplitude is smaller than the 50 kHz defect amplitude

for both the half-depth and through-thickness cracks at all circumferential extents.

However, if the crack circumferential extents are scaled by the wavelength of the

input excitation, as shown in figure 4.34, then the through-thickness amplitude

curves are comparable for both excitation frequencies. The 25 kHz half-depth crack

cases have half the amplitude of the 50 kHz half-depth cracks. This is because the

reflection amplitude from part depth cracks is dependent on the crack depth as a

fraction of the incident wavelength and as a fraction of the wall thickness [78]. In this

case, the half-depth crack image amplitudes at 50 kHz are double those at 25 kHz.

Figure 4.35 shows the FWHM measured in metres against crack circumferential

extent for both 25 kHz excitation and 50 kHz excitation. The FWHM are larger

for the 25 kHz cases than the 50 kHz cases. Figure 4.36 shows the same data

as figure 4.35 but with both the FWHM and crack circumferential extent scaled

by the input wavelength. The curves are now comparable for both frequencies of

excitation as was predicted using the synthetic data model in section 4.3.4. The

small differences in FWHM between the two excitation frequencies can be explained

by the interaction of the defect response sidelobes which wrap around the pipe

circumference and add to the actual defect response. Also, the velocity errors in the

finite element model will be slightly different at each frequency since the number
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Figure 4.33: Image defect amplitude against crack circumferential extent in metres for

both through-thickness and half-depth cracks. Solid lines: excitation at 50 kHz; dashed

lines: excitation at 25 kHz.

of elements per wavelength is varying. The crack circumferential extent at which

circumferential sizing is possible is around 1.5λSH , as was found with previous finite

element modelling studies.

4.5.3 Generalisation to different Pipe Sizes

In order to test the imaging response with different pipe sizes, finite element models

were built for a 16 inch schedule 40 (centre radius rc = 0.19847m, wall thickness h =

9.53mm) mild steel pipe and a 24 inch schedule 40 (centre radius rc = 0.30024m, wall

thickness h = 9.53mm) mild steel pipe. Through-thickness cracks were modelled

with comparable physical circumferential extents of around 1.1 λSH at 50 kHz. The

cases modelled are shown in table 4.4. All of the models had defects at the same

axial location of 1.2m apart from the second 24 inch model which had the same

defect but at an axial location of 2m.
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Figure 4.34: Image defect amplitude against crack circumferential extent in λS for both

through-thickness and half-depth cracks. Solid lines: excitation at 50 kHz; dashed lines:

excitation at 25 kHz.
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Figure 4.35: FWHM against crack circumferential extent in meteres for excitation at

25 kHz and 50 kHz. Solid lines: through-thickness cracks; dashed lines: half-depth cracks.
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Figure 4.36: FWHM against crack circumferential extent (in λSH). Solid line: through-

thickness cracks at 1m with 50 kHz excitation; dashed line: half-depth cracks with 50 kHz

excitation; circles: through-thickness cracks with 25 kHz excitation; crosses: half-depth

cracks with 25 kHz excitation.

The finite element models were excited with a 5 cycle Hanning-windowed toneburst

centred at 50 kHz. The 16 inch model had 48 transduction locations around the pipe

circumference and the 24 inch model had 72. Table 4.4 shows the modelled pipe

geometry, the circumferential extent of the modelled defects and the measured image

defect amplitude and FWHM. The image defect amplitude and FWHM (measured

in mm or λ) are nearly identical for all pipe sizes as would have been expected

from the synthetic data results of section 4.3. The amplitude gain Gamp over the

unfocused system increases with pipe size as predicted using (7.1). There is around

a 5% variation in FWHM for the three pipe cases which is most likely due to varying

interaction with the end wall. There will also be small differences arising from the

velocity errors of the finite element models since the element size and curvature is

different for each pipe size model.

The results from the two 24 inch pipe models with the same defect at two different

axial locations are extremely similar as can be seen from table 4.4. This shows that,
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not only is the image response unaffected by pipe size, but also unaffected by axial

defect position in the larger pipe size, as was previously shown for 8 inch pipes. Note

that the FWHM is very slightly larger for the finite element case when the defect

is further from the array. This can be explained by blurring resulting from small

phase velocity errors as was discussed above.

The assumption made by the imaging algorithm is that the phase velocity is equal

for all angles of propagation. It was shown in section 2.3.4 that the error of this

assumption decreased with larger pipe diameters. Therefore, one would expect the

imaging algorithm to backproject each circumferential spatial frequency component

of the recorded angular spectrum with more accuracy for larger pipe cases. This

would have the effect of better focusing since all of the backprojections would co-

herently sum exactly at the defect location and the defect image amplitude would

be increased and FWHM reduced. However, the velocity errors introduced when

making the plate-like assumption for the pipe are small as was demonstrated in

section 2.3.4 and the effect on the final image is negligible for the pipe sizes studied

here. The effects of finite element modelling exhibit larger velocity errors than those

of making the plate-like assumption, as was discussed earlier.

Figure 4.37 shows the circumferential crack image profile at the defect axial location

for all the pipe sizes modelled. It is clear that, despite the varying pipe circumfer-

ence, the defect response is comparable. This is a very important result which

shows that the defect amplitude and FWHM are dependent on the absolute size of

the defect rather than the proportion of the circumference that the defect occupies.

However the improvements gained by focusing in defect sensitivity (7.1) and sizing

resolution (7.2) are dependent on the pipe size and frequency of inspection. The

gain in amplitude for the crack case studied over the unfocused system is 19 dB for

the 8 inch pipe and 28 dB for the 24 inch pipe case.
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Table 4.4: Geometry and FE results for all pipe sizes

Pipe size, inches 8 16 24 I 24 II

inner radius, mm 101.37 193.70 295.47 295.47

wall thickness, mm 8.18 9.53 9.53 9.53

circumference, m 0.662 1.247 1.886 1.886

number of tran. 24 48 72 72

zd, m 1.2 1.2 1.2 2.0

end wall 2.2 2.2 2.2 3.0

defect size, degrees 40 22 14 14

defect size, % circ. 11.1 6.1 3.9 3.9

defect size, mm 73.6 76.2 73.3 73.3

defect size, λSH 1.13 1.17 1.13 1.13

T(0,1) refl. 0.11 0.06 0.04 0.04

Defect amp. 1.00 1.01 0.98 0.98

Gamp, dB 19.2 24.4 28.0 28.0

FWHM, degrees 47.9 26.9 17.3 17.7

FWHM, % circ. 13.3 7.6 4.8 4.9

FWHM, mm 88.0 93.2 92.1 92.5

FWHM, λSH 1.35 1.43 1.41 1.42

4.6 Conclusions for predicted pipe imaging re-

sponse

In this chapter, the imaging algorithms which were introduced in chapter 3 for the

imaging of plates have been tested for their suitability for pipe imaging. The Syn-

thetic Aperture Focusing Technique (SAFT) and Total Focusing Method (TFM)

were found to be unsuitable for pipe imaging due to the excited waves in the cir-

cumferential direction which lead to unwanted artifacts in the final reconstructed

image.
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Figure 4.37: Circumferential slice through defect axial location for all pipe sizes. Solid

line: 8 inch pipe; dashed line: 16 inch pipe; dotted line: 24 inch pipe, defect at 1.2m;

dash-dot line: 24 inch pipe, defect at 2m.

The Common Source Method (CSM) was found not to suffer from such circumferen-

tial signals since all of the transducers are fired simultaneously. If the transduction is

in the circumferential direction this excites the axisymmetric torsional mode T(0,1)

only. CSM has been thoroughly tested in this chapter, firstly with synthetic data

and then with detailed finite element studies.

The CSM was used to process data created using an analytic wave propagation and

scattering model. The scattering model assumed that the backscattered reflection of

the probing plane wave was limited to a fixed range of backscatter angles upon plane

wave insonification, with a maximum reflection amplitude in the axial direction.

This model is a simple approximation to the plane wave backscattering observed

from cracks in plates [77]. It was found that the Full Width at Half Maximum

(FWHM) of the defect image is a function of the maximum angle of backscatter

from the defect using this simple defect scattering model. The image response was

found to be invariant with axial distance from the transducer ring to the defect.

The response was also found to be independent of pipe diameter and frequency of
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excitation if measured in wavelengths of the probing signal.

Using data from 3D finite element models, the imaging response to circumferentially

oriented cracks was tested. The aim of the finite element study was to test the limits

of reliably estimating both the depth and circumferential extent of the cracks directly

from the reconstructed image. The results were found to be independent of pipe

size, inspection frequency and axial distance of the defect from the transducer array.

In all finite element models, at all crack depths, the amplitude of the defect image

increased to a peak amplitude at a circumferential extent of around 1.5 λS, before

plateauing in amplitude for circumferential extents larger than 1.5 λS (figure 4.19).

For circumferential extents larger than 1.5 λS, the crack depth can be estimated

from the image defect amplitude using figure 4.25.

The FWHM against circumferential extent curves (figure 4.22) also exhibit two dis-

tinct regimes and the boundary between the two is 1.5 λS which is comparable to

that observed for the amplitude curves (figure 4.19). For defects with circumferential

extent less than 1.5 λS, the FWHM is around 1.4 λS. For cracks with circumferential

extents larger than 1.5 λS, the FWHM provides a reliable estimate of the actual de-

fect circumferential extent. The limit for circumferential crack sizing is comparable

to the limit for depth sizing and is around 1.5 λS. The FWHM could not, however,

reliably estimate the circumferential extent of the shallow (one sixth depth) cracks

due to their image amplitude being of comparable amplitude to the end wall axial

sidelobes.

For cracks of circumferential extent smaller than 1.5 λS, neither the circumferential

extent nor the crack depth can be reliably estimated independently since the FWHM

does not significantly vary in this regime and the amplitude is a function of both

crack depth and circumferential extent.

The amplitude response of part-depth defects is also dependent on axial extent of

the defect as a fraction of probing wavelength. Some basic validation finite element

models were run using circumferentially oriented half-depth slots with 3mm axial

extent instead of cracks. The defect image amplitude of the half-depth slots were
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roughly double the amplitudes observed from the images of cracks of comparable

depth and circumferential extent which agrees well with previous work of T(0,1)

incident on axisymmetric defects [19].

Other pipe finite element models were run in order to verify the results from the

synthetic data study. It was found, using finite element data, that the image response

was almost independent of axial defect position and pipe radius, as was predicted

from processing analytic synthetic data. The image response was found to worsen

very slightly as the defect was moved further from the transducer array. This was

due to small directionally dependent velocity errors in the finite element model.

These errors affect the ability of the imaging algorithm to coherently sum all of the

backscattered waves at the defect location. The velocity errors have a greater effect

for further axial defect locations, since the waves have propagated larger distances.

The robustness of the imaging system to these systematic errors will be investigated

in more detail in the following chapter.

The imaging response was then tested using two different excitation frequencies of

25 kHz and 50 kHz. The image response at the lower excitation frequency generally

had smaller amplitude and larger FWHM than the higher frequency response of the

same defect. However, it was found that if the crack length and FWHM are scaled to

the wavelength of the excitation signal, λS, then the FWHM curves are comparable

for both excitation frequencies. The amplitude response of the through-thickness

cracks was comparable for both excitation frequencies if the crack length is scaled

to the input wavelength. However, the reflection amplitude from part-depth cracks

is also dependent on the crack depth as a fraction of the incident wavelength [78]

and this was observed here.

It has been shown that the ability to estimate the depth and circumferential extent

of defects using synthetic focusing is significantly greater than that of an unfocused

system. An unfocused system, which can receive only the axisymmetric torsional

mode T(0,1) cannot estimate the circumferential defect extent and can only estimate

the defect depth for axisymmetric defects. In contrast, the focused system can reli-

ably estimate both crack depth and circumferential extent independently, providing
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the crack has circumferential extent larger than 1.5λS. This result is valid for any

frequency of inspection below the T(0,2) cutoff and in any pipe size. The result is

also valid for any axial defect location but any errors in the wave propagation model

used by the imaging algorithm, for instance, phase velocity errors, will have a more

detrimental effect at larger axial defect locations.

The improvements of using the focused system in both circumferential resolution

and defect sensitivity are around 17 dB in an 8 inch pipe with 50 kHz excitation.

The gain in resolution (7.2) and defect sensitivity (7.1) increase for larger pipe

diameters and higher inspection frequencies. However, larger pipes will require

more transducer elements to sample the larger circumference in order to attain the

focusing improvements.
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Robustness of the System

Three imaging algorithms, which were initially investigated for plate imaging in

chapter 3, were tested for use with pipe imaging in the previous chapter. It was

found that the algorithm most suitable for imaging of pipes was the Common Source

Method (CSM) where the probing wave is axisymmetric since all transducers are

excited simultaneously. Estimates of defect circumferential extent and defect depth

could be made by measuring the Full Width at Half Maximum (FWHM) and am-

plitude of the defect image response respectively. In order for defect sizing to be

reliable, the circumferential extent of the defect must be larger than 1.5λ, where λ

is the wavelength of the probing signal which, for the low frequency torsional system

investigated here, is the bulk shear wavelength λS = cS/f .

In this chapter, the robustness of the CSM pipe imaging system to possible setup

errors will be tested. The methodology will be to synthetically corrupt finite element

data and then to compare the imaging results of the corrupted data set with those

of the initial uncorrupted data set. The synthetic model used to corrupt the finite

element data will depend on the type of setup errors under investigation.

There are two types of setup error that may occur and these are random and sys-

tematic errors. Random errors are effects that appear to varying random extents

around the pipe transducer ring, for instance random coupling errors or random

phase errors. Systematic errors arise when the transducer ring is not aligned per-
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fectly and is tilted with respect to the pipe axis. Another form of systematic error

arises from attempting to process the received data set with incorrect pipe dimen-

sions or material properties, which result in image reconstruction using incorrect

phase velocities, and these will also be briefly investigated here.

5.1 Random Coupling errors

5.1.1 Robustness against coupling variation

Random coupling errors arise since not all of the transducer elements will be perfectly

coupled to the pipe. Variation of coupling around the pipe circumference will mean

that a non-perfect T(0,1) mode will be excited into the pipe. This means that small

amounts of other torsional flexural modes (F(n,2)) may also be excited into the

system in addition to the desired T(0,1) probing wave.

The reception of the reflected wave modes will also be corrupted by coupling vari-

ations. Therefore, each complex component in the angular spectrum may have an

incorrect amplitude and phase.

In order to test the robustness of the system to coupling errors, synthetic coupling

variations are added to the finite element data set. The full data set is needed with

all transmit-receive combinations since the coupling has an effect on the excitation

of the probing wave and on the reception of the backscattered waves.

A coupling coefficient was synthesized for each transducer. For the nth transducer,

the coupling coefficient coupn was randomly generated using a normal variation of

mean µ = 1 and pre-defined standard deviation, σcoup.

coupn = N(1, σcoup), (5.1)

where N denotes the normal probability distribution. Each time trace of the full

data set which was excited or received by the nth transducer must be multiplied

by coupn. For example, the time trace received by transducer n after firing with
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transducer m must be multiplied by the coupling coefficient coupn.coupm in order

to take account of the coupling variation on both transmission and reception. The

full data set is then summed over all the transmitters to produce the data set used

by CSM. This summation has the effect of synthetically creating a data set where

all of the transducers, each with an individual coupling coefficient coupn, were fired

simultaneously.

The finite element model used was an 8 inch schedule 40 mild steel pipe model

with a through-thickness crack of 40o (1.15λ at 50 kHz) circumferential extent at

1.2m. The model was excited using a 5 cycle Hanning-windowed toneburst centred

at 50 kHz. Note that, at this frequency, the modelled crack size is smaller than the

resolution limit of 1.5λ defined in section 4.4.1. The CSM image amplitude for this

defect case without any data corruption was 1.02 times that of the input amplitude

and the FWHM was 1.3λ.

The coupling standard deviation σcoup was varied from 0.05 to 0.55 with steps of

0.05. For larger standard deviations, some of the coupling coefficients are negative.

For these situations, it was necessary to set the negative coupling coefficient to zero

to simulate complete loss of coupling for that transducer.

For each value of coupling standard deviation used, 50 sets of coupling coefficients

were randomly generated to corrupt the data. The means of the maximum and min-

imum coupling coefficients from each run are plotted against the respective coupling

standard deviation in figure 5.1.

Figure 5.2a shows an example set of coupling coefficients for 24 transducers with a

coupling standard deviation of 0.2. The maximum coupling coefficient is 1.5 and

the minimum is 0.5. This level of coupling variation is typical of that observed

experimentally, as will be demonstrated in the following chapter. Figure 5.2b shows

an example with a coupling standard deviation of 0.55, the maximum tested in this

study. In this example transducer 16 has zero coupling and transducer 22 has nearly

zero coupling. Transducers 7 and 10 have coupling coefficients of over 2. This is

clearly a very severe coupling situation and is unlikely to occur in reality.
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Figure 5.1: Maximum and minimum coupling coefficients averaged over 50 runs for each

coupling standard deviation.
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Figure 5.2: Coupling variations across the 24 transducers in the ring. (a) coupling

standard deviation = 0.2. (b) coupling standard deviation = 0.55.

For each of the 50 runs, the data was imaged using CSM. The defect amplitude and

FWHM were measured directly from the images. Also measured from the image

were the peak noise and the RMS noise. The peak noise is the maximum pixel value

in the image in a featureless region of the pipe and the RMS noise is the mean pixel

value in this region. The noise estimate region was between 0.2m and 0.8m. This

region is sufficiently far from the defect region so that the defect axial sidelobes are
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Figure 5.3: Measured defect amplitude with 1σ error bars against coupling standard

deviation. Also, dashed line: mean peak image noise; dotted line: mean RMS noise.

very small as was observed in figure 4.18. The mean and standard deviation of each

of the measured values across the 50 runs were then recorded.

Figure 5.3 shows the mean defect amplitude with 1σ error bars against the cou-

pling standard deviation. The mean maximum noise and the mean RMS noise in

the featureless region are also plotted on the same figure. The mean defect ampli-

tude remains relatively constant with increasing coupling variation, with increasing

standard deviation, as would be expected since the coupling coefficients have mean

µ = 1. The increase in mean defect amplitude at very high coupling standard devi-

ations occurs due to the minimum coupling coefficient being limited to zero whereas

there is no upper limit for coupling coefficient. The peak noise and RMS noise both

increase with increasing coupling errors to 47% of the input amplitude and 14% of

the input amplitude respectively for a coupling standard deviation of 0.55.

Figure 5.4 shows the mean measured FWHM with 1σ error bars against the cou-

pling standard deviation. The mean FWHM remains relatively constant for all levels

of coupling errors, with the FWHM standard deviation increasing minimally with
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Figure 5.4: Measured FWHM with 1σ error bars against coupling standard deviation.

increasing coupling standard deviation. The system is clearly easily capable of deal-

ing with coupling variations of the order seen in real experiments, with a standard

deviation of 0.2.

5.1.2 Robustness against transducer dropouts

The situation may arise whereby an individual transducer does not make physical

contact with the pipe wall. In this case that transducer will have a coupling coef-

ficient of zero. This would also be the case should the transducer or some part of

the electronic drive and reception circuitry be faulty, although this would easily be

detected by simple pre-inspection checks. The situation where there is no coupling

for a transducer is referred to as a transducer dropout.

In order to simulate transducer dropouts, some coupling coefficients were set to

zero. Up to seven transducer dropouts out of the possible 24 in the transducer ring

were tested. For each number of dropouts, the dropout transducers were chosen

randomly 50 times. Each corrupted data set was then imaged with CSM. As with
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Figure 5.5: Measured defect amplitude against number of transducer dropouts. Also,

dashed line: mean peak image noise; dotted line: mean RMS noise.

the coupling variation study, the defect amplitude, FWHM, noise mean and noise

maximum were recorded from each image and then averaged over the 50 runs for

each number of transducer dropouts.

Figure 5.5 shows the mean defect amplitude with 1σ error bars against the number

of transducer dropouts. The mean maximum noise and the mean RMS noise are

also plotted on the same figure. The measured defect amplitude decreases from

102% of the input amplitude with no transducer dropouts to 56% with 7 transducer

dropouts. This is because less energy is coupled into the pipe with increasing trans-

ducer dropouts. Also, not all of the backscattered modes will be correctly received

by the transducer ring. The peak noise increases from 1.6% with no dropouts to

37% with 7 dropouts. However, it is important to note that it is unlikely that there

would be even a single transducer dropout, since they should be detected and fixed

prior to inspection.

Figure 5.6 shows the mean FWHM with 1σ error bars against the number of trans-

ducer dropouts. The mean FWHM is relatively constant but the FWHM standard

151



5. Robustness of the System

0 1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

number of transducer dropouts

FW
H

M
, λ

Figure 5.6: Defect image FWHM against number of dropouts with 1σ error bars.

deviation becomes large for the case of 7 transducer dropouts. Nevertheless, the

FWHM is much less affected by transducer dropouts than the image defect ampli-

tude (figure 5.5).

5.2 Random Phase Errors

5.2.1 Robustness against phase errors

Phase errors could occur either from incorrect mechanical axial placement of the

transducers or from varying delays in the electronic drive/reception circuitry. The

phase error may be positive or negative since any timing error may be an advance

or a delay. A delay of time, τn for the nth transducer will give a phase error of

θn(ω) = ωτn (5.2)
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A transducer axial misplacement of ∆zn will produce a time delay of ∆zn/c, where

c is the phase velocity and the subsequent phase error for that transducer will be

θn(ω) = ω(∆zn/c) (5.3)

A 1mm axial misplacement will produce a 0.3µs time shift and this is a realistic

level of maximum axial deviation. It is clear that both types of phase error can be

synthesized using the same error model. As with the coupling error model, a normal

distribution with mean µ = 0 and standard deviation of στ was used to generate

random time delays for each transducer.

τn = N(0, στ ) (5.4)

The phase errors are then calculated subject to equation (5.2) for each frequency of

interest and subsequently applied to the finite element data. The standard devia-

tions tested range from 0.1µs to 2µs in steps of 0.1µs. These time standard devi-

ations correspond to axial misalignment standard deviations up to 6.5mm which is

significantly larger than the realistic setup scenario.

For each standard deviation tested, the normal distribution is used 50 times. The

corrupted data is then imaged using CSM for each of the 50 corrupted data sets. As

before, the defect chosen is a through-thickness crack of 40o circumferential extent.

The defect amplitude and FWHM are measured directly from the image as well as

the mean and maximum noise in the featureless region of the pipe, between 0.2m

and 0.8m.

Figure 5.7 shows the measured defect amplitude of the 40o through-thickness crack

with 1σ error bars against the input time error standard deviation στ . The mean

maximum noise and the mean RMS noise over the 50 runs are also plotted on the

same figure. The mean defect amplitude reduces with increasing phase errors from

1.02 to 0.88 for a time error standard deviation of 2µs. The mean peak noise value

increases from 1.6% of the input amplitude with no phase errors to 47% with a time

error standard deviation of 2µs. Note that the case studied employed excitation

centred at 50 kHz. The observed detrimental effects are likely to be worse at higher

inspection frequencies since a given time shift τ will cause a larger phase shift 5.2.
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Figure 5.7: Measured defect amplitude with 1σ error bars against time delay standard

deviation. Also, dashed line: mean peak image noise; dotted line: mean RMS noise.

Figure 5.8 shows the mean FWHM with 1σ error bars against the time error standard

deviation. The mean FWHM remains roughly constant around 1.3λ for all levels

of time error standard deviations. The FWHM standard deviation increases with

increasing time error standard deviations as expected. The system is clearly easily

capable of dealing with the expected maximum time shift error of 0.3µs which has

little effect on either the FWHM or defect amplitude.

5.2.2 Robustness against reversed transducers

There is a possibility that one or more of the transducers may be assembled into

the transducer ring backwards. This is unlikely and would easily be picked up by

quality control and fixed prior to inspection. However, the effect of having one or

more reversed transducers is investigated here for completeness.

The effect of reversing a transducer is equivalent to introducing a phase error of 180o

across all frequencies or applying a coupling coefficient of -1.

154



5. Robustness of the System

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

σ
τ
, µs

FW
H

M
, λ

Realistic level

Figure 5.8: FWHM with 1σ error bars against time delay standard deviation.

Up to five transducers out of the 24 in the ring were reversed synthetically in the

full finite element data set. The finite element case used was again the through-

thickness crack of 40o circumferential extent. The transducers to be reversed were

randomly chosen. The corrupted data was then imaged using CSM. The defect

amplitude, FWHM and noise estimates were recorded from the image, as with the

previous setup error studies. For each number of transducers reversed this process

was repeated 50 times. The recorded parameters were then averaged over the 50

runs.

Figure 5.9 shows the defect amplitude and the noise values against the number

of reversed transducers. The defect amplitude is reduced as more transducers are

reversed. The mean peak noise increases quickly and for three or more reversed

transducers, the peak pixel value in the featureless region of the pipe has comparable

image amplitude to that of the defect. At this point the defect amplitude to noise

ratio is unity and hence the system becomes useless since defects are not detectable

above the noise in the image.

Figure 5.10 shows the mean measured FWHM with 1σ error bars against the num-
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Figure 5.9: Measured defect amplitude with 1σ error bars against number of reversed

transducers. Also, dashed line: mean peak image noise; dotted line: mean RMS noise.

ber of reversed transducers. The FWHM increases drastically with more than two

reversed transducers but, as mentioned above, this is an extremely unlikely situation.

5.3 Tilting of the transducer ring

The correct setup for the transducer ring would be for all of the transducers to be

at the same axial position around the pipe circumference, i.e. on a plane normal

to the pipe axis (Figure 5.11a). However, incorrect manual setup may result in

tilting of the transducer ring meaning that some of the transducers will not be at

the desired axial location (Figure 5.11b). These deviations from the desired axial

transduction location will cause phase shifts in a similar way to the random axial

transducer misalignment discussed in the previous section. The phase shift is relative

to the axial deviation of the transducer from the desired location (5.2). The axial

position deviation δz increases with the distance of the transducer from the tilt axis
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Figure 5.10: FWHM with 1σ error bars against number of reversed transducers.

y (marked in figure 5.11c)

δz = y sin γ, (5.5)

where γ is the tilt angle in radians. The resulting phase error θtilt is

θtilt(ω) =
ωy sin γ

cS

, (5.6)

where cS is the bulk shear velocity. These phase errors can be applied to the full

matrix data set, in the same manner as the previous study for random phase errors.

5.3.1 Effect of tilting on end wall response

The above analysis was applied to the full matrix finite element data set from an end

wall only model of an 8 inch pipe, in order to apply synthetic tilt to the transducer

ring, prior to imaging the corrupted data. The circumferential image slice through

the end wall location, from the corrupted data set with end at 1.2m are shown in

figure 5.12. It is clear that tilting of the transducer ring has a strong effect on the end

wall circumferential image profile. However, a tilt angle of 1o gives a maximum axial
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Figure 5.11: Setup of the transducer ring on the pipe: a) correct setup; b) transducer

ring by γ; c) view along the pipe axis .

misplacement δmax±1.8mm and a tilt of 4o tilt gives a maximum axial misplacement

of δmax±7.3mm on an 8 inch pipe (5.5). These axial deviations from the desired axial

transducer location would be noticeable and set up axial deviations of more than a

few millimetres would be unlikely. Therefore, a transducer ring tilt of 2o is a sensible

maximum likely error. This situation creates a variation in the circumferential end

wall image profile of ±0.3 from the correct untilted value of unity.

5.3.2 Tilting effect on the defect response

Synthetic tilt phase errors were then applied to the full matrix finite element data

set used for the previous random error robustness studies of this chapter. The model

of an 8 inch pipe has a through-thickness crack of 40o circumferential extent at 1.2m

from the transduction end of the pipe.

Firstly, synthetic tilt was applied to the finite element data with the tilt axis through

the defect circumferential location as shown in figure 5.13a. Figure 5.14 shows the

circumferential image profiles through the crack axial location for various tilt angles.

The effect of tilting the transducer ring in this fashion is to reduce the defect image

amplitude accompanied by an increase in sidelobe amplitude. The circumferential

profiles also become non-symmetric due to the tilting. The effect of a 2o tilt in the 8

158



5. Robustness of the System

-0.3 -0.2 -0.1 0 0.1 0.2 0.3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

circumferential position, m

no
rm

al
is

ed
 a

m
pl

itu
de

End wall tilted

4° 3°

2°

1°
No tilt

Figure 5.12: Circumferential image slices at the end wall location of 1.2m with various

transducer ring tilt angles.

inch pipe model is a 7.3% amplitude reduction and an increase in maximum sidelobe

amplitude from 0.06 to 0.21.

The same 8 inch pipe finite element data was then corrupted using the above method

for tilting of the transducer ring towards (positive tilt angles) and away (negative

tilt angles) from the 40o circumferential extent crack, as shown in figure 5.13b.

Circumferential slices at the defect axial location through the reconstructed images

of the corrupted finite element data for tilt angles of −2o and +2o are shown along

with the non-corrupted image slice are shown in figure 5.15. Note that only half of

the pipe circumference is plotted since the profiles are symmetric through the centre

of the defect. The image defect amplitude is reduced for negative tilt angles and

increased for positive tilt angles. For a tilt of +2o, towards the defect, the amplitude

is increased by 18% and the sidelobe amplitude is increased to 0.2 from 0.06. For

a tilt of −2o, away from the defect, the amplitude is decreased by 20% from the

untilted value and the sidelobe amplitude is increased to 0.15. Therefore, the effects

of tilting the transducer ring towards and away from the defect (figure 5.13b) are

more severe than tilting the ring on an axis through the defect (figure 5.13a).
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Figure 5.13: Titling of the transducer ring with a defect present, the rotational direction

indicates a positive tilt angle; (a) tilt axis through the defect location; (b) tilt towards the

defect.
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Figure 5.14: Circumferential image profiles through crack location for tilting of the trans-

ducer ring on an axis through the defect as shown in figure 5.13a.
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Figure 5.15: Circumferential image profiles through crack location for tilting of the trans-

ducer ring towards and away from the defect as shown in figure 5.13b.

It should be noted that the above case of tilting of the transducer ring on an 8 inch

pipe with a crack at 1.2m, with excitation centred at 50 kHz is only one scenario and

different size pipes, different axial defect locations or inspection frequencies would

produce varying results. Notably, the effects of axial misplacement become more

severe with increasing inspection frequency 5.6. Nevertheless, the results from the

case studied show that tilting of the transducer ring affects the image response more

severely than the random errors which were tested in the previous sections of this

chapter.

5.4 Robustness to incorrect input parameters

5.4.1 Effect of incorrect velocity

If the phase velocity used for image reconstruction is different from the actual phase

velocity of the material under inspection then this will affect the ability to coherently
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sum all of the backscattered information in the correct defect location. If there are

no defects present in the pipe then the end wall reflection will be purely T(0,1)

which travels with an axial phase velocity equal to the bulk shear velocity cS. The

effect of image reconstruction using an incorrect phase velocity will be that the end

wall image will appear at the wrong axial location.

Defects which are not axisymmetric, such as the cracks modelled with finite element

simulations in the previous chapter, will backscatter to higher circumferential order

modes. The axial phase velocities of these higher order modes, assuming the plate-

like behaviour of the pipe as discussed in section 2.3.4, can be evaluated using (2.32).

The error in bulk shear velocity cS used for image reconstruction will affect the axial

phase velocity cz,n of each mode differently. Therefore, the backprojection of each

mode will not necessarily create coherent summation at the correct axial defect

location.

The phase velocity of the T(0,1) pipe mode in the finite element model was found

previously to be 3330 ms−1, showing a 0.8% error from the expected 3360 ms−1.

This velocity was extracted from a pipe finite element model with no defects. A

T(0,1) probing wave was excited into the model and this was reflected by the pipe

end. The group velocity was found by dividing the total distance travelled by the

time taken. For the nondispersive T(0,1) mode, the phase velocity is equal to the

group velocity [59]. This phase velocity was used for processing the finite element

data in the previous chapter. Note that the higher order modes are likely to have

a greater velocity error since they propagate at angles across the finite element

mesh [91].

Here, the data from the finite element case of a through-thickness crack of 60o

circumferential extent (1.7λ at 50 kHz) at 1.2m from the transducer ring in an 8

inch pipe was processed using CSM with deliberately incorrect bulk shear velocities.

The bulk shear velocities used for image reconstruction ranged from 3100 ms−1 to

3400 ms−1 in steps of 10 ms−1. The axial position error of the peak defect response

was recorded along with the peak defect image amplitude and FWHM at the peak

axial location.
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Figure 5.16 shows the axial position error of the defect image peak against the shear

phase velocity used for image reconstruction. Lower processing velocities move the

defect image peak closer to the transducer ring and higher processing velocities move

the peak further from the transducers in a roughly linear fashion, as expected. The

defect image peak occurs at the correct axial location of 1.2m for a reconstruction

phase velocity of 3220 ms−1. This is slightly less than the axial phase velocity of

3230 ms−1 found from the T(0,1) reflection from an end wall only finite element

model. This is because the defect response here is formed for the summation of all

of the backscattered modes. The higher order modes have slightly slower velocities

in the finite element model since they propagate across different directions across the

finite element mesh. These effects agree with those observed by Drozdz [91] in his

detailed study of such finite element phenomena. This means that the contributions

from higher order backscattered modes appear slightly behind the actual defect

location which has the effect of moving the defect image peak slightly farther from

the array than the actual defect axial location. Therefore, a slightly slower processing

phase velocity of 3220 ms−1 puts the defect peak at the exact axial defect location

in the image.

The peak image amplitude normalised to that of the input signal is plotted against

the shear phase velocity used for image reconstruction in figure 5.17. The maximum

defect image amplitude occurs for a processing shear velocity of 3230ms−1 which

is the T(0,1) finite element phase velocity used for the finite element data image

reconstruction in the previous chapter. Processing with an incorrect shear phase

velocity has the effect of decreasing the defect amplitude response.

The FWHM at the peak defect axial location is plotted against the shear phase

velocity used for image reconstruction in figure 5.18. The smallest FWHM occurs

for a processing shear velocity of 3230ms−1 which is the T(0,1) finite element phase

velocity. Processing with an incorrect shear phase velocity shows the defect peak

at an incorrect axial location with an increased FWHM and reduced amplitude.

These detrimental effects will worsen with increasing axial defect location since the

propagation distances, and hence errors, are increased.
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Figure 5.16: Axial position error of the image defect peak against shear phase velocity

used for image reconstruction.
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Figure 5.17: Normalised defect image amplitude against shear phase velocity used for

image reconstruction.
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Figure 5.18: FWHM against shear phase velocity used for image reconstruction.

5.4.2 Effect of incorrect pipe dimensions

In addition to shear phase velocity, the other input parameter for the pipe imaging

algorithm is the pipe radius. The effect of processing with an incorrect pipe radius

was first investigated using the synthetic data model defined in section 4.3. Data

was synthesised for a range of axial defect locations using a maximum backscatter

angle βmax = 35o with a temporal bandwidth of 40 to 60 kHz. The pipe radius

used for data synthesis was r = 0.10545 m which is the central radius of an 8 inch

schedule 40 pipe. Each synthetic data set was then processed with CSM using pipe

radii ranging from 0.95r to 1.05r. The inner and outer radii of the 8 inch pipe are

101.4 mm and 109.5 mm. These correspond to 0.96r 1.04r respectively.

The peak image amplitude at the axial defect location is plotted against axial defect

position for all radii processed in figure 5.19. If the synthetic data is processed

using the correct pipe radius then the defect image amplitude is constant with

axial position, as was found in the previous chapter. If the data is processed using

an incorrect pipe radius then the amplitude decreases with increasing axial defect

position. The decrease in defect response amplitude is worse for larger radius errors
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Figure 5.19: Defect image amplitude against axial defect position processed with different

pipe radii.

but is comparable for positive or negative radius errors.

Figure 5.20 shows the FWHM at the defect axial position plotted against axial

defect position for all radii processed. Once again, the FWHM is constant with axial

defect position if the correct radius is used for image reconstruction. If the data are

processed using an incorrect radius then the FWHM increases with increasing axial

defect position. Larger errors are observed for larger radius errors.

The effects of processing with an incorrect pipe radius can be explained by the

subsequent errors in axial phase velocities used for image reconstruction (2.32). If

the wrong radius is used then the calculated axial phase velocities which are used to

backproject each received mode are affected in different ways. The error in the axial

phase velocity caused by an incorrect pipe radius is worse for higher order modes.

These phase velocity errors cause imperfect coherent summation of backprojected

modes at the defect location. The effect of this is that the defect response will

decrease in amplitude and the FWHM will increase. The diminished performance

will worsen with increased axial defect position.
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Figure 5.20: FWHM against axial defect position processed with different pipe radii.

In order to validate the errors observed using synthetic data, finite element data was

processed with incorrect pipe radii. The model case was a through-thickness crack

of 60o circumferential extent in an 8 inch pipe at 1.2m. The defect image amplitude

is plotted against the pipe radius used for image reconstruction in figure 5.21. The

peak image defect amplitude occurs when processing using the correct central pipe

radius. The defect image FWHM is plotted against the pipe radius used for image

reconstruction in figure 5.22. The smallest FWHM also occurs when processing with

the correct central pipe radius. Processing with a radius equal to the pipe internal

radius (0.96r) reduces the defect image amplitude by 4.3% and increases the FWHM

by 21%. Processing with a radius equal to the external radius of the pipe (1.04r)

reduces the defect image amplitude by 14% and increases the FWHM by 23%.

It should also be noted that the image reconstruction algorithm is not dependent

on the pipe wall thickness and this is not a required input parameter. However, the

inspection frequency must be lower than the cutoff frequency for the T(0,2) mode.

Also, the pipe wall thickness will need to be known in order to estimate the defect

depth using the analysis of section 4.4.1.

167



5. Robustness of the System

0.96 1 1.04
0

0.2

0.4

0.6

0.8

1

1.2

pipe radius used as a fraction of correct radius

no
rm

al
is

ed
 a

m
pl

itu
de

radius_error_fe_amplitude

Inner radius

outer radius

Figure 5.21: Defect image amplitude for 60o through-thickness finite element crack

against pipe radius used for image reconstruction.
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Figure 5.22: Defect image FWHM for 60o through-thickness finite element crack against

pipe radius used for image reconstruction.
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5.5 Robustness conclusions

In this chapter, the robustness of the CSM pipe imaging system has been inves-

tigated. The method was to intentionally corrupt finite element data and then to

process the resulting corrupted data. The errors caused by random setup errors, such

as coupling variation and axial misplacement of the transducers in the transducer

ring, were evaluated. For all types of random error, the defect image amplitude was

decreased and the FWHM was increased for increasingly severe errors. However, the

system was found to be very robust against random setup errors even those larger

than those likely to be encountered in the real system.

The imaging response to systematic errors was also investigated. Tilting of the

transducer ring on the pipe caused reasonably severe variations of the order of

±20% in the defect image amplitude and FWHM. The effect of processing data

with incorrect phase velocities was that the image defect amplitude was decreased

and the FWHM increased. The decrease in performance was found to worsen with

increasing axial defect location from the transducers, for a given level of velocity

error.

The system has shown to be extremely robust against random errors but less robust

against systematic errors from testing with finite element data. It is important to

note that entering an incorrect pipe size or bulk shear velocity of the material could

be avoided with vigilance on behalf of the operator. The tilting of the transducer

ring could also be reduced by careful operator setup.
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Chapter 6

Laboratory Experiments with

Circumferential Slots

The pipe imaging system which utilises the Common Source Method (CSM) for im-

age reconstruction was thoroughly tested using data from finite element simulations

in chapter 4. It was found that the circumferential extent and depth of cracks could

be estimated from the Full Width at Half Maximum (FWHM) and amplitude of

the defect image. Reliable crack sizing was possible for cracks of circumferential

extent larger than 1.5λS, where λS is the wavelength of the probing T(0,1) guided

wave mode at the frequency of inspection. The imaging response was found to be

independent of axial defect location, pipe radius and inspection frequency, provided

the amplitude is scaled by the excitation amplitude and the FWHM is scaled by the

probing wavelength λS.

In this chapter, the results from the extensive finite element studies will be validated

with laboratory experiments on 8 inch schedule 40 mild steel pipe. The defects will

be circumferentially milled slots of both half-depth and through-wall thickness. The

experimental data will be processed using CSM and the imaging results will be

compared to the finite element predictions of chapter 4. The coupling variation will

also be evaluated and compared to the synthetic analysis of the previous chapter.
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Figure 6.1: Experimental setup.

6.1 Experimental setup

The experimental apparatus is shown in figure 6.1. The hardware consists of 4

distinct units; the transducer ring, a multiplexer box, a personal computer and a

Guided Ultrasonics Limited [24] G3 unit. Figure 6.2 shows a photograph of the

transducer ring, clamped to the end of a pipe sample, the multiplexer unit and the

portable PC. The G3 unit contains an onboard signal generator to generate the

required input toneburst, a power amplifier for excitation and a receiver amplifier

for reception. The G3 unit and the multiplexer unit are controlled via the PC so

that data acquisition is automatic.

The transducer ring used was an 8 inch inflatable ring manufactured by Guided

Ultrasonics Limited. The transducer ring comprises two separate rows of 24 dry-

coupled piezoelectric shear transducers. The two rows of transducers are required

for directionality control. The transducers are forced onto the pipe sample with an

inflatable bladder which is clamped around the outside of the pipe circumference.

The transducers make a point contact with the pipe surface. The standard com-

mercial equipment has transducers that are grouped into segments and hence no

external multiplexer stage is necessary for normal testing. The ring used here was

modified so that each of the 48 transducer elements is individually wired so that each

171



6. Laboratory Experiments with Circumferential SlotsExpt photo

PC controlled 
acquisition

Transducer 
ring

Pipe

Multiplexer

Figure 6.2: Photograph of experimental setup.

transd+ucer can be individually addressed. By using an external multiplexer stage,

the hardware setup is capable of recording the full data set (FMC) as required for

TFM. However, both TFM and SAFT were shown to be unsuitable for pipe imaging

in section 4.2 and hence will not be evaluated experimentally here.

Two 8 inch schedule 40 mild steel pipe samples were used and circumferential slots

were made in the pipe samples using a milling machine with a 3mm cutter. The

pipe samples were both 2.2m long. This length was chosen due to spatial constraints

around the milling machine. The first pipe sample had through-thickness slots milled

into it and the second pipe sample had half wall-thickness slots milled into it. The

first experiment on each pipe sample was with no milled features present. The
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6. Laboratory Experiments with Circumferential Slots

transducer ring was then left clamped to the pipe while defects were milled at 1.2m

from the transducer ring. The pipe samples were rotated about the pipe axis and

circumferential slots were cut. After each new larger slot had been cut, data was

acquired using the experimental hardware. The slot circumferential extent was then

further increased up to a maximum of 90o (166 mm) circumferential extent for both

the half-depth and the through-thickness pipe samples.

The ring was clamped onto the pipe test samples so that one row of transducer

elements was as near to the end of the pipe length as possible. By clamping the

transducer ring in this location, there is no need for directionality control since

the probing wave can only propagate in one direction. Therefore, only the row of

transducers located at the pipe end were used. This means that 242 = 576 time

traces were recorded. The data required for CSM were created by summing time

traces from the full data set, thus creating 24 time traces for each experimental defect

case. This has the effect of synthetically firing all of the 24 transducer elements

simultaneously.

6.2 Experimental results

6.2.1 Experiments on clean pipe

Prior to milling any slots in the pipe samples, data was acquired for the featureless

pipe samples. The excitation was an 8 cycle Hanning-windowed toneburst centred at

50 kHz. The reflections for the featureless pipe around the circumference should be

of similar amplitude since the pipe end is axisymmetric. The variation in reflection

amplitudes gives an indication of the variation in coupling coefficients around the

pipe circumference. The amplitudes of the reflections at 50 kHz from the pipe

end wall for the CSM data set are shown in figure 6.3. The reflected amplitudes

vary between around 0.5 and 1.5. This is comparable to the synthetic coupling

study with a coupling standard deviation of 0.2 which was shown in figure 5.2a.

Coupling variations of this severity gave a defect amplitude standard deviation of
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Figure 6.3: Experimental reflection amplitudes at 50 kHz normalised to the mean reflec-

tion amplitude from the pipe end at the different transducers upon firing all transducers.
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Figure 6.4: Experimental CSM image of pipe end wall at 2.2m.

0.1, a FWHM standard deviation of 0.02λ and a peak image noise value of 0.13 for

the synthetically corrupted finite element case study of section 5.1. Note that no

attempt to correct for these coupling variations will be done here though this is done

in practice by the commercial Guided Ultrasonics Limited system.

The reconstructed CSM image for the featureless pipe is shown in figure 6.4. The

CSM image shows the end wall in the correct axial location with no other major

features in the image. The peak noise in the featureless region up to 1.7m was 0.13

which is the same as the finite element study with synthetic coupling errors with a

standard deviation of 0.2.
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Figure 6.5: Experimental CSM circumferential image profile through pipe end axial lo-

cation for featureless pipe sample.

The circumferential image profile through the CSM image (figure 6.4) at the pipe end

axial location is shown in figure 6.5. The circumferential profile at the featureless

axial location of 1.2m is also shown. The amplitude scale has been normalised

to the mean end wall amplitude. The pipe end wall image normalised amplitude

varies between 0.8 to 1.2. This variation is most likely due to the observed coupling

variation of the transducers around the pipe circumference (figure 6.3).

Figure 6.6 shows an axial image slice through the end wall only image of figure 6.4.

The axial slice was taken at a circumferential position of 0, i.e. through the centre

of figure 6.4. The largest axial sidelobe of the end wall image is 0.19 (-14.4 dB).

The end wall sidelobe of the finite element image of an end wall at 1.2m shown in

figure 4.4 was -17 dB.
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Figure 6.6: Experimental CSM axial image profile for featureless pipe sample, end wall

at 2.2m.

6.2.2 Experiments with milled circumferential slots at 50 kHz

The data from all the slot experiments were imaged with CSM using a temporal

bandwidth of 40 to 60 kHz. The defect amplitude and the FWHM were measured

directly from the resulting images. An example image of the 20o through-thick slot

case is shown in figure 6.7. The circumferential image slices through the defect and

end wall axial locations are shown in figure 6.8. The defect image appears at the

correct axial and circumferential position as was observed in the finite element image

of figure 4.16 and its circumferential profile (figure 4.17).

The defect image in figure 6.7 has an amplitude of 0.68. The peak noise value in the

image is 0.08. Therefore, the signal to noise ratio (SNR) in this particular focused

image is 18.5 dB. The unfocused trace is shown in figure 6.9. The unfocused defect

amplitude is 0.11 and the peak noise value in the T(0,1) trace is 0.04. Therefore the

SNR the unfocused system is 9.5 dB, meaning that there is a 9 dB improvement in

the practical SNR with the focused system.

The defect image amplitudes are plotted against the circumferential extent of the slot
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Figure 6.7: CSM experimental image for the case of a through-thickness slot of 20o

circumferential extent at 1.2m.
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Figure 6.8: Circumferential image slices at the defect axial location (solid line) and the

end wall location (dashed line) for the case of a through-thickness slot of 20o circumferential

extent.

in figure 6.10 for the through-thickness experiment and the finite element predictions

of section 4.4 are also shown. The experimental amplitudes are scaled to the end wall

amplitude of the featureless pipe experiment of the previous section. The theoretical

and experimental T(0,1) slot reflection amplitudes are also shown. It can be seen

that the experimental amplitudes are slightly larger than the predictions for all

experimental slot lengths. This is likely to be due to ’bedding in’ of the transducers
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Figure 6.9: Unfocused trace for 20 degree through-thickness crack at 1.2m, end wall at

2.2m.

after the first featureless pipe experiment which increases the coupling of energy

into the pipe and results in slightly higher image amplitudes for later experiments.

The defect image amplitudes for the half-depth slot experiments are shown in fig-

ure 6.11. The experimental amplitudes agree extremely well with the finite element

predictions of section 4.4 which are also plotted on the figure for comparison with

the exception of the largest slot where the image amplitude of the experiment was

slightly higher than the FE prediction.

The gain in amplitude of using the focused system over the unfocused system (T(0,1)

reception only) is shown in figure 6.12. The maximum gain achieved was 17 dB for

the through-thickness slot experiment and was 18.4 dB for the half-depth experi-

ment. The largest gains in amplitude are achieved for slot lengths of around 0.5 to

1λ which is where the focused amplitude is near the maximum attainable but the

T(0,1) reflection is still small. Note that all of the gains will reduce to unity for slot

lengths equal to the circumference of the pipe (10.6λ for this 8 inch pipe at 50 kHz).

The experimental gains achieved were slightly lower than the gains observed from
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Figure 6.10: Through-thickness slot image amplitudes and unfocused (T(0,1)) reflec-

tion amplitudes; solid lines with circles: Experiment amplitudes; dashed lines: Predicted

amplitudes.
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Figure 6.11: Half-depth slot image amplitudes and unfocused (T(0,1)) reflection ampli-
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finite element data, which are also shown in the figure.

The FWHM of the defect images are plotted against the circumferential extent of

the slots in figure 6.13 for both the through-thickness and half-depth experiments.

The experimental FWHM compare well with those of the through-thick crack fi-

nite element study of section 4.4 and the half-depth slot finite element study of

section 4.4.2. In fact, for small through-thickness slots, the experiments produced

a FWHM which was smaller than the finite element predictions. The variations in

FWHM from the finite element predictions are most likely to be due to the coupling

variations around the transducer ring. The experimental FWHM curves exhibit

the two separate regimes that were observed in the finite element studies of chap-

ter 4. The first regime, for slot lengths below around 1.5λ, has a constant FWHM

of around 1.3λ. In this region, estimation of the circumferential extent of the slot

is not possible. The second regime, for slot lengths above 1.5λ have FWHM which

are reliable estimates of the actual physical slot lengths.
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Figure 6.13: FWHM measured from the experimental CSM images. solid line with cir-

cles: through-thickness slots; dashed line with circles: half-depth slots; dotted line: through-

thick FE predictions.

6.2.3 Through-thickness experiments at different inspection

frequencies

In addition to the data recorded from excitation centred at 50 kHz, which were

processed in the previous section, data was also recorded with excitation centred at

30 kHz for the through-thickness slot cases. The excitation signal was an 8 cycle

Hanning-windowed toneburst centred at 30 kHz. The resulting experimental data

were processed with CSM employing a temporal bandwidth of 20 to 40 kHz. The

data are processed raw and hence are already frequency domain windowed due to

the frequency spectrum of the excitation toneburst.

The defect image amplitude is plotted against the slot length expressed in wave-

lengths of the probing signal in figure 6.14. The defect image amplitudes from the

50 kHz experiments and the 50 kHz finite element study are also shown for compari-

son. The imaging response to through-thickness cracks was found to be independent
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Figure 6.14: Defect image amplitude against through-thickness slot length; solid line with

circles: experiment with 30 kHz excitation; dotted line with circles: experiment with 50 kHz

excitation; dashed line: finite element predictions with 50 kHz excitation.

of inspection frequency for the finite element study of section 4.5.2. Here, the ex-

perimental curves for the different inspection frequencies both agree well with the

finite element predictions, exhibiting a peak amplitude for a slot length of around

1.5λ. This means that the through-thickness defect image amplitude response is

independent of inspection frequency if the defect circumferential extent is expressed

in wavelengths of the probing signal. This agrees with the finite element findings of

section 4.5.2.

Figure 6.15 shows the defect image FWHM for the through-thickness slot experi-

ment with excitation centred at 30 kHz plotted against the slot length expressed

in wavelengths of the probing signal. It was shown in section 4.5.2 that the de-

fect FWHM was independent of inspection frequency for finite element cracks. The

experimental FWHM from the 30 kHz experiments agree very well with the experi-

mental and finite element predictions at 50 kHz. This means that the experimental

defect FWHM are independent of inspection frequency, agreeing with the finite ele-

ment predictions of section 4.5.2. The discrepancy for very small slot lengths occurs
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Figure 6.15: Defect image FWHM against through-thickness slot length; solid line with

circles: experiment with 30 kHz excitation; dashed line with circles: experiment with 50 kHz

excitation; dotted line: finite element predictions with 50 kHz excitation.

because the defect image amplitude are comparable to the image noise levels, ren-

dering the FWHM unreliable.

6.3 Experimental conclusions

Laboratory experiments were carried out on an 8 inch schedule 40 mild steel pipe.

The defects were milled circumferential slots of 3mm width. Two pipe samples were

used; one for through-thickness slots and the other for half-depth slots (4.1 mm

deep). The hardware employed for data capture was based on modified commercial

equipment manufactured by Guided Ultrasonics Limited [24].

Imaging of a featureless pipe gave an estimate of the experimental coupling variations

of the transducer ring. The peak noise (peak pixel value in the image) in the

featureless pipe experimental image was comparable with the peak noise observed in
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the previous chapter when synthetically corrupting finite element data with similar

levels of coupling variation. The system was shown to be robust against these levels

of coupling variation with finite element data in the previous chapter and this has

now also been proved experimentally.

The experimental defect image amplitudes and FWHM showed excellent agreement

with the finite element predictions of chapter 4 for both through-thickness and half-

depth slots. Two regimes were observed in the experimental imaging response, as

was predicted with the finite element studies. The first regime, for slot lengths below

1.5λ have increasing defect image amplitude with increasing slot lengths but con-

stant FWHM of around 1.3λ. The maximum defect image amplitudes then occur

for slot lengths of around 1.5λS. The second regime, for slot lengths above 1.5λ

exhibits defect image amplitudes which remains relatively constant with increasing

slot length for both through-thickness and part-depth slots. For slots of circumfer-

ential extent greater than around 1.5λS, the defect image FWHM provides a reliable

estimate of the actual slot length for all experimental slot depths. This means that

reliable defect sizing is possible for slots of circumferential extent larger than 1.5λ,

as predicted in section 4.4.1.

The experimental gain in amplitude of the focused system over the unfocused (T(0,1)

reception only) system for the 8 inch pipe case with an inspection frequency of

50 kHz was of the order of 17 dB for through-thickness slots which is comparable to

the finite element prediction of 18 dB, found in section 4.4.1. The half-depth slot

experiment achieved gains of 19 dB. The largest gains occurred for slot lengths of

between 0.3λ and 1λ where the focused image amplitudes rise very quickly but the

unfocused T(0,1) reflection amplitudes are still very small. Note that the gain will

decease to unity for axisymmetric defects, when there is no mode conversion of the

probing T(0,1) wave. There was also a 9 dB improvement in signal to noise ratio.

Experiments carried out at different excitation frequencies proved the finite element

prediction of section 4.5.2 that the imaging response is not affected by excitation

frequency if the the slot lengths and measured FWHM are normalised to the probing

wavelength λS at the frequency of inspection.
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Chapter 7

Conclusions

7.1 Main findings of this thesis

The aim of the work presented in this thesis was to develop a high-resolution pipe

testing system that is able to detect and size defects from a remote axial location.

Guided waves are already an established tool for the screening of long sections of

pipe from a single inspection location. The strategy proposed was to use guided

waves for imaging of the pipe features. Information about the location and severity

of defects could then be seen clearly in the reconstructed image. The decision was

made to use torsional type excitation since this had proved very successful in the

commercial pipe screening tools.

In order to achieve the goal of pipe imaging, several stages of research were carried

out. Firstly, in chapter 2, the similarity between guided wave propagation in pipes

and plates was analysed. The flexural modes F(n,2) which tend to the bulk shear

velocity, cS at higher frequencies were investigated in detail since it was this mode

family which were relevant to the chosen torsional type inspection.

It was proposed that the propagation of the torsional-flexural (F(n,2)) mode family

in a pipe is comparable to the fundamental Shear-Horizontal (SH0) plate mode

propagating in different helical directions. The finite number of modes at a given
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frequency is accounted for by the boundary condition along the axial cut made in

the pipe wall in order to ’unwrap’ it. Each mode, of circumferential order n, can

be thought of as a plane wave propagating in a direction at a fixed angle αn to

the axial direction, having phase velocity equal to the bulk shear velocity, cS. The

phase velocity error introduced by this plate-like assumption was evaluated and was

found to be proportional to ( 1
fr

)2, where fr is the frequency-radius product. The

maximum error for likely inspection frequencies in 8 inch pipe were of the order of

1%.

Given the similarity between guided wave propagation in pipes and plates, synthetic

focusing imaging algorithms were investigated and tested for the imaging of plates

in chapter 3. Three imaging algorithms were introduced which differed in their

transmit-receive geometries (see figure 3.2). The Common Source Method (CSM)

transmits from all array elements simultaneously and records time traces across the

array. The Synthetic Aperture Focusing Technique (SAFT) uses a pulse-echo data

set and the Total Focusing Method (TFM) uses every transmit-receive combination

available. The performance of the three algorithms was investigated theoretically

for the case of a point scatterer in the object space. The lateral image response

of a point scatterer is the Point Spread Function (PSF) and it was found that, for

a given array aperture, SAFT produced the narrowest PSF, half that of the CSM,

and hence achieved the best two-point resolution. However, SAFT and CSM both

suffer from substantial sidelobes in the image. The TFM has significantly smaller

sidelobes and FWHM between those of CSM and SAFT. However, TFM requires

significantly more complex data acquisition than either CSM or SAFT.

The lateral crack sizing ability of the imaging algorithms was evaluated using data

from a finite element model with cracks parallel to the array aperture and using

the SH0 guided wave mode for inspection. It was found that all of the algorithms

were capable of reliably estimating the crack length so long as the crack size was

larger than the width of the theoretical PSF. The width of the theoretical PSF

can therefore be used to define the smallest sizable crack. Here, the width of the

PSF was measured using the Full Width at Half Maximum (FWHM). The width of
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the PSF was finite because of spatial frequency windowing effects caused by wave

propagation in the background medium. In addition, there is further filtering of

high spatial frequencies caused by the finite sized aperture of the array. This means

that the resolution of the plate algorithms gets worse for locations further from the

array aperture.

Several plate experiments using the A0 guided wave mode at 50 kHz were carried

out. The imaging results from the experimental data showed excellent agreement

with the theory and the finite element study using the SH0 mode. It was found that

broadband processing slightly reduced the sidelobe amplitude. The experimental

results also showed the ability of the imaging techniques presented to deal with

dispersion effects.

Following the encouraging plate imaging results, the same three synthetic focusing

algorithms that were introduced for plate imaging were tested for their suitabil-

ity for pipe imaging in chapter 4. No modifications to the implementation of the

imaging algorithms of chapter 3 was necessary following the results of chapter 2.

The Synthetic Aperture Focusing Technique (SAFT) and Total Focusing Method

(TFM) were found to be unsuitable for pipe imaging with a circumferential array

of transducers due to the excited waves in the circumferential direction which led

to unwanted artifacts in the final reconstructed image. The decision was made to

concentrate on CSM for pipe geometries.

The Common Source Method (CSM) was found not to suffer from such circumfer-

ential signals since conceptually all of the transducers are fired simultaneously. If

the transduction is in the circumferential direction (shear transducers) this excites

the axisymmetric torsional mode T(0,1) only as a probing wave.

The CSM was tested vigorously by imaging data from finite element models of cir-

cumferential cracks of varying depth and circumferential extent. The defect image

amplitude increased roughly linearly with increasing circumferential extent of the

crack, for any fixed crack depth, until a maximum amplitude was reached at a cir-

cumferential extent of around 1.5λSH (see figure 4.19). Here, λSH is the wavelength
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of the probing T(0,1) guided wave mode and is equal to the SH0 wavelength in

a plate. For cracks of circumferential extent larger than 1.5λSH , the defect image

amplitude remained relatively constant for a given crack depth. In this region, the

depth of the crack can be reliably estimated from the defect image amplitude (see

figure 4.25).

The proposed method for circumferential sizing of defects was to measure the circum-

ferential extent of the defect image. The Full Width at Half Maximum (FWHM) of

the circumferential image profile was used for this purpose. The FWHM was found

to remain roughly constant at around 1.4λSH for cracks of circumferential extent

less than 1.5λSH (see figure 4.22). For cracks of circumferential extent larger than

around 1.5λSH , the FWHM can be used to reliably estimate the circumferential

extent of the crack. For cracks of circumferential extent below the 1.5λSH limit, the

defect image amplitude is affected by both defect depth and circumferential extent,

and the FWHM remains constant. Therefore, the depth and circumferential extent

cannot be extracted from the image independently.

The resolution limit of 1.5λSH is due to the limited backscatter angles observed

from small cracks. The resolution limit observed here suggests a maximum plane

wave backscatter angle of around 42o, which agrees well with detailed finite element

studies on the backscatter of fundamental shear-horizontal plane waves incident on

cracks in plates [77].

It was found that the resolution limit of 1.5λSH is independent of the inspection

frequency, as long as the crack size and FWHM are expressed in wavelengths of the

probing wave, λSH . The image defect response was found to be unaffected by pipe

size or axial defect position; the defect image response is only dependent on the

backscatter characteristics of the defect. This is because all of the backscattered

signals from the defect are received at the array, via higher order mode propagation,

regardless of the defect axial position or the array size (pipe circumference). This

result is in contrast to plate imaging with a linear array, where the resolution limit

is greatly affected by the array aperture.

188



7. Conclusions

The robustness of the proposed focused system was tested in chapter 5. The method

of testing was to synthetically corrupt data from a finite element model and then

to attempt imaging of the corrupted data. Random transducer coupling variations

were applied to the finite element data and it was found that the system was robust

against coupling variations larger than those observed experimentally. The system

was also shown to be robust against realistic levels of random axial transducer

misplacement (which are equivalent to phase errors) and even one or two faulty

transducers. However, the system was not robust against reversed transducers, but

this is an extremely unlikely situation and would be easily diagnosed and fixed prior

to inspection.

The robustness of the system to systematic errors was also investigated. Tilting

of the transducer ring on the pipe caused variations in the defect image amplitude

and FWHM of the order of ±20%. The effect of processing data with incorrect

phase velocities was that the image defect amplitude was decreased and the FWHM

increased. The decrease in performance was found to worsen with increasing axial

defect location from the transducers, for a given level of velocity error. However, it

is important to note that entering an incorrect pipe size or bulk shear velocity of

the material could be avoided with vigilance on behalf of the operator. The tilting

of the transducer ring could also be reduced by careful operator setup.

The results from the finite element studies of chapter 4 were validated experimen-

tally using modified Guided Ultrasonics Limited [24] hardware in chapter 6. The

defects were milled circumferential slots of both half-thickness and through-thickness

depths. The experimental results agreed very well with the finite element results.

The observed experimental sizing limit was around 1.5λSH at two different experi-

mental inspection frequencies (30 and 50kHz) in 8 inch pipe.
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7.2 Summary of Pipe Imaging performance im-

provements

The ability to estimate the depth and circumferential extent of defects using syn-

thetic focusing is significantly greater than that of an unfocused system, which can

excite and receive the axisymmetric torsional mode T(0,1) only. The unfocused

system cannot estimate the circumferential defect extent and can only estimate the

defect depth reliably for axisymmetric defects. In contrast, the focused system can

reliably estimate both crack depth and circumferential extent independently using

the image defect amplitude and its FWHM respectively, providing the crack has

circumferential extent larger than 1.5λS, which can be observed from the image

FWHM. This result is valid for any axial defect location, in any pipe size and for

any frequency of inspection below the T(0,2) cutoff. The sizing limit of 1.5λS is

around 100 mm at 50 kHz in mild steel pipes.

The maximum amplitude gain occurs for cracks of circumferential extent around

1λSH where the focused image amplitude is near its maximum but the unfocused

amplitude is still very small. For axisymmetric defects, the focused amplitude is

equal to the unfocused amplitude since the backscattered signal consists of only the

axisymmetric T(0,1) mode. In this case, the amplitude gain is unity. The greatest

sensitivity improvement for through-thickness cracks is

Gamp =
Ampfocused

AmpT (0,1)

≈ 2πr

λS

(7.1)

where r is the pipe radius and λS is the wavelength of the probing signal. The

amplitude gain achieved increases for larger pipes and higher inspection frequencies.

For example, the gain at 50 kHz for an 8 inch pipe is around 18 dB but is 28 dB for

24 inch pipes at the same frequency. The amplitude gains observed experimentally

in 8 inch pipe at 50 kHz were around 17 dB.

The gain in resolution arises since the unfocused system cannot circumferentially size

defects. The focused system is capable of reliable circumferential sizing of defects
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with circumferential extents greater than 1.5λS. The resolution improvement is

therefore

Gcirc =
resT (0,1)

resfocused

≈ 2πr

1.5λS

(7.2)

The gain in resolution will increase in larger pipes and at higher inspection frequen-

cies, as was the case for the sensitivity gain above. The resolution gain at 50 kHz

in 8 inch pipe is around 16 dB but would be 25 dB in 24 inch pipe. However, it

should be noted that more transducer elements would be required to sufficiently

sample the pipe circumference for larger pipes or higher frequencies of inspection.

The resolution gain observed experimentally in 8 inch pipe at 50 kHz was 16 dB.

7.3 Future work

The reflection from part-depth defects has been shown to be frequency dependent in

section 4.4.2 and [19]. Therefore, the curve of crack depth against image amplitude

shown in figure 4.25 is only valid for cracks (zero axial extent) and an inspection

frequency of 50 kHz. This curve can be used to estimate the crack depth for any

pipe size with inspection at 50 kHz. However, this curve will vary with inspection

frequency since the crack depth as a fraction of the probing wavelength will vary.

The effect of the axial extent of the defect was briefly investigated in section 4.4.2.

The reflection from defects with finite axial extent is also frequency dependent since

the reflection depends on the axial extent expressed as a fraction of the probing

wavelength. Therefore, further work is needed to assess the frequency dependent

image response from part-depth defects with finite axial extent. It may be possible

to inspect over a range of frequencies and hence the frequency varying response

could be used to give more information about the defect shape.

The resolution of the proposed focused system is limited by the backscatter charac-

teristics of the cracks and slots studied here. A detailed study into different shaped

defects may lead to different defect backscatter characteristics which may, in turn,

191



7. Conclusions

lead to better resolution. Field trials and testing of the focused system with real

defects would also be beneficial.

The conventional imaging techniques presented here will always be limited by the

filtering of spatial frequencies by propagation in the background medium [83]; in this

case, the undamaged pipe wall. This spatial frequency filtering leads to difficulties

in imaging sub-wavelength features and gives rise to the ’diffraction limit’ [83], see

section 3.2.1. Imaging techniques which break this conventional resolution limit

are known as super resolution algorithms [94], for example, the MUltiple SIgnal

Classification (MUSIC) method [95,96]. These super resolution techniques have not

yet been developed for hollow cylinder geometries such as the pipes of concern here.

However, they have shown promising results for imaging using bulk ultrasonic waves

and some experimental work on guided wave imaging in plates [97]. They may yet

prove a valuable tool for sizing of small defects in pipes.
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Appendix A

The Angular Spectrum of Plane

Waves

A.1 The Physical Interpretation of the Angular

Spectrum

If a 2 dimensional monochromatic wave field is incident on a line (x,z=0) then let the

complex field across the z=0 line be represented as U(x,z=0). The spatial Fourier

transform over x is

A(fx; z = 0) =

∫ +∞

−∞
U(x, z = 0)e−j2πfxxdx (A.1)

The Fourier transform is a decomposition of a complicated function into a collection

of simple complex exponentials. The inverse Fourier transform of (A.1) is

U(x, z = 0) =

∫ +∞

−∞
A(fx; z = 0)ej2πfxxdfx (A.2)

In order to explain the significance of the functions in the integrand above, consider a

simple plane wave propagation with wavevector k whose magnitude is 2π/λ and has
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directional cosines (α, β). Such a plane wave has standard complex representation

p(x, z, t) = ej(k·r−ωt) (A.3)

where r = xx̂+zẑ is a position vector (x̂ and ẑ are unit vectors), and k = 2π
λ

(αx̂+βẑ).

Omitting the time dependence, the complex phasor amplitude of the plane wave

across a line of constant z is

P (x, z) = ejk·r = ej 2π
λ

αxej 2π
λ

βz (A.4)

Noting that the directional cosines are related by

β =
√

1− α2 (A.5)

Thus across the z=0 line, the complex exponential function exp(j2πfxx) can be

regarded as a plane wave propagating with directional cosines

α = λfx β =
√

1− α2 (A.6)

In the Fourier decomposition of U , the complex amplitude of the plane-wave com-

ponent of spatial frequency fx is simply A(fx, z = 0)dfx, evaluated at fx = α/λ. For

this reason the function

A(
α

λ
; z = 0) =

∫ +∞

−∞
U(x, z = 0)e−j2π α

λ
xdx (A.7)

is called the Angular Spectrum of the complex disturbance U(x, z = 0) whose com-

ponents represent plane waves travelling away from the z=0 line.

A.2 Propagation of the Angular Spectrum

Having decomposed the recorded wavefield (U(x, z = 0)) across the line z = 0

into plane waves using the Angular Spectrum, it is useful to see how the angular
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spectrum at a parallel line at z = d relates to the angular spectrum at z = 0. The

angular spectrum at z = d is defined by

A(
α

λ
; z = d) =

∫ +∞

−∞
U(x, z = d)e−j2π α

λ
xdx (A.8)

whose inverse Fourier transform is

U(x, z = d) =

∫ +∞

−∞
A(

α

λ
; z = d)ej2π α

λ
xd

α

λ
(A.9)

In addition, U must satisfy the Helmholtz equation,

∇2U + k2U = 0 (A.10)

in the absence of any sources. Applying this condition directly to (A.8) gives the

differential equation

d2

dz2
A(

α

λ
; z = d) + (

2π

λ
)2[1− α2]A(

α

λ
; z = d) = 0. (A.11)

The solution to (A.11) is of the form

A(
α

λ
; z = d) = A(

α

λ
; z = 0)ej 2π

λ

√
1−α2d. (A.12)

Therefore, the effect of propagation over a distance d is simply a change of the

relative phases of the components of the angular spectrum. Since each plane-wave

component propagates at a different angle, each travels a different distance between

the two parallel lines, and relative phase delays are thus introduced. The exponential

term in (A.12) is termed the propagator of the angular spectrum and can be shown

to be a linear space-invariant transfer function.
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