
IMPERIAL COLLEGE LONDON

TOWARDS NEXT GENERATION
ULTRASONIC IMAGING

by

Tim Hutt

A thesis submitted to Imperial College London for the degree of

Doctor of Philosophy

Department of Mechanical Engineering

Imperial College London

London SW7 2AZ

November 2011



Abstract

Recently the use of ultrasonic arrays for imaging defects in metal components has

become economically attractive in Non-Destructive Testing. Given a certain array,

the image quality strongly depends on how the measurements are process into an

image. The current state-of-the-art imaging algorithm in actual use is delay-and-sum

beamforming, which has a resolution capability that is fundamentally limited by the

physical approximation used to describe how waves interact with matter.

This thesis explores the practical use of alternative non-linear “super-resolution”

imaging algorithms that use more accurate physical models, and can theoretically

achieve unlimited resolution. This is made possible by utilising additional sources of

information contained within the measurements, in particular the small amplitude

multiply scattered signals.

The distribution of information contained in the measurements, and utilised by the

imaging algorithms is studied in the context of information capacity of signals. We

discover some insights into the limits of imaging which depend on the signal-to-noise

ratio.

The accuracy of non-linear imaging algorithms can be strongly dependent on the

accuracy of the measurements. Therefore several experiments are performed to

assess their performance in practice. The experimental implementation of these

methods poses a number of challenges, including removal of the incident field, and

compensating for array element directivity.

Super-resolution capability is demonstrated in a highly attenuative medium for the

first time. To further improve the image quality we explore the possibility of using

mirror reflections. This gives an increase in the effective aperture. We perform

simulated and experimental reconstructions of a complex scatterer and find that the

completeness of the image is improved.

The mirror interface also allows quantitative speed-of-sound imaging of penetrable

scatterers using the HARBUT algorithm. This is tested experimentally for the first
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Chapter 1

Introduction

1.1 Background

The remarkable advances in electronics and computing over the past half-century

have enabled a rapid succession of new ultrasound technologies. The ability to form

images of the interior of an object, merely by vibrating its surface has proven to be

an immensely useful tool for a wide variety of medical and industrial applications.

In medicine it allows us to see inside the body without using invasive surgery or

ionising radiation and in industry, ultrasound is used for Non-Destructive Evaluation

(NDE), where it enables damage to components caused by fatigue and corrosion to

be detected before it becomes critical.

The use of NDE to prevent component failure enables the implementation of damage-

tolerant or fail-safe design, in which systems can be designed with expected component

lifetimes shorter than the system lifetime [3]. The ability to detect and monitor

damage allows the remaining lifetime of a component to be measured after its

manufacture so safety factors can be less conservative, and parts can be replaced at

the end of their actual lifetime rather than before their minimum expected lifetime,

which was the previous approach (known as safe life design). This can be a more

cost effective approach provided that the cost of each inspection is inexpensive

compared to the cost of replacing components, and the time between inspections is
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sufficiently long that the number of inspections can be minimized throughout the

system lifetime. Additionally inspection is only worthwhile when the cost of failure is

high, so ultrasound NDE is often used in safety-critical systems such as rail and air

transport, and nuclear power. Similar cost considerations apply to medicine, where

ultrasound can be used to diagnose medical conditions. As with NDE there are costs

associated with failure to detect disease, but also with erroneous detections which

may result in unnecessary follow-up examinations, surgery and stress for the patient.

Ultrasound is widely used in both NDE and medical diagnostics [4]. This can be

attributed in part to the relatively good performance of ultrasound as a defect

detection method. The performance of ultrasound—and any screening or detection

method—is characterised by two metrics: the Probability of Detection (PoD) and the

Probability of False Detection (PoFD). In medicine two related parameters are used:

the sensitivity and specificity. If a method has high PoD (and therefore sensitivity)

it is good at detecting the target when it is present. If it has a low PoFD (high

specificity) it is good at not detecting the target when it is not present. The objective

is to achieve a high PoD and low PoFD simultaneously. Ideally the PoD will be

100%, and the PoFD will be 0% but in reality less perfect numbers such as 90%, 10%

will be found. The acceptable values of PoD and PoFD depend on the application

and the costs associated with incorrect detections.

With ultrasonic NDE, the PoD and PoFD also depend on the size of the defect we

wish to detect. Detecting small defects is more difficult than large defects because

the ultrasound reflects less strongly from them, and the reflections are therefore

hard to distinguish from other signals such as noise and reflections from component

features. The ability to detect small defects is the key to reducing costs, as it allows

earlier diagnosis in medicine and longer periods between inspections in NDE since it

takes longer for a small defect to grow to a critical size than a large one [5]. The

pursuit of higher PoDs and lower PoFDs is a key area of modern NDE research.

One way to raise the PoD and lower the PoFD is by imaging. In contrast with

medical ultrasound, imaging is not widely used in NDE. Instead, ad-hoc methods

are used that use the recorded signals (“A-scans”) directly rather than processing
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them into an image. The PoD and PoFD of image-based NDE depends on the

quality of the images, which can be characterised by a number of metrics including

contrast, resolution, noise level, artefacts, completeness and accuracy. The concepts

of contrast, resolution and noise are familiar from digital photography. Examples

of these factors are shown in figure 1.1 where they adversely affect the detection of

small features like the legs of a dragonfly. These metrics are affected by the array and

array controller performance and also the sophistication of the imaging algorithm

which is used to map the measurements to an image.

The maximum resolution of an image is subject to a trade-off with imaging depth.

An image’s resolution can be characterised by the Rayleigh criterion which is the

minimum separation at which two point scatterers are just resolvable. This separation

is proportional to the wavelength of the waves used for imaging, so higher frequencies

result in a higher image resolution. However, higher frequencies generally result in

higher attenuation and a shorter penetration distance. Therefore there is a trade-off

where low frequencies waves can achieve high penetration, but have low resolution,

and high frequency wave give high resolution but do not penetrate very far. The

frequency of waves that can be used is constrained by the penetration depth required

so arbitrarily high resolutions cannot be achieved. If imaging is constrained to low

resolution, it is difficult to detect and characterise small defects.

To see how ultrasound images can be improved we must discuss how they are

produced in the first place. The key to producing images is the use of ultrasonic

arrays. Ultrasound is produced using Lead Zirconate Titanate (PZT), a piezoelectric

material that expands and contracts when a voltage is applied across it. Single PZT

transducers can be used for the electronic generation and detection of ultrasound

but in order to produce an image without scanning the transducer it is necessary

to use an array of PZT elements so that ultrasonic waves can be transmitted from

and received at many locations simultaneously. This also provides more data than

scanning a single transducer since the transmit and receive locations can be different.

In their final form, arrays, and array elements are not formed of a solid block of PZT,

but from PZT composite—PZT rods or sheets embedded in a polymer matrix [6].

30



1. Introduction

a) b)

c) d)

Figure 1.1: Images of a dragonfly that are a) ideal, b) low resolution, c) noisy, and d)

low contrast. Certain features, such as its legs and the pattern on its wings, are rendered

invisible by the degradation. Photo by Billy Lindblom.

The PZT rods/sheets are diced mechanically from a solid block and the gaps are filled

with polymer. PZT composite has several advantages over bulk PZT. It expands

only in the desired direction, it can be deformed to make curved arrays for example,

and it reduces cross-talk between elements to allow them to operate independently.

The construction of a 1D four element array is shown in figure 1.2. The elements are

defined by their electrodes which span multiple PZT pillars.

The array is driven electronically by an array controller, which contains the electronics

necessary to generate and receive ultrasound. An array controller generates the input

wave for each element, and amplifies and digitises the received waves. Figure 1.3

shows a high level schematic of one channel. An input generator produces a high

voltage pulse or tone burst that causes the PZT to vibrate and produce waves.

These are reflected by component features and cause a weak electrical signal to be

generated by the PZT. This is amplified and digitised to be used for input to the

imaging algorithm. In recent years array controller technology has greatly advanced,

with increasing numbers of channels and a greater degree of parallel recording. For

example, a typical array controller from a few years ago may have 128 channels, and
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Figure 1.2: Typical construction of 4-element linear array. A composite of PZT pillars

in a polymer matrix is sandwiched between element electrodes. Each array element is made

from several pillars vibrating in concert.

be able to produce pulse trains and record 32 channels simultaneously, but systems

now are available with arbitrary wave generators, and that are capable or recording

up to 2048 channels in parallel (or more using multiplexing), a feat which produces

a vast amount of data and is only possible with the availability of large cheap RAM.

The ability to transmit and receive waves from many points in space is the key to

imaging as it allows the transmission and reception of focused waves.

Once an array has transmitted and received ultrasound waves, a particular imaging

algorithm is applied to compute an image from the measurements. Many imaging

algorithms exist, but one of the simplest and most intuitive is beamforming [7, 8].

Beamforming is equivalent to confocal microscopy [9], which works by focusing a

beam of light to a point inside the component and then focussing in reception on

the light scattered from that point. The magnitude of the scattered light depends

predominantly on the transmittance of the material at the focal point, so it is

used to colour the image at that point. In confocal microscopy, a lens is used

to focus the transmitted and scattered light (figure 1.4a), whereas in ultrasound
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Figure 1.3: A schematic showing the process of generating and receiving ultrasound for

one channel of an array. The input generator can be a pulse system, or an arbitrary

function generator and power amplifier. This signal is fed to the array element which

transmits the wave. The resulting weak reflected signal is amplified by a high gain amplifier

and digitised by an ADC.

an array of transducers is used instead (figure 1.4b). In both cases focussing is

achieved by delaying the waves that are received or transmitted at different points

along the aperture. In a lens the varying thickness produces greater delays at the

centre, whereas the delays in an array are produced electronically. Because these

electronic delays are not fixed they can be dynamically changed to produce focal laws

equivalent to any lens. Arrays can be made with elements laid out in a wide variety

of configurations, some of which are shown in figure 1.5. The geometry of the array

determines the range of locations that be focused on, and the size of the focal spot.

Currently the most common are 1D linear arrays, which only allow focusing—and

therefore imaging—in a plane. 2D arrays allow focusing anywhere, but need many

more elements to achieve this, and hence are only recently becoming more common

as high channel count array controllers become available. A review of the use of

arrays and focusing in NDE is given by Drinkwater [10].

The beamforming imaging method can be used identically in NDE and medical

ultrasound, however there are significant differences between tissue and metal that

make imaging in tissue easier, and have lead to its widespread use in medicine. The

most significant of these differences is the strength and distribution of scatterers. In

tissue, features such as blood vessels are generally weakly scattering and distributed

throughout the medium. In metal, scatterers such as cracks and voids are infrequent

and strongly scattering. This allows medical ultrasound to take advantage of speckle,
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a) b)
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Figure 1.4: In confocal microscopy (a) a lens is used to focus light at a point, and also

used to detect reflections from that point. By scanning the focal point an image can be built.

Ultrasonic beamforming (b) uses a similar approach, but an array of elements is used to

transmit and receive the focused waves, and usually the same array is used for transmission

and reception, although this need not be the case

a) b) c) d)

Figure 1.5: Common array geometries. a) 1D or Linear; b) “1.5D” or Hybrid; c) 2D

or Matrix; d) Annular. Although there are some common configurations, essentially any

geometry can be manufactured. Arrays also do not necessarily have flat faces, they can be

curved or even circular.
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a) b)
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Figure 1.6: A medical ultrasound image of the jugular (a), compared with an NDE image

of three side-drilled holes in a stainless steel block (b). The structure of the tissue and

blood vessels in (a) can be seen due to the speckle contrast, which cannot be seen in (b).

Additionally, the impenetrable nature of the holes results in shadowing of the backwall.

which is a random but deterministic pattern caused by the addition of the reflected

waves from randomly distributed point-like scatterers. A medical ultrasound image

showing speckle is shown in figure 1.6a. Although the speckle does not correspond

directly to physical features, its contrast does depend on the type of tissue. The

tissue is also penetrable which means we can see speckle throughout its volume. This

makes it possible to see the complete size and shape of features such as blood vessels

and even some individual cells. In contrast, speckle in metal is very weak, and the

impenetrable nature of the scatterers means that we can only see their top surfaces.

An example of this is shown in figure 1.6b, which shows three holes in metal above

an air interface. Only the tops of the holes can be seen, and they produce shadows

which obscure parts of the interface.

It can be seen from figure 1.6 that conventional beamforming imaging reveals

significantly less structure and detail in NDE than medicine. It is highly desirable to

improve the NDE image so that the complete shape of the scatterers can be seen and

higher resolution can be achieved, so that the PoD and PoFD may be maximised

and minimised respectively.

It can be shown that measuring the scattered waves from transmission of each element

of an array sequentially will result in “complete” scattering data. Any additional

measurements will be redundant. The optimal physical measurement procedure is
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therefore fixed. To improve image quality we must focus on how information is

decoded from the measured data to form an image. The central theme of this thesis

is that all information encoded in the scattered waves should be used in order to

achieve as high an image quality as possible. The volume of information can be

quantified and we look at how it is distributed in the temporal and spatial domains

of the measured signals. The sources of information were identified that are usually

neglected:

1. The multiply scattered signals that interact with multiple parts of the damage

(this includes shadows). These waves are small in tissue, but can be significant

in metal. Multiple scattering is the mechanism by which the high-resolution

spatial information is conveyed from non-propagating evanescent waves to the

vicinity of the array. This information is not considered by beamforming or

other linear imaging algorithms.

2. Signals received after the reflections from structural features of a component

(e.g. its outer surfaces). These are normally discarded but they allow us to

send and receive probing waves to and from the far side of the scatterers. In

essence the outside surfaces of the component can be used as mirrors to see

the far side of the scatterers, in the same way the far side of an object can

be seen if a mirror is placed behind it. The reflection of the waves from the

component boundaries allow a more complete reconstruction where all sides of

the scatterer can be seen, not just the side nearest to the array.

The information encoded in multiply scattered waves can be decoded using re-

cent “super-resolution” methods. These are highly sensitive to noise due to being

single-frequency methods. This is solved by using a time-domain super-resolution

algorithm which is demonstrated experimentally to achieve a resolution beyond

that of beamforming in an attenuative medium where maximum wave frequency

is highly constrained. The backwall reflection data can be incorporated into the

reconstruction, but it is necessary to know the position of the backwall so the path

of the reflected waves can be calculated. A method to measure this is developed and
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experimental results are given. Both techniques are further complicated by elastic

mode conversion.

These ideas have been introduced in other fields previously (and references will

be given later). However the results so far have been mostly theoretical and use

simulated data; it is not clear if they are feasible in practice. In this thesis we aim

to combine the two sources of information given above and to solve the practical

difficulties that have kept their use theoretical to date. The aim of this thesis is

therefore to improve the quality of ultrasound images in NDE (although the results

are applicable to other imaging fields including medical ultrasound and geophysics)

by utilising information that is usually discarded, focusing on multiply scattered

signals, and signals occurring after the back-wall echoes. These are studied from an

entropic information-encoding perspective. Utilising these two sources of information

should allow improvements to image resolution, accuracy and completeness, and

should ultimately lead to a higher PoD and lower PoFD, particularly when imaging

small defects.

1.2 Thesis Plan

The thesis is organised as follows:

In chapter 2, the forward and inverse scattering problems are formulated. The

forward scattering problem consists of finding the scattered wave field from an object,

give the object’s structure and the incident wave field. This is well-posed and easily

solvable. The inverse scattering problem is to find the object’s structure given the

incident and scattered wave fields. This problem is ill-posed and much harder to

solve. We will explain the classical imaging methods and how they lead to resolution

limits, and then introduce more advanced ‘super-resolution’ methods which break

those limits.

In chapter 3, we will look at how the information about the object structure is actually

encoded into the scattered wave fields. Shannon’s sampling theorem is extended to
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provide an upper bound on the amount of information embedded in the ultrasound

signals. This information is not distributed uniformly, but is concentrated in finite

regions of time, and temporal and spatial frequencies. This allows us to see where

classical algorithms are discarding information, and therefore how improvements to

the images might be obtained.

In chapter 4, we describe the theory, implementation and experimental results for

a broadband super-resolution algorithm. Super-resolution algorithms theoretically

allow exact reconstructions, however they are usually single-frequency methods which

makes them particularly sensitive to noise. By using a broadband method, the stabil-

ity of linear imaging methods can be retained, while still achieving super-resolution.

This is demonstrated by imaging two point scatterers in a highly attenuative medium

where super-resolution is most useful.

In chapter 5, the effect of elastic waves on the super-resolution algorithm is inves-

tigated. These provide additional complications to the imaging algorithms which

must be overcome. The broadband super-resolution method is tested experimentally

on EDM notches in an aluminium block.

In chapter 6, we look at the theory of using information contained in signals after

their reflection from the component edges. In other words the possibility of using the

backwall or side walls of a component as mirrors in order to gain a view behind a

scatterer and build a more complete image. The scattering operation is decomposed

into terms involving the mirror, and the effect of various parameters such as aperture

and noise on the quality of the reconstructions are considered.

In the penultimate chapter, the theory of chapter 6 is tested experimentally, and in

chapter 8 the conclusions and main contributions of the thesis are summarised.
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Chapter 2

Formulation of the Imaging

Problem

2.1 Background

This chapter introduces the physical and mathematical basis of the scattering and

imaging problems. The scattering and imaging steps effectively encode and decode

the scatterer’s structural information in the radiated wave fields. The imaging

operation is the inverse of the forward or direct scattering operation, so it is also

known as inverse scattering. While forward scattering transforms or maps the

scatterer’s physical structure onto disturbances to a wave field, inverse scattering

attempts to invert the process and recover the physical structure from the scattered

wave field.

The forward scattering problem is well posed [11], and a number of numerical methods

exist that provide nominally identical solutions. However, the inverse problem is

ill-posed [12] and many different imaging algorithms exist which can produce vastly

different results. The inverse scattering problem is also non-linear so the most

common algorithms provide approximate solutions by assuming the problem is linear.

After formulating the forward and inverse scattering problems, the linear beamforming
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imaging algorithm and its resolution limit will be described, and non-linear algorithms

will be introduced that can break this limit. This formulation will provide the

foundation for the following chapters where these advanced algorithms will be

described and investigated. It will also provide the tools needed to identify the areas

in which ultrasonic imaging can be improved.

2.2 Forward acoustic scattering

The forward scattering problem is that of calculating the response of an object

subjected to a known vibration. The input vibrations propagate through the object

as waves, according to laws of physics and the physical properties of the object. The

problem is to calculate these wave fields, given the input vibrations, the physical

model, and the material properties of the object. We will first derive a wave equation

that models the system, and describe its solution.

Consider a solid 3D medium, with material properties (density, Young’s modulus,

shear modulus, etc.) that vary with position x. Suppose a time-varying input

body force F (x, t) is applied, with F (x, t < 0) = 0, and the resulting displacement

of the material at each point is d(x, t), also with d(x, t < 0) = 0. The forward

scattering problem is then to find d(x, t) given the material properties and F (x, t)

and appropriate boundary conditions. The accuracy with which we can find the

solution to this problem depends on the accuracy of our physical model of wave

propagation. It is possible to consider a large number of physical phenomena, such as

thermal and viscous effects, but for most problems linear elasticity alone is sufficient.

Therefore we can model the forces in the material according to the Hooke’s law:

σ = C : ε (2.1)

where σ and ε are 2nd order stress and strain tensors, and C is the 4th order stiffness

tensors.1 By applying Newton’s laws of motion to an infinitesimal volume we find
1The stress, strain and stiffness vary with position, but we have dropped the explicit reference
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that the displacement must obey the following partial differential equation [13].

ρ d̈ = (λ+ 2µ)∇(∇ · d)− µ∇× (∇× d) + F (2.2)

where ρ is the density. This is Navier’s equation, the vector or elastic wave equa-

tion [14]. It can also be written using the vector Laplacian ∇2 = (∇ · ∇) as

ρ d̈ = (λ+ µ)∇(∇ · d)− µ∇2d+ F , (2.3)

where λ and µ are the Lamé constants. The forward scattering problem is then

to find d(x, t) given λ(x), µ(x) and F (x, t), and boundary and initial conditions.

Although numerical solutions to this equation are readily available, inverse scattering

with elastic waves is significantly more difficult than with acoustic waves. Therefore,

in medicine, NDE and geophysics, elastic waves are usually analysed as if they were

acoustic. This is not without motivation because elastic waves can be decomposed

into the superposition of acoustic and a shear waves. This is known as the Helmholtz

decomposition.

2.2.1 Helmholtz Decomposition

The Helmholtz theorem states that any vector field d can be decomposed into a

solenoidal field dt with ∇ · dt = 0 and an irrotational field dl with ∇ × dl = 0,

provided the divergence and curl of d vanish at infinity. Then

d = dt + dl (2.4)

dt = ∇× s dl = ∇p (2.5)

to x for brevity.
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Where s is a vector potential, and p is a scalar potential. Note that ∇ · ∇ × s = 0

and ∇×∇p = 0. Because we have decomposed a vector field into a vector and scalar

field, we have added an additional degree of freedom. This degree of freedom arises

from the fact that multiple vector potentials s correspond to identical values of dt.

In general, ∇× s = ∇× (s+∇m) where m is a continuously differentiable scalar

field. In order to fix this we must choose a guage condition so that s only has two

degrees of freedom.

Due to the linearity of equation (2.2), any solution can be split up into the two

solutions dt and dl. Substituting dt and dl into equation (2.2) gives the following

equations.

ρ d̈t = −µ∇×∇× dt + Ft (2.6)

ρ d̈l = (λ+ 2µ)∇(∇ · dl) + Fl (2.7)

The identity ∇ × ∇ × d = ∇(∇ · d) − ∇2d can be used with equation (2.6) to

eventually obtain

ρ
∂2dt
∂t2

= µ∇2dt + F ′t (2.8)

(recall ∇ · dt = 0). Again ∇2 is the vector Laplacian and is defined as ∂2

∂x2
i
(the same

as the scalar Laplacian). Since µ and ρ are both positive we can substitute c2
s = µ

ρ

to give the transverse (shear) wave equation

∂2dt
∂t2
− c2

s∇2dt = F ′
t (2.9)

where F ′
t =

Ft

ρ
and cs is the bulk velocity of shear waves in the material. For 2D

waves, s is a scalar (or equivalently, its x and y components are zero, and there is only

one shear potential component. In 3D there are three shear potential components
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(corresponding to shear in the X, Y and Z axes), but only two possible shear waves

that can travel in a certain direction—horizontally and vertically polarised waves.

Now we take the divergence of equation (2.7) to obtain

ρ∇ · ∂
2dl
∂t2

= (λ+ 2µ)∇2(∇ · dl) +∇ · Fl (2.10)

Using the following substitutions

p = ∇ · dl (2.11)

F ′l = ∇ · Fl (2.12)

and the fact that ∂2p
∂t2

= ∇ · ∂2dl

∂t2
we find

ρ
∂2p

∂t2
− (λ+ 2µ)∇2p = F ′l (2.13)

Now ρ and λ+ 2µ are positive, so we can replace them with c2
l = λ+2µ

ρ
to give the

longitudinal wave equation:

∂2p

∂t2
− c2

l∇2p = F ′l (2.14)

where cl is the bulk velocity of longitudinal waves in the material. Equations (2.9)

and (2.14) describe two independent wave fields of dilatory and deviatoric stresses.

These fields are only independent where there is no restriction on the total wave

field d. At scatterers they are dependent and mode conversion can occur. However,

in the bulk material the equation for longitudinal waves is identical to the acoustic

wave equation. In other words, P-waves in solids behave identically to acoustic waves

when they are not scattering. The acoustic wave equation is
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∂2p

∂t2
− c2∇2p = F ′l (2.15)

where c is the wave speed and p(r, t) is the pressure field.

2.2.2 Solution of the Acoustic Wave Equation

In order to solve equation (2.15), we first solve the problem for a point source

F ′l = δ(r, t) (where δ is the Dirac delta function).

The Green’s function is the solution to

∂2p

∂t2
− c2∇2p = δ(x, t) (2.16)

which in 3D is given by

p(x, t) =
δ(t− |x|

c
)

4π|x| (2.17)

and in 2D by [15]

p(x, t) =
H(t− |x|

c
)√

t2 − |x|2
c2

(2.18)

where H(·) is the Heaviside step function. Convolution of a time-varying point

source with the 3D Green’s function results in a travel-time delay, and attenuation

due to geometrical beam-spreading, and is simple to calculate. On the other hand,

convolution with the 2D Green’s function results in a complex frequency-dependent

distortion of the waveform that is difficult to calculate due to the singularity at t = 0.

However, due to linearity the solution can be simplified by Fourier transforming the

problem into the frequency domain, thereby removing the time dependence of p(x, t).

The spatial variation of p(x, t) at a particular frequency is denoted u(x, ω)2, such
2In this thesis u is pressure in the frequency domain, not displacement.
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that

p(x, t) = 1
2π

ˆ
u(x, ω)e−iωtdω (2.19)

where ω is the angular frequency. u is complex in general. For a single frequency ω,

this transforms the scalar wave equation into the Helmholtz equation

∇2u+ k2u = F (2.20)

where k = ω/c is the angular wavenumber and we have re-purposed F to be

the Fourier component of F ′l . This equation can be solved analytically in free

space, however this implies that the material properties are constant, in which case

no scattering can occur and the solution will be trivial. There are two ways of

modelling scatterers, depending on whether they are penetrable or impenetrable.

For impenetrable scatterers, a boundary condition such as Neumann or Dirichlet is

enforced on the scatterers surface. For sound-soft (empty) scatterers the Dirichlet

condition applies (u = 0); for sound-hard (rigid) scatterers the Neumann condition

applies ( ∂u
∂n

= 0, where n is the surface normal). Penetrable scatterers can be

modelled using a variable k within the scatterer. This is made more convenient by

using the object function.

2.2.3 The Object Function

Consider a penetrable scatterer with support D. The object function is defined as

o(x) = k2
d(x)
k2 − 1 x ∈ D (2.21)

where kd(x) is the wavenumber in D and k is the background wavenumber.3 This

alteration to the wavenumber can be considered to be an external forcing function
3In this thesis o stands for ’object’, and is not related to little-o notation.
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located at the scatterer such that F = −o(x)k2u. Then equation (2.27) becomes

∇2u+ k2(1 + o(x))u = 0 (2.22)

∇2u+ k2u = −k2o(x)u (2.23)

It is helpful to decompose the physical field (the total field) u into the incident field

ui and the scattered field us so that

u = ui + us. (2.24)

Therefore we have the equation

(∇2 + k2)(ui + us) = −k2o(x)u (2.25)

and we define the incident field as the solution where there are no scatterers

(∇2 + k2)ui = 0. (2.26)

These equations can be solved using the Green’s function of the Helmholtz equation

which is the solution to:

∇2u(x) + k2u(x) = δ(x− x′) (2.27)

subject to the Sommerfeld radiation condition which precludes non-physical solutions

containing incoming waves [12]. In 3D this gives the Green’s function

G3D(x,x′) = − eik|x−x
′|

4π|x− x′|
(2.28)
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and in 2D

G2D(x,x′) = − i4H
(1)
0 (k|x− x′|). (2.29)

where H(1)
0 is the Hankel function of the first kind and order 0. This form can be

very accurately approximated where |x− x′| > k−1 as

G2D(x,x′) = − i+ 1
4
√
πk|x− x′|

eik|x−x
′|. (2.30)

Using the standard Green’s function method it can be shown that

us(x) = −k2
ˆ
D
o(x′)u(x′)G(x,x′)dx′. (2.31)

If we set the incident wave to a plane wave travelling in the r̂ direction, eikr̂·x we

have

u(x) = eikr̂·x − k2
ˆ
D
o(x′)u(x′)G(x,x′)dx′. (2.32)

This is called the Lippmann-Schwinger equation [16]. It describes how the total wave

field depends on the incident wave and recursively on its own values within D. This

reflects the way the waves bounce repeatedly between scatterers and is the source

of the forward scattering problem’s non-linearity in o(x). In other words, suppose

we have two different object functions, o1(x) and o2(x) subject to the same incident

field that produce total fields u1(x) and u2(x). Then the field for an object function

o1(x) + o2(x) is not equal to u1(x) + u2(x). It can also be seen that this equation is

linear with respect to ui(x).

Many methods have been created to solve the forward scattering problem. They

can be divided in to two categories, volumetric simulations and boundary value

simulations. The two main volumetric simulation methods are the Finite Difference
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D ∂D

ui
∞(x̂)

a) b)

us
∞(x̂)

Infinite distance (not to scale)

Figure 2.1: a) In the far-field scattering problem an incident wave ui∞(x̂) illuminates

the scatterer. b) The incident wave interacts with the scatterer, which is labelled D with

boundary ∂D, and produces a scattered wave us∞(x̂). The far-field scattering problem is to

determine us∞(x̂) given ui∞(x̂).

Method (FDM) [17] and Finite Element Method (FEM). They calculate the wave

fields throughout the entire volume, based on a direct discretisation of the wave

equation and can be formulated in the frequency domain or the time domain.

Boundary value methods are based on the Green’s function of the wave equation, so

they can skip direct calculation of field values at points other than the boundaries.

They can generally only be formulated in the frequency domain, due to the complexity

of Green’s function in the time domain (in 2D at least). Because they only calculate

the fields at boundaries, they can be very fast, but scale badly with scatterer size,

and are also not suitable for penetrable scatterers with varying kd. Examples of these

methods include the Boundary Element Method (BEM) [18] and the Distributed

Point Source Method (DPSM) [19]. In this thesis we have used both FDM, and

BEM.

2.2.4 Far-field scattering

In the physical world we cannot excite and measure the wave fields at every point, but

rather at a set of points in the far-field of the scatterer. Standard far-field formulations

consider measurements at an infinite distance, so that only propagating waves can be

48



2. Formulation of the Imaging Problem

measured, and measurements are performed outside the scatterer, D. In the far-field,

wave fields can be separated in polar coordinates, so that u(x) = Γ(|x|)u∞(x̂), where

x̂ = x
|x| . The radial component, Γ(|x|) only depends on geometric beam-spreading

and the direction of the waves (incoming or outgoing), and is independent of the

scatterer. Therefore only the angular component u∞(x̂) contains information about

the scatterer. The far-field forward-scattering problem is then to find us∞(x̂) for all

directions x̂ given ui∞(x̂), as shown in figure 2.1. The subscript ∞ refers to the fact

that these are measurements of only the angular component of the fields and are

taken at an infinite distance from the scatterer. The far-field is given by

Γu∞(x̂) = lim
x→∞

u(x) (2.33)

where Γ given by

Γ3D = − e
ikx

4πx (2.34)

Γ2D = −(i+ 1)eikx

4
√
πkx

. (2.35)

and we have used the notation x = |x|. This is valid for out-going wave fields; for

incoming waves such as ui(x), Γ∗ is used instead.

We can calculate the result of propagation of near-field waves to and from the

far-field using the paraxial approximation of the Green’s function. The paraxial

approximation is limx→∞ |x − x′| = x − x·x′

x
(see figure 2.2) and it allows us to

consider only the angular component of G as with u∞. We have (Γ has the same

definition as before)

lim
x→∞

G(x,x′) = ΓG∞(x̂,x′) (2.36)

where G∞ is a plane wave given by
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x′

x

|x− x′|

x′·x
|x|

Origin
|x| − x′·x

|x|

Figure 2.2: The paraxial approximation. When |x| is very large, the component of x′

perpendicular to x can be ignored when calculating the distance from x′ to x, therefore

|x− x′| ≈ |x| − x′·x
|x|

G∞(x̂,x′) = e−ikx̂·x
′
. (2.37)

We can now find the incident near-field due to an incident far-field wave with density

ui∞(r̂).

ui(x) =
ˆ
S

ui∞(r̂)G∗∞(r̂,x)dr̂ (2.38)

where integration is performed over all angles (or solid angles) on the unit circle (or

sphere) S. From equation (2.31) we obtain

us∞(x̂) = −k2
ˆ
D
o(x′)u(x′)G∞(x̂,x′)dx′. (2.39)

These two equations map the incident far-field to the near field, and then the total (or

scattered) field in the object u(x) to the scattered far-field us∞(x̂). As was mentioned

previously, scattering is linear in ui(x̂) and therefore o determines a linear operator

which maps from ui∞(x̂) to us∞(x̂). That operator is called the far-field scattering

operator F , and

us∞(x̂) = Fui∞(x̂). (2.40)

Because this operator is linear the scattered field resulting from any incident field
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transmitted from the far-field can be calculated from a linear combination of the

scattering of incident plane waves. We can now define the scattering amplitude

v(r̂, x̂) as the solution to equation (2.40) for ui∞(x̂) = δ(x̂ − r̂), which is a plane

wave incident in the r̂ direction. Therefore each value of v(r̂, x̂) corresponds to the

complex amplitude of the scattered wave in direction x̂ due to an incident wave in

direction r̂. Using v(r̂, x̂) we can calculate the scattered wave resulting from any

incident wave giving the explicit form of F as [20, 21]

Fui∞(x̂) =
ˆ
S

ui∞(r̂)v(r̂, x̂)dr̂. (2.41)

v(r̂, x̂) can be measured experimentally or calculated (assuming o(x) is known) by

transmitting all possible incident plane waves, and recording the resulting values of

us∞(x̂) in each case, thus allowing F to be found.

In far-field imaging, the far-field waves are the only data that is accessible, and all

knowledge about the scatterer is obtained by transmitting waves from the far-field

and measuring the perturbation to the incident field. If we have complete knowledge

of F we can calculate the result of any scattering experiment, and can therefore learn

all information that can be learnt by performing actual scattering experiments. Since

v(r̂, x̂) uniquely defines F , it must also contain all information about the scatterer

accessible from the far-field. We can conclude that any imaging algorithm with access

to v(r̂, x̂) or F cannot be improved by additional scattering measurements. Note

that this is assuming that scattering is linear, and neglecting random noise—images

can of course be improved by averaging repeated measurements of v(r̂, x̂) to reduce

the noise level [7].

2.2.5 Spaces and Operators

There are a number of spaces and operators that map between them that are involved

in the scattering problems. We have already seen that the far-field operator F maps

incident far-field waves to scattered far-field waves. These waves correspond to a
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Scatterer Complete measurements

Incident far-field Scattered far-field

o(x)

k-space

O(X)

ui
∞(r̂) us

∞(x̂)

v(r̂, x̂, k)

Far-field scattering operator

F−1

F

Imaging

M

M−1

a)

b)

Far-field operator

F

Complete far-field scattering

Figure 2.3: a) The far-field operator, F maps any incident far-field to the corresponding

scattered far-field for a particular scatterer. b) The Moperator maps the scatterer (repre-

sented by o or in the frequency domain by O) to the complete set of far-field measurements

v, and therefore also F which depends only on v.

single scattering experiment, but F itself is defined by the result of all possible

scattering experiments which depend only on o(x). Therefore there exists a mapping

from o(x) to v(r̂, x̂, k)4 (and therefore F ) which we shall call the complete far-field

scattering operator M such that

v(r̂, x̂, k) = Mo(x). (2.42)

Its inverse is the imaging operator M−1. Unlike F , these operators are non-linear

and M−1 is ill-posed and generally hard to calculate. These mappings are shown

in figure 2.3. The problem of calculating M−1 is inverse scattering, or imaging,

and its formulation is the subject of the rest of this thesis. In practice, a complete

measurement of v is impossible and only a sub-set is known. This causes M−1 to be

increasingly ill-posed [21].

Because F operates from the far-field, it can be decomposed into three distinct

sub-operators. These sub-operators are formed by segregating space into two regions

along the boundary of the scatterer, ∂D. Because the field in a region is determined

by the value and normal derivative of the field on its boundary, the fields inside
4Henceforth we have made the dependence of v on k explicit.
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and outside D are coupled by the value and normal derivative of the field on ∂D.

Therefore we can decompose F into an operator that maps the far-field incident

waves to ∂D, then to the scattered wave field on ∂D, and finally to the far-field

scattered waves. The first sub-operator is the Herglotz operator, H∗ and was already

given in equation (2.38). It maps an incident far-field wave with density us∞(r̂) to

the incident field on the boundary of the scatterer.

H∗ui∞(r̂) = ui(x) x ∈ ∂D (2.43)

The second operator, S, maps ui(x) on ∂D to a continuous distribution of monopole

and dipole sources on ∂D that produce the scattered field. Its form depends on the

type of scatterer and the scattering model. For impenetrable scatterers it is exactly

the operator implemented by the Boundary Element Method (BEM). This results in

a set of point sources on the boundary of scatterer that result in a scattered field

that satisfies the boundary conditions on D:

Sui(x) = g(x) x ∈ ∂D (2.44)

The final stage is propagation of the scattered field on ∂D back to the far-field. This

is simply given by

Hg(x) = us∞(r̂) x ∈ ∂D (2.45)

where H is the adjoint of H∗ and is calculated as follows

us∞(r̂) =
ˆ
∂D
g(x)G∞(r̂,x)dx x ∈ ∂D (2.46)

Therefore the far-field scatterer F is decomposed as
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H

H∗

SFar-field

∂D

Figure 2.4: Factorisation of the far-field operator.

F = HSH∗. (2.47)

This factorisation is shown in figure 2.4, and is used for an inverse scattering method

called the Factorisation Method. It is useful because H only depends on ∂D, so if

we can find H (and it turns out we can), then we can determine ∂D and produce an

image of the support of the scatterer. For impenetrable scatterers this provides a

complete image of the scatterer. This method will be described in a later chapter.

The next section discusses inverse scattering using linear methods and penetrable

scatterers, for which we attempt to recover o(x) rather than just ∂D.

2.3 Inverse scattering

The inverse scattering—or imaging—problem is to construct an explicit form of M−1

that allows calculation of o(x) given v(r̂, x̂, k). The mapping between o(x) and

v(r̂, x̂, k) is unique [12, 22]. This uniqueness means that given exact knowledge of

v(r̂, x̂, k) we can exactly reconstruct o(x) with unlimited resolution and accuracy.

However in reality our measurement of v(r̂, x̂, k) is limited by finite sampling and

corruption of the measurement by noise and sensor inaccuracies, therefore we do

not have exact knowledge of v(r̂, x̂, k) and cannot exactly recover o(x). A small
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amount of noise can have a large effect on our estimation of o(x) because M−1 is

ill-posed [12]. This means that the value of v(r̂, x̂, k) does not vary continuously

with o(x) and a small uncertainty in the value of v(r̂, x̂, k) (due to noise) can lead to

an arbitrarily large uncertainty in the value of o(x) resulting in significant ambiguity

as to which value of o(x) caused the measured v(r̂, x̂, k).

In addition to the problems of ill-posedness, the non-linearity of M−1 makes an

explicit formulation difficult, and to date none have been found. A simple implicit

method for calculating M−1(v(r̂, x̂, k)) is to treating it as an iterative optimisation

problem. M(o(x)) is simple to calculate, so we can attempt to find an estimate of

o(x), ô(x) that minimizes

ô(x) = argmin
ô(x)

‖M(ô(x))− v(r̂, x̂)‖ (2.48)

under a suitable norm. However the o(x) search space is generally vast and contains

many local minima. Despite this, and the time-consuming nature of repeatedly

calculatingM(ô(x)) there are successful implementations of iterative methods. These

are often made feasible by using a simplified version of M and hierarchical search

techniques in which progressively high resolution estimates of o are sought [23, 24].

Because of the problems of using iteration, classical imaging methods provide closed

form solutions to linearised approximations of M .

2.3.1 Classical Imaging Methods

In order to make non-iterative imaging tractable, a linear scattering approximation

is often used. The most common are the Born, and Rytov approximations [25]. The

Born approximation linearises M by modelling the scattered field as an addition to

the total field whose magnitude is small. It provides a linear relationship between

the values of the scattered field and o(x). The Rytov approximation assumes that

the scattered field may have a large magnitude, but causes a small phase change in

the total field, and provides a linear relationship between the phase perturbation
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and o(x). Of the two, the Born approximation is more commonly used.

The Born approximation ofM ,MBorn allows a direct non-iterative form ofM−1,M−1
Born

to be explicitly formulated that is well-posed and exact. The Born approximation is

based on the observation that for weak scatterers, we can approximate

us � ui (2.49)

in equation (2.39) to give

us∞(x̂) = −k2
ˆ
D
o(x′)ui(x′)e−ikx̂·x′

dx′. (2.50)

This is now linear in o(x), and hence MBorn and M−1
Born are linear and well-posed [26].

Both operators have simple explicit forms which allow fast but approximate imaging.

The simplest exact derivation of M−1
Born leads to a classical imaging algorithm known

as Diffraction Tomography (DT), which at the high frequency limit is equivalent to

Filtered Back-Projection from X-ray CT [27] (an alternative way to calculate the

DT image is using Filtered Back-Propagation [28]). Two linear methods based on

the Born approximation will now be discussed in detail: diffraction tomography, and

beamforming.

2.3.2 Diffraction Tomography

The Born approximation, specifically the first-order Born approximation (because it

assumes single scattering) allows a direct mapping from v to the spatial frequencies

of o(x) which is called the k-space.

O(X) = F [o](X) (2.51)

where F denotes the Fourier transform. If we consider an incident plane wave

56



2. Formulation of the Imaging Problem

ui(x′) = eikr̂·x
′ then from equation (2.50) the scattering amplitude under the Born

approximation is

v(r̂, x̂, k) = −k2
ˆ
D
o(x′)eik(r̂−x̂)·x′

dx′ (2.52)

which is proportional to O(k(r̂ − x̂)). Therefore we have the direct mapping

v(r̂, x̂, k) ∝ O(k(r̂ − x̂)). (2.53)

This is the basis of DT. It shows that for a particular illumination direction r̂ and

wavenumber k, values of O(X) on a sphere (or circle in 2D) known as the Ewald

sphere (or circle) can be measured (shown in 2D in figure 2.5). By sampling v(r̂, x̂, k)

at a number of points we can determine the values of O(X) for many values of

X and inverse Fourier transform this data to obtain o(x). The maximum spatial

frequencies of o(x) are obtained when x̂ = −r̂ and lie on the Ewald limiting sphere

(or circle).

Implementation of DT requires finding the values of O(X) on a regular grid of points.

This is not trivial because a regular sampling of v(r̂, x̂, k) maps to an irregular

sampling of O(X) in the spatial frequency domain, so the Fast Fourier Transform

cannot be used directly and values must be interpolated, either in the v(r̂, x̂, k) or

O(X) domains. Therefore the complete DT algorithm is (shown in figure 2.6)

1. Transmit and receive many plane waves.

2. Each transmission, reception and wavenumber combination directly gives the

value of a point in the k-space.

3. By transmitting and receiving many waves, the k-space is populated on an

irregular grid.

4. The samples are interpolated onto a regular grid, which can be inverse Fourier

transformed to obtain o.
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Xy

Xx

kr̂

−kx̂2k

Ewald limiting circle

Ewald circle

Figure 2.5: The Ewald circle and the Ewald limiting circle. Outside the Ewald limiting

circle, spatial frequencies of the scatterer cannot be measure using DT. But within it, every

point can be measured by illuminating and observing the scatterer from many directions r̂

and x̂.
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−kx̂
D
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Figure 2.6: Scattering measurements and interpolation in the k-space for diffraction

tomography. See the main text for a description.
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An implementation that is very fast for linear arrays, where only a subset of v

is sampled, is the wavenumber algorithm [29]. This also takes into account the

production of plane waves from a linear array of point sources.

DT provides an exact method for calculating M−1
Born, and therefore an optimal

reconstruction of o(x) where the Born approximation applies. In order for the Born

approximation to be valid, we require us(x) � ui(x). Several conditions for the

satisfaction of this criterion have been proposed [30]. The simplest is [31]

o(x)kL� 1 (2.54)

where L is the characteristic size of the scatterer. An extension of this is [32]

o(x){1, kL, (kL)2} � 1 (2.55)

which means that the scatterer not only has to be weakly scattering (o(x) � 1),

but also small compared to the wavelength. In practice, DT is rarely used. Instead

imaging based on Beamforming (BF) is used, which does not produce accurate

images even if the Born approximation is satisfied, but is much easier to implement

and understand.

2.3.3 Beamforming

Beamforming is a principle that is useful in all wave-related fields. It is the process

of producing a focused wave (“forming a beam”) through the use of an array of

phased transmitters (or receivers for focusing in reception) [7, 8, 33]. This is used

in radar [8], Synthetic Aperture Radar (SAR) and Synthetic Aperture Sonar (SAS)

imaging [34], microwave telecoms [35], acoustic imaging [36], and essentially any

situation involving an array of wave transmitters or sensors. There are also a number

of similar algorithms based on the same principle, such as the Synthetic Aperture

Focusing Technique (SAFT) [37].
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Physically, beamforming5 works by sending a focused wave to each point in the

object, and focusing on reflections from that point. The corresponding pixel in the

image is coloured according to the magnitude of reflections. A beam is formed that

focuses on a point by transmitting a wave packet from each transmitter, delayed

such that they arrive at the focal point simultaneously. An example of this is shown

in figure 2.7 for a line of point sources. To focus on reflections from a point, delays

are applied to the recorded signals so that the reflections arrive at each receiver

simultaneously. This process is often performed electronically using a delay-and-sum

beamformer, but its results can also be calculated numerically using F . The value of

the BF image at a point is given in the frequency domain by6

ôBF (x′) = −
ˆ
S

ˆ
S

v(r̂, x̂)
[
k2G∗∞(r̂,x′)G∞(x̂,x′)

]−1
dr̂dx̂ (2.56)

= −k−2
ˆ
S

ˆ
S

v(r̂, x̂)G∞(r̂,x′)G∗∞(x̂,x′)dr̂dx̂. (2.57)

In this context the Green’s functions are called the steering functions or focal laws,

as they produce the phased waves that steer the wave to the focal point at x′. It has

been shown in [38] that for a full-view configuration, the estimate of o(x) produced

by BF, ôBF (x) is a filtered version of ôDT (x) and therefore the DT image may be

obtained by deconvolving the BF image. This is the approach used by HARBUT [39],

because it allows calculation of the DT image in a medium with slowly varying

background sound speed. However, since ODT (X) = 0 ∀X > 2k, both methods

have the same fundamental resolution limit.
5A short note on nomenclature: when we use the word “beamforming” in this thesis it refers to

imaging using beamforming. Strictly speaking this usage is not correct as beamforming can be used
for other purposes.

6Note that the simplification of the inverse only applies because we are using the far-field
measurements, and G∞ (equation 2.37) does not include the geometric beam-spreading term. If
imaging using near-field transducers we must use the G−1

∞ form.
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Phased line source

Focal point

Figure 2.7: An example of time-domain beamforming. The images show successive points

in time as a wave is transmitted from a line of point sources and converges on a focal point.

The transmission by each point on the line is delayed and apodized in order to produce a

wave that converges on the focal point in the forth image. The delays are directly calculated

from the distance from the focal point to each source point.
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2.4 Resolution Limits

From our previous discussion of DT it was found that the maximum spatial frequencies

of o(x) are obtained when x̂ = −r̂ and lie on the Ewald limiting sphere (or circle).

This limit means that spatial frequencies with |X| > 2k cannot be retrieved. One

definition for the resolution of an image is the maximum spatial frequency content of

the image. Using this definition any image formed assuming the Born approximation

will have a resolution limit of 2k.

The reason for this resolution limit can be seen intuitively by considering the

scattering of a single plane wave from a collection of point scatterers, as shown

in figure 2.8. Under the Born approximation, each scattered wave is independent

and the phase of the scattering from each point depends only on the total distance

ai + bi (assuming the scatterers have the same scattering coefficients). The scattered

waves with similar (ai + bi) modλ will sum coherently. These points correspond

to the interference pattern between the planar wave fronts. Any spatial variations

that occur at a different wavenumber to the interference pattern will not contribute

to the scattered wave in the x̂ direction. The interference pattern with maximum

wavenumber occurs for pulse echo measurements where the wavenumber is 2k.

The Born approximation that led to the resolution limit results from the neglection

of multiply scattered waves. We can see how multiply scattered waves affect the BF

image by considering the Singular Value Decomposition (SVD) of F , which is given

by

F =
∞∑
n=1

σn|ξn〉〈ψn| (2.58)

F |ψn〉 = σn|ξn〉 (2.59)

F ∗|ξn〉 = σn|ψn〉 (2.60)
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Figure 2.8: Scattering from independent scatterers to the far-field depends only on the

distances ai and bi (and the scattering coefficients of the scatterers). See the main text for

a complete description.

where F ∗ is the conjugate transpose of F and the ket symbol is used according to

Dirac’s bra-ket notation [40]. Note that F is symmetric due to reciprocity, and

therefore F̄ = F ∗ where F̄ is the complex conjugate of F . Now it can be seen why

the left singular vectors (ξn) with non-zero σn correspond to the range of F . It can

be seen that equation (2.59) corresponds to a normalised incident far-field wave

ui∞ = |ψn〉 which results in a scattered wave us∞ = |ξn〉 with magnitude σn. Therefore

we can immediately see that when σn = 0, |ψn〉 is a non-scattering wave field. The

other singular vectors correspond to independent wave fields that capture different

aspects of the scattering. These are sorted by the magnitude of the reflection, σn
which corresponds to the scattering strength of the features each incident wave field

interacts with.

The singular values of an example scatterer are shown in figure 2.9. The F operator

was measured by simulated scattering (using BEM) of the kite and circle scatterer

shown in the figure and the first 100 singular values are plotted on a log scale.

The scatterer is a void, with the boundary condition u(x) = 0;x ∈ ∂D, and is

approximately 3λ across. Therefore the first few singular values will produce fields
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that strongly scatter from the large features of scatterer (i.e. its overall shape), and

will be a low order field. These are shown in figure 2.10. Two things that can be seen

from this figure. First, the lowest singular values (the first two are shown) produce

incident fields with high magnitude on the boundary of the scatterer and low spatial

frequency which scatter strongly. The small singular values produce fields that are

very weak on the scatterer. As this makes it hard to see the actual field values on

the scatterer, these have been plotted separately in figure 2.11. The figure shows the

incident field values produced by the right singular vectors (|ψn〉) on ∂D. From this

figure we can also see that as n increases and the magnitude of σn decreases, the

incident field on the scatterer not only increases in spatial frequency, but has more

energy conentrated in the occluded surfaces between the kite and the circle.

An alternative interpretation of the SVD is found by considering a random incident

field. This random field can be decomposed into the sum of the right singular

vectors (|ψn〉) with random phase, and hence the resulting field is the sum of σn|ξn〉

with random phase. Therefore, the singular values correspond to how much of the

reflection of a random incident field is made up of that left singular vector. Since a

random incident field will produce little energy between the circle and kite (because

it is occluded), it will not affect the scattering much. The small details that do

not affect the scattered field much are encoded in small singular values (and their

associated vectors).

We can now see how the components of F are weighted in the BF:

ôBF (x) = 〈gz|F |gz〉

=
∞∑
n=1

σn〈gz|ξn〉〈ψn|gz〉

where |gz〉 = G∞(x̂, z). Therefore the BF image is dominated by the fields with large

singular values, and hence the small singular values which contain high resolution

and occluded detail will be lost. The retrieval of this high resolution data is called

super-resolution.
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Figure 2.9: The first 100 singular values corresponding to scattering from the sound-soft

“kite” and circle scatterer shown. It can be seen that the singular values quickly become

extremely small. Theoretically the downward trend would continue, however the addition of

noise raises the singular values to an approximately constant level. In this case the noise

is actually caused by the finite numerical precision.
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Figure 2.10: The magnitude of the incident fields produced by some right singular vectors

(〈ψn|) for n = 1, 2, 20, 30, 40, 60. The higher magnitude singular values produce fields

with higher incident values on the scatterer surface which therefore scatter strongly. The

magnitude of reflection is determined by the singular value, so zero singular values produce

non-scattering fields. Note that the singular vectors are normal, so the power of the

transmission is constant.
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Figure 2.11: The real component of the incident field on the surface of the scatterer for

fields shown in figure 2.10. Note that the scale of each sub-plot is different, and that the

fields are more rapidly varying for small singular values. They also tend to have more

energy concentrated within the occluded area between the two scatterers.
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2.5 Super Resolution

One way to achieve super-resolution (the measurement ofO(X > 2k)) is by measuring

the near-field of the scattered waves. The near-field can contain evanescent waves

which have temporal frequency ω, but spatial wavenumbers greater than ω
c
. These

properties mean that they cannot propagate losslessly through free-space. Evanescent

waves are generated when the field values on the boundary of the scatterer vary

rapidly enough that no plane waves can exist with compatible field values on the

boundary.

Although they may sound exotic, evanescent waves are not strictly a distinct phe-

nomenon from normal scattering, and can only truly occur with infinite boundaries.

The simplest case to consider is a line of point sources at y = 0 in 2D. If the

monochromatic source at a point x = (x, 0) is given by eiax (where a is a constant)

with a frequency ω and sound-speed in free space of c then we can calculate the field

at a point r = (0, h) by integrating along the line as follows

u(r) =
ˆ ∞
−∞

G2D(x, r)eiaxdx (2.61)

The result of this integration depends on a. For a > ω
c
the magnitude of u(r) rapidly

decays with increasing h and the resulting wave-field is insignificant more than a few

wavelengths from y = 0. As with the far-field DT resolution limit, the evanescent

waves can be seen as the superposition of phased wave sources that sum destructively

in the far-field. The field resulting from a = 5 and ω
c

= 3 is shown in figure 2.12.

A physical interpretation of this phenomenon can be seen by considering the wave

field generated for a < ω
c
. In this case, a plane wave will result with an angle that is

geometrically compatible with the eiax phasing. Such a plane wave is only possible

when a ≤ ω
c
, therefore no plane wave can be a solution for a > ω

c
. Because these high

resolution waves decay exponentially with distance, they must be measured within a

wavelength or so of their source. Direct measurement of the evanescent waves is the

approach taken by Near-field Scanning Optical Microscopy (NSOM) and other optical
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Wavelength of near-field

Wavelength of sources

Figure 2.12: A demonstration of the formation of evanescent waves. a) A single harmonic

point source generates an expanding circular wave with the labelled wavelength. b) The

single point is replaced with a continuous line of point sources which have phases that vary

faster than the natural wavelength in the medium. This generates a near-field of evanescent

waves which cannot propagate. The rapid phasing of the sources mean that the waves they

produce sum destructively in the far-field.

microscopy super-resolution methods. A material with a low speed of sound, c1 is

introduced into the evanescent field such that ω
c
< a < ω

c1
. This material has an ω

c

which is higher than the wavenumber of the evanescent waves, so they can propagate

through it and be measured. This principle is illustrated in figure 2.13, where a

plane wave travels from a low sound-speed material to a high sound-speed material.

Because no plane waves with compatible boundary conditions can propagate, an

evanescent field of waves travelling along the surface is produced. These wave decay

rapidly away from the boundary, but before they fully decay they reach another

material (the NSOM probe) which has a low sound speed. The evanescent waves

produce radiating plane waves in this material that can be transmitted to a sensor

and recorded.

The result is that although plane waves cannot propagate in the background medium,

they are able to traverse small gaps via evanescent waves, as long as the gap is less

than a wavelength or so. This traversal is called “tunnelling” because the same

evanescent coupling in the Schrödinger wave equation leads to quantum tunnelling

where particles can tunnel through a thin barrier in which there are no propagating

solutions to the wave equation. In NSOM a sharp glass optical fibre is scanned very

close to the surface of the object in order to allow the evanescent waves to radiate
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c0

c c1

Figure 2.13: The mechanism of NSOM. An evanescent field is produced in the background

medium. If another medium with a low enough sound speed c1 is introduced into the

evanescent field, it will produce radiating waves that can propagate towards a sensor. In

NSOM the probe is much narrower than shown here—less than a wavelength—so that high

wavenumber evanescent fields can be measured.

along the fibre to an optical sensor. It is the multiple scattering of the scattered

wave from the surface of the object and the NSOM probe that allows the evanescent

waves to be measured in the far-field; if the evanescent waves only scattered once,

by definition they could not interact with the probe and would decay exponentially

before reaching the far-field where they can be measured.

NSOM techniques can achieve resolutions of λ/20 [41], or up to λ/14 using the

recently reported white-light nanosphere technique [42]. Resolutions of up to λ/1000

have been achieved with near-field microwave imaging [43]. However for sub-surface

imaging, we can only measure the far-field because we can only excite and measure

the surface of the component, which in general is far from the scatterers. Therefore

we cannot use this near-field approach to achieve super-resolution.

Neither of the far-field techniques discussed consider multiple scattering, which can

be a significant effect (see figure 2.14 for a numerical example). It has been shown

explicitly by Simonetti [20] that when multiple scattering is considered, the value of

v(r̂, x̂, k) depends not on a single value ofO, but on all values ofO. This corroborates

the various uniqueness results for forward scattering, which imply that all of O must

be encoded into v, and therefore there is no fundamental resolution limit. Since a
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a) b) c)

0.6λ

Figure 2.14: An illustration of multiple scattering between two circular scatterers. A

harmonic wave is incident from above the scatterers. In (a) the scattered field from each

circle is calculated separately, and then the fields are summed. In (b) the correct scattered

wave is found by considering the two circles together. (c) shows the difference between (a)

and (b) which corresponds to the waves that scatter multiple times between the circles. It

can be seen that the multiply scattered waves originate between the scatterers, as would be

expected, and that they have a significant effect on the value of the scattered wave field.

single-scattering model leads to a resolution limit, and a multiple-scattering model

does not we can deduce two things: first, it must be multiply scattered waves that

contain high resolution information, and second, super-resolution will be harder to

achieve with weak scatterers.

2.6 Conclusion

By formulating the forward scattering and imaging problems as a mapping between

the measurements us and the object o we can see that a simplified linear forward

model gives rise to a resolution limit when imaging. The linear model excludes

multiply scattered waves which contain information about the high frequencies of o.

We have also defined a number of useful entities for scattering:

• o(x) - The object function, which describes the physical properties of the

scatterer.

• O(X) - The Fourier transform of the object function (the k-space).
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• ui(x), ui∞(x̂) - The incident field, and incident far-field.

• us(x), us∞(x̂) - The scattered field, and scattered far-field.

• u(x) - The total field.

• v(r̂, x̂) - The scattered wave in direction x̂ for an incident wave from r̂.

• F - The far-field operator, which maps ui∞(r̂) to us∞(x̂).

• HSH∗ - The factorisation of the far-field operator.

• σn, |ψn〉, |ξn〉 - The SVD of the far-field operator.

• M - The operator which maps o to v (and F ).

• M−1 - The (perfect) imaging operator.

• M−1
Born - The Born approximation imaging operator (as calculated by DT and

equivalent techniques).

In the next chapter we will look in detail at the information content of v in real

situations where it is sampled on a discrete grid.
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Chapter 3

The Discrete Inversion

3.1 Background

In the previous chapter all parameters of the imaging process were assumed to be

continuous whereas in real digital systems they are discrete. This discretisation results

in fundamental limits on the capability of an imaging system. The discretisation

occurs in the domains of space, time, and magnitude. First, it was assumed that the

incident and scattered fields could be excited and measured at arbitrary locations

in the far-field. In practice, waves cannot be excited or sensed in a continuum of

independent points, but instead with a discrete set of transmitters and receivers.

Typically ultrasound arrays have 32, 64 or 128 transducers, although much higher

transducer counts are possible [44, 45]. In addition to this spatial discretisation there

is a temporal discretisation. The fields cannot be measured continuously in time,

but again at a discrete set of times whose number depend on the recording length

and the sampling rate. Sampling rates up to 100 MHz are typical [10, 46].

Finally, it was assumed the field values could be measured exactly, whereas real

sensors have a finite dynamic range and are subject to noise. The digital signals

recorded by a typical ultrasound system are 8-16 bits, which causes quantisation

noise in addition to the Gaussian process noise. Quantisation noise can be minimised

by varying the amplification of the analogue signal such that it spans the full range
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of the ADC (Analogue to Digital Converter), and for high bit depths is usually less

significant than random noise. If the object is static, then it is also possible to repeat

the measurement with several gains and combine them to form a single measurement

with high dynamic range (this is the same technique used in High Dynamic Range

photography, where several exposures of a single scene are taken).

This discretisation of measurement in time, space and amplitude, puts a fundamental

limit on the amount of information that can be stored in the recorded signals. In turn,

this determines a limit on the accuracy and resolution of the image of the scatterer.

The information capacity of the measurements, and the number of degrees of freedom

of an image have been studied in the past [47, 48, 49]. The aim of this chapter is to

further this work by looking at this distribution of information in the measurements

in terms of the measurement parameters, to see how they affect the limits on image

quality. We begin in section 2 by discussing the concepts of information capacity

and the degrees of freedom of an image, and how they are related.

There is no single equation that can tell us the information capacity of a complete

set of measurements, however we can derive upper bounds on the information

capacity of the signals when looked at from two different perspectives—the temporal

diversity of a single time domain signal, and the spatial diversity of a monochromatic

array measurement. These can give an insight into the true bounds on the whole

measurement. This is done in sections 3 and 5. Similarly to the Nyquist criterion,

these bounds can give us insights into measurement criterion for broadband array

measurements and tell us what to measure in order to record all the available wave

field information.

3.2 Degrees of freedom of an image

The end result of inverse scattering is an image of the scatterer. In computing, the

image is represented by a rectangular grid of independent samples of the underlying

image function. However, this is not the only possible representation: images are often

encoded in the frequency domain (e.g. JPEG) or the wavelet domain (JPEG2000).
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If each image sample is independent, then the image has that many degrees of

freedom. For example, a 10 × 10 pixel image has 100 degrees of freedom. If we

wish to exactly reconstruct a 10× 10 pixel image we must have measurements with

also have at least 100 degrees of freedom. Conversely if our measurements have 100

degrees of freedom, we will only be able to reconstruct an image with at most 100

pixels (or frequency or wavelet coefficients). Therefore the degrees of freedom of the

measurement imposes a limit on the resolution of the image.

The information capacity of the measurements—i.e. the amount of information, in

bits, that it can contain—is a related but distinct concept. An exact measurement

of a single value can contain infinite information, but has only one degree of freedom.

In fact, arithmetic coding, a type of data compression, explicitly works by encoding

all of the data into a single number between 0 and 1 [50]. A larger amount of data

requires the number to be specified to more significant figures, and with infinite

significant figures an infinite amount of data can be encoded.

When each degree of freedom is known to only finite precision, for example due

to noise or quantisation, it has a finite information capacity. If we can distinguish

between two different values (e.g. 0 or 1) then the information capacity is one bit.

Shannon showed that this information capacity of a single noisy measurement is [51]

I = log2

(
1 + s

ς

)
(3.1)

where s
ς
is the Signal-to-Noise Ratio (SNR; SNR is a power or energy ratio).

In addition to the degrees of freedom limitation, the information capacity of the

output image cannot be greater than the information capacity of the measurements.

The information capacity of the measurements is important because it determines

how much detail about the scatterer we can extract. Or more precisely, how many

different subsets we can divide all of the possible scatterers into. As an example,

suppose we measure a single variable—the total scattered energy from an incident

plane wave. Suppose further that noise, or inferior sensor technology means we
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can only detect two different levels of energy—high or low. This means that we

measure 1 bit of information, and can only distinguish between weak scatterers, and

strong scatterers. We have divided scatterer-space into two. With more bits we can

distinguish more scatterer classes and provide more detailed information and images.

The fact that the noise level of the measurements can impact the level of achiev-

able image resolution can be appreciated from the information capacity of noisy

systems [52, 53]. Since there is an upper bound on the amount of information that

our discrete measurements contain, there must be a similar limit on the amount of

information that the resulting image contains. It is not easy to draw conclusions

about the nature of this limit without knowing how the measurement coefficients

affect the image. In other words, we do not know how scatterer-space is divided

into distinguishable subsets by the measurements. All we know is that with I bits

of information in the measurements, we can distinguish 2I different subsets of the

scatterer space. If we make the rather large assumption that the measurement

coefficients correspond to the pixels of the image, then scatterer-space is divided

into X × Y × D subsets, where X, Y are the image size, and D is the image bit

depth. If D is fixed, then it follows that the image’s resolution will be limited by the

information content of the measurements.

Before proceeding with the analysis we must formulate the discretisation of the

far-field operator.

3.2.1 Discretisation of the far-field operator

For discrete scattering measurements, the discrete time-domain far-field operator Fd,t
maps an incident wave-field composed of time-varying waves incident from a discrete

set of directions r̂i = r̂1, r̂2 · · · r̂Nr to the scattered waves in another set of directions,

x̂i = x̂1, x̂2 · · · x̂Nx . For simplicity we shall set r̂i = x̂i. In the time domain, we

assume only a finite number of samples are recorded at ti = t1, t2, · · · , tNt , and as

sampling is digital, each sample can take one of only Nv values. Therefore Fd,t maps
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3. The Discrete Inversion

Fd,tu
i
∞(x̂, t) = us∞(x̂, t) (3.2)

where we mean that Fd,t maps the entire vector ui∞(x̂, t), not just its value at (x̂, t).

Fd,t is a convolution operator determined by the impulse response measurements

from r̂ to x̂

vd,t(r̂, x̂, t) (3.3)

Fd,t (us∞(x̂i, t)) =
Nx∑
r=1

ui∞(r̂r, t) ∗ vd,t(r̂r, x̂i, t) (3.4)

where ∗ is the convolution operator. We can now consider the discrete time-domain

operator Md,t which maps the object function o(x) to vd,t and Fd,t. The number of

different values that vd,t(r̂, x̂, t) can have is NN2
xNt

v , and by definition the information

capacity of such a measurement of vd,t is I = log2(NN2
xNt

v ) = N2
xNt log2(Nv) bits.

This is the information capacity if all possible values are equally likely. However, the

prior probability of each vd,t is not equal. The prior probability is the probability of

each measurement occurring in the real world. It depends on the probability of each

scatterer occurring. For example we are unlikely to see a measurement where signals

arrive an hour after the transmission, so that value of vd,t has a low prior probability.

Suppose the prior probability of encountering an object function o(x) = o0(x) is

P (o(x) = o0(x)), then the measurement probability is

P (vd,t(r̂, x̂, t) = Mo0(x)) = P (o(x) = o0(x)) (3.5)

which is not constant. Shannon showed that the true information capacity (the

entropy) of a measurement is [51]

I =
∑
v0

P (vd,t = v0) log2(P (vd,t = v0)) (3.6)
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where the sum is performed over all NN2
xNt

v possible values of vd,t. The set of possible

values of the vd,t function is called the ensemble [54]. Most of these possible signals

never occur or are very unlikely, therefore the true information capacity is much less

than N2
xNt log2(Nv), but finding the prior probabilities of o(x) or vd,t is not possible.

In order to do so we could in theory perform a survey of a very large number of

scatterers found in the real world, and state that “measurements / scatterers similar

to these are likely” under some similarity metric. In fact this is exactly what we

already do mentally through experience, so we know that cracks are more likely to

be encountered than triangular voids for example.

However the measurement space is so large that it would be impossible to obtain a

sufficient sampling of the probability function. Instead we can draw on the range of

I by transforming vd,t into other domains, such as the frequency domain, in which

we have more knowledge about the expected values of vd,t. In the following sections

we shall look at two decompositions that provide insight into how the information

capacity is distributed in vd,t. This can be used to determine resolution bounds,

and also to determine an optimal sampling strategy. We begin by looking at the

information capacity of the measurement of a single monochromatic field in the

spatial harmonic domain, measured by an array of spatially diverse sensors.

3.3 Spatial harmonics

The first perspective we can consider is to Fourier transform an outgoing wave

field into the frequency domain, and then consider the spatial frequencies of the

monochromatic wave fields. The assumption we make here to provide a prior

probability on vd,t is that the scatterer is contained within a sphere or circle of

radius ρ. Under this assumption we will find that the higher order harmonics can

be expected to have low magnitude and contain little energy. Since the information

capacity depends on the Signal-to-Noise Ratio (SNR), this will also be low for high

order harmonics.

The wave fields outside r ≥ ρ can be decomposed into circular/spherical harmonics.
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The circular harmonic decomposition of a monochromatic 2D wave field is given

in [55] as

u(r, θ) =
∞∑

n=−∞

[
AnH

(1)
n (kr) +BnH

(2)
n (kr)

]
einθ (3.7)

where H(1)
n and H(2)

n represent outgoing and incoming waves respectively, so fields

made of only outgoing (incoming) waves have the coefficients Bn = 0 (An = 0).

The angular component einθ is simply the Fourier transform of the field around the

circle of radius r, therefore a circular transducer array consisting of N equidistant

transducers can measure harmonics up to order N without aliasing. For a spherical

harmonics we need (N + 1)2 transducers to measure up to order N [56]. On a

sphere the transducers can only be equidistant if they are positioned on the face of a

platonic solid (tetrahedron, cube, octahedron, dodecahedron or icosahedron) so this

is approximate for other values of N .

The outgoing field on the circle of radius ρ is

us(ρ, θ) =
∞∑

n=−∞
AnH

(1)
n (kρ)einθ. (3.8)

The corresponding angular component of the far-field is

us∞(θ) = lim
r→∞

1
Γ2D(r)

∞∑
n=−∞

AnH
(1)
n (kr)einθ (3.9)

where Γ2D(x) = − (i+1)eikx
4
√
πkx

as in equation (35) in chapter 2. The ratio of the magnitude

of each harmonic order from the near-field (us(ρ, θ)) to the far-field (us∞(θ)) is defined

as

αn = lim
r→∞

1
Γ2D(r)

H(1)
n (kr)

H
(1)
n (kρ)

. (3.10)

If αn is small then it means that the nth harmonic order does not propagate strongly

79



3. The Discrete Inversion

to the far-field and is difficult to measure. The asymptotic behaviour of H(1)
n (x) for

x� |n2 − 1
4 | is

lim
r→∞

H(1)
n (kr) =

√
2
πkr

ei(kr−
nπ
2 −

π
4 ) (3.11)

therefore

αn = 4e−iπ n2
H

(1)
n (kρ)

(3.12)

and the energy (or power) ratio is

|αn|2 = 16∣∣∣H(1)
n (kρ)

∣∣∣2 . (3.13)

If the magnitude of each harmonic order on r = ρ is fixed, so AnH(1)
n (kρ) = 1 then

the far-field magnitude of that order is αn and the power is |αn|2. The power ratio is

plotted in figure 3.1 for various values of ρk. It becomes exponentially small with

spatial order where n > kρ. Therefore with sensors with a limited dynamic range,

harmonics above order kρ will be difficult to measure. A standard sampling criterion

for circular arrays is based on this limit, and only measures up to order kρ, for which

we need the following number of transducers [55, 57]

Nx ≈ kρ (3.14)

in 2D, and in 3D the criterion is

Nx ≈
1
2(πkρ)2. (3.15)

It can be seen from equation (3.12) that αn never becomes zero, so we can conclude

that all wave modes actually propagate, and none of the waves are truly evanescent.
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Figure 3.1: A plot of |αn|2 for several values of ρk. The points n = ρk where αn starts

to become exponentially small are marked. The negative harmonics (not shown) are have

symmetric values (that is, |αn|2 = |α−n|2).

Therefore with infinite transducers we can recover all orders of the wave field.

Although all wave modes can be measured in principle, in practice these transducers

will have limited dynamic range due to quantisation and noise, and very small values

cannot be measured. The optimum sampling strategy depends on the noise level and

for sensors with high dynamic range it will be beneficial to sample slightly above

Nx = kρ. The effect of dynamic range on the total information capacity of all modes

is discussed next.

3.3.1 Dynamic range

If the wave field values can be measured with unlimited precision, then the small

expected amplitudes of the high order harmonics do not affect their information

capacity (which is infinite with no noise). However in practice measurement of field

values cannot be arbitrarily accurate. The ability to measure small signals will be

constrained by quantisation, noise, and sensor inaccuracies. Although small signals
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can be sometimes measured accurately by amplification and averaging to reduce

noise, this is not possible in every case, in particular when small and large signals

are present simultaneously.

We can model a single measurement, x̂ as a random variable composed of the true

value x, and noise n, both of which we assume to be zero mean Gaussians.

x̂ = x+ n (3.16)

with

x ∼ N (0, s) (3.17)

n ∼ N (0, ς) (3.18)

Therefore from equation 3.1 the total information capacity for a measurement

composed of a number of such coefficients is

I =
N∑
i=1

log2

(
1 + si

ςi

)
(3.19)

where si, ςi are the expected signal and noise energies for each coefficient. Therefore

using the circular harmonic decomposition of an outgoing wave field, its information

capacity is

I =
Nx∑

n=−Nx
log2

(
1 + |α

2
n|sn
ςn

)
(3.20)

where sn is the energy of the near-field modes, and ςn is the energy of the far-field

noise modes (which can be assumed to be constant). This function is plotted in

figure 3.2, which shows that the maximum information capacity can be significantly

higher if sampling is performed at a greater rate than Nx = kρ, and also that
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Figure 3.2: Total information capacity of a measurement for various kρ at s
ς = 10 for

different numbers of transducers, Nx.

maximum total information capacity is linearly proportional to kρ. In the next

section we look at how the total information capacity of a monochromatic field

changes if the full 360◦ aperture is not available.

δ

Full aperture Limited aperture

Figure 3.3: In most practical situations the full circle (or sphere) cannot be measured.

Instead a subset of angles [0, δ) are accessible.
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3.4 Limited apertures

Practical ultrasound systems often (but not always) are constrained to transmit and

receive waves from an aperture that is smaller then the full circle/sphere. If only the

far-field subtended by angle δ is available (see figure 3.3), then the limited aperture

results in only part of the far-field operator being knowable. Consider (in 2D) the

operator Q which maps the near-field to the far-field

Qu(ρ, θ) = u∞(θ) (3.21)

given by

Q = F∗ΛF (3.22)

where F is the discrete Fourier transform matrix, F∗ is its inverse, and Λ is a matrix

whose diagonal elements are αn. If the columns of F are rearranged so that αn are

sorted in descending order, then this is the SVD of Q and its singular values are

αn and its singular vectors are einθ. The αn determine the information capacity of

full-view measurements (equation 3.20), and for the full view these are equivalent

to the singular values of Q. So for limited apertures, instead of αn we can plot the

singular values of Q.

Therefore we can extend the analysis to consider the information capacity of a limited

aperture measurement of a wave field by taking the SVD of a limited aperture subset

of Q by removing some of its rows. The resulting singular values are plotted in

figure 3.4, with every other singular value removed (since half correspond to the

negative harmonic orders). It can be seen that the number of high-magnitude singular

values depends linearly on the aperture, so a large aperture is very important in

maximising the information content of the signals. For more background on using

the SVD for information capacity see [48].
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Figure 3.4: Singular values as a function of aperture for ρk = 81 (compare the δ = 2π

plot with ρk = 81 in figure 3.1). The number of accessible singular values varies linearly

with aperture.

3.5 Temporal diversity

The second perspective which we consider in this chapter is the frequency domain

representation of the individual signals. So far we have been looking at only a single

frequency component of the signals. By summing equation 3.20 over frequencies

we can obtain an upper bound on the information capacity of a broadband field.

However it is simpler to first consider the information capacity of a single signal. In

the time domain, each coefficient of equation 3.19 corresponds to a single sample at

a point in time, so we have (the same as equation 3.19)

I =
Nt∑
t=1

log2

(
1 + st

ςt

)
(3.23)

where Nt is the number of independently measured samples, and st and ςt are the

signal and noise energies of each sample. This equation was derived by Shannon in

the context of telecoms, where the sample values are chosen in order to maximise
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the channel capacity. In that case, the resulting signal will be stationary, in that its

statistical properties, including the SNR st
ςt
, are independent of time. However, this

is not the case for ultrasound signals. Recall that the ensemble of signals is the set

of all possible values the signal can take. The information content of each sample is

then determined by the SNR of that sample, across the ensemble rather than across

time. For stationary processes these are the same. So st is the ensemble signal power

at time t, and ςt is the ensemble noise power, which is likely to be constant, but may

not be if Time-Varying Gain (TVG) is used.

Equation 3.23 provides an upper bound on the information content of a signal in

terms of the time domain decomposition. But it is only one possible upper bound.

We can use any orthogonal decomposition of the signals to try to find the lowest

upper bound possible. The best decomposition (resulting in the lowest I) will be

one with high SNR concentrated in a few coefficients, rather than distributed evenly

over all coefficients.

An important feature of ultrasound signals is that their energy is localised in both

time and frequency. Therefore a purely time-domain or frequency-domain represen-

tation will not result in an optimal energy distribution. Instead a hybrid-domain

representation such as the Short Time Fourier Transform (STFT), Modified Discrete

Cosine Transform (MDCT) or Discrete Wavelet Transform (DWT) [58] allows us

to concentrate the signal energy into as few coefficients as possible and therefore

obtain a low upper bound on the information capacity of the signals. In order to

demonstrate this, the Continuous Wavelet Transform (CWT) of an example signal,

as the wavelet basis is varied from a temporally to harmonically localised form is

shown in figure 3.5. Somewhere between the time and frequency domains the signal

energy is concentrated in a small area of the domain (figure 3.5c) resulting in a tight

upper bound on the information capacity. The figure shows the energy for a single

ensemble member (a single signal). In order to calculate s
ς
for the ensemble we need

to determine the probabilistically weighted power across all possible signals in the

ensemble.

The frequency component of the ensemble energy is easy to estimate, as it will

86



3. The Discrete Inversion

Time

F
re
q
u
en
cy

a) b) c)

d) e) f)

A B C D

Original signal:

Wavelets at centre frequency:

Figure 3.5: Continuous Wavelet Transform (CWT) of the plotted sample signal into

different bases on the time-frequency continuum. In (a) the basis wavelets are very short

and broadband, so the signal is localised well in the time domain. The basis functions are

increased in length and narrow in bandwidth through (a)–(f) so that (f) is almost equivalent

to the Fourier transform of the signal. The energy is most concentrated in the fewest

coefficients somewhere between these extremes, at approximately (c). The plotted Morlet

wavelets A-D are the wavelets used to compute (a)–(d) at the centre frequency. Note that

the CWT is used rather than the DWT merely to aid visualisation (see [1]).
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predominantly depend on the frequency response of the transducers. The time

component roughly depends on ρ. With single scattering we can exactly determine

the bounds tmin and tmax within which all signal energy is contained, however with

multiple scattering tmax will be greater because multiply scattered waves can take

longer paths through the scatterer, and hence take longer to arrive. Therefore there

is potential for multiply scattered signals to contain more information than singly

scattered signals.

We can therefore define an approximate box defined by fmin, fmax, tmin, tmax which

contains the most of the energy. So that the lower bound on the information capacity

of the signal in the wavelet domain is given by

I =
tmax∑
t=tmin

fmax∑
f=fmin

log2

(
1 + s(t, f)

ς(t, f)

)
.

3.6 Broadband array measurements and conclu-

sions

As stated in the introduction, there is an upper bound on the information capacity

of a scattering measurement of

I = log2

(
NN2

xNt
v

)
(3.24)

This is a conservative upper bound, but formulating tighter bounds is not easy.

Therefore we looked at different aspects of the broadband array measurements

separately. By studying effects of spatial diversity and temporal diversity on their

own we could derive tighter bounds on monochromatic array measurements, and

single broadband measurements.

The circular or spherical harmonic expansion of wave fields was used to show that

with low sensitivity measurements a standard sampling criterion can be derived that
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depends on the frequency and the size of the scatterer. But with high sensitivity mea-

surements, higher sampling rates than this criterion still yield additional information

by allowing measurement of higher order modes. The effect of aperture was analysed

in the same way by calculating the singular values of subsets of the operator that

maps near-field waves to the far-field. This showed that the information capacity of

limited aperture measurements of a field depends linearly on the aperture.

We also discussed the sampling of a single broadband signal in both the time and

frequency domains, which are not independent. Since measurements in time and

frequency must be finite, the signal can be thought about more intuitively in the

wavelet domain. The information capacity bound on the signal is also lowest in this

domain since the signal energy is concentrated in fewer coefficients. We can draw

bounding box around the signal energy, which allows us to calculate sampling rate

and duration criteria.

Broadband array measurements will have information capacity between single-

frequency or single-transducer limits, and the loose upper bound of equation 3.24. It

is not possible to actually find the information capacity of the signals, however we

can say that compared to broadband array measurements, current methods neglect

information from two sources:

1. Broadband signals. The super-resolution algorithms described so far operate

only on a single frequency of the data. This ignores the huge amount of

information contained in the other frequencies.

2. Backwall reflections. Normally signals are only recorded up to the first reflection

from the boundaries of a component. By extending tmax to include signals

beyond this point we can add additional information.

Figure 3.6 illustrates the limited use of signal information with single-frequency imag-

ing methods. Only the region occupied by the white line is used. This corresponds

to only a single frequency, and only extends to the backwall reflection. Most of the

energy reflected from the defect arrives later than this and is broadband. The spatial
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sampling and temporal sampling is usually already sufficient, and although apertures

are often less than is desired, this is mainly due to physical practicality. Super-

resolution methods rely on larger numbers of independent measurements (i.e. a larger

amount of information), so single-frequency methods will be more sensitive to noise.

However, most ultrasonic measurements are broadband, and neighbouring frequen-

cies should contain complementary information about the scatterer—independent

measurements of the same underlying information. The complementary nature of

different frequencies is also suggested by information capacity theory, where thanks

to the invariance theorem, the spatial bandwidth of a microscope can be extended at

the expense of the temporal bandwidth, leading to the time domain multiplexing

methods [59]. By utilising the broadband information we should be able to increase

the stability of super-resolution methods.

The Linear Sampling Method has recently been extended to the broadband case, which

allows us to take advantage of the greater number of independent measurements,

resulting in much greater image stability than single-frequency super-resolution

methods while retaining their super-resolving capabilities. In the next chapter the

single-frequency and broadband super-resolution methods will be described, and

we perform an experiment that demonstrates the high resolution and stability of

the broadband LSM in an attenuative medium. In chapter 6 we look at using the

backwall reflections, which carry information about the far side of a scatterer which

is positioned in front of a planar reflector.
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Figure 3.6: Additional sources of data in a linear array measurement. Existing single-

frequency super-resolution methods only use data from the region marked with a white line

before the backwall reflection. However, useful signal energy is received after this, and also

in other frequencies.
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Chapter 4

Broadband Super-Resolution

4.1 Background

Recently, new imaging algorithms have been developed that allow “super-resolution”,

that is, reproducing spatial frequencies of the scatterer above 2k or resolving two

point scatterers spaced more closely than the Rayleigh limit dictates [60]. Among

these algorithms are the sampling methods, which were initially developed for

monochromatic (single frequency) measurements [61, 62]. The first practical method—

the Linear Sampling Method (LSM) [2, 63], was numerically and experimentally

demonstrated to achieve super-resolution [20]. It is attractive because it is simple to

implement, fast to compute and achieves potentially unlimited resolution. However

it was not clear exactly why LSM works [64, 65]. A more advanced monochromatic

sampling method called the Factorisation Method (FM) was then developed [66, 67]

which was proven to produce an exact reconstruction of impenetrable scatterers with

no noise. However due to their inverse nature and use of only single frequencies, both

methods are highly sensitive to noise—more so than linear methods. By utilising

only a single frequency, many independent measurements from the broadband signals

are needlessly discarded. Broadband imaging methods allow the use of data from a

range of frequencies which contain complementary information, and allow increased

robustness in the presence of noise. Therefore it is desirable to use sampling methods
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that combine data from different frequencies to give improved robustness while

maintaining their super-resolving capabilities.

Broadband super-resolution can be achieved in an ad-hoc way by summing single

frequency images, however this lacks satisfying justification and does not work well if

the constituent images are poor quality due to noise. This is particularly common in

highly attenuative materials where the attenuation of the signal leads to a low SNR.

In attenuative materials it is also usually the case that the attenuation increases

rapidly with frequency, so resolution cannot be improved by using shorter wavelengths

and super-resolution would be useful. By using a time-domain variant of LSM, we

can incorporate all frequencies of the signals into an integrated reconstruction [68].

The Time Domain Linear Sampling Method (TDLSM) does not improve resolution,

but it does improve robustness to noise. The mathematical framework behind the

sampling methods is extremely involved, therefore we shall provide a simple intuitive

explanation of the monochromatic sampling methods and refer the reader to the

literature for details. The monochromatic sampling methods LSM and FM, and

TDLSM are described first, together with some improvements we have made to

TDLSM. Then we give an experimental demonstration of the improved stability

TDLSM provides in an attenuative medium. This is the first experimental use of

a broadband sampling method. This work has been submitted for publication to

IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control [69].

4.2 Monochromatic sampling methods

4.2.1 The Linear Sampling Method

In recent years sampling methods have been created that offer super-resolution

imaging of a scatterer (i.e. images with spatial frequency content above 2k) [70].

These work by computing a spatially varying function based on the far-field operator,

F , that tends to infinity outside the scatterer, and so an image is formed by plotting

its inverse which tends to zero outside the scatterer. This only allows reconstruction
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Figure 4.1: The Linear Sampling Method relies on the fact that it is possible to create

field values on the boundary of a scatterer, such that a field that appears to radiate only

from a single point within the scatterer. However it is not possible to do the same for a

point outside the scatterer.

of the scatterer support D rather than o(x), but in many cases this is sufficient, and

for impenetrable scatterers it is the only relevant quantity. For LSM,

lim
x→D̄
ILSM(z) = 0. (4.1)

where ILSM(z) is the image value at the point z. The linear sampling method was

the first non-iterative super-resolution algorithm that did not rely on prior knowledge

of the scatterer’s geometry, connectedness or boundary conditions [71]. The idea

of LSM is to use the range of F to determine whether z is inside or outside the

scatterer. The range of F corresponds to the set of all possible scattered fields that

can be received after transmitting an arbitrary incident wave for this particular

scatterer. LSM produces an image from the observation that a scattered wave cannot

be produced that emanates from z for z /∈ D. This is illustrated graphically in

figure 4.1.

Recall that the far-field operator F maps any incident field to the corresponding

scattered field. Its inverse, F−1 which is computable (assuming F is non-singular),

and allows us to calculate the incident field required to produce any scattered field,

and whether or not such a field exists. The key insight in LSM is that scattered waves

cannot originate from outside the scatterer, and therefore the following equation will

have no solution for ui∞(x̂).
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Fui∞(x̂) = G∞(z, x̂) z /∈ D (4.2)

In other words, ui∞(x̂) is the incident field that results in a scattered field equal to

that of a point source at z. It can be shown mathematically that no such incident

field exists when z is outside D, and therefore that scattered field is outside the

range of F . If we attempt to solve

ui∞(x̂) = F−1G∞(z, x̂) z /∈ D (4.3)

we will find that |ui∞(x̂)| becomes infinitely large. By plotting I(z) = 1/|ui∞(x̂)|2 an

image of D is formed. Note that although it is always true that there is no solution

to equation 4.2 for z /∈ D, it is not guaranteed that there is a solution for z ∈ D.

However the method does work in practice.

Rather than explicitly calculating the the inverse of F we can instead use the SVD

of F to find its range. Recall that the SVD of F is

F =
∞∑
n=1

σn|ξn〉〈ψn| (4.4)

F |ψn〉 = σn|ξn〉 (4.5)

F ∗|ξn〉 = σn|ψn〉. (4.6)

or we can also use the matrix notation

F = UΛV ∗

FV = ΛU

F ∗U = ΛV
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where |ξn〉 and |ψn〉 are the columns of U and V respectively and Λ is a diagonal

matrix with elements σn. Picard’s theorem says that |G∞(z)〉 is in the range of F

iff [72]

[
|ui∞|2 =

∞∑
n=1

|〈ξn|G∞(z)〉|2

σ2
n

]
<∞ (4.7)

therefore the LSM image is given by

ILSM(z) =
( ∞∑
n=1

|〈ξn|G∞(z)〉|2

σ2
n

)−1

(4.8)

An example of the LSM image of a scatterer is shown in figure 4.2b. An intuitive

interpretation of LSM is that we are plotting the magnitude of the largest scattered

wave we can produce from z given a normalised input wave. If there is no scatterer at

z then we cannot produce a large reflection from that point. In a sense, LSM is the

same as BF where the optimal focal laws in transmission are calculated automatically

and can take advantage of multiple scattering. LSM works, but often produces images

with hugely varying values within D, and significant artefacts. Various methods can

be used to improve the result, such as using Tikhonov regularisation (essentially a

small constant is added to each singular value), but it can be seen from figure 4.2c

that FM gives much better results with no regularisation. This method is explained

next.

4.2.2 Factorisation of the Far-field Operator

An improvement to LSM was made by Kirsch [66] which is better justified and

produces higher quality images in practice. It is based on the factorisation of F

given previously

F = HSH∗. (4.9)
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Figure 4.2: A demonstration of the frequency-domain sampling methods. a) The far-field

operator F is measured for a kite-shaped sound-soft scatterer (i.e. a hole). The axes are

in units of λ (or equivalently λ = 1). b) The resulting LSM image, clipped at an ad-hoc

threshold to make the scatterer visible. c) The FM image. No clipping was applied in this

case. F was calculated using a circular array of 256 transducers with a radius of 10, using

the Boundary Element Method (BEM). The formula for the kite-shaped scatterer is given

in [2].

Recall that H is the operator that maps

Hus(x) = us∞(r̂) x ∈ ∂D. (4.10)

It follows that if

Hu(r) = G∞(z, x̂) r ∈ ∂D, z /∈ D (4.11)

has no solution, then neither does

Fui∞(x̂) = G∞(z, x̂) z /∈ D (4.12)

and an image can be formed by interrogating the range of H instead of F . It was

shown in [66] that the ranges of (F ∗F ) 1
4 and H coincide, and therefore we can

calculate the range of H using (F ∗F ) 1
4 which is directly computable. Alternatively,

with the singular value decomposition F = UΛV ∗, we have
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(F ∗F ) 1
4 = (V Λ∗U∗UΛV ∗) 1

4 (4.13)

= (V Λ2V ∗) 1
4 (4.14)

= V Λ 1
2V ∗. (4.15)

Therefore if the singular system for (F ∗F ) 1
4 is σ′n, |ξ′n〉, |ψ′n〉 we have

σ′n = √
σn (4.16)

|ξ′n〉 = |ψn〉 (4.17)

|ψ′n〉 = |ψn〉 (4.18)

Note that if F is symmetric, we have

F = F T = F ∗ (4.19)

= V ∗ΛU (4.20)

therefore an equivalent singular system of (F ∗F ) 1
4 for F = F T is

σ′n = √
σn (4.21)

|ξ′n〉 = |ξn〉 (4.22)

|ψ′n〉 = |ξn〉 (4.23)

Using the former of these transformations, we find that z is in D if |Gz〉 is in the

range of H which is true iff
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Components:

FM:

LSM:

1 7 20 50 256 of 256

Figure 4.3: The values |〈ξn|Gz〉|2, for the first, last, and some intermediate n’s, and the

cumulative sum for LSM and FM.

∞∑
n=1

|〈ξ′n|G∞(z)〉|2

σ′2n
<∞ (4.24)

which is equivalent to

∞∑
n=1

∣∣∣〈ψn|G∞(z)〉
∣∣∣2

σn
<∞ (4.25)

and for symmetric F ,

∞∑
n=1

|〈ξn|G∞(z)〉|2

σn
<∞. (4.26)

Therefore the FM image is given, for symmetric F (which is expected due to

reciprocity) by

IFM(z) =
( ∞∑
n=1

|〈ξn|G∞(z)〉|2

σn

)−1

(4.27)

Unlike LSM, this function is known to be finite on the boundary ∂D and zero outside

it. A numerical example of FM imaging is shown in figure 4.2c.
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Contrasting LSM and FM with the BF image which is given by

IBF(z) =
∞∑
n=1

σn〈G∞(z)|ξn〉〈ψn|G∞(z)〉 (4.28)

we can see that the difference between BF, LSM and FM is primarily how σn affects

the weighting of each of the terms involving 〈G∞(z)|ξn〉 in the sum. The information

about the shape of the scatterer is contained in these terms, and with BF the terms

associated with the highest σn contribute most to the image. On the other hand,

with LSM and FM the terms associated with the lowest σn contribute most to the

image. The |〈ξn|Gz〉|2 terms, and cumulative value of the LSM and FM image sums

are plotted for the kite scatterer in figure 4.3.

The difference in term weighting affects how noise degrades the image. Gaussian

noise will be equally distributed across all singular vectors, but it is amplified in

the LSM and FM case for the terms with small σn. One way to try to reduce the

effects is by using regularisation to reduce the impact of the small singular values.

Tikhonov regularisation changes the sum to [66]

IFM(z) =
( ∞∑
n=1

|〈ξn|G∞(z)〉|2

σn + ασ−1
n

)−1

where α is a small regularisation parameter. However, we have not found this to be

very effective. A more powerful way to improve robustness is to combine the data

from multiple frequencies.

4.3 Broadband Linear Sampling Method

A significant problem with LSM and FM when applied to time-domain signals, such

as those recorded by an ultrasound array, is that they operate upon only a single

frequency. This means that we discard all information contained in other frequencies.

One solution is to sum the images generated at each frequency (or wavenumber)
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ILSM(z) =
 ∞∑
k=−∞

∞∑
n=1

|〈ξn,k|G∞(z, k)〉|2

σ2
n,k

−1

. (4.29)

where now we have a singular system σn,k, |ξn,k〉, |ψn,k〉 and a different G∞(z) for

each k. The interpretation of this function is as follows. Suppose we try to solve the

time-domain equivalent of equation 4.2

Ftu
i
∞(r̂, t) = G∞(z, x̂, t) (4.30)

where Ft is the time-domain far-field operator, and G∞(z, x̂, t) is the time-domain

far-field Green’s function (i.e. the field resulting from an impulse at z). The sum in

equation 4.29 is then the magnitude of ui∞(r̂, t) in equation 4.30, calculated in the

frequency domain. By Parseval’s theorem we obtain

|u∞(r̂, t)|2 =
∞∑

k=−∞

∞∑
n=1

|〈ξn,k|G∞(z, k)〉|2

σ2
n,k

(4.31)

Therefore the (inverse) quantity we are plotting is the energy of the time-domain

input required to produce a delta-function point source output at z. However, there

is one practical detail that means this is not quite correct: the finite Fourier transform

assumes the signal is periodic. Since all our measurements are necessarily finite,

equation 4.29 allows non-causal solutions.

Suppose we are trying to solve the following convolution system for u(t)

u(t) ∗ v(t) = s(t)

where v(t) is the impulse response and s(t) is the desired output. An example of

this is shown in figure 4.4. v(t) and s(t) are plotted as figure 4.4a and b respectively.

It can be seen that there should not be a solution in this case, since the wave packet

in v(t) occurs after the wave in s(t), so even if u(t) contains a transmission at t = 0,
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Time
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b)

c)

d)

v(t)

s(t)

uF (t)

uF (t) ∗ v(t)

Figure 4.4: Non-causality of Fourier solutions to deconvolution. See the text for a

description.

the response will be too late to produce s(t). However, if we solve for u(t) using

Fourier deconvolution, which assumes that all signals are periodic, then we obtain

the solution shown in figure 4.4c, given by

uF(t) = F−1
[
F [s(t)]
F [v(t)]

]
.

This is clearly not the correct solution; if we calculate the time-domain convolution

uF(t) ∗ v(t) we obtain the incorrect solution shown in figure 4.4d (it should be

equal to figure 4.4b). Therefore in order to maintain causality we must perform the

deconvolution in the time domain. This example also demonstrates that we need

to delay the target signal G∞(z, x̂, t) in equation 4.30 so that it “arrives” after the

reflections in v∞(r̂, x̂, t).

In order to allow only causal solutions we can instead formulate the time-domain

far-field operator Ft directly in the time domain. Ft is a convolution operator, which

is given in the continuous case by

us∞(x̂, t) = Ftu
i
∞(x̂, t) =

ˆ
S

ˆ ∞
−∞

v∞(r̂, x̂, t− τ)ui∞(r̂, t)dτdr̂ (4.32)

where v∞(r̂, x̂, t) is the impulse response when transmitting from the direction r̂ to
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x̂. Due to the form of the 2D time-domain Green’s function this is not well defined in

2D. Therefore we shall now assume that instead of transmitting and receiving waves

from infinity, we have a discrete set of transducers at xi recording a time-limited

discrete set of samples, as in the previous chapter. Therefore in the discrete case Ft,d
is

us(xi, t) = Ft,du
i(xi, t) =

Nx∑
j=1

∞∑
τ=−∞

v(xj,xi, τ)ui(xj, t− τ) (4.33)

or alternatively,



v(x1,x1, t) v(x2,x1, t) · · · v(xNx ,x1, t)

v(x1,x2, t)
... . . . ...

v(x1,xNx , t) · · · v(xNx ,xNx , t)


∗



ui(x1, t)

ui(x2, t)
...

ui(xNx , t)


=



us(x1, t)

us(x2, t)
...

us(xNx , t)


.

Ft,d can be written in explicit matrix form as a block Toeplitz matrix with the

structure shown in figure 4.5. Since this operator is now a simple matrix it can

be inverted or SVD’d using standard methods. However in practical scenarios the

dimension of the matrix is huge (on the order of NxNt rows and columns) and using

standard SVD methods is impossible. Instead, as in [68] we use the Arnoldi iteration

method to calculate the largest few thousand singular values and vectors, in order to

evaluate the range of Ft,d.

There are two practical issues that must be considered in a real application. The

first is that in general we cannot measure the true impulse response of the scatterer,

but a band-limited impulse response that depends on the frequency response of the

transducers, the scatterer and the background material. Equation 4.30 will have no

solution if Ft,d does not contain all frequencies. Therefore instead of attempting to

solve for an impulse output, we try to solve for a band-limited output
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Figure 4.5: Structure of the discrete time-domain far-field operator Ft,d in block Toeplitz

matrix form for a) a single transducer and b) three transducers. The exact clipping of the

time signals does not necessarily have to allow for the complete convolution of the input

and output, nor do the input and output have to be the lengths given here. For example we

could use only the top half of each block if desired. In all the TDLSM images in this thesis,

the structure was as shown here, with each block having a dimension of Nt × (2Nt − 1).
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Ft,du
i(x, t) = G(z,x, t) ∗ s(t) (4.34)

where s(t) contains approximately the same frequencies as Ft,d. In [68], an apparently

arbitrary exponentially windowed function was chosen. This, and several other

waveforms were tested for s(t), and it was found that setting s(t) to equal the

transmitted wave-packet used to measure Ft,d (and v(r,x, t)) gave the best results

empirically.

The second practical consideration is the length of time to consider for ui(r̂, t) and

G(z,x, t) ∗ s(t). We cannot actually compute the convolution over all time, so

arbitrary limits must be placed on the convolution. We must allow enough time from

the input for the waves to propagated to the scatterer and back to the transducers.

A new optimisation we have made is to pre-beamform the time-signals relative to

the centre of the scatterer (or the image) so that a shorter time for G∞(z, x̂, t) ∗ s(t)

can be considered. This can significantly speed up the computation—especially for

large linear apertures—and is now described in detail.

4.3.1 Pre-beamforming

If we assume the scatterer is mainly within the image region around the point b, we

can assume that the impulse responses will all be zero up to a certain point, which

depends on the distances of each transducer from b (in practice the transducers are

not an infinite distance away). Denote the time taken for a wave to travel from

transducer i to b (or vice versa) as Ti. Then usually v(xi,xj, t) = 0 ∀ t < Ti + Tj.

Since ui(x, t) is zero before t = 0, we require us(x, t) = 0 ∀t < max(2Ti), where

us(x, t) = G(z,x, t) ∗ s(t), otherwise a correct solution is impossible. In order to

make this true we add the τ constant to delay y. However the problem is if Ti varies

a lot, then all the signals need to be very long, which makes the SVD calculation

impossibly slow.

The solution is to delay the transmissions and receptions by pi and qi respectively,
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so that the important portions of v(xi,xj, t) around t = Ti + Tj are aligned, then we

can consider a shorter period for all signals. In other words, we calculate



v(x1,x1, t+ p1 + q1) v(x2,x1, t+ p1 + q2) · · · v(xNx ,x1, t+ p1 + qNx)

v(x1,x2, t+ p2 + q1)
... . . . ...

v(x1,xNx , t+ pNx + q1) · · · v(xNx ,xNx , t+ pNx + qNx)



∗



ui(x1, t− q1)

ui(x2, t− q2)
...

ui(xNx , t− qNx)


=



us(x1, t+ p1)

us(x2, t+ p2)
...

us(xNx , t+ pNx)


.

with pi = qi = Ti. The norm of ui(x, t− qi) is the same as ui(x, t) so this will give

the substantially the same image but in a much shorter time.

Therefore the TDLSM image is then formed by considering a grid of points in space

and calculating the same functional as for LSM, but using the time-domain operator

Ft instead of F , with time-shifted signals as described above.

ITDLSM(z) =
( ∞∑
n=1

|〈ξn|G(z) ∗ s(t)〉|2

σ2
n

)−1

(4.35)

Where |ξn〉 and σn are the singular vectors and values of Ft as calculated by Arnoldi

iteration. Due to computational limitations, only the largest Nσ terms of the sum

are calculated. We used Nσ = 5 000 or Nσ = 10 000.

Arnoldi iteration does not require an explicit representation of Ft,d as a matrix; it

only requires us to calculate the value Ft,du or F ∗t,du when presented with a test

vector u, thus we can implement the operator however we wish and using no more

106



4. Broadband Super-Resolution

a) b) c)

0.5 1 1.5 2 2.5
0.5

1

1.5

2

2.5

0.5 1 1.5 2 2.5
0.5

1

1.5

2

2.5

0.5 1 1.5 2 2.5
0.5

1

1.5

2

2.5

Figure 4.6: a) Time-domain beamforming, b) FM, and c) TDLSM imaging of two squares

beneath 8 transducers. The wavelength is π
2 . It can be seen that both sampling methods

resolve the scatterers, whereas BF does not.

memory than the source data occupies. A fast implementation of Ft,d was written in

C++ and parallelised using MPI [73]. Arnoldi iteration was performed using the

P_ARPACK Fortran library, which is a version of the ARPACK Arnoldi iteration

library1 also parallelised using MPI. In the experiments in this chapter, signals

consisting of 700 samples were recorded with 32 transducers giving an operator

dimension of 44799× 22400. We calculated the 5000 largest singular values and their

associated singular vectors, which was sufficient for convergence of equation 4.35.

The value of I(z) was calculated on a 300× 300 pixel grid.

An examples of TDLSM compared with FM and time-domain BF is shown in

figure 4.6 for two squares that are closer than the Rayleigh limit of linear imaging.

The centre wavelength is π
2 , so the squares are 1, or 0.64λ apart. The array

aperture taken at the point between the squares is 84◦ therefore the Rayleigh limit

is 0.61λ
sin(42◦) = 1.43 = 0.91λ.The first 1000 singular values were used to calculate

the TDLSM image, and the centre wavelength is π
2 . It can be seen that TDLSM

retains the super-resolution capabilities of LSM. In the next section we demonstrate

experimentally that it is much more robust to noise than LSM.
1http://www.caam.rice.edu/software/ARPACK/
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4.4 Experimental validation of Time-Domain LSM

We measured the horizontal resolution capabilities of BF, FM and TDLSM using

two human hairs suspended in glycerol, both materials that are readily available.

Glycerol was used because it is highly attenuative and liquid, allowing the scatterers

to be easily positioned. The speed of sound in glycerol is 1900 m/s. The frequency-

dependent attenuation of glycerol was calculated by measuring the spectrum of the

reflection of a broadband pulse from a planar reflector at various distances. The

pulses for different reflector distances are shown in figure 4.7a. At each frequency the

attenuation was found by calculating an exponential fit to the magnitude-vs-distance

curve for that frequency. This allowed calculation of the attenuation up to 6 MHz

reliably. Above this frequency the attenuation was too great for the signals to

be measured beyond the dead-zone of the transducer. A best-fit curve was then

calculated for the attenuation, using a quadratic function as shown in figure 4.7b.

This gave an attenuation of 0.27 dB/cm/MHz2 (at 26.4◦C) which agrees with the

data in the literature: 0.22 dB/cm/MHz2 in [74] and 0.19 dB/cm/MHz2 in [75].

Data was captured at 80 positions along the hair (separation increments of 0.02 mm)

using an Ultrasonix RP medical scanner2. 32 elements of the L14-5/38 array were

used with an element size of 0.3 mm and a pitch of 0.6 mm, placed a distance of

approximately 10 mm from the hairs. In order to finely control the separation of

the hairs, we chose to fix them in position in a cross shape as shown in figure 4.8.

The hairs were almost—but not quite parallel—so that scanning the array in the

x direction gradually changes the measured hair separation. Because the angle

between the hairs was so small their separation could be changed in very small

steps. The true separation of the hairs was estimated by fitting lines to their 3D

reconstruction. The scattering data was measured by transmitting a pulse from each

element and recording the reflections on all other elements. A single negative pulse

was transmitted which was filtered by the frequency response of the array and lead

to a centre frequency of 5.5 MHz with a bandwidth of 5.5 MHz. 1500 samples were

recorded at a rate of 20 MHz. This gave 32× 32 signals, which are the discretisation
2http://www.ultrasonix.com/
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Figure 4.7: Measurement of the attenuation of ultrasound in glycerol was achieved by

transmitting a broadband pulse over various distances. A sub-set of the reflections are

shown overlaid in (a). As the distance d increases the pulses are delayed and attenuated.

The rate of decay of each frequency component of the pulse was calculated, and used to

find the frequency-dependent attenuation, this is shown with a quadratic fit in (b). Above

6 MHz the signals decay to quickly too measure accurately.

of u∞(θ,φ, t) for a limited range of θ, φ and t.

The resulting data was then processed using time-domain beamforming and the time

domain Linear Sampling Method. Beamforming was performed using the standard

ellipses method. The details of the time-domain LSM calculation are given in the

next sub-section.

4.5 Results and Discussion

All image slices were processed with time-domain BF, the time-domain LSM, and

single-frequency FM. Several slices around the critical separation at which the hairs

become unresolved are shown in figure 4.9. The time-domain LSM algorithm is able

to resolve the hairs at closer separation than with BF. It is also free from ringing

artefacts in the BF images, which are caused by the band-limited nature of the signals,
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Figure 4.8: Experimental set-up. The array is positioned above the crossed hairs, such that

they appear as two dots in the image plane. The hairs are at a distance of approximately

10 mm from the array, giving an angular aperture of 46◦. The array is scanned along the

hairs, which vary in separation from 0.8 mm to -0.8 mm. a) Perspective schematic, b)

Cross section through image plane, c) Bird’s-eye view.

however it does suffer from a lower vertical resolution. This is caused by the relaxed

assumptions made by the algorithm, combined with the limited aperture. Intuitively

BF works by using the time-of-flight of reflections to calculate their distance, whereas

LSM uses a process similar to triangulation. This means that a small aperture can

lead to large uncertainties in the range direction. In the horizontal direction however,

it leads to the increased resolution shown here.

Images for the closest separation at which the hairs are still just resolved using

LSM are shown in figure 4.10. The first seven images show the single-frequency

FM reconstructions using frequencies from 3 to 9 MHz with the attenuation and

wavelength in each case. At 3 MHz, the frequency is too low to resolve the hairs,

and a single merged object can be seen. The position and shape of the scatterer

image is not stable, and varies wildly between the images. The background of these

images also has significant noise. These are both a result of the limited amount of

information contained in the single-frequency measurement. At 4, 5 and 6 MHz the

hairs are resolved, however the images remain unstable, and by 8 MHz the hair is

indistinguishable from the background artefacts. Super-resolution is achieved with

the single-frequency method, but the reconstructions are very sensitive to noise.
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Figure 4.9: The critical images where resolution of the hairs is lost. The top row of

images are produced with traditional beamforming, the bottom with time-domain LSM. As

separation of the hairs decreases from left to right the hairs remain resolved longer with

TDLSM than BF. The TDLSM images are also freer of artefacts.

The eighth image shows the time-domain LSM reconstruction. Although the resolu-

tion is slightly reduced compared to the resolved FM images, the stability is much

better, and the images is completely free of artefacts. Note that this image is not

merely the sum of single-frequency images, but is formed by combining the informa-

tion from all frequencies during the imaging process (rather than in a post-processing

step). This confirms our initial hypothesis that the greater information content in

the broadband images can improve the effective SNR of the image.

The high attenuation of the glycerol prevents the propagation of broadband high

frequency waves, which are necessary for high resolution beamforming. The separation

of the hairs in figure 4.10 is 0.15 mm. The aperture angle is 46◦ which leads to a

Rayleigh resolution limit of 0.32 mm which is approximately double the resolved

distance with LSM.

4.6 Conclusion

In this chapter, the main sampling methods were described, and the possibility of

super-resolution imaging in attenuative media using a broadband sampling method
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Figure 4.10: The single-frequency and broadband sampling images for one particular hair

position (highlighted in red in figure 4.9). The broadband image is much more stable than

the individual frequency images but retains almost the same resolution. See the text for a

complete description.

was demonstrated. This allows small details in the image to be seen, beyond the

Rayleigh criterion which limits the resolution of images produced using classical

imaging algorithms. Super-resolution is especially important in attenuative media

where high frequency waves do not propagate very far, precluding the possibility

of increasing the resolution by using shorter wavelengths. High resolution with low

frequencies has additional technological advantages, such as allowing the use of fewer

elements.

Super-resolution was demonstrated by attempting to resolve two hairs at a number

of different separations. These appear as two blobs in the image, and below a certain

separation they merge into one. It was found that the time domain Linear Sampling

Method was able to resolve the hairs at closer separations than BF (approximately

half the Rayleigh limit).

The recently developed time domain LSM algorithm was used for the first time exper-

imentally. The use of multiple frequencies provides a greater number of independent
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4. Broadband Super-Resolution

measurements of the scatterer, which greatly increases the stability of the image,

with no loss of resolution, as can happen with BF methods.

This opens the door to resolution increases in sub-surface imaging in attenuative

media, such as in medical and seismic imaging. In the next chapter we look at the

second source of improved sub-surface imaging by exploiting multiple reflections

involving smooth boundaries of a component.
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Chapter 5

Broadband super resolution in

elastic solids

Although scalar scattering captures most of the physics involved in inverse scattering,

several important imaging applications occur in multi-mode media. In particular,

Ultrasonic Testing (UT) and geophysical imaging are performed in solid media. In

solid materials both shear (S) and longitudinal (P) wave modes are generated, and

conversion between these modes at inhomogeneities is generally unavoidable. The

additional wave modes contain extra information about the scatterers they illuminate,

so it would be beneficial to use both modes for imaging.

However, due to the complexity of elastic scattering a common approach to the

problem of imaging with elastic waves is to assume scattering is actually acoustic,

with acoustic waves travelling at the speed of P- or S-waves, and to ignore the other

mode(s). Since beamforming is linear, acoustic imaging in an elastic medium should

result in an image of the scatterer plus some additional artefacts caused by the

additional modes, whose strength will depend on the angular diversity of the waves.

Beamforming with S or P waves in elastic materials is not new, for example Long [76]

uses mode conversion from the backwall of a component to generate shear waves to

detect weld defects. Shear waves are also commonly used in other imaging modes,

such as for Time of Flight Diffraction (ToFD) [77].
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5. Broadband super resolution in elastic solids

Simonetti [78] demonstrated that super-resolution could be achieved in steel, however

in that case, due to the limited aperture, mode conversion was minimal and it was

possible to separate the P and S waves in the time domain due to the difference in

their speeds. However it is not known how the sampling methods are affected by

elastic waves in general. It is the aim of this chapter to investigate this, and to show

that time domain LSM can work in a practically significant experiment.

In the first section we give some background on elastic scattering, in the second

section simulations are performed for cracks in an elastic medium to investigate the

effect of elastic modes. Finally in the last section an experimental demonstration of

using TDLSM on an aluminium sample to image small cracks is provided.

5.1 Background

Elastic waves travel in bulk material as either a longitudinal P-wave, or as one of two

S-wave modes (or a single S-wave mode in 2D). Each of these wave modes behaves

according to the acoustic wave equation. From chapter 2, we have

∂2p

∂t2
− c2

l∇2p = F ′l (5.1)

∂2s

∂t2
− c2

s∇2s = F ′
s (5.2)

d = ∇p+∇× s (5.3)

where in 2D, s is a scalar field (or a vector field with zero x and y components).

All wave modes behave as acoustic waves in the bulk material where there are no

constraints on the total displacement. We cannot determine the value of these modes

by measuring at a single point because all modes can cause displacements in all

directions, but we can distinguish the wave modes if we can measure all displacement
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5. Broadband super resolution in elastic solids

components on a sufficiently well sampled linear or circular aperture.

As before, we can separate the radial and circumferential components dependence

of d by decomposition into spherical (or circular) harmonics. This can be used to

formulate an elastic far-field operator F . The circular harmonic expansion of an

elastic wave field in 2D is

p(r, θ) =
∞∑

n=−∞

[
AnH

(1)
n (kpr) +BnH

(2)
n (kpr)

]
einθ (5.4)

s(r, θ) =
∞∑

n=−∞

[
CnH

(1)
n (ksr) +DnH

(2)
n (ksr)

]
einθ (5.5)

d = ∇p+∇× (sk) (5.6)

where k is the out-of-plane unit vector, and kp and ks are the wavenumbers for P and

S waves respectively. The fields corresponding to the coefficients A0, A1, C0 and C1

are shown in figure 5.1. These coefficients represent out-going waves, whereas Bn

and Dn represent incoming waves. We can write the far-field out-going waves as

before

ps∞(θ) = lim
r→∞

1
Γ2D(r)

∞∑
n=−∞

AnH
(1)
n (kpr)einθ (5.7)

ss∞(θ) = lim
r→∞

1
Γ2D(r)

∞∑
n=−∞

CnH
(1)
n (ksr)einθ (5.8)

and we can write the elastic far-field operator, F as

F

 pi∞(x̂)

si∞(x̂)

 =

 ps∞(x̂)

ss∞(x̂)

 .
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A0
A1

C0
C1

Figure 5.1: The displacement fields corresponding to A0, A1, C0 and C1. The central

region is not shown so the smaller magnitude vectors further out can be seen.
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5. Broadband super resolution in elastic solids

F can be decomposed as F = HSH∗ as before. This can be written more explicitly

as

 Fpp Fsp

Fps Fss

 =

 Hpp Hsp

Hps Hss

 [S]

 H∗pp H∗sp

H∗ps H∗ss



We can conclude, firstly that all the results of chapter 3 also apply to elastic scattering,

and secondly it should in principle be possible to formulate FM and LSM for elastic

scattering. However in practice ultrasound arrays are incapable of measuring the

displacement of the medium in all directions, which is necessary to produce and

detect the P- and S-waves independently. Although arrays can be constructed that

excite the medium in the vertical or horizontal directions, they cannot do both,

therefore we must consider an alternative method of separating the waves.

In chapter 2 it was shown that the speeds of P- and S-waves are c2
l = λ+2µ

ρ
and

c2
s = µ

ρ
respectively. Since µ must be positive, it can be seen that as long as λ is

positive—which it is in non-exotic materials—then S-waves will always be slower

than P-waves and can be distinguished based on their arrival times. In the next

section we consider imaging using only P or S waves, and gating out the unwanted

wave modes based on their arrival times.

5.2 Simulating the Effect of Gating

In all real materials, bulk shear waves have a slower velocity than longitudinal waves,

therefore we can attempt to separate the modes by calculating the expected arrival

times of the various wave modes. We will use the notation “PS” to refer to waves

that are transmitted as P waves and mode converted to S waves. The PP, PS/SP

and SS modes should have different arrival times, so we can suppress the unwanted

parts of the signals. This will not work in general, for instance if there are several

scatterers, because the modes will sometimes overlap. The PS and SP signals will

always overlap in pulse-echo signals since the distance travelled by each mode is the
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PP PS, SP SS

PP travel time

PS, SP travel time

SS travel time

Packet Width

a)

b)

c)

Figure 5.2: The process of gating signals to remove shear waves. a) The original signals

showing different mode paths. b) The expected arrival time of the wave modes. c) The

signals with shear waves gated out. This particular example shows a pulse-echo signal,

where the PS and SP modes always coincide.

same. This gating method was considered by Simonetti [78] in order to isolate the

PP signals, however in that case the aperture of the array was small compared to

its distance from the scatterers and no significant S wave reflection was measured.

When this is the case gating is fairly trivial, however, a large aperture also results

in better image quality [79], so we have used a large aperture array close to the

scatterer for our investigation.

The gating algorithm we used is illustrated in figure 5.2. For each transmit/receive

combination we calculate the expected arrival times of each wave mode from the

scatterer. We then use these times and the width of the transmitted signal to

calculate a gating point, finally we use a smooth sigmoid function to gate the signals.

In our simulations we know exactly where the scatterer is, however with no prior

knowledge of its location one could assume there is a single scatterer located at the

current image point, and gate accordingly.

We tested the effect of this gating on simulated signals, the generation of which will

now be described.
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Figure 5.3: Layout of the simulations. A 32-element array is positioned above a series of

horizontal and vertical cracks. The background material was steel and a 2 MHz 5 cycle

hamming tone burst was excited vertically at each transducer location. This 14 mm square

denotes the imaging region.

5.2.1 Simulations and Results

In order to evaluate the effectiveness of gating different wave modes, we simulated

2D scattering from a series of horizontal and vertical cracks embedded in steel. As

the main strength of FM is its ability to image small details, we used relatively

short cracks of lengths 3, 1.5 and 1 mm. A typical close range ultrasound inspection

frequency is 2 MHz, and in steel this gives a longitudinal wavelength of 3 mm and

a shear wavelength of 1.6 mm. The input signal was a 5-cycle hamming windowed

tone burst. A 32 element array with 1 mm pitch was positioned 10 mm above the

scatterer, which was close enough that separation of the shear and longitudinal waves

is not trivial. This layout is shown in figure 5.3.

Each dataset was gated in several ways in order to remove or preserve the different

modes prior to imaging. Imaging was then performed on these datasets, and on

the ungated signals using BF and FM at 10 frequencies from 1.5 to 2.5 MHz. The

single-frequency images were summed to produce one image. For BF this improves

the vertical resolution, as the (complex) images coherently sum over the scatterer.

For FM, it acts as an averaging process to reduce random variations and artefacts in

the images.

The first result of our analysis is that gating has little effect on image quality.
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a) b)

14 mm, 4.5λ

c) d)

e) f) g) h)

BF FM

BF FM

BF FM

BF FM

Figure 5.4: The effect of gating on imaging the 3 mm horizontal and vertical cracks. a-d

are without gating, e-h have unwanted shear modes removed. Horizontal and vertical cracks

imaged with BF and FM are shown. The true crack length is shown as a white line, offset

from the true location which is at the centre of the images. It can be seen that gating has

little to no effect, and that FM performs better than BF.

Figure 5.4 shows images of the 3 mm vertical and horizontal cracks generated using

BF and FM with the P wave speed. That is, the imaging algorithms were applied

assuming the waves behaved acoustically with a speed equal to the P wave speed.

The top row (a-d) shows the results with no gating, the bottom row shows the results

with the PS, SP and SS waves removed. It can be seen that in this case (and the

others we looked at), gating makes no appreciable difference to the results, and

furthermore imaging with FM works well in both cases. The shape and position

of the image of the cracks are not as accurate with BF as they are for FM. The

fact that FM imaging works well even with the additional shear modes present is

fortuitous because it means that we can perform imaging successfully even in the

cases were gating would be infeasible, such as when imaging scatterers with a large

vertical extent. For the rest of the chapter, no gating is performed.

The second result is that, different modes produce different results for the images.

Since we perform no gating we can perform imaging using the P or S wave speeds

on the same dataset. This allows us to generate two different images of the defect,

and depending on the defect one or the other of the images may be better quality.
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a) b) c) d)

14 mm, 4.5λ

Figure 5.5: FM imaging of the 3 mm vertical and horizontal cracks with P (a, c) and S

(b, d) wave speeds.

Figure 5.5 shows the results of imaging vertical and horizontal cracks with FM using

both the P and S wave speeds. It can be seen that the vertical crack is imaged

more accurately with the S wave speed, and the horizontal crack is imaged more

accurately with the P wave speed. This effect is due to the directionality of the

incident wave-field as explained in the next section.

5.2.2 Directionality

A separate issue that becomes apparent when imaging with shear waves, is the

directional nature of the source. The vertical vibration associated with an array

element produces shear waves that vary in strength according to the cosine of the

angle with the horizontal. This means that little to no shear waves are transmitted

or received (by reciprocity) in a vertical direction from the array. Most of the shear

wave energy travels in the direction parallel to the array making shear waves more

sensitive to vertical cracks as shown in figure 5.6.

Normally it is assumed that the array elements are omnidirectional, which is accept-

able in the region of interest with longitudinal waves and a small aperture. However

since we are imaging directly below the array, the directionality of the shear waves

becomes important. By considering the directionality we can reduce the magnitude

of the artefacts in the shear wave images, and improve the accuracy of the true image.

The method used was detailed in [80]; we alter the directionality of the Green’s

function in the BF and FM equations to match that of the transducers. The effect

on imaging is shown in figure 5.6, where a 1.5 mm vertical crack is imaged with and

without consideration of the directionality. The magnitude of the artefacts to the
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a) b)

14 mm, 4.5λ

Figure 5.6: By considering the direction nature of shear wave generation, the magnitude

of image artefacts can be reduced. Shown here are FM images of 1.5 mm vertical crack

with (a) and without (b) consideration of the directionality.

Horizontal Vertical
1 mm 1.5 mm 3 mm

a) b) c) d) e) f)

1× 1λ

g) h) i) j) k) l)

1 mm 1.5 mm 3 mm

FM

BF

Figure 5.7: Demonstration of super-resolution imaging using FM (a-f) and BF (g-l) in

elastic media. Various lengths of horizontal (a-c, g-h) and vertical (d-f, j-l) cracks are

imaged. The FM image sizes follow the crack sizes with much better accuracy than the BF

images.

side of the crack are greatly reduced using this method.

5.2.3 Super-Resolution

At the 2 MHz centre frequency we used for simulation and imaging, the three crack

lengths correspond to 1, 1
2 and 1

3 of the longitudinal wavelength (3 mm). The results

in figure 5.7 show that the FM images closely follows the length of the crack even

down to the third-wavelength scale, whereas the BF image remains unchanged as the

crack length varies. Imaging was performed without gating the signals, and using

the P wave speed for imaging.

123



5. Broadband super resolution in elastic solids

5.3 Experiments

5.3.1 Experimental Setup

In order to test the elastic imaging of cracks experimentally, we obtained several

50 × 50 × 600 mm extruded aluminium blocks and cut 2D cracks in them using

EDM (Electrical Discharge Machining). In order to match the simulation, it would

be necessary to use a very large block of metal, and cut a crack in the middle of it,

which is difficult to fabricate. Instead we used a more realistic thickness 50 mm, and

cut cracks from the outside. The 600 mm length was chosen so that reflections from

the ends of the block did not interfere with the measurements. Three cracks were

cut with depths of 0.5, 1.0 and 2.0 mm, all with widths of approximately 0.3 mm.

Additionally, the face of a aluminium spare block was machined flat (rather then

left with an extruded finish) to see if the smoother surface made a difference to the

coupling, which was initially quite poor. The machining made no difference, and it

was found that the poor coupling was due to the use of water rather than gel as

a couplant. With gel, very consistent coupling was achieved. The layout for the

experiments is shown in figure 5.8.

Due to the results of simulated imaging with various apertures (presented later in

chapter 6) and from chapter 3 we know that a large aperture is very important for

imaging, therefore a very wide array was used to image the cracks. This array has

128 elements, and a pitch of 1.5 mm. Additionally the elements have a relatively

small width (0.45 mm) so that waves can be transmitted in every direction, and

large length (15 mm) to give as high an SNR as possible. The large pitch can result

in under-sampling, as the P and S wavelengths in aluminium at the 2.4 MHz centre

frequency of the array are 2.7 and 1.3 mm respectively.

Before performing the experiment, a time-domain simulation of the layout was

performed using the Finite Difference Method (FDM) discretisation of the elastic

wave equation. The code uses Convolutional-Perfectly Matched Layers (C-PMLs) to

absorb waves that reach the edge of the simulation domain [17]. A displacement is
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Figure 5.8: The experimental set-up. a) A 0.5, 1.0 or 2.0 deep EDM notch is cut into

the side of a 600× 50× 50 mm aluminium block. The notch is approximately 0.3 mm thick.

b) Photograph of the array and block with a 2 mm notch.

excited at the location of one transducer and the displacement field is recorded at

the locations of all the transducers. Additionally the entire wave field is outputted

as a video, with P-waves displayed blue and S-waves displayed red. This colouring is

achieved by setting the red channel equal to the isostatic stress and the blue channel

equal to the minimum principal stress. Due to the proximity of the source to the

front wall, an unstable (and unrealistic; it isn’t observed in the experiments) surface

wave is generated that was removed by subtracting the results of simulation with

only the front wall present. This is only mentioned because it is visible in the wave

fields shown later.

First we may examine the simulation results for the case with no scatterer present.

The labelled signals received for a single transmission are shown in figure 5.9. The

labelled wave modes are: 1: P-P, 2: P-S, 3: P-P-P-P, 4: P-P-P-S, 5: P-P-P-P-P-P,

6: P-P-S-S, 7: S-S. The modes can be in any order; P-P-P-S arrives at exactly the

same time as S-P-P-P, P-S-P-P and P-P-S-P.

One can see the reflected P-P wave arrives first, followed by the mode converted
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Figure 5.9: a) The waves received by each transducer when a simulated tone-burst is

transmitted on element 36 in a defect-free block. b) The various modes corresponding to the

reflections in (a). Red and blue denote P and S waves respectively. Where mode conversion

occurs the order is not important, i.e. P-S and S-P waves arrive simultaneously.

P-S and S-P waves. The S-S waves are the slowest, and are followed by waves which

are reflected multiple times between the front and back walls (e.g. the P-P-P-P

waves). The directionality of the transmission can also be seen—for example no shear

waves are received in pulse-echo because the vertical excitation of the transducer

only results in P waves in the vertical direction.

The pulse-echo signals from each transducer with the 1 mm crack introduced are

shown in figure 5.10. Although P-P and P-S/S-P reflections do occur, by far the

strongest reflection from the crack is the S-S mode, therefore we have used the
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Figure 5.10: The simulated pulse-echo signals for a block containing a 1 mm crack.

The three simultaneous reflections are the P-P, P-P-P-P and P-P-P-P-P-P reverberations

between the front and back walls. The largest reflection from the crack is the S-S mode at

45µs. The P-P and P-S/S-P reflections from the crack can also be seen around 20 and

28µs respectively, but they are both very weak.

S-speed for imaging. Frames from the video of scattering from transducer 36 are

shown in figure 5.11. They show the highly directional nature of the reflections from

the crack, and the complexity of the scattering, where several reverberations of the

P mode occur before the S-S reflection from the crack is received. Fortunately in

this geometry the S-S reflection from the crack does not overlap with any others, so

it can be extracted by gating out the other signals.
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1 mm crack

P-P reflection from crack

S-S reflection from crack S-P reflection from crack

t = 9µs

t = 13µs

t = 17µs

t = 18µs

t = 22µs

t = 20µs

t = 25µs

Figure 5.11: Simulated wave fields resulting from transmission from element 36 for the

1 mm crack. P and S waves are coloured red and blue respectively. It can be seen that

the “S-S” reflection is actually due to a more complex interaction of the mode converted

S-P wave in addition to the S wave. The strength and high degree of directionality of the

reflection shows the advantage of using a large aperture array and imaging with shear

waves.
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Figure 5.12: a) Experimental pulse echo signals for the 1 mm crack. The S-S reflections

are clearly visible and P-P is just visible. b) The received signals for all array elements

when transmitting on element 36. Both (a) and (b) closely match the simulations in

figures 5.9 and 5.10. (There are actually slight timing differences due to the actual block

being 51.04 mm thick, rather than 50 mm as in the simulation.)

5.3.2 Experimental procedure

The experiment was performed by transmitting a single pulse on each array element,

and recording the signals at 20 MHz, for 1500 samples. The gain was constant,

and 31 times averaging was used to improve the SNR. The signals corresponding

to figures 5.9 and 5.10 are shown in figure 5.12. The average spectrum for all the

signals is shown in figure 5.13. 11µs worth of each signal was used for the imaging,

shifted using the pre-beamforming method described in the previous chapter. This

gave an overall dimension of Fd,t of 56192× 28160. Before imaging we first had to

perform coupling compensation and incident field removal.

5.3.3 Coupling compensation

Although coupling using gel was very consistent, it could still be improved by

numerically correcting for the transmission and reception coupling coefficients which

were assumed to be independent. A simple but effective algorithm was developed to
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Figure 5.13: Average spectrum of the experimental signals. This was calculated by

averaging the spectrum over all 5µs Hamming windows in all recorded signals. The centre

frequency is approximately 2.4 MHz and the half-power bandwidth is 0.5 MHz.

achieve this, based on reciprocity. Most of the “coupling” errors turned out to be due

to electrical or physical differences between the actual array elements, rather than

actual differences in the coupling between the array and the aluminium, however

these have the same effect and can be lumped in with the actual coupling effects. The

“before” and “after” channel energies (
´
u(t)2dt) for each transmit-receive combination

and each crack length are shown in figure 5.14. The increase in consistency is quite

dramatic; the only remaining inconsistencies, which occur at 32 element intervals are

due to the four-part construction of the array. This is also the reason the first 32

elements are stronger than the others when transmitting and receiving within that

sub-array.

The algorithm proceeds as follows:

1. Calculate the channel energy for each transmit–receive combination (see fig-

ure 5.14a).

E0(xi,xj) =
ˆ
v(xi,xj, t)2dt
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Figure 5.14: (The square root of) the channel energies before (a) and after (b) coupling

compensation. The slight anomalies seen every 32 transducers are due to the fact that the

array is constructed from four 32 element sub-arrays.

2. Calculate the mean logarithmic (i.e. the geometric mean) difference in energy

of each row or column from the previous row or column.

dtx
1 = drx

1 = 0

dtx
i = 1

Nx − 1

Nx∑
k=2

(logE0(xi,xk)− logE0(xi−1,xk−1)) i = 2 . . . Nx

drx
i = 1

Nx − 1

Nx∑
k=2

(logE0(xk,xi)− logE0(xk−1,xi−1)) i = 2 . . . Nx

3. Calculate the cumulative difference (so now each value represents roughly the

ratio of energy transmitted/received by a transducer compared to the first

one).

mtx
i = exp

[
i∑

k=1
dtx
k

]

4. Compute the updated energy matrix:
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5. Broadband super resolution in elastic solids

E1(xi,xj) = E0(xi,xj)
mtx
i m

rx
j

5. Repeat this process, using E1 in place of E0 to obtain E2. Finally scale each

channel so that its energy is equal the geometric mean of E1 and E2:

v′(xi,xj, t) = v(xi,xj, t)
E1(xi,xj)E2(xi,xj)

E0(xi,xj)2

The second iteration is necessary to remove errors that arise due to the fact that

transmission and reception coupling are conflated within a single channel.

5.3.4 Incident field removal

A rather significant detail that has been overlooked until now is the fact that the

sampling methods require the scattered field measurements (us(r,x, t)) as input, not

the total field that we actually measure (u(r,x, t)). In order to obtain us we must

measure u, and also ui by performing the measurement on a defect-free but otherwise

identical specimen. We can then perform the baseline subtraction us = u − ui.

However in practice, very slight differences in the measurements of u and ui where

they should be equal cause significant errors in us. This is especially problematic

because ui contains much more energy than us, so any errors in ui can easily drown

out us. In the next chapter, we present a method for performing this baseline

subtraction in acoustic media that minimises errors, however due to the complexity

of the incident field in the elastic case, we gated out the incident waves in the time

domain.

The incident fields ui(r,x, t) were measured for each ri, then enveloped using the

Hilbert transform, and thresholded. The resulting mask was manipulated using

dilation and erosion operators to remove anomalies, and finally blurred to allow a

smooth transition from gated to non-gated regions. The total signals, u(r,x, t), were

then multiplied by this mask to remove the incident field.

The downside to this approach is that it removes the shadows of the scatterer, which
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Figure 5.15: Beamforming images of the cracks. a) 0.5 mm b) 1.0 mm c) 2.0 mm. Note

that the backwall is nominally at y = 0, but there is a small error in the position of the

cracks so the region below the backwall is shown.

are usually the most energetic part of the scattered field. One can see that the

differences in channel energy between the crack sizes in figure 5.14 are primarily

due to shadowing of the pulse-echo, and near-pulse-echo signals, and there are clear

differences in the magnitude of the shadows. Sizing can be performed based on

the magnitude of the scattered field [81, 82], however this method has downsides,

primarily the need for accurate calibration, and potentially prior knowledge of the

shape of the defect.

5.3.5 Images and discussion

We computed the beamforming images in the time domain, and the results are shown

in figure 5.15. Although the difference in size of the crack is only on the edge of the

Rayleigh limit, the images are essentially useless for sizing the cracks; the size of the

main “blob” does not correlate with crack size at all. The magnitude does (note the

scales), however as noted before, there are significant downsides to magnitude-based

sizing, and we wish to achieve sizing based on the image geometry instead.

Next, FM at 2.5 MHz, and TDLSM were used to produce images of the 0.5, 1.0

and 2.0 mm datasets. The FM images are shown in figure 5.16. Due to the limited

information content of single frequency measurements the image does not reconstruct

the crack.

Next, TDLSM was used to perform imaging. The following inversion parameters
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Figure 5.16: FM images of the cracks at 2.5 MHz.

were used:

Singular Values computed: 8000

Target signal (s(t)): 4-cycle Hamming windowed 2.55 MHz tone-burst. Although

the centre frequency of the reflections was actually 2.4 MHz, a slightly higher

frequency target was chosen, as deconvolution of a few sample traces gave

smoother results at this frequency. In other words, the incident field calculated

by TDLSM was smoother. This intuition was apparently correct; the TDLSM

images using 2.55 MHz are somewhat better than those using a target at

2.4 MHz.

Signal window length (τ): 11µs.

Sound speed (shear): 3170 m/s.

The first few singular values for the 1 mm crack are shown in figure 5.17, and some

examples of the pre-beamformed signals, and the corresponding target are shown in

figure 5.18.

The resulting images are shown on the left in figure 5.19, together with the BF

images for comparison. A good image was obtained for the 0.5 mm crack, however

the 1.0 and 2.0 mm cracks are both undersized. The results are not as good as

had been hoped, however the difference between then 2.0 mm crack and the others

mean that it could be distinguished from smaller cracks, which was not the case with

beamforming.
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Figure 5.17: The first 500 measured singular values of the time domain operator Fd,t for

the 1 mm crack. Note that the values come in nearly equal pairs. The symmetry of the

scatterer means that there are pairs of odd and even symmetric functions with the same

singular value.
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Figure 5.18: Pre-beamformed signals. a) Received for transmitter 36, b) Pulse-echo, c)

The form of the target signal, its exact location and amplitude depends on the receiving

transducer and image point. But the key point is due to the pre-beamforming all possibilities

occur later than the one shown, but before 10µs. The signals are 220 samples long, so the

Ft,d matrix operator has dimensions 56192× 28160.
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Figure 5.19: The final TDLSM images (left) for the a) 0.5, b) 1.0 and c) 2.0 mm cracks.

The 1 mm and 2 mm cracks are both undersized, however, the 2 mm crack is noticeably

larger than the others, which was not the case for beamforming (reproduced on the right).

The wavelength is 1.3 mm.
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5.4 Conclusion

From the simulated images produced we can conclude that the Factorisation Method

is robust to the presence of additional wave modes with unexpected speeds. Gating

out these additional modes is not necessary to produce high quality reconstructions.

The simulation also shows that sampling methods can theoretically achieve super-

resolution imaging of a crack in free space in elastic media where both shear and

longitudinal waves are present, and cannot be measured independently. Imaging can

be performed with both shear and longitudinal wave speeds, the choice of the best

mode to use depends on the scatterer being imaged.

In experimental situations however, the noise is too great for the single-frequency

sampling methods, so TDLSM is necessary to achieve a remotely coherent image.

Both TDLSM and broadband BF are vast improvements over the single frequency

methods. TDLSM’s sizing capability is slightly better than BF’s and it is also much

better at accurately locating the cracks as it is less sensitive to global timing errors

in the measurements than BF.

The TDLSM image is not perfect however, and this is probably due to the low SNR

of the tip reflections in comparison to the corner reflection from the root of the crack,

and the fact that the free space Green’s function was used, rather than one that

considers backwall reflections. Backwall reflections for the simpler acoustic imaging

case are considered in the next chapter.
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Chapter 6

Using mirror reflections for

imaging—Theory

6.1 Background

Commonly when imaging industrial components using ultrasound, only one side of

the component is accessible, or both sides are accessible but it is difficult to align

two arrays on opposite sides, examples include pipes, storage tanks and pressure

vessels. This means that it is only possible to insonify the component from a small

subset of directions, i.e. from a limited aperture. In order to form an accurate image

of an object, one would ideally like to illuminate the object from every direction, and

record the scattered waves in all directions. This would require the use of a circular

or spherical array of sensors that surround the object—a configuration that is rarely

practical.

The limited view aperture can dramatically degrade the reconstruction, as demon-

strated in figure 6.1. In this numerical example, sound waves are transmitted from

an array of transducer elements through a 2D fluid, and scattered from a kite-shaped

hole in the fluid. The kite scatterer is shown in Fig 6.1a. In Fig 6.1b a circular array

of transducers (not shown) is used to excite waves and record the reflections. The

image is then produced from this data using the beamforming approach described
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b) c)a)

12λ

Figure 6.1: The effect of array aperture on the completeness of the resulting image. A

kite-shaped void (a) is imaged using the beamforming algorithm with b) a full-view ring

array surrounding the void; and c) the top 90◦ of the array. The aperture restriction leads

to an incomplete image of the scatterer.

in chapter 2. This image is far superior to that of Fig 6.1c, which only uses data

from the top quarter of the array. In this limited-view case there are many scattered

waves that cannot be detected which leads to severe image degradation. Therefore,

the aperture used for imaging has a dramatic effect on the completeness of the

reconstructed image.

The problem of the limited aperture is a pervasive one, and has been widely studied in

the literature. In the context of Diffraction Tomography, Mora [24] and Pan [83] show

that the effects of a limited view can be described by a linear image filter. However,

this is only true for linear scattering models such as the Born approximation in which

it is assumed that the scatterer is small and mostly transparent. These models are

not very realistic in many situations, so this result cannot be generalised to situations

involving strong scatterers such as holes. Zinn [21] has attempted non-linear imaging

of an impenetrable scatterer using an aperture of 90◦. As expected, the numerical

results are far from complete reconstructions. Various studies of the effects of small

apertures on imaging have been made [84, 85, 86]. Ochs [87] has shown that an

aperture of 180◦ can be sufficient, numerically at least, to completely image a scatterer.

Unfortunately even a 180◦ aperture is rarely practical. Alternative solutions have

been proposed by Mora [24], Nolan [88] and more recently Natterer [89]. Nolan

uses a vertical reflector to the side of the horizontal transceiver array in order to

provide additional views of the scatterer. Beamforming is used to separate the waves
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Mirror interface

Transceiver array

Figure 6.2: A schematic of the solution to the limited-view problem proposed by Mora. A

strongly scattering reflector is used as a mirror to provide additional views of the object to

be imaged.

that travel directly to the scatterer from those that are reflected from the known

mirror. Mora uses a horizontal reflector beneath the scatterer to provide additional

views. A schematic of this solution is shown in figure 6.2. In his paper, Mora uses

an iterative inversion method to reconstruct a weak scatterer above the strongly

scattering planar interface. The slowness field is iteratively refined until simulations

of the wave propagation match the measurements. Although this provides a good

reconstruction of the scatterer, there are some problems with iterative inversion

algorithms. They tend to be very computationally expensive, and the presence of

local minima in the objective function can cause convergence problems [90, 91].

For this reason, we have attempted to combine the use of a non-linear non-iterative

inversion algorithm with Mora’s mirror-like reflector. The use of a non-iterative

inversion technique allows us to explore the effects of various aspects of the imaging

problem while avoiding the computational burden of an iterative inversion scheme.

In addition, the geometric configuration of figure 6.2 is of practical interest as there

are physical imaging problems that closely match this situation. For example in

Non-Destructive Testing (NDT), it is common to want to image defects in thick

metal plates or pipe walls where only one side is accessible. The back wall of the

component (or the inside of the pipe) is a very strong reflector that can be used as a

mirror.

The purpose of this chapter is to discover how information about the geometrical
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properties of the object is conveyed to the scattering measurements, and to find

a link between imaging parameters such as aperture size and noise level, and the

level of detail we can hope to extract from the measurements. In section 6.2

we define a mathematical formalism that links the information contained in the

limited aperture measurements with a mirror, to a related ideal full-view case.

This relationship is independent of the scattering model used, and applies to both

penetrable and impenetrable scatterers. In section 6.3 we then simulate scattering

from an impenetrable scatterer, and invert the measurements using Beamforming,

and the Factorisation Method. This avoids the problems of global optimisation

and scattering approximations. We find that combining this advanced imaging

method with the additional data contained in reflections from the mirror results in a

reconstruction that is superior to that of standard beamforming.

The presence of the backwall also enables through-transmission measurements, which

are required for Time of Flight Tomography (ToFT). The ToFT results provide an

accurate but low resolution map of the speed of sound, which is used to augment the

BF/DT image using an algorithm developed by Huthwaite called Hybrid Algorithm

for Robust Breast Ultrasound Tomography (HARBUT) [92]. This algorithm is briefly

described in section 6.4. The results of section 6.2 also apply to this algorithm.

The conclusions of this chapter are drawn from mathematical and numerical analyses.

The material in this chapter has been previously published in [79]. Experimental

considerations and results are presented in the next chapter.

6.2 Information content of the reflection

The scattering scenario that we are attempting to image is shown in figure 6.3a. An

array of transducers is present in the far-field above a strongly scattering mirror

interface. A scattering object is embedded in background medium above the mirror

interface. Each transducer can transmit and receive acoustic waves through the 2D

background medium. Acoustic waves are pure pressure waves as found in liquids and

gases; there are no shear waves.
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Figure 6.3: Two related scattering models. a) A limited-view configuration with a

semi-circular array and an impenetrable planar interface along the line y = 0. b) A

related full-view configuration with the scatterer and transducers mirrored and the interface

removed.

In figure 6.3b a related full-view scenario is shown in which the scatterer and

transducer array have been reflected about the mirror interface, which has been

removed. This configuration provides the ideal imaging scenario that has led to the

image in figure 6.1b. These two cases are closely related. To show how, consider

the scattering of a wave transmitted from a transducer in the limited-view case.

The scattering of this wave is equivalent to the scattering of an identical wave in

the full-view case, plus the scattering of a wave transmitted from the mirrored

transmitter with a suit- able phase shift to account for the boundary condition at the

mirror. Because these two waves—the direct and mirrored waves—are transmitted

simultaneously, the reflections due to each of them are mixed and cannot be separated.

Therefore some information is lost relative to the ideal full-view configuration where

each element of the array can be excited separately. It is our aim to characterize

this information loss and understand the effect it has on image reconstruction.

In previous chapters we have defined the far-field operator, F in terms of unit

direction vectors r̂ and x̂. For this chapter we use a slightly different notation, using

angles θ, and φ instead, so that F is defined by

Fus∞(φ) =
ˆ
v(θ, φ)ui∞(θ)dθ, (6.1)
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π

Figure 6.4: A diagram of the matrix representation of the far-field operator. Only a square

subset is accessible in limited-view situations. The main diagonal of the matrix corresponds

to ‘pulse-echo’ measurements in which the same transducer is used for transmission and

reception of the waves. The ‘through-transmission’ diagonals are those in which opposite

transducers are used for transmission and reception.

where ui∞(θ) is the complex amplitude of the incident plane waves in the θ direction,

and v(θ, φ) is the scattered field in the scattering direction φ when the object is

illuminated with a plane wave from θ. The subscript ∞ refers to the fact that the

measurement is performed in the far-field as before. The values of v(θ, φ) can be

measured experimentally by exciting a plane wave for each angle θ and measuring the

scattered field at each angle φ. If a sufficient number of measurements are performed

such that the data is not under-sampled, the continuous F operator can then be

recovered [93]. For numerical computation, the discrete version of F is found by

measuring the scattering matrix for a circular array of evenly spaced transducers in

the far-field.

The complete far-field operator F can only be obtained in full-view configurations;

i.e. when the transducer array completely surrounds the scatterer. For a 180◦

limited-view in free space only a limited part of F can be measured. This is

illustrated in figure 6.4 which shows a diagram of the matrix associated with F . Each

entry of the matrix corresponds to one pair of illumination and detection angles.

The main diagonal corresponds to the so-called pulse-echo measurements in which

the same transducer excites an incident field and then receives the scattered field.

The diagonals labelled ‘through-transmission’ are the measurements in which one

transducer excites a wave and then the opposite transducer records the scattered field.

The through-transmission measurements cannot be obtained in the limited-view case.
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We now turn our attention to the limited-view problem when a mirror interface is

added. Consider the two configurations in figure 6.3 and let T be the subset of the

far-field operator measured with the limited view shown in figure 6.3a and F the

operator corresponding to figure 6.3b. The two operators are related by

T (θ, φ) = F (θ, φ) + αF (−θ, φ) θ, φ ∈ [0, π], (6.2)

where α = 1 or −1 for a sound-hard or sound-soft mirror interface respectively. Note

that T is defined for θ, φ ∈ [0, π], while F is defined over the wider interval [−π, π].

The first term on the right hand side of eq. (6.2) contains the direct waves that do

not interact with the mirror interface. The second contains waves that reflect from

the mirror interface. These appear to have come from mirrored sources, therefore the

sign of θ is changed. The correct choice of α allows the boundary conditions on the

interface to be satisfied. By considering the symmetry of the model in figure 6.3b

about the y = 0 line we can see that F has the following property

F (θ, φ) = F (−θ,−φ), (6.3)

and by considering the reciprocity of non-attenuative scattering we find that

F (θ, φ) = F (φ, θ). (6.4)

In matrix terms, eq. (6.3) is equivalent to F being centrosymmetric (symmetric

about the centre of the matrix), and eq. (6.4) is equivalent to F being symmetric.

From these properties it follows that F must be bisymmetric, i.e. symmetric with

respect to both its diagonal and its antidiagonal. It has the block structure shown in

figure 6.5 where A is a symmetric matrix and B is persymmetric (symmetric with

respect to its antidiagonal) [94]. The superscript T and F refer to the transpose

and the flip transpose. For a finite number of illumination and observation angles

eq. (6.2) can be given in matrix form as
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Figure 6.5: The block structure of the bisymmetric far-field operator F . The superscript

T and F refer to the transpose and flip-transpose. A is a symmetric matrix and B is

persymmetric.

T = A+ αBR, (6.5)

where A and B are the quadrants of F as shown in figure 6.5. R is the ‘exchange

matrix’—the identity matrix rotated by 90◦. It has the same effect as the negation of

θ in eq. (6.2). T is therefore the sum or difference of the two independent quadrants

of F . Due to reciprocity, T is also symmetric.

If we could measure both A and B then it would be possible to determine the full

view matrix F using the block structure of figure 6.5. However we can only measure

T , which is a linear combination of A and B. This shows that the mirror does

not allow the direct retrieval of the complete full-view scattering information, thus

resulting in a partial loss of information.

Our goal is to determine how the loss of information contained in the measurement

of T affects the reconstruction. The nature of the image degradation will depend

on the algorithm used to produce the image. As stated before, we are using the

Beamforming and Factorisation Methods and will now investigate how they behave

when T is used for imaging instead of F . For this it is convenient to formulate these

methods in terms of the singular value decomposition of the far-field operator.
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6.2.1 Singular Value Decomposition of the Far-Field Oper-

ator

The full-view operator F can be decomposed using Singular Value Decomposition

(SVD) as before:

F =
∞∑

n=−∞
σn|ξn〉〈ψn| (6.6)

so that

F |ψn〉 = σn|ξn〉 (6.7)

F ∗|ξn〉 =σn|ψn〉, (6.8)

where F ∗ is the conjugate transpose of F , and the ket symbol is used according to

Dirac’s bra-ket notation [40]. Similarly for T we have

Tα =
∞∑

n=−∞
λn;α|vn〉α〈un|α (6.9)

Tα|un〉α = λn;α|vn〉α (6.10)

T ∗α|vn〉α = λn;α|un〉α, (6.11)

where the subscript α refers to the boundary condition. We can now show that the

singular functions of F (|ξn〉 and |ψn〉) can be given in terms of the singular functions

of Tα=1 and Tα=−1. By using the block structure of F in figure 6.5 and eq. (6.5) it

can be shown that
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F

αR|un〉α
|un〉α

 = λn;α

αR|vn〉α
|vn〉α

 (6.12)

F ∗

αR|vn〉α
|vn〉α

 = λn;α

αR|un〉α
|un〉α

 . (6.13)

Therefore the complete SVD of F can be obtained from the SVDs of two T operators

measured for a sound-soft (α = −1) and sound-hard (α = 1) interface. In particular

the sound-hard configuration provides the symmetric component of the SVD of F

ψsym
n = 1√

2

R|un〉α=1

|un〉α=1

 (6.14)

ξsym
n = 1√

2

R|vn〉α=1

|vn〉α=1

 (6.15)

σsym
n = λn;α=1, (6.16)

and the sound-soft interface gives the antisymmetric components

ψant
n = 1√

2

−R|un〉α=−1

|un〉α=−1

 (6.17)

ξant
n = 1√

2

−R|vn〉α=−1

|vn〉α=−1

 (6.18)

σant
n = λn;α=−1. (6.19)

The 1/
√

2 factors are necessary to normalise the singular functions. Therefore,

depending on the boundary condition at the mirror interface we will be able to

recover either the symmetric or antisymmetric singular vectors and singular values of
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F . This characterises the information loss of the limited-view measurements with a

mirror, relative to the ideal full-view case and is independent of the scattering model

and material properties of the scatterer. The same result holds if the eigenvector

decomposition is performed instead of SVD.

6.3 Imaging impenetrable scatterers

6.3.1 Beamforming

Under the full-view configuration of figure 6.3b the BF image at z is given by [38]

Ibf (z) = |〈gz|F |gz〉| , (6.20)

or in terms of the SVD of F

IFBF (z) =
∞∑

n=−∞
σn〈gz|ξn〉〈ψn|gz〉

=
∞∑

n=−∞
σsym
n 〈gz|ξsym

n 〉〈ψsym
n |gz〉

+
∞∑

n=−∞
σant
n 〈gz|ξant

n 〉〈ψant
n |gz〉, (6.21)

where the functional has been split into symmetric and anti-symmetric components.

The same functional in eq. (6.20) can be applied to T to produce a limited view image.

However, instead of considering the free space Green’s function (equations 34 and

35 in chapter 2) we use a Green’s function that accounts for the interface according

to the standard approach used in Kirchhoff migration [95]. In this case, optimum

focussing with the mirror present can be achieved using the Green’s function of the

half space bounded by the mirror
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|g‡z;α〉 = |gz+〉+ αR|gz−〉 θ ∈ [0, π], (6.22)

where |gz+〉 is the free space Green’s function and |gz−〉 is the free space Green’s

function corresponding to a source that mirrors the actual source. Therefore the BF

image of Tα is

ITαbf (z) =
∣∣∣〈g‡z;α|Tα|g‡z;α〉

∣∣∣ (6.23)

=
∞∑

n=−∞
λn;α〈g‡z;α|vn;α〉〈un;α|g‡z;α〉. (6.24)

Now consider the following equality:

〈ψn|gz〉 =
〈
αRun;α√

2

∣∣∣∣∣gz−
〉

+
〈
un;α√

2

∣∣∣∣∣gz+

〉
(6.25)

= 〈αRgz− + gz+|un;α〉√
2

(6.26)

= 〈g
‡
z|un;α〉√

2
(6.27)

〈gz|ξn〉 = 〈vn;α|g‡z〉√
2

. (6.28)

Substituting these into eq. (6.21) and using eq. (6.23) one obtains

2IFBF (z) = ITα=1
BF (z) + I

Tα=−1
BF (z). (6.29)

Therefore, the doubled full-view image 2IFBF is the sum of the limited-view im-

ages with sound-soft and sound-hard interfaces that would be reconstructed via

eq. (6.23). Moreover ITα=1
BF and ITα=−1

BF in eq. (6.29) correspond to the symmetric and

antisymmetric terms in eq. (6.21), i.e.

149



6. Using mirror reflections for imaging—Theory

ITBF ;α=1 = 2
∞∑

n=−∞
σsym
n 〈gz|ξsym

n 〉〈ψsym
n |gz〉

and

ITBF ;α=−1 = 2
∞∑

n=−∞
σant
n 〈gz|ξant

n 〉〈ψant
n |gz〉.

6.3.2 Factorisation Method

The full view FM image is obtained by calculating the functional

IFFM(z) =
( ∞∑
n=−∞

|〈ψn|gz〉|2

σn

)−1

(6.30)

=
( ∞∑
n=−∞

|〈ψsym
n |gz〉|

2

σsym
n

+
∞∑

n=−∞

|〈ψant
n |gz〉|

2

σant
n

)−1

. (6.31)

For the limited view image scenario we propose to use the modified steering function

g‡z as in the beamforming case:

ITFM(z) =

 ∞∑
n=−∞

∣∣∣〈un|g‡z〉∣∣∣2
λn


−1

. (6.32)

Using the property 〈ψn|gz〉 = 〈un|g‡z〉√
2 as before, and σn = λn we find that

ITFMα=1(z) =
( ∞∑
n=−∞

2 |〈ψsym
n |gz〉|

2

σn

)−1

(6.33)

ITFMα=−1(z) =
( ∞∑
n=−∞

2 |〈ψant
n |gz〉|

2

σn

)−1

(6.34)

which implies that
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Imaged Region

Transducer Array (in far field)

10λ

A B C

Figure 6.6: Schematic of the numerical examples with a circular array. The dotted red

squares indicate the region that is imaged in the following figures. A, B and C correspond

to the situations described in the text (A and C are shown at a different scale to B). The

measurements for A and B correspond to the F and T matrices respectively.

1
IFFM(z) = 1

2ITFMα=1(z) + 1
2ITFMα=−1(z) . (6.35)

This result is very similar to eq. (6.29) for beamforming.

6.3.3 Numerical Simulations

The SVD representations of BF and FM allow us to study the effect of the mirror

on the quality of the reconstruction. For this purpose we have generated forward

scattering data for the three scattering situations in figure 6.6:

A. The full-view situation from figure 6.3b with the scatterer mirrored and a 360◦

array with 360 point sources at a distance of 100λ. This is the ideal imaging scenario.

B. The limited-view situation from figure 6.3a with a 180◦ array with 180 point

sources at a distance of 100λ, and a sound-soft interface at y = 0.

C. The same as B, but with the mirror interface removed. This situation is

representative of current practice in NDT where signals received after the backwall

reflection are ignored.

In each case the scatterer used was the same sound-soft kite shape we have used

before. It was introduced by Potthast[96] and is parametrized by
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Figure 6.7: The phase and normalised magnitude of the multistatic matrices for the

three simulated situations show in figure 6.6 and described in the text. θ and φ refer to

the illumination and detection angles respectively according to the convention given in

figure 6.3a. It can be seen that the structure of the F matrix (A) matches the block structure

shown in figure 6.5, and that all matrices are symmetric as expected.

x
y

 =

− 1√
2 −

1√
2 0

1√
2 − 1√

2 6




1.5 sin(t)

cos(t) + 0.65 cos(2t)− 0.65

1

 , (6.36)

where t = [0, 2π] and the dimensions of x and y are in units of λ. We solved the

Helmholtz equation in the frequency domain using the Boundary Element Method [97].

This method is particularly suited to our purposes since it can calculate multistatic

matrices for a single frequency very quickly. Additionally it does not suffer from

problems associated with meshing methods (FEM and FDM) such as mesh noise,

interpolation between nodes, and the problems of representing curved surfaces on a

regular grid.

The magnitude and phase of the resulting multistatic matrices for each simulation

are shown in figure 6.7. It can be confirmed that the structure of the F matrix

(the matrix for situation A) matches the block structures given in figure 6.5. It is
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also interesting to note that the regions with the highest scattering magnitude are

the pitch-catch measurements. This is because the receiver in those measurements

lies in the shadow of the scatterer; the scattered field is approximately equal to

the negative of the incident field, producing a small total field in the region of the

shadow. Moreover B shows a richer structure than C that varies smoothly with θ

and φ. This suggests that B contains more information than C.

The SVD of the three multistatic matrices was performed. As expected it was found

that the singular values of F (case A) are the combination of those for Tα=−1 (case

B) and Tα=1. These singular values, and the singular values for case C are shown in

figure 6.8. From the figure it can also be seen that the singular values of B are larger

than those of C thanks to the presence of the mirror. The number of large singular

values correlates with the amount of information we can retrieve (see chapter 3), and

is affected by the size of the aperture, as explained later in this section, and by the

noise level as discussed in section 6.3.4.

Imaging was performed using both the FM and BF methods and the three simulated

multistatic matrices as input. For B, the modified Green’s function of eq. (6.22) was

used. The results of these imaging processes are shown in figure 6.9. The images in

the figure correspond to the marked regions in figure 6.6.

For the full-view configuration (A), the BF and FM images are both good recon-

structions, with FM providing higher resolution and fewer artefacts. The results

for the limited-view case with no mirror (C) are much worse; both BF and FM

provide incomplete images, with only the top edge of the scatter visible. When the

mirror is added to the limited-view case (B) the FM image is restored so that it

is nearly identical to the full-view FM image. The BF image is similarly restored,

although the level of ringing artefacts becomes significantly higher. In all cases there

are severe ringing artefacts in the BF images. These may be improved by the use

of time-domain beamforming, but will not achieve the clarity of the FM images.

From these results it is clear that in this situation the FM produces much better

reconstructions than BF.
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Figure 6.8: An example of the singular values for full-view, limited-view with a sound-soft

mirror and limited-view with a sound-hard mirror configurations. The singular values for A

(solid black line) are equal to the combination of the singular values of the limited-view case

with a sound-hard and sound-soft mirror (B), which give rise singular values corresponding

to the symmetric (red crosses) and anti-symmetric (blue circles) singular functions. The

dashed black line is the singular values for C, but with each element repeated to allow

comparison with B (the blue circles). It can be seen that the addition of the mirror increases

the magnitude of the singular values. This corresponds with the increase in the available

scattering information.
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BF:

FM:

a) b) c)

f)e)d)

10λ

A B C

Figure 6.9: The results of imaging the kite void using the multistatic matrices in figure 6.7.

The first row shows these results of imaging the region marked in figure 6.6 with the

Beamforming algorithm, and the second row with the Factorisation Method. For imaging of

the T matrix (b and e) the modified Green’s function [eq. (6.22)] was used. Each image is

normalised with respect to its maximum, and a linear scale is used. The size of the regions

shown is 10× 10λ.

This improvement is even more evident when apertures smaller than 180◦ are

considered. Indeed, in reality it is often impossible to achieve a 180◦ aperture.

The transducers must usually be placed in a line, making it impossible to excite

and receive waves that travel horizontally. Even if a very long array is used, the

transducers may be directional, which reduces the effective aperture. A more realistic

set-up with a linear array is shown in figure 6.10. The array contains 90 point sources

evenly distributed over a distance of 100λ, at a distance of 100λ from the mirror,

i.e. from (-100λ, 100λ) to (100λ, 100λ). This provides an aperture of approximately

90◦. The same three situations as before were simulated but with the linear array.

The results are shown in figure 6.11.

One can immediately see that the BF results are unacceptably degraded. It is

impossible to determine the shape of the scatterer from even configuration A. In

contrast, the FM results are largely unchanged from the previous results with the
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Imaged Region

10λ

Linear Transducer Array

90◦

A B C(in the far-field)

Figure 6.10: Schematic of the numerical example with a linear array. The array has 90

elements, a length of 100λ and is positioned 100λ from the backwall. The array has an

aperture of 90◦.

circular array. The kite is fully reconstructed with no artefacts after both full-view

imaging and limited-view imaging with the mirror. The main reason why FM

outperforms BF is that it uses all of the available data. When waves interact with

fine details of the scatterer or areas that lie in shadow the reflections they produce are

weak. These weak reflections cause correspondingly small variations in the measured

multistatic matrix. When the matrix is decomposed by the SVD, small variations

become encoded in the singular vectors associated with singular values that are

small in magnitude. The functional for beamforming [eq. (6.21)] shows that this

data is largely ignored. Each term in the functional is proportional to the singular

value, hence the terms associated with the small singular values will have little effect

on the total series and hence the image. On the other hand, the terms in the FM

functional [eq. (6.30)] are inversely proportional to the magnitude of the singular

value. Therefore the small variations in the multistatic matrix can be used to produce

a more detailed and complete image than that of Beamforming. In the limited-view

case half of the singular values are lost so it is especially important to use as much

of the data as possible.

6.3.4 Noise Analysis

The previous simulations did not consider noise besides numerical errors. This is an

important factor because, as was discussed before, FM makes use of all the singular

values including those with very small magnitude. These singular values will be
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Figure 6.11: Results of imaging the kite void with the linear array for the configurations

A, B, and C shown in figure 6.10. With the decreased aperture afforded by the linear array,

the BF images are now unusable. The FM images are mostly unchanged from the results

for the circular array.

corrupted by the addition of noise and some will be completely lost. The loss of

the small singular values and their associated singular functions will cause more

problems for FM than BF because BF does not use them—this is the source of its

noise robustness.

In order to investigate the combined effect of noise and apertures smaller than 180◦

on the imaging process, various levels of additive Gaussian noise were added to the

T multistatic matrix measured in the presence of a mirror and with various angular

apertures. The 180◦ T matrix is shown in figure 6.7 B. The noise was given a

random phase uniformly distributed in [−π, π], and normally distributed magnitude.

The noise matrix was scaled by an amount relative to the RMS magnitude of the

180◦ multistatic matrix, so for example 1% noise corresponds to noise with an RMS

magnitude of 1% of the RMS magnitude of the T matrix. After adding noise, the

different apertures were simulated by cropping the multistatic matrix for the 180◦

case. Although this cropping operation leaves the absolute level of noise unchanged,
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Aperture

N
o
ise

180◦ 160◦ 140◦ 120◦ 80◦100◦

2.3%

12%

23%

34%

46%

2.3%

46%

Beamforming

Factorisation Method

Figure 6.12: The results of imaging situation B with various noise levels and apertures.

The beamforming results are only shown for two noise levels since the noise has so little

effect.

the signal-to-noise ratio (SNR) increases slightly as a result of the different RMS

magnitude of the cropped matrix. The reconstructions using BF and FM for each of

these matrices are shown in figure 6.12.

With a full 180◦ aperture both BF and FM were found to be very robust; even under

very large noise levels. However, as the aperture decreases two main trends can be

observed. The BF image rapidly degrades as the aperture decreases whilst for a

given aperture the reconstruction is not affected by noise. On the other hand, the

FM reconstructions are less affected by a reduction in the aperture but are more

sensitive to the noise level than BF. These trends can be explained by considering

the singular value decomposition of T . Without noise as the aperture decreases, the

158



6. Using mirror reflections for imaging—Theory

Aperture

S
u
b
ten

d
ed

A
n
g
le

180◦ 160◦ 140◦ 120◦

110◦

70◦

50◦

30◦

80◦100◦

Figure 6.13: The FM results of imaging the kite at a variety of distances from a sound-soft

backwall with a linear array. The angle subtended is the dotted angle marked on the left

hand diagram. As the subtended angle increases, a larger and larger aperture is required

for successful imaging. The noise level is 2.7%.

number of larger singular values shown in figure 6.8 decreases, thus implying that

more information is carried by the smaller singular values. Since BF mainly uses the

information carried by the largest singular values [eq. (6.21)] the reconstruction must

degrade rapidly as the aperture decreases. Moreover since the larger singular values

are not significantly affected by noise this results in the robustness of BF to noise.

On the other hand, FM attempts to extract the information associated with the

smaller singular values and therefore it leads to better reconstructions than BF even

for small apertures. However, as noise increases the small singular values are lost

and with them the information they carry leading to increasing image degradation.

We posit that the aperture required for successfully imaging a scatterer using the

FM depends not only on the noise, but also on the angle subtended by the scatterer,

relative to its mirror image (see diagram in figure 6.13). The logic behind this

hypothesis is that as the angle subtended increases, a larger and larger aperture

is needed in order to produce waves that interact with sufficient energy with the

back of the scatterer. Or in other words, if the aperture remains the same and
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the scatterer moves towards the mirror, more and more information is encoded in

the small singular values at the expense of the large ones. To test this, the kite

scatterer was imaged at a variety of distances from the backwall, for a number of

different apertures. Each distance corresponds with a certain subtended angle. The

reconstruction with 2.3% noise are shown in figure 6.13. Although there is not a

simple relationship between the angle subtended by the scatterer and the aperture

required for a good image, the trend is clear: as the scatterer approaches the mirror

(i.e. as the subtended angle increase) it is imaged less and less accurately if the

aperture is kept constant. From this we can conclude that a large aperture is required

to correctly image scatterers very close to the backwall. If they are separated slightly

then it is possible to use apertures as small as 100◦ with 2.3% random noise. In both

tests performed in this section aperture size has a large effect on the quality of both

FM and BF reconstructions. Any method of increasing the available aperture would

certainly improve the results of real-life imaging problems.

6.4 Imaging penetrable scatterers

When imaging impenetrable scatterers, the goal is not to merely find their support,

D, but to find the object function (or sound speed) throughout the scatterer o(x).

The image functional used for the sampling methods has no direct correlation with

the sound speed, so another method must be used. The canonical method, described

in chapter 2 is Diffraction Tomography (DT). However, DT is difficult to formulate

for arbitrary incident waves and non-constant background speeds. An alternative

method derives from the observation that for a circular aperture, the BF image

is a linear function of the DT image. Therefore the DT image can be formed by

calculating the BF image and deconvolving the result. This is the method used by

the HARBUT algorithm developed by Huthwaite and Simonetti [92].

The motivation for HARBUT is that for many imaging problems, in particular

imaging tumours in breasts the background sound speed outside the scatterer we are

interested in is not constant. By removing the effects of the varying background sound
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Measurements (v(r,x, t))

Time-of-flight picker
Travel times Low resolution o(x)

Corrected Green’s functions Final image

Beamforming

Beamformed image High resolution o(x)

Deconvolution

ToFT

Figure 6.14: HARBUT Algorithm. See the main text for a description.

speed we can obtain a clearer image of the scatterer. In HARBUT the background

sound speed is measured with low resolution using Time of Flight Tomography

(ToFT). ToFT is good at accurately reconstructing sound speeds, but can only do

this with very low resolution. In HARBUT a bent-ray ToFT method is used. The

resulting sound speed map is then used to calculate the correct, spatially varying

Green’s function which takes into account the different travel times in the medium.

Finally the modified Green’s function is used to calculate the BF image, which is

deconvolved to obtain the DT image which is a high resolution measure of the sound

speed in the scatterer.

In the breast application of HARBUT, a full circular array is used, however HARBUT

can also be used with a linear array and a mirror surface. When used with a linear

array, the mirror surface is necessary to obtain through-transmission travel times

(since ToFT requires waves that more or less travel straight through the scatterer).

This mode of imaging is of interest in NDT as small changes in sound speed can

be used to detect damage precursors, measure residual stresses [98] and material

strength, as in the case of concrete [99]. The ability to detect and size these regions

depends on both their size, and the magnitude of sound-speed change. The full

algorithm is then as follows (also depicted graphically in figure 6.14):

1. Perform Full Matrix Capture (FMC) with the array, i.e. measure v(r,x, t).

2. Calculate the travel time for each transmit-receive combination using the
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method in [100].

3. Apply the bent-ray ToFT algorithm to produce a low resolution sound-speed

map.

4. Calculate the travel time from each transducer to each point in space, this

can be done using a simple algorithm based on the application of Fermat’s

principle. This is used to calculate the frequency domain Green’s function for

each point.

5. Use the modified Green’s function to calculate the single frequency BF image,

as described in chapter 2.

6. Deconvolve the resulting image using the frequency response given in [38].

7. Combine the sound speed maps calculated in steps 3 and 6.

In the next chapter we test the capability of ToFT to detect sound-speed changes

experimentally.

6.5 Conclusions

We have studied a method of improving the image obtained of an object when we

only have a limited view of it. If a planar reflector is situated behind the object

then it becomes possible to measure waves scattered from the back of the object

and a greater amount of information can be retrieved. However, compared to a

related full-view configuration there is still some loss of information. In order to

assess this loss, we studied the singular value decomposition of the multistatic matrix

and demonstrated that half of the singular values/vectors of the full-view case are

retained in the limited-view case; the other half are lost.

Scattering information about the fine details of an object, and parts of the object that

lie in shadows tend to be encoded in the small singular values, so this information

is lost due to noise, especially when using a small aperture. This was confirmed by
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performing imaging on numerical examples using the BF and FM algorithms. BF

does not use the small singular values to reconstruct the image, so it is very robust

to noise, however this also means that it cannot produce satisfactory images when

the aperture is small. On the other hand, FM always uses all of the singular values.

This enables it to produce detailed reconstructions with small apertures at low noise

levels, which gradually degrade as the noise level is increased. The position of the

object relative to the mirror also affects the quality of the reconstruction, particularly

at small apertures. If the object is close to the mirror then the reflections from its

back are small in magnitude and become lost in the noise.

Limited-view imaging with a mirror interface beneath the object provides dramat-

ically better images than would be obtained without the mirror. This is true of

imaging with both BF and FM. Our numerical simulations suggest that in order

to obtain an accurate reconstruction under realistic noise levels an aperture of at

least 100◦ is necessary. Experimental results using this technique to image impene-

trable scatterers, and also using the briefly described HARBUT algorithm to image

penetrable scatterers, are presented in the next chapter.
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Chapter 7

Using mirror reflections for

imaging—Experiments

7.1 Background

In the previous chapter, we studied the theory of imaging penetrable and impenetrable

scatterers using a mirror interface to provide additional scattering information. In

this chapter we describe several experimental tests of this method, and discuss

practical factors that are not included in the simulations.

Experiments where reflective interfaces are used to augment ultrasonic imaging

are rare-to-non existent. The only previous work that we are aware of is [76], in

which mode converted reflections from the backwall are used to detect defects in

welds. However, this imaging is performed from a very small aperture, and provides

“indications” rather than a true image of defects.

The measurement procedure is the same as in the simulations, and as in standard

imaging—Full Matrix Capture is used to record v(r,x, t). But there is a significant

difference between the processing of simulated and experimental data.

As with the imaging of the aluminium crack in chapter 5 we must remove the incident

field from the total field to obtain the scattered field. Some of the experiments in
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this chapter are simple enough that this can be done by baseline subtraction of a

measured or a simulated incident field. Accurate measurement of the incident field is

only possible in experiments in fluids. Otherwise the incident field must be removed

by gating, which results in an inaccurate measurement of the scattered field.

A second difference from the simulations is the directionality of the array elements.

In the simulations they were assumed to be point sources, however real transducers

excite wave-fields with phase and magnitude that varies with angle. We therefore

need a method for measuring and compensating for this variation.

These practical backwall imaging aspects are discussed in the next section. We then

present three experiments that exploit the backwall. These are: two experiments with

impenetrable scatterers in water, and one with penetrable scatterers in water. The

“backwall” is simulated using the water surface or a metal block. This work has been

published in [80]. The final experiment images penetrable scatterers—specifically

tubes of alcohol in water. The results of these experiments are presented and

discussed in section 7.4.

7.2 Practical considerations

7.2.1 Incident field removal

As discussed previously, imaging a scatterer ideally requires knowledge of the scat-

tered, rather than total field. Since the total field u is the one that is actually

measured we must recover us from u. One possibility is to identify the temporal

regions in which the incident field is expected to be non-zero, and gate out those

regions by setting u to be zero there.
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7.2.1.1 Gating

Gating out the incident field in the time domain was used with the elastic scatterer

in chapter 5. There, due to the complexity of the multiple elastic reflections and

mode conversions, the gated locations were found by measuring the incident field of

a real defect-free component experimentally. In water we can simply calculate the

expected arrival time of the reflected waves by geometry, as shown in figure 7.1.

The main disadvantage of this method is that any components of the scattered

field that overlap the incident field will be lost. Since there will always be such

components—e.g. the shadows—we cannot recover the scattered field in its entirety.

In particular the scattered field in the frequency domain will never be correct because

it depends on the values of us at all times, and times where the shadow is expected

will be incorrectly zeroed.

Since us = u − ui we can see that in order to know us everywhere we must know

the actual values of ui, irrespective of their domain of representation. This can be

achieved in experiments in fluids by carefully removing the scatterer and repeating

the FMC measurement. However in most practical applications we cannot remove

the scatterer and we must use another approach, such as the one we describe next.

7.2.1.2 Field-fitting

To obtain the incident field when the scatterer cannot be removed, we can measure

it on a defect-free copy of the component. However, subtracting the resulting waves

from the measured waves of another component does not work in practice.

The reason for this is illustrated in figure 7.2a. Due to the large maximum gradient

of a sine wave relative to its maximum magnitude (1:1), a very small error in the

relative phase of two nominally equal waves can lead to a large residual error when

they are subtracted. Changes in magnitude have a similar but smaller effect. Phase

errors can arise from small differences in coupling, dimensions, sound speeds, and

electronic timing. We found that even taking two measurements on different positions
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Figure 7.1: A simple method of gating out the incident field. a) The arrival time of the

backwall reflection is calculated from geometry. b) This is turned into a smooth mask. c)

The mask is multiplied by the total field to obtain d) an estimate of the incident field.
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Figure 7.2: Very small phase errors make baseline subtraction impractical. a) The total

field, and incident field measured with a small timing error, where the scattered field should

be zero. When subtracted there is significant residual error even for a small timing error.

b) The magnitude of the residual error vs the timing/phase error.
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along an extruded aluminium block leads to waves that do not fully cancel.

However, for the simple case of single-frequency imaging of an object above a metal

block in water, we found that it is possible to avoid the need for measuring the

incident field by fitting a simulated incident field to the total field. In this process it

is important to accurately locate the position of the backwall. To simplify matters

we assume the backwall is straight, then we only have two parameters to find: the

distance to the array and its angle relative to the array, as shown in figure7.3a. We

must also assume that the scatterer is reasonably small compared to the array. If

this is not the case then there will be few reflections from the backwall and although

we will not be able to locate it, there will be little benefit in using this imaging

method anyway.

In our method, an initial estimate of the backwall location is made using the pulse-

echo responses at the ends of the array. It is assumed that there are no scatterers to

obstruct these signals, and that the strongest signals will be the reflections from the

backwall. By timing these reflections the distance to the backwall at each end of

the array can be found and used to find an initial estimate of the backwall location.

This initial estimate is then refined using the following iterative method.

First we produce a monochromatic simulation of the FMC without the scatterer for

the current backwall position. This results in a matrix R. The magnitude of each

transmit–receive pair is determined by the directionality of the elements (see the

next section), and the transmission distance. The magnitude is not sensitive to the

backwall position. The phase is only determined by the transmission distance and is

highly sensitive to the backwall position.

The mismatch between the measured total field matrix T and the simulated reference

field matrix R is calculated using the following error metric (R and T are both

complex matrices)

e =
∑
i

∑
j

H
(
|Rij − Tij| −

1
2 ‖R− T‖max

)
(7.1)
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Figure 7.3: The incident field fitting algorithm. a) The parameters to be fit (r and θ); b)

The algorithm (see main text for a complete description).

whereH(·) is Heaviside step function, i and j are the matrix indices (which correspond

to the array elements) and ‖R− T‖max is the maximum element of |R−T |. In other

words the metric counts the number of matrix coefficients that differ by more than

half the maximum difference. The two position parameters of the backwall (distance

and angle) are iteratively adjusted to minimize this metric using the downhill simplex

method built into Matlab (but any optimization method could be used).

The results for one experiment in which a cylindrical scatterer was used are shown

in figure 7.4. The measured T matrix is shown (figure 7.4a) along with the predicted

R matrix (figure 7.4b). For comparison the measured matrix obtained by removing

the scatterer is shown in figure 7.4c. They match very closely with a discrepancy of

a fraction of a wavelength.

7.2.2 Beam directionality

In our simulations and theoretical studies, point source (equivalent to plane wave

sources in the far field) are used to illuminate the scatterer. In reality, the PZT

elements used in ultrasonic arrays are approximately strip sources. The extended

nature of the source results in a directional field whose strength depends on the

observation angle relative to the normal to the face of the element. This dependence

approximates a sinc function [10]. However, the exact shape is distorted significantly

by mechanical and electrical coupling of adjacent array elements, and the effects of
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b) c)a)

Transmitter

R
eceiver

Figure 7.4: Experimental incident field fitting results showing the phase of a) the measured

T matrix, b) the simulated R matrix, and c) the experimentally measured R matrix found

by removing the scatterer. The matrices in (b) and (c) should match.

matching / coupling layers. Therefore it must be measured. We developed a rapid

and simple procedure to do this which proceeds as follows.

FMC is performed near a planar reflector with no scatterers and the amplitude of

each echo from the backwall is calculated. The field excited by a single transmitter

and received by all array elements can be thought of as the field produced by a

virtual transmitter at the mirror position relative to the interface plus an appropriate

phase shift as shown in figure 7.5a. The received signal magnitudes can therefore be

related to the directivity function.

The amplitude of each signal is a function of the distance travelled by the wave

and the directivity function for transmission and reception (these are the same by

reciprocity). This amplitude is given by

a = D(θ)2
√
r

(7.2)

where D(θ) is the directivity function, θ is the angle of reception and transmission

and r is the distance between the transmitter and receiver (see figure 7.5a). Since r

and θ are known geometric parameters, D(θ) can be found.

As the transmitter element is changed, the same directivity function should be
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Figure 7.5: a) Schematic of beam directionality measurement. b) Measured directivity for

a 0.3 mm element in water at 4.5 MHz (λ = 0.33 mm).

obtained. This fact can be used to reduce noise by averaging the measurements for

all transmit-receive pairs at each angle. The directivity function was measured at a

frequency of 4.5 MHz for a medical ultrasound array and is plotted in figure 7.5b.

The element pitch was 0.3 mm and the wavelength was 0.33 mm. Ideally the elements

of our array would be omnidirectional as this gives the greatest field of view. As

the element width increases and the field becomes more directional fewer reflections

are received from the scatterer until only the transducer elements that are directly

above the scatterer receive echoes.

If we consider the form of LSM and FM it is clear that if the array elements are highly

directional, the equations will be impossible to solve because some of the elements

will receive no reflections because they are at an angle to the scatterer which has a

very small directionality coefficient. To solve this we multiply the Green’s function

by appropriate directionality coefficients, corresponding to the measured directivity

function, when evaluating it at each transducer element. This provides a small but

noticeable improvement to imaging with directional elements. However it does not

solve the underlying problem—that highly directional elements effectively cause a

smaller aperture which is very detrimental to the high resolution imaging methods.
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7.3 Impenetrable scatterer experiments

Our initial experiment was performed in water using a metal block as the “backwall”

and a small aperture high frequency array. This array has 128 elements, a pitch of

0.3 mm and a centre frequency of approximately 5 MHz. Two scatterers were used:

a razor blade, and an air-filled drinking straw.

Because in this case the scatterer is an object placed in water, it is actually possible

to simply remove the object without disturbing the array in order to measure the

incident field. This would not be possible in an industrial application. Imaging for

this experiment was performed using the single frequency factorisation method, and

the time domain beamforming method.

FMC data was recorded for scattering from the straw and the razor blade. The

backwall location was found and baseline subtraction performed. The resulting

data was imaged using traditional beamforming and the modified factorization

method. Imaging was performed at ten frequencies with a bandwidth of 2 MHz

and the resulting images were summed to give the final results shown in figures 7.6

and 7.7. Figures 7.6a and 7.6b show the data from the straw imaged using the

unmodified beamforming algorithm and with the modified mirror factorization

method respectively. The actual location of the straw is marked with a circle.

Although the factorization method does not reconstruct the shape of the straw

entirely correctly, its extent is closer to the desired result than beamforming achieves.

The factorization method images for the razor blade in two different positions are

shown in figure 7.7a and 7.7b. In these cases the imaging entirely depends on data

received after the backwall echoes because no reflections are recorded before them.

Even if tip diffraction echoes were detectable they could only be used to see the tip

of the blade. This could not be distinguished from a point scatterer. However, using

the backwall reflections the full extent of the blade is visible. The length and shape

of the reconstruction accurately match the scatterer.
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Figure 7.6: The results for backwall imaging of a 4 mm diameter air-filled straw in water

using a) beamforming and b) FM. The size and position of the straw are marked.
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Figure 7.7: The results for backwall imaging of a 5 mm razor blade suspended in two

different locations in water using FM.
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Figure 7.8: a) Layout of the tubes of alcohol in the experiment showing the array (crosses)

and scatterers. The water surface is at y = 0 (the figure is upside-down compared to the

physical experiment, for consistency with previous figures). b) Percentages of alcohol used

in the experiment, and the resulting speeds of sound.

7.4 Penetrable Scatterer experiments

To determine the effectiveness of the HARBUT algorithm for imaging penetrable

scatterers above a backwall, we performed experiments using thin plastic tubes (heat

shrink) containing diluted alcohol (specifically Tesco own-brand vodka, which is

much easier to obtain than denatured ethanol). A diagram of the experimental

configuration is shown in figure 7.8a. Three percentages of alcohol were tested,

corresponding to approximately 1%, 2% and 5% changes in sound speed. The

percentages of alcohol and measured speed of sounds are shown in figure 7.8b. They

agree with the speed–concentration relationship given in [101] at 25°C.
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The times of flight of each dataset, and also the incident field dataset with no scatterers

present, were extracted using a threshold-based time-of-flight picker. These times,

and the full waves were used to generate ToFT images, DT images, and the combined

HARBUT images for each dataset as described in the previous chapter. The datasets

were processed as described in the previous chapter, resulting in the images shown

in figure 7.9, for 1%, 2% and 5% speed-of-sound changes.

From the figure one can see that DT provides much higher resolution information

than ToFT, but mainly reconstructs the edges of the scatterer rather then the speed-

of-sound within it (e.g. compare the ToFT and DT images of the larger scatterer in

figure 7.9c). When combined, the HARBUT images retain the higher resolution of

the DT image, but also reconstruct the sound-speed inside the tubes correctly.

7.5 Conclusions

We have experimentally investigated the use of backwall reflections to improve the

reconstructions of strongly scattering defects in thick components. Several issues

encountered in the experimental procedure have been discussed; these are element

directionality, localization of the backwall, and baseline subtraction. Element di-

rectionality was addressed by modifying the Green’s function used in the imaging

algorithms. The position of the backwall was accurately found by iteratively ad-

justing its position until the measured wave fields matched simulated ones. Model

experiments were performed in water and have shown that this imaging approach

could lead to a substantial improvement over standard beamforming by improving

the reconstruction of crack-like and extended defects.

Additionally we demonstrated experimentally the HARBUT algorithm for imaging

penetrable scatterers above a mirror interface. It was able to produce quantitative

measures of the speed of sound in the scatterer and detected a 1% change in speed

of sound over 6.5 mm (11 wavelengths). Both techniques are promising for imaging

defects in practical elastic configurations. However, in order to do this the algorithms

will need to be further developed in order to take into account the effects of mode
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Figure 7.9: ToFT, DT and HARBUT images for a) 1%, b) 2%, and c) 5% changes in

the speed of sound.
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conversion at the backwall.
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Chapter 8

Conclusions

The aim of this research was to provide higher quality images of scatterers when

imaged using ultrasound arrays. Although we have concentrated on ultrasound,

many of the results are applicable to other wave-imaging fields such as seismic

imaging used in geophysics. The current state-of-the-art imaging algorithms are

linear algorithms based on beamforming or diffraction tomography. We looked at

two sources of usually-discarded data to improve the images: multiply scattered

signals, and reflections from known planar interfaces such as component boundaries.

Non-linear algorithms were used to decode the multiply scattered signals, leading

to super-resolution, and the reflections from the component backwalls were used to

provide more complete images of impenetrable scatterers, and quantitative measure-

ments of the sound speed in penetrable scatterers. Both methods have been proposed

in the literature, but neither have been made experimentally practical before.

Our results can be divided into theoretical conclusions on the informational limits of

signals, and the conditions necessary for high resolution imaging to work; and the

practical progress we have made in terms of implementing the methods experimentally.

These are briefly described first and then we provide some considerations on future

research directions, guided by our experience gained during experimental testing.
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8.1 Theoretical conclusions

Prior to this research we knew little about the necessary conditions for the sampling

methods to work, or the limits to their performance. Simulations, and the mathe-

matical results of others, showed that infinite resolution was possible, but in practice

noise prevents this. In chapter 3 we investigated the distribution of information in

the scattering measurements. Although it is not possible to give tight bounds on the

information capacity of a set of measurements we found some upper bounds on the

information content which provide insight into what is worth measuring, and the

achievable image quality. This was achieved by decomposing the data into different

domains (temporal, spatial and wavelet).

Importantly, we have shown that broadband signals and the backwall reflections can

contain data that can be exploited to improve imaging.

In chapter 5 we developed a mathematical framework for imaging a scatterer using

the reflections from a mirror interface behind it. We found that half of the singular

values of the full view multistatic matrix (far-field operator) are accessible in the

limited view case with the mirror. Simulations showed that the mirror imaging

method is able to fully reconstruct all sides of an impenetrable scatterer with only

a limited view. Crucially we found that in the presence of noise, a large aperture

array is critical to achieving a good reconstruction, especially when imaging with

the sampling methods. These results have led to a paper published in the Journal of

Applied Physics [79].

We implemented the time domain LSM on a parallel computing cluster, and developed

a pre-processing beamforming step in order to allow its use with wide-aperture arrays

with many elements.

We also showed through numerical simulation that the super-resolution sampling

methods originally developed for acoustic media can achieve super-resolution in

elastic materials without needing to gate out signals resulting from mode conversion

at the scatterer. Where both shear and longitudinal waves are present, imaging can
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be performed with either shear and longitudinal wave speeds even if they cannot

be measured independently. The choice of the best mode to use depends on the

scatterer being imaged. In our simulations, shear waves worked best for vertical

cracks, and longitudinal waves worked best for horizontal cracks.

In addition to the theoretical work, we performed many experiments and made several

advancements relating to the the practical implementation of these techniques.

8.2 Practical progress

In terms of practical progress we have developed some useful techniques and demon-

strated some successful results. We experimentally demonstrated the super-resolving

capabilities of time domain LSM method for the first time by imaging two point-like

scatterers spaced more closely than the Rayleigh resolution limit (approximately

half the separation). These scatterers—hairs—were suspended in glycerol, which is

highly attenuative and prevents the use of higher frequencies. This work has been

submitted for publication to IEEE Transactions on Ultrasonics, Ferroelectrics, and

Frequency Control [69].

These experiments have shown that the use of multiple frequencies provides a greater

number of independent measurements of the scatterer, which greatly increases the

stability of the image, with no loss of resolution compared to single frequency

methods.

Time domain LSM was also used experimentally to image cracks in aluminium.

Although it is a vast improvement over other methods, like BF it is unable to

accurately size the cracks. This is probably due to the low SNR of the tip reflections

in comparison to the corner reflection from the root of the crack, and the fact that

the free space Green’s function was used, rather than one that considers backwall

reflections.

For mirror imaging, several acoustic experiments were performed in water using a

metal block or the water surface as the mirror interface. While BF can only be used
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to detect the location of a scatterer, we have demonstrated that by using the backwall

it is possible to extract information about the shape of a scatterer which is important

for sizing. Penetrable scatterers consisting of thin plastic tubes containing diluted

alcohol were imaged using the HARBUT algorithm which was able to reconstruct a

1% change in sound speed over 6.5 mm. Some of these results have been published

in [80].

We developed a reliable technique for automatically compensating for differences

in coupling between array elements, and a method for rapid measurements of the

directivity of elements. We also developed a simple method for gating out the incident

fields, and a more advanced method for subtracting it from the total field.

These results and techniques show potential for industrial implementations that

can approach the limit of what is possible, by exploiting all sources of scattering

information.

8.3 Future direction

In terms of future research, the first step is to perform more extensive testing in

metals with a wider variety of defects. Ideally this would include complex defects

in free space, where the effects of the backwall reflections can be separated. Before

commercialisation it would be necessary to investigate the effects of 3D defects, and

whether a full 2D array is required to image them.

In our experiments in metal, we did not consider the reflections from the backwall,

which are more complex than in acoustic media. This meant that our physical

scattering model did not match the experiment. Fixing this requires adding reflected

waves (including mode converted waves) to the Green’s function used for imaging

and account for them properly. This should lead to improved image quality with

fewer artefacts when imaging near a backwall.

Finally we should continue to explore accurate algorithms that make the best use

of broadband scattering information to achieve high resolution and robustness to
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noise. The Time Domain Linear Sampling Method is a first attempt at such an

algorithm, but is too slow (on current hardware) to be commercially useful in many

circumstances. Future algorithms may be able to achieve comparable images but

run at the speed of single-frequency methods.
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