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Abstract

This thesis addresses two physical problems which both benefit from a new approach

using guided ultrasonic waves.

The first application relates to fluid characterisation. Conventional equipment for

fluid characterization has drawbacks due to the need of a straight, unobstructed

path across the fluid specimen, a perfectly parallel reflector, diffraction effects and

penetration problems in highly attenuating fluids. The use of ultrasonic waveguides

can alleviate these problems by separating the transducer from the measurement

area and by guiding the ultrasonic energy along a flexible waveguide of fixed ge-

ometry. The theoretical modelling, design and construction of a wave guide sensor

for fluid characterization of hot or radioactive fluids and liquids in general is pre-

sented. The sensor makes use of a guided interface wave. This wave was named the

quasi-Scholte wave because of its similarity to the Scholte wave that is widely known

in geophysics. It is a non-leaky guided wave that travels in a plate immersed in a

fluid. A substantial fraction of its energy travels in the fluid and is trapped at the

interface. It thus does not radiate energy away from the waveguide. This makes this

mode very sensitive to the fluid properties. It is shown that the fluid bulk velocity

and attenuation can be retrieved accurately using this method. Furthermore it is

shown that the use of other guided wave modes can be used to extract further fluid

properties so as to completely characterize the fluid acoustically.

The second application relates to non-destructive testing in harsh environments.

Conventional ultrasonic non-destructive testing uses a piezoelectric transducer close

to the area to be inspected. This becomes impossible above temperatures of about

300-400 C when conventional piezo-electric materials reach their Curie point and

become depolarized, which removes their ability to send or receive ultrasonic signals.

A remedy to this problem was found in using waveguides for remotely monitoring

thickness and defects within a structure under extreme conditions. The waveguide

separates the hot structure from the transducer which is located in a cool and

safe place. Essentially, this represents an acoustic cable along which ultrasound is

sent. The two main issues that had to be investigated are the wave propagation

along waveguides of different candidate geometries and the geometry and method of
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attachment of the waveguide to the sample that is to be tested. The problems are

that the acoustic pulse has to remain strong and as undistorted as possible while

propagating along the waveguide, and when transmitting from the waveguide into

the sample. A system was designed and tested successfully at temperatures over

550 C.
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Chapter 1

Introduction

1.1 Motivation

Millions of litres of complex fluids are produced by industry daily. Products range

from food and beverages to petro chemicals and paints. During the manufacturing

process measurements and monitoring of fluid properties are important for process

and quality control. Ultrasonic test equipment measuring bulk velocity and attenu-

ation of a fluid can be used to measure concentration levels of substances in liquids,

phase transitions, particle sizes and many other properties [1], [2], [3].

Conventional ultrasonic test cells require a straight and unobstructed path between

transmitting and receiving transducers. This is difficult to achieve if the system

needs to be integrated into a reaction vessel that contains stirring mechanisms. In

highly attenuative materials the separation between transducers has to be very small

in order to transmit enough energy across the gap. Therefore flow rates of highly

attenuative fluids through a test cell are limited. Other disadvantages of test cells

are the need for corrections for geometrical effects like beam spreading or diffraction.

Furthermore standard piezo electric transducers depolarise at high temperatures and

since the transducer has to be in contact with the fluid it is not possible to measure

fluids at elevated temperatures (> 250◦C).

28



1. Introduction

An attractive alternative to test cell based approaches could be the use of a guided

ultrasonic interface wave to measure the fluid properties. In this thesis the use

of the quasi-Scholte mode for fluid property measurements was investigated. The

quasi-Scholte mode is an ultrasonic interface wave trapped at the surfaces of a plate

that is immersed in a liquid. It resembles the Scholte wave on a single boundary

between a solid and a liquid. A large proportion of the energy of the interface wave

is travelling in the liquid which makes it very sensitive to the fluid properties. The

energy contained within the wave decays with distance from the interface so that the

energy is localised at the interface between solid and liquid or plate and liquid for

the quasi-Scholte mode. The waveguide therefore determines the geometry of the

problem completely which removes diffraction or beam spreading issues. It is also

possible to separate the transducer location from the sensing area which potentially

enables measurements at high temperatures and in harsh environments. A sketch

illustrating the principle of the ’dipstick’ interface wave measurement and the con-

ventional test cell based measurement of fluid properties is shown in figure 1.1.

The dipstick separates the transducer from the test region and so allows measure-

ments to be taken in conditions that the transducer itself cannot tolerate. This

concept has other applications and one of them is thickness gauging at high tem-

peratures which is addressed in the second part of this thesis.

Whilst thickness monitoring is a routine task at room temperature, standard equip-

ment fails at elevated temperatures (> 300◦C) and when exposed to high radiation

levels. This is mainly due to depolarisation of the piezo-electric transducer materials

at temperatures above the Curie point and under the influence of radiation. Current

research is being carried out to find more robust transducer materials that work at

extreme conditions [4], [5], however the development and production of these mate-

rials is expensive which makes them currently comparable to expensive alternative

techniques such as laser ultrasonics. Therefore the use of a buffer waveguide system

for structural monitoring in harsh environments is very attractive. It allows the

use of standard ultrasonic equipment to excite and receive ultrasonic signals at a

waveguide end that is located in a safe environment while the testing is carried out
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1. Introduction

at the other waveguide end under extreme conditions.

Potential applications of the buffer waveguide in power plants, petro chemical plants

or general processing plants with the benefit of reducing shut down times can be

envisaged. An ’acoustic cable’ would be installed after subcritical wall thinning

due to erosion or corrosion has been found in a plant component during a routine

non-destructive testing check up. Instead of prolonging the shut down of the plant

to wait for replacement components, the plant could be restarted immediately and

the condition of the feature of concern can be monitored. In case the component

reaches a critical condition an emergency shut down could be carried out, however

it is more likely that the critical part would survive until the next scheduled shut

down for which an effective replacement can be planned. The monitoring of erosion

or corrosion of pipe walls, boiler components or elbow sections is thus possible.

The development of a robust waveguide and the optimisation of the wave propaga-

tion therein was carried out. The geometry of the waveguide and the polarisation

of the wave in the waveguide were also investigated in order to find a waveguide

that can simultaneously act as source and receiver of bulk waves on a test piece. A

sketch of the principle of the waveguide monitoring system is shown in figure 1.2.

1.2 Thesis outline

Following this outline, in chapter 2 a brief review of basic wave propagation in bulk

media is presented. The main principles and mathematical expressions for bulk

waves are given. Then guided waves, which result from a superposition of reflec-

tions of bulk waves at boundaries, are introduced. A section in the chapter also

summarises existing guided wave material property measurement techniques before

the chapter closes with a brief overview of ultrasonic spectrometry.

The theoretical modelling of the quasi-Scholte mode is the subject of chapter 3.
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1. Introduction

Modelling is developed from the simple Scholte interface wave on a half space to a

plate immersed in an ideal, Newtonian or Non-Newtonian fluid. The main character-

istics such as mode shapes and velocity dispersion curves as well as the quasi-Scholte

mode sensitivity to fluid bulk properties are reported.

An experimental apparatus was devised to validate the theoretical predictions with

actual measurements of the quasi-Scholte mode behaviour. The excitation method

of the quasi-Scholte mode, the measurement setup as well as results on Newtonian

and Non-Newtonian liquids are presented in chapter 4.

Experimental observations showed the need to change from a plate geometry to

a strip in order to reduce potential errors and make the method more practical.

Whilst an A0 (flexural) like strip mode that can mode convert into a quasi-Scholte

type strip mode was found and could also successfully be tested, a non-dispersive

shear horizontal (SH) mode of the strip was also found. The great potential of this

non-dispersive SH strip mode for non destructive testing in harsh environments was

realised and further research was focused on the development of an ’acoustic cable’

for this purpose. Chapter 5 investigates wave propagation in strips of rectangular

cross section with special focus on the non-dispersive, lowest order, shear horizontal

strip mode.

Chapter 6 considers the characteristics of waveguide sources on an object. In the

analysis the waveguide and the object were uncoupled by considering a half space

with surface loading. The half space represented by the test piece is much larger

than the waveguide. The stress mode shapes transmitted through the waveguide

were used to represent surface loads on the test piece. Different polarisations and

geometries of surface loads were considered to represent different waveguide modes

and geometries.

The knowledge acquired in chapters 5 and 6 was employed to build a waveguide

system for thickness gauging and monitoring in chapter 7. The waveguide-structure
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joint is the most critical part of the assembly and several joining methods from

manual coupling with shear couplant via clamping to permanent attachment by

means of welding or soldering were investigated. A prototype was built and thick-

ness measurements on a calibration block at room temperature as well as thickness

monitoring at 500◦C for long periods (> 1 month) were carried out.

Chapter 8 summarises the main findings of this thesis and indicates future work and

improvements for both techniques. Some of the work on the quasi-Scholte mode has

been published. A list of these publications is given at the end of the thesis after

the references section.
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1.3 Figures
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Figure 1.1: Sketch of the of the principle of a) a ’dipstick’ interface wave measurement of

fluid properties and b) a fluid property measurement using a conventional test cell setup.
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Figure 1.2: Sketch of the principle of the ’acoustic cable’ waveguide remote monitoring

system.
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Chapter 2

Basic principles of bulk and

guided waves

2.1 Wave propagation in bulk media

The propagation of elastic waves in infinite isotropic media has gained a lot of atten-

tion in the literature. There are many texts that describe the underlying principles

[6], [7], [8], [9]. Therefore here only a short introduction to the underlying equations

will be given. Starting in a Cartesian coordinate system the general equation of

motion is given by:

ρ
∂2u

∂t2
= ∇σ (2.1)

where ρ is the density of the medium, u is the displacement and σ the stress field

tensor in the medium. ∇ is the differential operator. It is convenient to introduce

Hooke’s law to relate stresses to strains and displacements.

σij = λδijεkk + 2μεij (2.2)

εij =
1

2
(
∂ui

∂xj

+
∂uj

∂xi

) (2.3)
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2. Basic principles of bulk and guided waves

By substituting equations 2.2 and 2.3 into equation 2.1 the Navier equation is ob-

tained.

ρ
∂2u

∂t2
= (λ + μ)

∂

∂xi

∂uj

∂xj

+ μ
∂2ui

∂x2
j

(2.4)

which may be expressed in vector form:

ρü = (λ + μ)∇(∇.u) + μ∇2u (2.5)

By means of the Helmholtz decomposition the displacement field can be separated

into a scalar (φ) and vector (H) potential [10].

u = ∇φ + ∇× H (2.6)

In combination with equation 2.5 after some algebra the following expression is

obtained:

∇[ρ
∂2φ

∂t2
− (λ + 2μ)∇φ2] + ∇× [ρ

∂2φ

∂t2
− μ∇2H] = 0 (2.7)

Thus equation 2.7 can be split into two independent equations; one for the dilata-

tional or equivoluminable (φ) motion and one for rotational (H) motion.

∂2φ

∂t2
= c2

l ∇2φ (2.8)

∂2H

∂t2
= c2

s∇2H (2.9)

where

cl =

√
λ + 2μ

ρ
(2.10)

cs =

√
μ

ρ
(2.11)
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2. Basic principles of bulk and guided waves

cl and cs are the velocities of dilatational (longitudinal) and rotational (shear) waves

in the infinite isotropic medium. A general solution to 2.8 and 2.9 can be found by:

φ,H = Aei(kl,sx−ωt) (2.12)

with the secular equation

k2
l,s =

ω2

c2
l,s

(2.13)

where x is the spatial coordinate of the wave, t is the time variable, A is an arbitrary

wave amplitude, ω is the angular frequency, cl and cs are the longitudinal and shear

wave velocities respectively and kl and ks are the corresponding wavenumbers. The

secular equation links the wavenumber of the wave to the velocity of the wave. In

general the wavenumber is a complex vector:

k = n · kre + ib · kim (2.14)

where n and b are the unit vectors defining the directions of kre and kim respectively.

Substituting this into 2.12 yields the following description of a wave:

φ = Aei(n·krex+ib·kimx−ωt) = Aei(n·krex−ωt)e−b·kimx (2.15)

This clearly shows that the harmonic oscillatory term in time and space remains with

kre as characteristic wavenumber, while the imaginary component of the wavenumber

kim simply adds an exponential decay. Thus the phase velocity of a wave is defined

by the real part of the wavenumber

cph =
ω

kre

(2.16)

and the attenuation is described by the imaginary component of the wavenumber

kim.
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2. Basic principles of bulk and guided waves

The secular equation for a complex wavenumber is the following:

ω2

c2
= k2

re − k2
im + i2krekim(n · b) (2.17)

For an elastic wave the phase velocity is purely real. This results two conditions for

the complex secular equation 2.17. Either kim = 0 which describes the propagation

of homogeneous plane waves, or kim �= 0 but (n · b) = 0 which describes an inhomo-

geneous wave whose attenuation vector kim is normal to the propagation direction.

Both waves travel unattenuated in the direction of their phase. Examples of inho-

mogeneous waves in liquids are Scholte and Rayleigh waves, while leaky Lamb waves

are an example of inhomogeneous waves with attenuation in the direction of travel

[11], [12].

The above analysis can be extended to viscoelastic materials. The approach is

well described in the literature ([13], [14], [15]) and hence only the results will be

mentioned here. As for elastic waves the governing equations in the viscoelastic case

can be split up into shear and longitudinal waves with their respective velocities:

cl =

√
λ + 2μ

ρ
+ i

λ′ + 2μ′

ρ
(2.18)

cs =

√
μ

ρ
+ i

μ′

ρ
(2.19)

where cl, cs are the complex longitudinal and shear bulk velocities respectively, ρ is

the density, λ and μ are the real Lamé constants and λ′ and μ′ are the imaginary

Lamé constants. This time the complex secular equation 2.17 will result in real and

imaginary wavenumber vectors that are non zero and in general n and b are neither

parallel nor perpendicular. In experiments the wave velocity and attenuation of a

material are measured on a parallel propagation path. This measures the phase

velocity along the propagation path and the attenuation (projection of imaginary

wavenumber) in the direction of propagation.
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2.2 Guided Waves

Guided waves are waves that, like light in an optical fibre, are guided along the

structure in which they propagate. Here ’guided wave’ refers to an elasto-dynamic

guided wave rather than any other type of wave. Elasto-dynamic guided waves have

been known since the last century and perhaps the simplest type of guided wave is

the Rayleigh wave [16] that is guided along the interface of an infinite elastic half

space and a vacuum. In contrast to bulk waves that were introduced in section

2.1 a condition for guided waves to develop is the existence of an interface between

two materials. The basic principles of elastic guided waves are very well known and

several textbooks [8], [17], [18] discuss the topic, thus here an extensive treatment

is omitted and only the main characteristics are revised.

In a plate, guided waves are often also called ’Lamb waves’ [19] and can be thought

of as a superposition of shear and longitudinal waves that propagate in the plate

material and get reflected back and forth between the two surfaces of the plate.

The feature that defines a guided wave is, as for waves in general, the complex

wavenumber which is expressed in the plane of the structure along the propagation

direction. The complex wavenumber is generally a function of frequency; its cal-

culation results from the boundary conditions that are imposed at the surfaces of

a waveguide. There are infinitely many solutions to the governing equations which

makes it possible for many guided wave modes to coexist. Each mode has its own

phase velocity-frequency relation and a corresponding mode shape.

A typical dispersion curve for a 1 mm thick steel plate is displayed in figure 2.1.

The curve shows the phase velocity of different modes as a function of frequency.

The phenomenon of a changing phase velocity with frequency is called dispersion,

it results in the distortion of the shape of a multi frequency wave packet that prop-

agates for long distances. This is a very important effect that has to be taken care

of when working with long range guide wave applications [20], [21] (see also section

2.2.1).
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Figure 2.1 also shows different lines; these are the different propagating modes (non

propagating modes are omitted here) which are labelled in the conventional style,

with S and A representing symmetric and antisymmetric modes respectively and

the numbers indicating their harmonic order. The higher the frequency the shorter

is the wavelength of ultrasonic waves and more and more mode solutions exist at

higher frequencies.

In figure 2.1 the phase velocity is plotted against the product of frequency times

thickness. Guided waves are strongly geometry dependent; however for the simple

plate case the dispersion curves can be normalized with respect to thickness by plot-

ting them against the frequency thickness product. For example a 2mm thick plate

at 0.5MHz has the same phase velocity as a 5mm thick plate at 200 kHz.

The dispersion curve in figure 2.1 was obtained using a software tool (DISPERSE

[22]) especially developed for the tracing of dispersion curves in multilayered plate

systems [23] and multilayered cylindrical structures [24]. The software uses the

partial wave technique and represents the waves in each layer by partial longitudinal

and shear waves that leave and enter a layer boundary. On each boundary the

boundary conditions (continuity or fixed values for stresses and displacements) have

to be fulfilled. At each frequency this allows the assembly of a global matrix [25].

The problem results in an eigenvector-eigenvalue problem which can be solved. The

eigenvalues correspond to the wavenumber of a mode while the eigenvectors represent

the mode shape of this particular mode. A solution of the displacement takes the

below form:

U(t) = U(x2)e
i(kx1−ωt) (2.20)

where U(x2) is a displacement distribution function (mode shape), k is the wavenum-

ber of the guided wave mode, x1 the propagation direction, x2 the direction normal

to the propagation direction, ω the angular frequency and t the time variable.

The complex wavenumber and mode shape describe a guided wave mode completely.
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2. Basic principles of bulk and guided waves

However the solutions only describe the modes that can propagate in a free system.

To excite a mode a transducer will have to be attached to the waveguide system.

This modifies the system and supports the excitation of selected modes only. The

excitability function [26] can be used to evaluate the likely mode excitation efficiency

of a transducer for a certain mode at a certain position on the waveguide.

2.2.1 Dispersion

An ultrasonic signal pulse is made up of several frequency components. If the fre-

quency components travel with the same velocity the pulse shape will be conserved

over the whole propagation path. However if the frequency components travel at

different velocities, they will disperse out with propagation distance from the source.

This makes the original signal shape longer and less strong in amplitude. Figure

2.2 shows a 5 cycle 500 kHz Hanning windowed A0 mode (steel plate 1mm) signal

at excitation and after a propagation path of 0.5 m. The dispersion in form of a

change in signal shape is clearly noticeable. The major frequency components that

are contained within the excitation signal range from 350 to 650 kHz. The A0 mode

is considerably dispersive in this region. The effects of diminished signal amplitude

and increased signal length are both detrimental to ultrasonic techniques and espe-

cially for the purposes of thickness gauging and defect monitoring. The increased

signal length reduces the resolution of the device while the reduced signal amplitude

reduces the propagation range and the signal to noise ratio.

Dispersion however can be corrected for by methods such as described by Wilcox

et al. [27]. Another means of overcoming dispersion effects is the use of time rever-

sal [28]. A signal is sent along the waveguide, it propagates dispersively along the

waveguide and a distorted signal returns to the transducer. The signal is recorded

and then time reversed, i.e. the signal is sent back to front so that the slower trav-

elling parts that arrive later are sent first and faster parts are sent later. The faster

signals catch up with the slower ones so that the received signal is undistorted at

the receiver position. The time reversed signal can either be simulated or measured.

Therefore apart from being another complication, dispersion can be overcome as
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long as a single mode propagates in the waveguide.

2.2.2 Mode shapes

The mode shapes of a mode are the displacement, stress or other related property

variations across the cross section of the waveguide. Figure 2.1 shows that three

propagating modes exist at low frequencies. Theses are the fundamental three plate

waves of compressional, flexural and shear horizontal nature. Figure 2.3 displays

the plate geometry that is considered here, the polarisation directions and sketches

of the three fundamental modes. In the limit of low frequency thickness products

the displacement mode shape of each of the fundamental modes is uniform across

the cross section and in the direction of polarisation (for flexural modes there is a

linear variation of the less strong in-plane displacement across the thickness). At

higher frequency thickness products the mode shape will start to vary across the

cross section (thickness) of the plate. Usually mode shapes are displayed in a plot

displaying the position against the amplitude of displacement or stress component

of the mode. The mode shapes are of arbitrary absolute amplitude but show the

correct relative amplitude compared to another displacement or stress component.

Figure 2.4 shows the mode shapes of the three fundamental modes at a low frequency

thickness product (0.1 MHz mm). Figure 2.5 shows the mode shape of the same fun-

damental modes at higher frequency thickness products. The displacements deviate

considerably from the almost uniform profiles observed at low frequency thicknesses,

except for the SH0 for which the mode shape does not change with frequency.

2.2.3 Wave propagation in rods and wires

Dispersion curves for a rod/wire of 1 mm radius have been traced using the DIS-

PERSE software and are shown in figure 2.6. The naming convention that is shown

in the figure has been adopted after Silk and Bainton [29]. The first letter L,T,F
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stands for longitudinal, torsional and flexural wave. The first number in the bracket

corresponds to the circumferential order of the mode. The circumferential order of

a mode specifies the variation of the mode shape around the circumference of the

structure. For example a circumferential order of 1 indicates that the mode shape

varies sinusoidally around the circumference with one complete sinusoidal cycle. Cir-

cumferential order 2 would vary with 2 complete cycles, order 3 with 3 sinusoidal

cycles and so on. Since torsional and longitudinal waves always are axisymmetric

their first number in the bracket is always zero. The second integer in the bracket

indicates the mode number and differentiates the modes of the same family. There

are an infinite number of circumferential orders and an infinite number of modes

for each of these circumferential orders. Figure 2.6 only displays the axisymmetric

(order 0) and the first circumferential order of flexural waves to avoid crowding the

figure with excessive amounts of data.

The phase velocity dispersion curves of a rod or wire overall show similar character-

istics to those of a plate. The fundamental modes originate from the same velocities

as in the plate case at the low frequency limit (L-Bar velocity, T- shear velocity,

F-0) and asymptote to the same velocities as in the plate case at high frequencies

(L,F-Rayleigh velocity, T-shear velocity). The transition from the low frequency be-

haviour to the high frequency behaviour occurs earlier for rods than in the plate case.

2.3 Existing techniques for material property mea-

surements using waveguides

Guided wave testing has found applications in long range pipe testing [20]. Dur-

ing application in the field it was noted that embedded and coated pipes adversely

affected guided wave propagation. This considerably reduced propagation range of

the waves in the waveguide. The undesirable effect on the wave propagation char-

acteristics led researchers to investigate whether the embedding material properties

could be investigated by the use of guided ultrasonic waves.
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Nagy and co-workers [30], [31] investigated the effect of fluid loading on thin wires.

Kim and Bau [32] and Shepard and Friesel [33] investigated the possibility of density

measurement using guided waves. Vogt et al. [34], [35], [36] thoroughly described

the theory of embedding material property measurements using guided waves. They

measured fluid viscosity using a torsional wave in a wire, they repeated the same

exercise using a longitudinal wave and also evaluated the bulk velocity of the sur-

rounding medium this way. The effect of leakage was used to measure the embedding

material properties. Leakage of energy is caused due to excitation of bulk waves in

the surrounding medium. These bulk waves are set up due to surface displacements

of the waveguide and then radiate away from the waveguide. A torsional wave in a

waveguide (or a shear horziontal wave in a plate see section 3.5) is ideal for viscosity

measurements since it only exhibits rotational/shear displacements at the surface

of the waveguide. This entrains more or less liquid and thus causes more or less

wave attenuation depending on the liquid viscosity. The same effect can be used

with the lowest order compressional L(0, 1) mode of a wire. At higher frequencies

this mode has the additional advantage of mainly exhibiting out-of-plane surface

displacements due to the Poisson effect. At these operational frequencies leakage

is mainly due to leakage of longitudinal waves from the waveguide surface, which

enables the determination of the longitudinal bulk velocity of the fluid.

When the embedding medium is attenuating the guided wave very strongly another

method can also be used. Under these conditions a strong entry reflection of the

guided wave can be noted. Analysis of this entry reflection can also be used to

determine the material properties [36].

However all of the above methods effectively measure the influence of the impedance

of the embedding medium at the surface of the waveguide. None of the energy that

returns to the transducer has actually travelled in the embedding medium. Since

the bulk attenuation of a fluid does not influence its impedance significantly it is

almost impossible to determine the bulk attenuation of an embedding fluid from

those measurements. This issue has been addressed in this thesis. The use of an
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interface wave whose energy travels in the waveguide as well as in the embedding

fluid makes the guided wave measurement sensitive to both velocity and attenuation

of the embedding medium. The guided wave that was used was called the quasi-

Scholte wave due to its similarity to the Scholte wave between two half-spaces that

is commonly seen in geophysics. The Scholte and quasi-Scholte wave theory will be

thoroughly discussed in chapter 3.

2.4 Ultrasonic spectrometry

In ultrasonic spectrometry the velocity and attenuation spectrum of a material are

measured. As in any other spectrometry certain features in the ultrasonic velocity

and attenuation spectrum can be utilised to identify properties of the investigated

material. The simplest example to illustrate this is the determination of density or

modulus from a measured ultrasonic velocity. For ideal fluids the identity cL =
√

K
ρ

can be used to either deduce the bulk modulus (K) or density (ρ) of the investigated

material once the other is known. In reality materials are not ideal and more specific

data has to be extracted from a sample. The differences in velocity and attenua-

tion spectra help to monitor phase transitions, chrystallisation, melting, freezing,

curing, addition of ingredients and other processes [37]. Ultrasonic spectroscopy is

an important measurement technique especially in the food industry. An important

industrial application of ultrasonic spectrometry is particle sizing [2], [38]. Here the

attenuation caused by scattering from the particles in suspensions or emulsions is

measured and through mathematical models related to particle size [39], [40], [41].

The main advantage of ultrasonic spectrometry is the possibility to examine opaque

samples where standard optical techniques fail. Measurements are also fast and no

prior treatment of the material to be investigated is needed. The principle of the

technique is described below.

The properties of the material to be measured are the ultrasonic velocity and the

attenuation over a wide range of frequencies (typically 0.1− 20 MHz). The velocity

is the distance that an acoustic signal travels per unit time and the attenuation is

the decrease in amplitude of this signal per unit distance. There are several ways to
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measure these quantities, the most common techniques being through-transmission,

pulse echo and interferometry. Schematics of the three techniques are shown in

figure 2.7. In every technique a transducer (E) excites an ultrasonic signal and ei-

ther the same transducer receives the signal (pulse echo, interferometry) or another

transducer (R) is used to pick up the signal (through-transmission). In pulse echo

and through transmission the transducers are accurately mounted and aligned in a

test cell so that the distance between the transducer faces or the transducer and the

back wall is precisely known. Then a sample is placed into the test cell in between

the transducers and a signal is excited at the transducer. From the time between

excitation and reception of the signal the ultrasonic velocity in the sample can be

determined. The attenuation is determined either by comparison of the decrease

in amplitude of the signal in the test sample to the decrease in amplitude of a

sample with known attenuation or by the decrease in amplitude between successive

reverberations of the signal (pulse echo). However for accurate measurements the

reflection coefficient of the walls has to be taken into account. Also beam spreading

and misalignment can lead to errors. To ensure that the velocity and attenuation are

determined at each frequency, either a narrow band toneburst (consisting of many

cycles) is excited at one frequency and the experiment is repeated for each frequency

within the region of interest or a broad band pulse is excited and Fourier transform

techniques are used to extract the velocity and attenuation at each frequency con-

tained within the excitation pulse.

In the interferometer technique, standing waves are produced between a movable

reflector and the fixed transducer in the test cell. When the reflector moves towards

or away from the transducer a series of maxima and minima in received signal

amplitude are detected by the transducer. These maxima and minima are due

to constructive and destructive interference of the standing waves. The distance

between two maxima is equal to half a wavelength and by the identity c = fλ the

velocity of the wave can be deduced. The attenuation is determined by the decrease

in amplitude of successive maxima as the reflector moves further and further away

from the transducer. The main disadvantage of this method is that it has to be

carried out at a single frequency and that it will take a long time to construct a

complete spectrum.
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A disadvantage of all test cell based techniques is the inherent need for a test cell.

Transducers have to be accurately aligned and a test cell is very difficult to integrate

into a reaction vessel. The environment might be very hostile, high temperatures

would disable standard commercially available transducers and stirring devices make

it impossible to install a bulky test cell within a reaction vessel. The overall measured

attenuation in a test cell has to be of the order of 0.5 np/m in order to avoid large

error magnification [42]. This limits the sample size of the test cell and if highly

attenuating materials flow through a test cell this imposes very slow flow rates.

2.4.1 Particle size determination

Particle size determination in emulsions and suspensions is based on comparison

of experimental ultrasonic velocity and attenuation spectra with theoretically pre-

dicted spectra from mathematical models. McClements [37] and Challis et al. [3]

summarise the most important aspects.

Waves propagating in emulsions and suspensions are altered in several ways: a)

waves are scattered and change direction b) waves are attenuated due to different

energy absorbtion mechanisms c) waves that travel through the suspended particles

and scattered waves interfere with the waves that propagated unaltered through the

medium.

The scattering of an ultrasonic wave depends on the wavelength to particle radius ra-

tio. There are three regimes identified. The long wavelength radius regime (λ > R),

the intermediate wavelength radius regime (λ ∼ R) and the short wavelength radius

regime (λ < R). The long wavelength radius regime is the most important as most

ultrasonic measurements fall into this category, here particle sizes are of the order

of 10 micro metres and less. The mechanisms that scatter waves at the particles are

mainly due to differences in thermophysical properties of the embedding material

and the particle. Under the local pressure and temperature oscillations caused by the

passing ultrasonic wave the particles contract or expand and start pulsating. This

scatters wave energy into all different directions (monopole scattering). Differences

in density of the particle and the surrounding fluid will cause oscillatory motion of

the particle (dipole scattering) as the ultrasonic wave passes. All these processes
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are not ideal and absorb energy, thus causing an excess attenuation compared to

the pure fluid. Mathematically there are also different models for highly concen-

trated (multiple scattering) and less concentrated (single scattering) emulsions and

suspensions.

Different theoretical models for wave propagation in fluids containing particles exist

[39], [40], [41] and [43]. In all these models the thermophysical constants of the

contained materials are entered. Since in real life the the size of particles varies

(polydispersity) a distribution function can be entered. The models then predict

a velocity and attenuation frequency spectrum. This spectrum is compared to the

measured data and the parameters for the particle size distribution that best fit to

the mathematical model are determined. Using these methods particle sizes in the

range from 0.01 to 30 micro meters can be analysed. If the intermediate wavelength

radius regime is also used the whole particle size range can be covered [37]. Par-

ticle sizing is a very well developed specialist field in which very advanced models

and accurate measurements setups are used. Several commercial ultrasonic parti-

cle anlaysers exist currently (Opus [Sympatec GmbH, Germany],Ultrasizer [Malvern

Instruments Ltd.,UK] and DT-1200 [Dispersion Technology,USA]).

2.5 Summary

In this background chapter the basics of ultrasonic wave propagation in unbounded

media were presented. Then the basic characteristics of guided waves were recalled

and references to modelling techniques including the global matrix method were

given. Existing guided wave material property measurements rely on the attenua-

tion due to leakage or the analysis of an entry reflection to characterise the material.

Both leakage and the entry reflection are insensitive to the bulk attenuation of an

embedding fluid. However for fluid characterisation the bulk wave attenuation can

be very important as for example for the application of particle size determination.

The bulk velocity and attenuation measurement of a sample as usually determined

in ultrasonic spectrometry is a very powerful tool to monitor industrial processes.

Ultrasonic measurement technology is well developed in the form of test cells, which

however possess inherent short comings. In the following chapters the development
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of a guided wave ”dipstick” sensor is described. The sensor is measuring the same

ultrasonic velocity and attenuation spectra as the conventional test cell based tech-

niques (see section 2.4), however it removes the need of a test cell with its short

comings and consists solely of a waveguide that is immersed in the sample fluid.
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2.6 Figures

Figure 2.1: Phase velocity dispersion curves for a steel plate: Compressional modes (—),

Flexural modes (- - -) and Shear Horizontal modes (· · ·)
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Figure 2.2: 5 cycle Hanning windowed excitation signal (a) and a prediction by the

DISPERSE [22] software of the signal after 0.5m propagation distance as A0 mode on a

1mm thick steel plate (b)
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Figure 2.3: Schematic of an infinite plate, its cross section and the polarisation of the

three fundamental plate wave modes.
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Figure 2.4: Mode shapes of the (a) S0 mode, (b) A0 mode and (c) SH0 mode at

frequency thickness 0.1 MHz mm of a steel plate. (—) in-plane (z direction) displacement,

(- - -) out-of-plane (x direction) displacement, (· · ·) in-plane (y direction) displacement
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Figure 2.5: Mode shapes of the (a) S0 mode, (b) A0 mode and (c) SH0 mode at

frequency thickness 6 MHz mm of a steel plate. (—) in-plane (z direction) displacement,

(- - -) out-of-plane (x direction) displacement, (· · ·) in-plane (y direction) displacement
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Figure 2.6: Phase velocity dispersion curves for a steel rod: Longitudinal modes (—),

Flexural modes (- - -) and Torsional modes (· · ·) [only order 0 and order 1 modes are

shown].
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Figure 2.7: Schematics of the different measurement methods in ultrasonic spectrometry:

(a) through transmission (b) pulse echo (c) interferometer

56



Chapter 3

Scholte mode and Quasi-Scholte

mode Theory

3.1 The Scholte wave

At the interface of a liquid and solid there exist two propagating solutions to the

governing equation: the leaky Rayleigh wave and the Stoneley-Scholte wave [44].

This thesis focuses on the latter and will for the sake of clarity refer to it as the

Scholte wave. The Scholte wave is a special case of a Stoneley wave (on a solid/liquid

interface) which was first pointed out by Scholte [45]. Subsequently the wave gained

a lot of interest and work on it was extended and revised by many other authors;

Pilant [46], Volkenstein and Levin [47], Padilla et al. [48], Glorieux et al. [44]

and Meegan et al. [49] have extensively modelled the Scholte interface wave on a

boundary between two half-spaces.

For the Scholte wave to exist an interface system of an elastic solid half-space coupled

to a liquid half-space is required. A sketch of such a system can be seen in figure 3.1.

The interface wave will propagate energy along the path described by the interface,

as long as any curvature effects of the interface are large compared to the wavelength

of the wave. The wave energy of the Scholte wave is distributed over both materials,

the solid and the liquid, depending on the material properties of both half-spaces.

For the purposes of fluid characterisation which is discussed in this thesis a high
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energy content in the fluid is desirable; while in geophysics for the characterisation

of marine sediment a high energy content in the solid is more desirable. The mode

shape of the Scholte wave on a Steel/Water interface is shown in figure 3.2.

Figure 3.2 illustrates that the displacements amplitudes for the Steel/Water inter-

face are extremely large in the liquid compared to the solid. The polarisation of the

displacement is also mostly parallel to the interface with a small component of out-

of-plane displacement. The wave amplitude decays in an exponential manner with

distance from the interface and is unnoticeable at distances far from the interface.

The extent to which the wave penetrates into the fluid depends on the frequency;

at low frequencies the wave penetrates further into the liquid than at high frequen-

cies. The Scholte wave in this special case can thus roughly be approximated by

a longitudinal bulk wave that travels along the interface but decays away from the

interface. It is therefore ideal for fluid property measurements.

3.2 Theoretical modelling of the Scholte wave

The properties of an interface wave can be theoretically modelled using the par-

tial wave technique as described in references [8] and [23]. Recall the sketch of

the interface wave system shown in figure 3.1. The displacements and stresses in

the system are determined by combining the general solution of the displacements

and stresses in each material with the system boundary conditions (continuity of

stresses and displacements across the interface and no incoming partial waves). Af-

ter some algebra the system of equations can be expressed in matrix form as follows:

⎡
⎢⎢⎢⎢⎢⎣

−(1 + β2
1) −2β1 (1 + β2

2)g −2β2g

2α1 (1 + β2
1) 2α2g −(1 + β2

2)g

1 β1 −1 β2

−α1 −1 −α2 1

⎤
⎥⎥⎥⎥⎥⎦ ·

⎛
⎜⎜⎜⎜⎜⎝

L1

T1

L2

T2

⎞
⎟⎟⎟⎟⎟⎠ = 0 (3.1)

where L1 and L2 are the amplitudes of the longitudinal partial waves in materials

1 and 2 respectively; T1 and T2 are the corresponding shear partial waves. The

remaining parameters in the equation are defined by:
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α2
n = 1 − c2

C2
ln

(3.2)

β2
n = 1 − c2

C2
tn

(3.3)

g =
G2

G1

(3.4)

where n = 1, 2 represent the materials; Cl represents the longitudinal velocity and

Ct the transverse velocity; G1 and G2 are the shear moduli of the materials.

In order for a non trivial solution to exist, the determinant of the term in square

brackets in equation 3.1 has to equal zero. In the case of an interface between an

ideal fluid (G1 = 0) and an elastic solid the matrix equation reduces to:

⎡
⎢⎢⎣

iρfc
2
l (1 + β2

2)G2 −2β2G2

0 2α2G2 −(1 + β2
2)G2

α1 iα2 −i

⎤
⎥⎥⎦ ·

⎛
⎜⎜⎝

L1

L2

T2

⎞
⎟⎟⎠ = 0 (3.5)

After some algebra this results in the characteristic equation for a Scholte wave [8]:

[
2 −

(
c

ct2

)2
]2

−4

√
1 −

(
c

ct2

)2
√

1 −
(

c

cl2

)2

−i
ρl

ρs

[
cl

cl2

√
c2
l2 − c2√

c2 − c2
l c

4
t2

]
= 0(3.6)

where cl is the liquid bulk velocity, ρl is the liquid density, cl2 is the solid longitu-

dinal bulk velocity, ct2 is the solid transverse bulk velocity, ρs is the solid density

and c is the Scholte wave velocity. This expression yields the phase velocity (or

wavenumber) - frequency relationship that describes the mode. In this special case

of a wave propagating along the interface of an elastic solid and an ideal fluid the

mode is non dispersive, i.e. the phase velocity does not change with frequency.

59



3. Scholte mode and Quasi-Scholte mode Theory

By substituting the calculated phase velocity into equation 1 and fixing the am-

plitude of one partial wave at unity the mode shape of the Scholte wave can be

evaluated [23]. Figure 3.2 shows the mode shape of a Scholte wave on a steel-water

interface.

3.2.1 Influence of material properties on the Scholte wave

The theoretical description of the Scholte wave has been thoroughly investigated

by many researchers ([44],[47],[50]). It can be shown that the phase velocity of the

Scholte wave is limited by the lower of the fluid or the transverse bulk velocity of the

elastic medium (cscholte < cliquid, ct,solid). The dependence of the Scholte wave veloc-

ity on the density and longitudinal velocity ratio of the neighbouring materials can

be displayed on a contour map as shown in figure 3.3. The Scholte wave velocity is

close to the fluid velocity when the solid material is very stiff and dense. As the stiff-

ness of the solid compared to the fluid reduces, which is indicated by moving upward

on the ordinate in figure 3.3, the Scholte velocity decreases. Also by reducing the

solid density the Scholte velocity is reduced (movement to the right on the abscissa).

The distribution of the fraction of energy flowing in the fluid and solid also depends

on the density ratio of the two materials. A similar contour map to that of figure

3.3 has been created to visualise the distribution of energy flow in the two materials.

Figure 3.4 shows the fraction of the total energy flow that is located in the liquid

for different density and longitudinal velocity ratios of the two media.

The contour maps of the Scholte wave velocity and energy distribution in figure 3.3

and 3.4 have been plotted for a fixed value of Poisson’s ratio, which in this case was

0.2865 and corresponds to a material like steel. The analysis can be carried out for

other Poisson’s ratios which will slightly alter the contour maps. The availability

and affordability of steel made it the material of choice and hence its Poisson’s ratio

was chosen for the contour maps.
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3.2.2 Modelling a viscous fluid

The derivation of the properties of the Scholte mode for an ideal fluid has been dealt

with above. The derivation for a viscous fluid uses a similar approach. Here the

fluid is assumed to be Newtonian. The viscous medium is modelled as a solid with

appropriate parameters. More theoretical details on this approach are described in

[22], [30]. The following equations representing the viscous fluid can be deduced:

Cl =

(
λf

ρ

)1/2

(3.7)

κl =

(
4πων

3C2
l

)
(3.8)

Cs = (2ων)1/2 (3.9)

κs = 2π (3.10)

where Cl is the longitudinal bulk wave velocity, λf is the fluid bulk modulus. κl

is the longitudinal bulk wave attenuation (nepers per wavelength), ω the angular

frequency and ν the kinematic viscosity of the fluid. Cs stands for the shear bulk

wave velocity and κs for the shear bulk wave attenuation (nepers per wavelength).

Equations 3.7-3.10 assume low viscosities which introduces some simplifications in

their derivations [22].

In order to solve for the viscous Scholte equation the complex bulk velocities and

moduli have to be entered into equations 3.2-3.4. These are found from equations

3.7-3.10 by the following expression:

cln =
Cl

1 + iκlCl

ω

(3.11)

ctn =
Cs

1 + iκsCs

ω

(3.12)
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g =
G2

−iωρlν
(3.13)

where cln is the complex longitudinal bulk velocity of material n and ctn is the com-

plex transverse bulk velocity of material n.

By substituting the above equations into equations 3.2-3.4 where applicable, a new

characteristic equation and mode shape can be found. The Scholte wave in this sys-

tem becomes dispersive and attenuated. However the dispersion effect is relatively

weak and for small viscosities the map in figure 3.3 still accurately represents the

velocity and density dependence. The model can also easily be extended to non-

viscous fluids as long as the quantities cln and ctn of equations 3.11 to 3.13 can be

determined, for example by means of another model or direct measurement.

3.3 Properties of the quasi-Scholte plate mode

In real life it is impossible to find a semi-infinite half-space; a very thick piece

of solid material would have to be used which would be inconvenient to handle.

Therefore another boundary was introduced to the system. This creates a plate

that is immersed in an infinite (in practice large) space of liquid. In this new fluid-

plate system a mode that is very similar to the Scholte wave exists. The mode was

termed quasi-Scholte (QS) mode, because it asymptotically approaches the Scholte

wave velocity at high frequencies. In the following section the quasi-Scholte mode

will be examined in more detail. A software package called DISPERSE [22] was

used to trace the dispersion curves. DISPERSE is a multi purpose package to trace

dispersion curves in multiple material layer stacks of solid materials and viscous

fluids. Also a routine solely for the purpose of tracing the quasi-Scholte mode

dispersion curves was written in Matlab and the basic equations behind the routine

are outlined in Appendix A. It was verified that both programs yield the same

results.

Here the DISPERSE solutions for an embedded plate mode are shown and discussed.

First an inviscid fluid is used as the embedding medium and then a viscous liquid.
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The velocity dispersion characteristics are virtually unchanged by the introduction of

viscosity but the attenuation is noticeably affected. A steel plate (cl = 5959.5m/s,

cs = 3260m/s, ρsteel = 7932kg/m3, thickness=1 mm) is embedded in an infinite

space of water (cl = 1500m/s, ρwater = 1000kg/m3). Figure 3.5 shows the phase

velocity dispersion curve of the plate Scholte mode. The phase velocity of the quasi-

Scholte plate mode rises with frequency from zero and gradually asymptotes to the

non-dispersive Scholte wave velocity of two elastic half spaces. A physical explana-

tion of the asymptotic behaviour is the decrease of mode wavelength with increasing

frequency. At a certain point the wavelength will be small compared to the thickness

of the plate. Since the Scholte wave displacements decay in an exponential manner

away from the interface the mode resembles a mode on an infinite halfspace at high

frequencies, whereas at lower frequencies the two interfaces of the plate interact.

The phenomenon is also well known in plate waves where the A0 and S0 modes are

asymptotic to the Rayleigh wave solution [51]. In the remainder of this thesis the

plate Scholte mode will be referred to as the quasi-Scholte (QS) mode, the termi-

nology being similar to that of a quasi-Rayleigh wave on a finite plate.

The similarities of the quasi-Scholte mode and the A0 mode in a free plate are high-

lighted by their mode shapes. Figure 3.6(a) shows that the out of plane displacement

component at 100kHzmm is almost constant across the section of the plate and the

strain energy density indicates that most of the energy is propagating in the plate.

At higher frequencies most of the energy is travelling in the fluid as shown in figure

3.6(b). Figure 3.6(c) shows the mode shape in the plate only at 2MHzmm. Dis-

placements decay away from the surfaces and are a minimum at the centre of the

plate. This illustrates the effect of the quasi-Scholte mode becoming asymptotic to

an interface wave (Scholte wave) at high frequencies as discussed above.

An important property of the quasi-Scholte mode is its change in energy partition

between fluid and solid with frequency. Figure 3.7 shows the fraction of energy flow

that is situated in the plate and fluid at different frequencies. At low frequencies

(< 500kHzmm) the energy travels predominantly in the plate while at high frequen-

cies (> 1MHzmm) most of the energy travels in the fluid. The cross over point
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of the two curves occurs at about 400kHzmm for a steel plate embedded in water.

This means that the mode can be made more or less sensitive to the embedding

medium properties. If highly attenuating materials are surrounding the wave guide,

careful frequency selection will allow an appropriate fraction of energy to travel in

the plate so that a reasonable propagation range can be obtained.

The sensitivity of the QS-mode to bulk fluid properties is demonstrated best by

graphs that plot QS-mode dispersion curves for different properties of the embed-

ding fluid. Figure 3.8 shows the quasi-Scholte mode group velocity as a function

of frequency for different longitudinal velocities of the embedding fluid. Figure 3.9

displays the theoretical attenuation of the quasi-Scholte mode as a function of fre-

quency for different viscosities at a fixed longitudinal bulk velocity of the embedding

medium. A more detailed treatment of the QS-mode sensitivity to fluid properties

can be found in section 3.4.

There are two attenuation mechanisms for the quasi-Scholte and Scholte modes. The

first is the leakage of shear waves from the plate surface into the embedding viscous

fluid and the second is the attenuation of a longitudinal bulk wave in the viscous

fluid. Energy that is guided along the interface in the form of an evanescent longi-

tudinal wave will be attenuated by longitudinal attenuation. In the case of a purely

Newtonian viscous fluid this attenuation is due to viscosity and can be modelled by

equation 3.8 (assuming low viscosities [31]). Also for Newtonian fluids both attenu-

ation mechanisms depend on the viscosity only (see equations 3.8,3.9,3.10). At low

frequencies the shear leakage is dominant while at higher frequencies the evanescent

longitudinal wave attenuation contributes significantly to the quasi-Scholte mode

attenuation. Figure 3.10 shows the total attenuation of the quasi-Scholte mode on

an aluminium plate (cl = 6320.0m/s, cs = 3130m/s, ρal = 2700kg/m3, thickness=1

mm) immersed in glycerol (cl = 1860m/s, ρglycerol = 1258kg/m3 ηglycerol = 1Pas).

A line showing the attenuation due to shear leakage only is also shown (the lines are

traced in DISPERSE; for the shear leakage only case the longitudinal attenuation is

set to κl = 0 in equation 3.8) . The difference between the two curves is linked to the

longitudinal bulk attenuation of the fluid. Thus if the longitudinal bulk velocity and
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the shear properties of the fluid are known, it is possible to measure the longitudinal

bulk attenuation of the fluid surrounding the waveguide.

Figure 3.10 considers a viscous liquid. The shear properties of the liquid are de-

scribed by equations 3.9, 3.10. Therefore the longitudinal attenuation and the shear

velocity of the embedding medium are both functions of viscosity and frequency.

This has the effect that the quasi-Scholte mode attenuation is almost entirely de-

pendent on the viscosity of the fluid. The phrase ”almost entirely dependent” is

used here since the longitudinal bulk velocity of the fluid has a small effect on the

QS-mode attenuation and the viscosity has a small effect on the group velocity

of the QS-mode. The group velocity of the QS-mode changes by about 10 m/s

(∼ 0.5% of Cl) when the viscosity changes from 0 to 1 Pas for a glycerol-like fluid

(cl = 1860m/s, ρglycerol = 1258kg/m3 ηglycerol = 1Pas). For a Newtonian viscous

fluid the quasi-Scholte mode group velocity is almost entirely dependent on the fluid

bulk velocity and its attenuation is almost entirely dependent on the fluid viscosity.

It can therefore be concluded that a measurement of the QS mode group velocity

and its attenuation can be used to determine the fluid bulk velocity and viscosity.

The assumption of a Newtonian viscous fluid links the bulk shear velocity and bulk

longitudinal attenuation of the fluid to the viscosity; they therefore are not in-

dependent properties. However for a more complex non-Newtonian fluid, the at-

tenuation and viscosity become two independent fluid properties. Therefore for a

non-Newtonian fluid the quasi-Scholte mode attenuation will also not solely depend

on viscosity but also on the fluid bulk attenuation. This is illustrated in figure

3.11, where the QS-mode attenuation is plotted for a liquid of the same viscosity

but with different longitudinal bulk wave attenuation. In order to extract the fluid

bulk attenuation using the QS-mode it is therefore necessary to know the fluid shear

properties or in other words its complex shear velocity. This can be done using a

method such as that described by Vogt [36]. He used a torsional wave in a rod

that is immersed in a viscous fluid. By evaluating the attenuation of the wave, the

shear leakage and thus shear properties of the fluid were determined. The use of a

torsional wave in a rod is physically analogous to a SH-wave in a plate. The latter

was used for the work presented in this thesis since the quasi-Scholte mode also
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propagates in a plate geometry and therefore the same plate can be used to carry

out a different measurement. Section 3.5 describes the use of the fundamental SH0

mode in a plate to extract the fluid shear properties.

3.4 Quasi-Scholte mode sensitivity to fluid prop-

erties

This section investigates the sensitivity of the quasi-Scholte mode to the fluid bulk

properties. The sensitivity indicates the change in measured property due to a

change in the actual fluid bulk property. Here the sensitivity is defined as:

S =
∂M

∂P
(3.14)

where S is the sensitivity, M the measured quantity and P the fluid property that

is changing. It is important to know the sensitivity of a measurement technique

in order to identify how accurate it can be and how different sources of error can

influence the measurement. The quasi-Scholte mode is influenced by all the bulk

properties of the fluid, namely bulk velocity, viscosity and bulk attenuation; while

each of these properties simultaneously affect the quasi-Scholte mode, one property

is isolated, this property is then changed and the effect on the measured quantity is

predicted.

3.4.1 Sensitivity to the fluid bulk velocity

For bulk velocity measurements of fluids using the quasi-Scholte mode, the group

velocity or phase velocity of the quasi-Scholte mode can be identified as the measured

quantity and the bulk velocity as the measurand, the property to be measured. The

sensitivity of the quasi-Scholte mode to the fluid bulk velocity thus can be defined

as:

SBvel =
∂CQS

∂CB

(3.15)
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where SBvel is the sensitivity to the bulk velocity, CQS is the quasi-Scholte mode

velocity, either group or phase velocity and CB is the fluid bulk velocity that sur-

rounds the plate.

The DISPERSE software [22] was used to calculate the quasi-Scholte mode group

and phase velocity dispersion curves for different bulk velocities. Results of the

group and phase velocity sensitivity to the fluid bulk velocity are shown in figure

3.12 and 3.13 respectively.

The sensitivity depends on the properties of the fluid and the plate. Therefore plates

of a different material than steel and fluids with higher or lower bulk velocities than

water will have a different sensitivity of the quasi-Scholte mode velocity to the

fluid bulk velocity. However in practice most liquids are water based and steel

is a cheap and readily available material that is well suited to the application.

Hence sensitivities close to those shown in figures 3.12 and 3.13 will most likely

be encountered. Figures 3.12 and 3.13 also show that the quasi-Scholte mode is

insensitive at frequencies below 0.2 MHz mm. The group velocity is always more

sensitive than the phase velocity and in the frequency thickness range of 0.25 − 0.5

MHz mm the quasi-Scholte mode group velocity is most sensitive to the fluid bulk

velocity. At high frequencies a change in bulk velocity is reflected in a change of

equal magnitude in the group velocity of the quasi-Scholte mode.

3.4.2 Sensitivity to the fluid shear viscosity

For fluid viscosity measurements the attenuation of the quasi-Scholte mode will have

to be used. The definition of sensitivity now becomes the following:

SV isc =
∂αScholte

∂ηF

(3.16)

where SV isc is the sensitivity to fluid viscosity, αScholte is the attenuation of the

quasi-Scholte mode and ηF is the fluid shear viscosity. The DISPERSE software

[22] was used to calculate the quasi-Scholte mode attenuation dispersion curves for
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different fluid shear viscosities. Results of the sensitivity to the fluid shear viscosity

are shown in figure 3.14.

Figure 3.14 shows that the sensitivity to viscosity increases with frequency thickness.

Below 0.2 MHz mm the sensitivity is less than 1 np/m/Pas; it rises to 5 np/m/Pas

at about 0.5 MHz mm, and keeps on rising at higher frequencies.

3.4.3 Sensitivity to the fluid longitudinal bulk attenuation

The fluid longitudinal bulk attenuation influences the quasi-Scholte mode attenua-

tion. Therefore the sensitivity of the quasi-Scholte mode attenuation measurement

to the fluid bulk attenuation was also determined. The definition of sensitivity now

becomes the following:

Sαb =
∂αScholte

∂αF

(3.17)

where Sαb is the sensitivity to fluid bulk attenuation, αScholte is the attenuation of the

quasi-Scholte mode in nepers per wavelength and αF is the fluid bulk longitudinal

attenuation in nepers per wavelength.

Figure 3.15 shows that the sensitivity never reaches unity. In the frequency-thickness

product range from 0.2 − 0.5 MHz mm the sensitivity rises from 0.2 − 0.7. The

sensitivity never reaches unity because at any frequency, less than the total wave

energy travels in the fluid. However at high frequencies the sensitivity approaches

unity, because almost all of the energy travels in the fluid. Then the quasi-Scholte

mode resembles a longitudinal bulk wave that is trapped at and propagates along

the plate surface.

3.5 Liquid shear property determination using the

SH0 mode

The shear properties of the liquid are determined using a method that has been

validated by Vogt et al. [52]. They used a torsional wave in a rod. Here the lowest
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order Shear Horizontal (SH) mode is used which is the plate equivalent of a torsional

wave in a rod. The SH mode exhibits displacement purely in the plane of the plate

and does not show any out-of-plane displacements at the plate surface, see figure

3.16. At the plate surface the liquid is sheared and shear waves in the liquid will

be set up. Due to the high attenuation of shear waves in liquids, the energy is

dissipated rapidly and the shear waves do not penetrate far into the liquid. The

SH mode propagating in the plate is attenuated along its propagation path due to

energy lost in shearing the fluid. The attenuation is dependent on the viscosity of

the fluid and can be approximated by

α =
1

2h

(
2ρfωη

ρsG

)1/2

(3.18)

where h is the plate thickness, ρf is the fluid density, ρs is the solid density, ω is the

angular frequency, η is the fluid viscosity and G is the shear modulus of the plate.

The derivation of equation 3.18 is shown in Appendix B.

The formula works very well for frequency-plate thickness products up to about

2MHz-mm, where the assumption of a constant mode shape across the plate starts

to break down. (The mode shape of the SH-mode for a free plate is independent

of frequency [8], however when a viscous fluid surrounds the plate the mode shape

becomes frequency dependent). A comparison of equation 3.18 with the exact nu-

merical solution of the equations obtained using the DISPERSE software [22] shows

agreement to within 0.4% at 2MHz for a 1 mm thick steel plate immersed in glyc-

erol. The difference at 1MHz for the same plate is 0.04%. The frequency-thickness

products reported in this thesis are all below 1MHz-mm and therefore the simple

approximate solution of equation 3.18 was used to model attenuation and to retrieve

the viscosity from measured values of the SH mode attenuation. Strictly speaking

the above analysis is only true for Newtonian fluids. However the effective viscos-

ity of the liquid determined by equation 3.18 describes the influence of the shear

behaviour of the liquid on the plate and can be evaluated at each frequency. This

allows different effective viscosities to be determined at different shear rates which is

in essence a non-Newtonian model. The effective viscosity is then used to evaluate a

liquid shear velocity which can be entered into the model of the quasi-Scholte mode
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([53], appendix A).

3.6 Summary

In this chapter the Scholte wave was introduced. Modelling techniques are well es-

tablished in the literature and have been summarised for ideal and viscous fluids in

contact with an elastic solid half space. Numerical results for Scholte wave phase

velocities and energy distribution between the two materials were presented for a

range of material property combinations. Then the quasi-Scholte mode plate mode

was introduced. The change of geometry from a half space to a plate immersed in

a fluid complicates the analysis slightly and mainly introduces a frequency depen-

dence of the quasi-Scholte mode characteristics. At high frequencies the plate mode

behaves like the Scholte wave on a half space. A physical explanation for this is that

the wavelength of the wave becomes very small compared to the plate thickness and

due to the evanescent nature of the Scholte wave only one interface is seen by the

wave. Two different attenuation mechanisms of the Scholte and quasi-Scholte wave

were identified: shear leakage and attenuation due to fluid bulk attenuation.

The sensitivity of the quasi-Scholte mode to several fluid bulk parameters has been

analysed. It was found that the group velocity of the quasi-Scholte mode is very

sensitive to the fluid bulk velocity. In the range of 0.25 − 0.5 MHz mm the group

velocity of the quasi-Scholte mode on a steel plate is most sensitive to the fluid bulk

velocity. The phase velocity is not as sensitive as the group velocity and since it

is more difficult to evaluate the phase velocity using a pulse echo measurement its

use is not recommended. The analysis revealed that the sensitivity to fluid shear

viscosity increases with increasing frequency. However it has to be kept in mind

that at higher frequencies the overall attenuation will be higher and can introduce

practical difficulties and sources of error. It was also found that the sensitivity to

bulk longitudinal attenuation increases from zero to unity in an ”S” shaped curve

with frequency. The transition region lies in the frequency thickness product range

of 0.25 − 0.5 MHz mm which corresponds to the range of maximum sensitivity of

the group velocity to the fluid bulk velocity. It is believed that this increase in

sensitivity is due to the fact that a higher fraction of the quasi-Scholte mode energy
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is travelling in the fluid and thus the effect of the fluid properties is more strongly

reflected in the quasi-Scholte mode properties.
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3.7 Figures

Figure 3.1: Sketch of the system used to study the Scholte wave
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Figure 3.2: Mode shape of the Scholte wave on a Steel Water interface at 1 MHz [(—)

out of plane displacement, (- - -) in plane displacement, (· · ·) strain energy density ]
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Figure 3.3: Contour map of the Scholte wave phase velocity to fluid bulk velocity ratio

(Cscholte
Cfluid

) as a function of density and longitudinal velocity ratios (ρfluid

ρsolid ,
Cl,fluid

Cl,solid
) of the

bulk materials (at fixed Poisson’s ratio ν = 0.2865). The (+) sign indicates a steel/water

interface.
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Figure 3.4: Contour map showing the fraction of Scholte wave energy that travels in the

fluid (Efluid

Etotal
) as a function of density and longitudinal velocity ratios (ρfluid

ρsolid ,
Cl,fluid

Cl,solid
) of the

bulk materials. (at fixed Poisson’s ratio ν = 0.2865). The (+) sign indicates a steel/water

interface.
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Figure 3.5: The phase velocity dispersion of the quasi-Scholte mode on a steel plate

surrounded by water (see text for material properties).
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Figure 3.6: Mode shapes of the quasi-Scholte mode (water/steel) at frequency thicknesses

(a) 0.1 MHz-mm (b) 0.5 MHz-mm (c) 2 MHz-mm (in plate only) for a 1 mm thick plate

[(—) out of plane displacement, (- - -) in plane displacement, (· · ·) strain energy density ]
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Figure 3.7: Quasi-Scholte energy flow localised in the fluid (water) and plate (steel) as

a function of frequency [(—) Energy flow in fluid, (- - -) Energy flow in plate].
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Figure 3.8: Quasi-Scholte mode group velocities as a function of frequency for different

longitudinal bulk velocities (cl) (The other properties are as in figure 3.10)
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Figure 3.9: Quasi-Scholte mode attenuation as a function of frequency for different

viscosities (η) at cl = 1800m/s (The other properties are as in figure 3.10)
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Figure 3.10: Total attenuation (—) of the quasi-Scholte mode and attenuation due to

shear leakage only (- - -) as a function of frequency for an aluminium plate (ρ = 2700kg/m3,

Cl = 6320m/s, Cs = 3130m/s) immersed in glycerol (ρ = 1258kg/m3, Cl = 1900m/s,

η = 1Pas)
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Figure 3.11: Attenuation dispersion curves of the quasi-Scholte mode for a 0.105 mm

thick steel plate immersed in water of density 1000 kg/m3, bulk velocity 1500 m/s and

viscosity 1 mPas only (· · ·), viscosity 1 mPas and longitudinal attenuation 0.001 Np/wl (-

- -) and viscosity 1 mPas and longitudinal attenuation 0.002 Np/wl (—). The attenuation

unit Np/wl stands for Nepers per wavelength. The quasi-Scholte mode is attenuated by

shear leakage due to viscosity and an additional attenuation due to fluid longitudinal bulk

attenuation.
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Figure 3.12: The group velocity sensitivity of the quasi-Scholte mode to a change in

fluid bulk velocity for a 1mm steel plate surrounded by water (ρsteel = 7932kg/m3,Cl =

5959.5m/s, Cs = 3260m/s, ρwater = 1000kg/m3, Cl = 1500m/s ).
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Figure 3.13: The phase velocity sensitivity of the quasi-Scholte mode to a change in

fluid bulk velocity for a 1mm steel plate surrounded by water (ρsteel = 7932kg/m3, Cl =

5959.5m/s, Cs = 3260m/s, ρwater = 1000kg/m3, Cl = 1500m/s ).
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Figure 3.14: The attenuation sensitivity of the quasi-Scholte mode to a change in fluid

shear viscosity for a 1mm steel plate surrounded by water with viscosity η = 1Pas (ρsteel =

7932kg/m3, Cl = 5959.5m/s, Cs = 3260m/s, ρwater = 1000kg/m3, Cl = 1500m/s ).
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Figure 3.15: The attenuation sensitivity of the quasi-Scholte mode to a change in fluid

longitudinal bulk attenuation for a 1mm steel plate surrounded by water with viscosity

ν = 1Pas and longitudinal bulk attenuation of α = 0.01 np/wl (ρsteel = 7932kg/m3,

Cl = 5959.5m/s, Cs = 3260m/s, ρwater = 1000kg/m3, Cl = 1500m/s ).
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Figure 3.16: Schematic of the propagation of a Shear horizontal (SH) wave in a plate.
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Chapter 4

Quasi-Scholte mode Experiments

4.1 Overview

A range of experiments was carried out to validate the results obtained by the

theoretical model described in chapter 3. Experimental results from QS mode mea-

surements were validated by measurements in a conventional ultrasonic test cell. In

section 4.2 methods of excitation of the Scholte and quasi-Scholte wave that have

been reported in the literature are discussed. One method of excitation was cho-

sen and a measurement apparatus was built. The basic apparatus that was used is

described in section 4.3. For the evaluation of fluid bulk attenuation an additional

measurement of the fluid shear properties is needed. The transduction method could

be altered to also excite a shear horizontal plate mode. The experimental arrange-

ment for this is described in section 4.4. Section 4.5 briefly presents the ultrasonic

test cell that was used for validation measurements. Then results are presented

in section 4.6. Some discrepancies between the test cell measurements and the QS

mode measurements were found. In section 4.7 possible error sources are considered.

These considerations will be useful for the design of a future QS mode measurement

apparatus. The experimental findings of this chapter are summarised in section 4.8.
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4.2 Excitation of the Scholte and quasi-Scholte

mode

Many ways of exciting Scholte waves have been reported in the literature (see e.g.

[54],[55],[56],[57],[58]). Nasr et al. [54] and McLean et al. [55] used a comb-like

transducer (PVDF or micro-machined) that preferentially excites a certain wave-

length range at the interface of a solid and a liquid to excite Scholte waves. Desmet

et al. [56] used laser excitation to create the Scholte wave at the interface. DeBilly et

al. [57] and Matula et al. [58] used the concept of mode conversion from a Rayleigh

(or A0 wave on a plate) to the Scholte wave. They generated a clean mode on an

unimmersed section of the waveguide using conventional techniques, the wave then

propagates into the liquid and part of its energy converts into the Scholte mode.

This latter approach of mode conversion from an A0 plate wave was also chosen for

the experiments reported in this thesis. The method is reliable, cheap and easily set

up. It also separates the transducer from the embedding medium and thus does not

require the transducer to be submerged in the liquid. This prevents bulk waves that

travel parallel to the interface from being setup in the liquid at the same time as the

Scholte wave. It also separates the transducer from harsh environments like high

temperature, highly corrosive or radioactive fluids. Wedge like methods (excitation

by means of angled incidence) were ruled out because a fluid of lower bulk velocity

than the embedding fluid bulk velocity is needed. Attaching this wedge or angled

fluid channel to the waveguide would become difficult and changes of incident angle

as required for producing different wavenumbers would be technically challenging

and make the device cumbersome.

The method of mode conversion that was chosen to excite the quasi-Scholte mode

in a plate fluid system also has shortcomings. Mode conversion is not efficiently

achieved at all frequencies. Notably, at high frequencies the efficiency of mode con-

version from the A0 mode of a free plate to the quasi-Scholte mode of an immersed

plate is low. An explanation for this can be found in the distribution of mode en-

ergy within the QS mode as shown in figure 3.7. At high frequencies, above 500

kHz-mm, almost all of the QS mode energy travels in the fluid, which means that

89



4. Quasi-Scholte mode Experiments

excitation from the plate will be difficult. However the energy of the incident A0

mode is entirely located in the plate. The mode shapes of the A0 mode of the free

plate and the QS mode, while very similar at low frequencies, become more and

more different at high frequencies. This trend is also illustrated in the wavenumber

dispersion curves of the free plate A0 mode and the QS mode. Figure 4.1 shows

that at low frequency thicknesses (< 500 kHz-mm) the wavenumbers of the A0 mode

of a free plate and the QS mode of an immersed plate are similar while at higher

frequency thicknesses they tend apart. The wavenumber of the leaky A0 mode of an

immersed plate is also displayed. Tracing of this mode is very difficult and its be-

haviour is anomalous at low frequency thicknesses (see Dickey et al. [59]) therefore

the mode has only been displayed from frequency thicknesses above 220 kHz-mm

where it becomes supersonic with respect to the embedding fluid bulk velocity. For

the purposes here this is sufficient to illustrate that the wavenumber of the leaky

A0 mode tends away from the free plate A0 mode wavenumber at low frequency

thicknesses. The mode shapes of all three modes in the plate are very similar at

frequency thickness products below 0.6 MHz-mm. Mode conversion from the free

plate A0 mode favours the QS mode at low frequency thicknesses and the leaky A0

mode at higher frequency thickness products.

Since the quasi-Scholte mode is more sensitive to fluid properties at higher frequen-

cies there is an optimum frequency window in which the method of mode conversion

from the A0 to QS mode works and at the same time information can be extracted

from the fluid. It is important to excite the QS mode strongly in a frequency thick-

ness window where it is sensitive to the fluid but also still excitable. This window

was found to lie between 200 and 400 kHz-mm for a steel plate immersed in wa-

ter. The window will shift slightly for different plate materials and liquids that are

interrogated but no drastic changes are expected.

4.3 The setup

The experimental setup used was designed to excite the quasi-Scholte mode on

a plate immersed in a fluid and to measure its group velocity and attenuation.

Figure 4.2 shows a schematic of the apparatus. A shear transducer was attached
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to the centre of an end of a plate. It was attached in such a way that it would

produce out-of-plane movements uniformly across the thickness of the plate. This

was known to excite the A0 mode of a free plate reliably. Figure 4.3 shows the

configuration of transducer and plate. Plates of two different thicknesses were used

to excite the quasi-Scholte mode within two different frequency thickness ranges.

The first plate was made out of Aluminium (ρ = 2700kg/m3, Cl = 6320m/s and

Cs = 3130m/s) and had a thickness of 0.94 mm, the second plate was made of

stainless steel (ρ = 7764kg/m3, Cl = 6000m/s and Cs = 2700m/s) and was 0.105

mm thick. The material properties were determined by velocity measurements of

the fundamental guided wave modes. The Aluminium plate was 100 mm wide and

200 mm long, while the stainless steel plate was 96 mm wide and 135 mm long.

A 500 kHz shear transducer (Panametrics Inc.) was used to excite the A0 mode in

the Aluminium plate while a 5 MHz shear transducer (Panametrics Inc.) was used

for the thinner stainless steel plate. Transducers were either coupled to the plate by

clamping them onto the cross section using treacle as shear couplant or by bonding

them with epoxy.

A vessel containing a fluid sample was placed beneath the plate on a table of variable

height. By changing the height of the table the plate could conveniently be immersed

in the fluid to different depths; the angle between the fluid surface and the plate

was 90 degrees.

The fluid temperature was recorded using a thermocouple that was immersed in

the liquid. The whole setup could also be placed in a temperature controlled en-

vironment as was done for measurements on suspensions. The signal was sent and

received by a waveform generator (Macro Design Ltd.), a LeCroy 9400A Storage Os-

cilloscope was used to store the signal and the data was then transferred to a PC for

processing. The transducer was excited with a Hanning windowed toneburst. The

excited A0 wave travelled along the plate until it hit the fluid surface. Here part of

the wave was reflected back as an entry reflection and the rest converted into modes

in the fluid-plate system: a highly attenuated leaky A0 mode and the quasi-Scholte

mode. After a short propagation distance only the quasi-Scholte mode remained.

It was reflected by the end of the plate and converted back into an A0 mode at the

point where the plate leaves the liquid (some energy was also reflected back into
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the fluid). The wave then propagated along the plate structure until it reached the

transducer again. A typical time trace is displayed in figure 4.4. The entry reflec-

tion, plate end reflection and a reverberation in the fluid are clearly visible. Data

for tonebursts at different centre frequencies and two different immersion depths

were collected for the aluminum plate setup. For later experiments on the thinner

stainless steel plate the technique was further developed and only one broadband

signal was sent and received.

The group velocity and attenuation of the quasi-Scholte mode were then extracted

from the collected data using the following equations:

Cg =
2(x2 − x1)(

ΔT + 2(x2−x1)
CgA0

) (4.1)

α = − 1

2(x2 − x1)
ln

(
S2(ω)

S1(ω)

)
(4.2)

where x1 < x2 are two different immersion depths, ΔT is the time difference between

the arrival of the wave packages at the two immersion states, CgA0 is the group ve-

locity of the A0 free plate mode and S1 and S2 are the signal amplitudes at the

respective immersion depths.

In order to eliminate the effects of dispersion on the measured attenuation the mag-

nitude of the Fourier transform at the centre frequency of each toneburst was used

in equation 4.2. For the aluminium plate the difference in arrival time ΔT was eval-

uated by cross correlating the signals at the two immersion depths. The maximum

of this function corresponds to the time shift between the two signals [58]. The cross

correlation method could be used in this case because signals of a narrow bandwidth

were used and propagation distances were short so that dispersion effects were neg-

ligible. In the setup of the stainless steel plate two other methods of evaluating

the time shift between signal arrivals were used: the amplitude spectrum method

(see Pialucha et al. [60]) and the method of zero phase slope, which is described in

Appendix C.
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The wavenumber in both systems (plate only, plate-fluid) is very similar so it is

assumed that beam spreading effectively stays constant. It was verified that the

plate was large enough and that reflections from the plate edges were not present in

the recorded signal by a simple experiment: pressure was applied to the surfaces of

the plate by squeezing it between the fingers. This has the effect of damping the wave

propagating across the point where pressure is applied. When the plate was squeezed

at the centre the signal was almost completely attenuated while pressing the sides,

edges and corners did not have any identifiable effect on the signal amplitude.

4.4 SH wave attenuation measurements

At the end of section 3.3 the need for a determination of liquid shear properties in

order to measure bulk longitudinal attenuation using the quasi-Scholte mode was

expressed. It was found that the setup of the plate and transducer could easily be

adjusted to excite SH waves simultaneously to the QS mode. This is possible due

to the different velocities of the modes and the temporal separation that this causes

between the signals. Figure 4.5 shows two time traces obtained using the stainless

steel plate setup, in which the transducer polarisation and the plate were slightly

misaligned. Arrivals of 3 signal packets can clearly be differentiated. They corre-

spond to the three different lowest order propagating modes of the plate: S0, SH0

and A0 converted into QS mode in the immersed section. The excitation of the S0

and SH0 mode is caused by misalignment of the transducer polarisation direction

with the plane of the plate. The arrival of the SH wave is indicated in figure 4.5

where the plate and transducer were slightly misaligned while it is not visible in

figure 4.4 where better alignment between transducer polarisation direction and the

plane of the plate were achieved. The attenuation of the signal is easily analysed as

for the QS mode signal, see equation 4.2.

Equation 3.18 can be used to retrieve the viscosity of the liquid from the SH wave

attenuation measurement. As mentioned in section 3.5 the analysis is strictly only

true for Newtonian liquids. If however an effective viscosity is determined at each

frequency, the shear behaviour of the liquid is adequately retrieved and accounted
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for.

4.5 Ultrasonic Test cell

An alternative method of determining the fluid bulk properties was needed to vali-

date the results from the quasi-Scholte mode measurements. An ultrasonic test cell

that was developed at the University of Nottingham (UK) [61] was used to carry out

these validation measurements of fluid bulk velocity and attenuation. This setup

consisted of a transducer at one end of the cell which sent a wide bandwidth signal

across the fluid sample to a receiver. The exciter and receiver were thick slabs of

piezo-electric material. The time delay and amplitude loss were then used to obtain

the velocity and attenuation in the sample. This technique is standard and the

reader is referred to Challis et al. [61] for further details. Sample sizes were about

25 ml for the test cell and the fluid could be temperature controlled to within 0.1

degrees centigrade. Figure 4.6 shows a schematic of the test cell.

4.6 Results

4.6.1 Newtonian Fluids

The quasi-Scholte mode measurement method was first tried on Newtonian fluids.

The parameters to be determined were the bulk velocity and viscosity of the fluid.

Glycerol was chosen as the test fluid. The density of a glycerol sample was measured

to be 1258kg/m3 and the aluminium plate properties were evaluated experimentally

as ρ = 2700kg/m3, Cl = 6320m/s and Cs = 3130m/s. The temperature was de-

termined to be 23◦C. Results were extracted from the time traces as described in

section 4.3. Figure 4.7(a) shows the measured group velocity of the quasi-Scholte

mode as a function of frequency and a theoretically modelled curve (DISPERSE

[22]) was fitted to the measured data. For the low viscosities of glycerol, the group

velocity dispersion relation of the quasi-Scholte mode is essentially only dependent

on the longitudinal velocity as described in section 3.3. Thus it is possible to extract
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the longitudinal bulk velocity of the glycerol as 1930 m/s. Figure 4.7(b) shows the

measured and theoretically predicted attenuation for the quasi-scholte mode. The

measured attenuation fits best to a predicted viscosity of 0.82 Pas. An estimate of

the error in the measured viscosity, based on repeatability, is about 8%.

To validate the above results a measurement of the bulk longitudinal velocity was

carried out. This yielded a value of 1900 m/s. Also an alternative method of mea-

suring viscosity was utilised; this method involved the measurement of the torsional

T(0) mode attenuation of a rod immersed in glycerol as described by [36]. Using this

approach the viscosity was determined to be 0.89 Pas. The measurement environ-

ment for this experiment, unlike later experiments, was not temperature controlled.

The humidity was not controlled either but the two experiments were carried out

almost simultaneously (less than 10 minutes apart). The measured results compared

well to each other and literature data. Kaye and Laby [62] state the viscosity of

99% glycerol to be 0.9 Pas at 23◦C.

The quasi-Scholte mode was also used to measure the properties of honey. Figure

4.8(a) shows the measured group velocity and figure 4.8(b) shows the measured at-

tenuation of the quasi-Scholte mode of the 0.94mm aluminium plate immersed in

honey (Gale’s Clear Honey, Premier Ambient Products (UK) Ltd., Spalding PE12

9EQ). The average bulk velocity of the honey was determined to be 2140 ± 30 m/s

and the average viscosity was evaluated at 19.2 ± 1.17 Pas, where the quoted un-

certainty is based on repeatability of the measurement results.

The results for honey show that the method also works for very viscous fluids. De-

spite its many different constituents the behaviour of honey is described well by

a Newtonian fluid [63]. As stated in section 3.2.2 low viscosities (< 30 Pas) are

currently assumed in the modelling of the quasi-Scholte mode and therefore errors

will introduce if the same model is used for highly viscous liquids. Honey is still

modelled well by assuming low viscosities, however high viscosity formulations for

equations 3.7-3.10 can be implemented [22] for more viscous fluids. High viscosity

fluids will also exhibit significant shear leakage that can partially be limited by al-
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tering measurement frequency and propagation length. Highly viscous liquids will

also affect the quasi-Scholte mode group velocity which complicates the extraction

of bulk velocity and attenuation.

To facilitate the extraction of fluid bulk properties from the measured quasi-Scholte

mode data an inversion technique was developed. An iterative routine was pro-

grammed that automatically traced the quasi-Scholte mode group velocity disper-

sion curves for a given embedding fluid bulk velocity and viscosity. The result was

compared to the measured data points and the fluid bulk velocity was adjusted in the

right direction to reduce the mismatch between prediction and measurement. Once

a prediction point below and above the measured data was obtained a bi-section

scheme reduced the step size of the iteration. A maximum limit of iterations was

set and a result within a tolerance of 0.1 m/s or Np/m was accepted as a successful

iteration.

The iteration and inversion technique was first tested on a sample of distilled water

and a 5% ethanol-distilled water solution. To increase the range of bulk velocities

that could be measured the sample solutions were measured at different tempera-

tures between 10 and 30 degrees centigrade. The stainless steel plate was used to

carry out the measurements. Results are displayed in figure 4.9. The marker of the

bulk velocity indicates the mean velocity obtained from the inversion routine, while

the error bars indicate the standard deviation of the set of values obtained at differ-

ent frequencies from the mean value. Distilled water and the ethanol-water mixture

are non-dispersive fluids so that the velocity should be the same at all frequencies.

However due to noise in the group velocity measurement, and errors, slight differ-

ences in velocity at different frequencies are obtained. The mean value is also offset

from the theoretically predicted curve. This is believed to be due to the positioning

uncertainty of the plate (0.5%). Even with these errors in the data the measure-

ment results compare very well to literature data that was obtained from Povey [1].

The trend of increased velocity at increased temperature is clearly reflected by the

measurements in figure 4.9.

96



4. Quasi-Scholte mode Experiments

4.6.2 Non-Newtonian Fluids

Once it was established that the QS mode model could correctly yield the properties

of Newtonian fluids, the evaluation of non-Newtonian fluids could be addressed. The

non-Newtonian fluids that were chosen were aqueous suspensions of silicon dioxide.

Four different aqueous suspensions of silica particles were obtained and prepared.

Two commercial colloidal silica samples Syton-HR50 (Du Pont de Nemours & Co.

Inc., USA) and Snowtex-ZL (Nissan Chemical Industries Ltd., Japan) were used

as well as two custom made samples from SILMIKRON silica dust (Quarzwerke

GmbH, Germany). Two different amounts of the silica dust (50g and 150g) were

stirred into 400 ml of distilled water and then treated in an ultrasonic cleaning bath

for 30 minutes to break up any agglomerations. The suspension was then left to

settle for half a day before it was transferred into another flask. Any deposit at the

bottom of the flask was discarded. The process was repeated until no more deposit

was collecting after half a day. The suspension was then believed to be sufficiently

stable to last for the duration of an experiment (less than half an hour). The four

different suspensions had different volume fractions and particle sizes which are sum-

marized in table 4.1.

Suspension particle diameter Volume fraction Density Viscosity

(μm) (%) (kg/m3) (mPas)

Snowtex-ZL 0.07 23 1294 1.9

Syton−HR50 0.05 30.4 1388 3.2

SILMIKRON−150 > 1 5.2 1065 1.1

SILMIKRON−50 > 1 1.7 1020 1.1

Table 4.1: Particle size (by manufacturer), volume fraction (either by manufacturer or

calculated from the density), density (measured) and viscosity (SH-wave measurement at

3MHz) of the different investigated suspensions.

Experiments were carried out successively using a conventional test cell and the

quasi-Scholte mode setup. In both cases the fluid was temperature controlled to 25

degrees centigrade. The experiments were carried out and the data was processed.
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The measured quantities from the quasi-Scholte mode and ultrasonic test cell ex-

periments do not yield comparable quantities, they have to be converted and can

then be compared in two different ways: the forward model and the inverted model.

The forward problem consists of determining the dispersion curves for the quasi-

Scholte mode from the measured bulk wave velocity and attenuation in the ultra-

sonic test cell. Group velocity as well as the attenuation of the quasi-Scholte mode

are determined as functions of frequency for a given set of input parameters which

are either known or determined from the ultrasonic test cell measurement. There

are fixed input parameters (plate material density, plate material longitudinal and

transverse bulk velocity) and variable input parameters (fluid density, fluid longitu-

dinal and shear wave velocity, fluid longitudinal and shear wave attenuation). Now

the dispersion curves obtained by modelling the plate surrounded by a fluid whose

properties were determined by the ultrasonic test cell could be compared to the

actually measured dispersion curves in the quasi-Scholte mode experiment.

In the inversion the measured properties (group velocity and attenuation) of the

quasi-Scholte mode are inverted to obtain the properties of the fluid that an ultra-

sonic test cell would deliver (bulk wave velocity and bulk wave attenuation). The

approach developed here used an iteration to evaluate the fluid bulk properties. An

initial guess for the fluid properties is used to evaluate the quasi-Scholte mode prop-

erties in the forward model. The measured data and the predicted data are compared

and the fluid properties are adjusted before they are re-entered into the global ma-

trix (see appendix A). Two parameters are adjusted simultaneously: longitudinal

bulk velocity and the part of the longitudinal attenuation which is in excess of the

viscosity induced dissipation. The parameters are increased in constant steps. A

bi-section scheme is used once two consecutively entered fluid property values yield

a result either side of the measured quasi-Scholte data point. The procedure is re-

peated until the modelled solution agrees to within a tolerance value (0.1 m/s, 0.1

Np/m) with the measured quasi-Scholte mode data.
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The forward model

Figure 4.10 displays the measured group velocity of the quasi-Scholte mode and the

predicted group velocity obtained by modelling the fluid properties measured in the

ultrasonic test cell. The results in figure 4.10 show a very good agreement of the

predicted and measured values. The lines trace the same path and only small devi-

ations from the predicted values are seen in the actual measurement. The errors in

the measured velocity are surprisingly small; a positioning accuracy of 0.5% in the

immersion depth of the plate explains the different offsets for the curves of the four

samples.

Figure 4.11 displays the measured attenuation of the quasi-Scholte mode and the

predicted attenuation obtained by forward modelling using the fluid properties mea-

sured in the ultrasonic test cell. The results show good agreement between mea-

surements of the quasi-Scholte mode attenuation and the predicted quasi-Scholte

mode attenuation obtained from the fluid property measurement (bulk velocity CL

and bulk attenuation α) in a test cell for the commercially obtained colloidal silica

samples. The attenuation of the purpose made SILMIKRON samples still agreed

well in trend but were offset by about 20% above the prediction from the bulk

wave measurement. The attenuation measurement is more prone to the influence

of errors, see section 4.7. In order to reduce the effects of noise in the measured

attenuation data a quadratic curve was fitted to it. The error bars in figure 4.11

indicate the standard error (< 0.5%) of the attenuation data and the curve fit. (The

error bars in the attenuation graph of figure 4.11 appear smaller than the error bars

of the velocity graph of figure 4.10. However this is simply due to the expanded

scale of figure 4.10, the percentage velocity error is substantially smaller than the

percentage attenuation error.)

The higher values of attenuation of the SILMIKRON suspension indicate the sen-

sitivity of the quasi-Scholte mode to non-viscous dissipative mechanisms in fluids.

The viscosities of the commercial samples Snowtex-ZL and Syton-HR50 are greater

by a factor of 2 and 3 respectively (see Table 4.1), however the quasi-Scholte mode

measurement reveals a lower attenuation than for the SILMIKRON samples. The
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loss of energy into the embedding liquid due to shear coupling in the SILMIKRON

samples must be less than that for the commercial samples. If viscosity was the

only attenuation mechanism, SILMIKRON should exhibit a lower attenuation than

the commercial samples, but the measured attenuation in the SILMIKRON samples

was higher. This is due to scattering of the wave at particles in the suspension; it

is well known that scattering increases attenuation in fluids [3].

However the total attenuation of the quasi-Scholte mode is not as high as the atten-

uation experienced by a bulk wave in the strongly scattering SIMLIKRON fluids.

This is because only a fraction ( 20-40% depending on the frequency) of the en-

ergy of the quasi-Scholte mode travels in the embedding fluid see chapter 3. This is

an attractive feature for the investigation of highly attenuative and scattering fluids.

Inversion

The inversion technique was then used on the silica suspension data. The results

from the velocity inversion are summarised in figure 4.12. The agreement between

the test cell measurements and the inverted quasi-Scholte mode measurements is

good. The errors that were apparent in the forward model (section 4.6.2) are re-

tained. The mean values of the lines are also offset by up to 0.5%, which is believed

to be caused by the uncertainty with which the immersion depth of the plate is

determined.

The results in figure 4.13 show the longitudinal bulk wave attenuation obtained

from the inversion of the quasi-Scholte measurements. These results show worse

agreement compared to the forward modelled data. Qualitatively the method cor-

rectly identifies the magnitude of the attenuation in the samples: SILMIKRON-150

exhibits the most attenuation, then SILMIKRON-50, while Snowtex-ZL and Syton-

HR50 are least attenuating. However the quantitative values differ from those ob-

tained using the ultrasonic test cell, sometimes by more than 25%. As in the forward

approach the inverted quasi-Scholte mode data shows a consistently higher attenu-
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ation than the test cell measurements. Error bars in figure 4.13 show the standard

error introduced by using a quadratic curve fit to represent measured quasi-Scholte

mode data.

At low frequencies the error in attenuation is greatest; this is believed to be partly

due to the curve fit that seems to be less good at low frequencies but could also

be due to the fact that less energy travels in the liquid at low frequencies. The

sensitivity to the fluid properties is also not as high at low frequencies as it is at

high frequencies see section 3.4.

4.7 Error considerations

In order to allow future refinement of the QS mode measurement technique, sources

of error in the measurement had to be identified. The errors in the velocity mea-

surement, the attenuation measurement and processing of data were considered

separately.

The sources of error in the velocity measurements are the most obvious. The sam-

pling frequency of the digitizer which records the signal introduces the most basic

uncertainty in the velocity measurement by limiting the temporal resolution of the

signal acquisition. Noise in the received signal represents another source of error. If

processing is carried out in the time domain this can cause errors in the detection of

the arrival of a peak amplitude for example. However since the signal to noise ratio

and the sampling frequency were large in all measurements these errors were small.

The main uncertainty that entered the velocity measurement was believed to be the

uncertainty with which the immersion depth could be determined. The immersion

depth was determined visually by means of a ruler. This was believed to be accu-

rate to within 0.5 − 1.5% depending on the care taken and the overall distance to

be measured. Indeed the velocity measurements that were carried out agreed with

validation measurements and literature data within this range of uncertainty.
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In figure 4.12 and figure 4.10 step like variations about the expected smooth velocity

curves can be seen. They are most visible in the curve for SIMIKRON-150. These

variations are of the same order as the positioning inaccuracies (about 0.5%). They

are believed to be due to the resolution limit of the amplitude spectrum method

[60](also see Appendix C.4) which was used to determine the velocity at different

frequencies from a broadband signal. In the amplitude spectrum method the Fourier

transform of a signal that contains the originally sent signal and the received signal

is calculated. Due to phase differences in both the sent and the received signal the

spectrum of the combined signal will contain a number of maxima and minima. The

velocity of the wave can then be calculated by the following equation

V =
ΔF

ΔN
D. (4.3)

where ΔF is the frequency difference between two minima in the process signal,

ΔN is the number of minima in between ΔF (in this case 1) and D is the distance

separating the two points at which the signals were acquired.

Equation 4.3 is used to determine the velocity by means of the amplitude spectrum

method. If the frequency resolution becomes an important fraction of the frequency

difference between two minima, errors due to the frequency resolution of the spec-

trum can arise. In this case finite size steps in the velocity measurement are caused.

A way to improve on this could be by increasing the frequency resolution in real

terms or by means of zero padding. However it would be better to adjust the separa-

tion distance D between the signals to increase ΔF . If this is not possible a different

method of velocity measurement should be chosen (see for example the method of

zero phase slope in Appendix C).

Attenuation measurements are known to be more prone to error than velocity mea-

surements. There are many factors that influence the signal amplitude: the output

voltage of the signal generator, amplifier and cable connection quality, the consis-

tency of coupling between the transducer and the waveguide, just to mention a few.

Attenuation errors also arise due to geometrical faults within the setup. For exam-

102



4. Quasi-Scholte mode Experiments

ple refraction of the travelling wave at the position where the waveguide enters the

fluid can occur. The quasi-Scholte mode velocity is considerably slower than the A0

velocity of the free plate. If the wave enters the liquid at an angle different from

the normal, the beam will be refracted and on return to the transducer its position

will be offset slightly. A considerable decrease in amplitude can be observed at the

transducer; this effect was verified experimentally: a possible remedy is the change

from the plate geometry to a rectangular cross section strip.

The uncertainty with which the immersion depth is determined also introduces an

error in the attenuation measurement. On top of this, noise always enters the mea-

surement and in order to avoid larger errors due to the noise in the signal the overall

attenuation has to lie between 0.5 and 1 Np/m. This is an inherent problem with

any attenuation measurement which has been pointed out by Kalashnikov and Chal-

lis [42].

Finally errors can also enter the final result due to errors in processing techniques.

Several error sources within processing have been identified. When the group veloc-

ity and attenuation spectra of the measured signals were processed small oscillations

about a general curve trend were observed. To smoothen out these oscillations a

curve fit was used. The standard deviation of the curve fit from the actual data

was very small (< 0.5%). A quadratic curve was used as fit partly because the

viscous part of the attenuation is expected to vary with the square of frequency and

the velocity also has the shape of an inverted parabola.Figure 4.14 illustrates mea-

surement data and the respective curve fit. The use of this curve fit can cause errors.

During processing the accumulation of errors from the individual required measure-

ments also takes place. For example measurements of the plate material properties,

fluid density and viscosity are needed together with the QS-mode measurement to

process the final result. The A0 free plate mode group velocity is also required to

calculate the QS-mode velocity, see equation 4.1. An error in this A0 group velocity

measurement will directly enter the QS-mode group velocity result.
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Another potential source of large error can be found in the processing of the lon-

gitudinal bulk attenuation from the measured QS-mode attenuation. A viscosity

measurement using the SH-mode is necessary. In fluids where the contribution of

the fluid longitudinal bulk attenuation to the QS-mode attenuation is small com-

pared to the attenuation due to shear leakage, large errors in the processing of

the longitudinal bulk attenuation from the QS-mode attenuation can be expected.

This is because the inversion is ill posed and a small error in the SH-wave viscosity

measurement will be disproportionately amplified to yield a very large error in the

estimated fluid bulk longitudinal attenuation. An example for this is seen in the

inversion method results of the Syton-HR50 suspension, whose viscosity is almost

entirely responsible for the QS-mode attenuation. The forward modelled results for

Syton-HR50 agree very well in this case.

For the future construction of an improved measurement apparatus it is recom-

mended to address the largest sources of error first. Therefore a method of ac-

curately determining the immersion depth should be implemented. This could be

achieved by shielding the unimmersed parts of the waveguide from the liquid by

a cover for example. The total immersion depth should also be chosen in such a

way that the overall measured attenuation lies as close as possible to 0.5 np. This

might impose the use of different immersion depth for the QS mode and the SH

mode measurements. The material properties of the plate and the density of the

fluid should be determined as precisely as possible. The geometry of the waveguide

should be changed from a plate to a strip in order to eliminate refraction effects due

to angled entry of the plate into the liquid. However it should be kept in mind that

the inversion of QS mode attenuation measurements to yield the bulk longitudinal

fluid attenuation will always be ill posed for viscous fluids whose bulk longitudinal

attenuations are small.

4.8 Summary

In this chapter the experimental studies that were carried out with the quasi-Scholte

mode are reported. The mode conversion from A0 mode of a free plate to the quasi-
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Scholte mode of an embedded plate was chosen as excitation method. A setup was

built and measurements on several fluids were carried out. By means of the QS-

mode group velocity measurement the fluid bulk velocity could be determined to

within 0.5 %. The main error was identified to be due to positioning inaccuracies

of the plate.

The attenuation measurement of the quasi-Scholte mode was used to determine the

viscosity of a Newtonian fluid. For Non-Newtonian fluids the QS-mode attenuation

cannot be solely described by the viscosity. The QS-mode attenuation now depends

on the viscosity and the longitudinal bulk attenuation of the liquid. By use of an

additional measurement using the SH-mode of the plate the shear properties of the

fluid were determined. This allowed the longitudinal bulk attenuation of the fluid

to be retrieved from the QS-mode attenuation measurement.

The presence of the two different attenuation mechanisms of the QS mode (shear

leakage and longitudinal bulk attenuation) was illustrated by showing that the QS

mode attenuation of a low viscosity but high bulk attenuation fluid (SILMIKRON-

150) is higher than the QS mode attenuation of a high viscosity and low bulk at-

tenuation fluid (SYTON-HR50). Comparisons of the QS-mode measurements with

results from an ultrasonic test cell showed good agreement for both methods in the

forward model. Velocity measurements were achieved with good accuracy and at-

tenuation measurements also agreed well.

In the inversion technique velocity measurements could still be carried out accurately

however the error of the longitudinal bulk attenuation measurement was relatively

large. This can be due to ill conditioning of the inversion technique. Several sources

of error have been identified. Errors were due to general limitations in attenuation

measurements, the need of an experimental determination of viscosity that is prone

to error, an ill posed inversion problem and geometrical issues with the setup. Some

errors could be eliminated by further refinement of the measurement setup, such as

a geometry change from a plate to a strip, accurate determination of the immersion

depth and a reduction of error in the determination of the effective viscosity.
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4.9 Figures

Figure 4.1: Frequency versus wavenumber plot for the QS mode (—), the A0 mode (- -

-) of a free plate and the leaky A0 mode (· · ·) of a steel plate immersed in water (steel:

ρ = 7932kg/m3, Cl = 6000m/s, Cs = 3260m/s; water ρ = 1000kg/m3, Cl = 1500m/s)
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Figure 4.2: Experimental setup

Figure 4.3: Schematic of the Transducer orientation and plate setup.
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Figure 4.4: Time trace at 500 kHz with aluminium plate 30 mm immersed in Glycerol

Figure 4.5: Time trace at 3 MHz with stainless steel plate immersed a) 20 mm and b)

80 mm in Water.
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Figure 4.6: Schematic of a conventional test cell.
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Figure 4.7: Measured (+) and theoretically predicted (—) (a) group velocity and (b)

attenuation of the quasi-Scholte mode on a 0.94 mm thick aluminium plate immersed in

glycerol (ρ = 1258kg/m3, Cl = 1930m/s, η = 0.82Pas)
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Figure 4.8: Measured (+) and theoretically predicted (—) (a) group velocity and (b)

attenuation of the quasi-Scholte mode on a 0.94 mm thick aluminium plate immersed in

honey (ρ = 1400kg/m3, Cl = 2140m/s, η = 19.2Pas)
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Figure 4.9: Literature data from Povey [1]for distilled water (—) and 5 % ethanol-

distilled water mixture (- - -) for the bulk velocity and data from the inversion of the

quasi-Scholte mode measurement (distilled water o, 5 % ethanol-distilled water �)

Figure 4.10: Quasi-Scholte mode group velocity obtained by forward modelling using

the fluid bulk velocity and attenuation from the ultrasonic test cell measurement (- - -)

and by direct measurement of the quasi-Scholte mode (—) [Snowtex-ZL (o), Syton-HR50

(�), SILMIKRON-50 (+), SILMIKRON-150 (�)]. The errorbars indicate errors due to

the 0.5 % uncertainty in evaluating the immersion depth.
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Figure 4.11: Quasi-Scholte mode attenuation obtained by forward modelling using the

fluid bulk velocity and attenuation from the ultrasonic test cell measurement (- - -) and

by direct measurement of the quasi-Scholte mode (—) [Snowtex-ZL (o), Syton-HR50 (�),

SILMIKRON-50 (+), SILMIKRON-150 (�)]. The error bars indicate the standard error

of the signal and a curve fit (see text).
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Figure 4.12: Fluid bulk velocity from the ultrasonic test cell measurement (- - -) and

by inversion of the quasi-Scholte mode measurement (—). [Snowtex-ZL (o), Syton-HR50

(�), SILMIKRON-50 (+), SILMIKRON-150 (�)] The errorbars indicate errors due to the

0.5 % uncertainty in evaluating the immersion depth.

Figure 4.13: Fluid bulk attenuation from the ultrasonic test cell measurement (- - -) and

by inversion of the quasi-Scholte mode measurement (—) [Snowtex-ZL (o), Syton-HR50

(�), SILMIKRON−50 (+), SILMIKRON−150 (�)]. The error bars indicate the standard

error of the signal and a curve fit (see text).
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Figure 4.14: Raw measurement data (—) and the quadratic curve fit (- - -) for a Snowtex-

ZL sample.
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Chapter 5

Non-dispersive wave propagation

in thin flexible waveguides

5.1 Shear horizontal mode

The work presented in chapters 3 and 4 suggested the investigation of propagating

modes in a strip of rectangular cross section. The search for a strip mode similar

to the A0 mode of an infinitely wide plate was started. It was hoped that this strip

mode could be used to excite a strip QS-mode, which was needed to further develop

the QS-mode measurement method and make it more practical.

During the investigation an A0-like mode was found and experimentally excited.

However during the analysis it was also found that non-dispersive ”shear horizon-

tal” like strip modes could easily be excited in strips of rectangular cross section.

It was realised that such a mode could be used to transmit ultrasonic energy from

a transducer through the strip waveguide to a structure non-dispersively and over

relatively long distances.

A non-dispersive waveguide has a high potential to be used in applications such as

ultrasonic thickness gauging or monitoring of cracks in structures at elevated tem-

peratures ( > 300◦C), in harsh environments or in places where access is limited.
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These tasks are straight forward for ultrasonic inspection equipment at room tem-

peratures or in safe environments. However in harsh environments such as the ones

described above, standard ultrasonic NDT equipment fails due to a number of rea-

sons, the most important being the loss of the transducer capabilities to send and

receive signals due to depolarisation of piezo electric materials at high temperatures

(Curie point of piezo-ceramics is typically about 250◦C) or under the influence of

high radiation levels.

Currently researchers are working on the development of transducer materials that

can withstand extreme conditions [4], [5]. The development and the manufacture

of these new materials is very expensive, therefore the alternative method of using

a waveguide to transmit energy from a standard transducer in a safe environment

into the structure at extreme conditions is very attractive. It was decided to focus

further research onto this field. The remainder of the work reported in this thesis

therefore concentrates on the development of an ”acoustic cable” for non-destructive

testing of a structure.

The main difficulties for the implementation of an ”acoustic cable” are the need for

an efficient excitation of a clean non- or marginally-dispersive signal and an attach-

ment to the structure that optimises transmission of a clean and strong signal into

the structure to be interrogated. These two tasks were separated. Wave propaga-

tion in waveguides is discussed in this chapter while the source characteristics of

waveguides on half-spaces are considered in chapter 6.

Whilst currently there exist no NDT devices for structural interrogation using a flex-

ible waveguide to separate the transducer from the test-piece, several publications

on non-dispersive waveguides and buffer rods for high temperature applications can

be found. These articles are mainly motivated by the field of fluid flow metering

where a strong signal needs to be sent across a fluid conduit. The flow velocity is

then evaluated by a change in transit time from a transducer on one side of the con-

duit to a receiver on the other side of the conduit. These embodiments of marginally

dispersive waveguides and their working principle will be outlined in section 5.3 af-
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ter a short section that highlights the desired wave propagation characteristics of

’acoustic cable’ buffer waveguides. Then wave propagation in strips of rectangular

cross section will be discussed. At the end of the chapter in section 5.5 experimental

work that has been carried out on rods, bundles of wires, wires and rectangular

strips is presented.

5.2 Desirable waveguide characteristics

There are several desirable characteristics that a waveguide should have for the

successful transmission of ultrasonic pulses from a transducer through the waveguide

into another structure. These characteristics will be discussed here. For this we recall

some of the basics of guided wave propagation which were described in section 2.2.

Single mode excitation

When examining figure 2.1 one notices that the number of propagating modes that

exist in a plate structure is large; indeed it is infinite, the higher the frequency of

operation the more modes exist. At any chosen frequency there are several modes

that can propagate. If two modes of similar velocity propagate in the plate their

signals will interfere or if the propagation distance is long enough, two separate ar-

rivals will be recorded. This will complicate the analysis of signals considerably if

the signals are close together. If more than a couple of modes propagate in the plate

it becomes nearly impossible to separate and differentiate the reflections and arrivals

of one mode from the signal arrivals of another mode. Therefore it is important to

limit the number of modes that propagate in a waveguide and ideally to use a single

pure mode to carry out testing.

The closer the transducer induced displacements match the mode shape of a mode,

the stronger this mode will be excited compared to other modes that do not match

the motion induced by the transducer. In a plate at low frequency thicknesses (<

1.7MHz mm) only three propagating modes exist. These fundamental modes have

distinct polarisation directions and can therefore rather easily be excited by applying
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a uniform displacement profile across the section of the plate in the direction of one

of the axes of the coordinate system (see 2.3). At higher frequencies, where higher

order modes are present and the mode shapes of the fundamental modes considerably

differ from a uniform profile across the plate thickness, it becomes more difficult to

excite a single mode. In these cases transduction methods using a wedge or comb

like transducers can be employed, see for example Monkhouse et al. [64]. However

for these reasons the traditional approach to single mode excitation is to operate at

low frequency thickness products.

In practice perfect excitation is not possible due to imperfections of the waveguide

or the transducer. However a single mode can be preferentially excited by certain

transducer configurations. Other modes will be excited at much lower amplitudes

and cause coherent noise. In general a good single mode excitation excites one mode

about 40 dB above other modes which allows satisfactory measurements.

Non-dispersiveness

In figure 2.2 the effects of dispersion are illustrated. Distortion and elongation of

the pulse shape decrease the spatial resolution with which an object could be mon-

itored and the amplitude loss due to dispersion considerably reduces the range of

the guided wave and therefore the length of a useable waveguide. Even though

techniques to counter the effects of dispersion exist with time reversal [28] and

dispersion compensation [27], these techniques complicate the method unnecessar-

ily and require excitation of complicated temporal signals and arbitrary waveform

generators. Therefore propagation in the waveguide should be non- or marginally-

dispersive. The traditional way of achieving this is to operate at low frequency

thicknesses; however if high spatial resolution and thus high frequencies are needed

the waveguide dimensions become very small.

Flexibility and low thickness

Apart from the cost savings and practical advantages that the use of a flexible and

thin waveguide entails, there is also a technical advantage due to the small dimen-
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sions of the waveguide. A thin waveguide is much better at isolating a transducer

from a hot environment than a larger cross section rod. This is illustrated in figure

5.1 where the temperature distribution along three different waveguides is plotted.

One end of each waveguide is attached to a hot (600◦C) structure while the other

end protrudes freely into surrounding air at room temperature (25◦C). The heat

transfer in the waveguide is modelled as described by Mills [65] for steady state

heat transfer along a fin. While the thin steel wave guides of characteristic dimen-

sion 1 mm ensure a temperature drop below 100◦C within 100 mm of length of the

waveguide, the thick rod of characteristic dimension 20mm only achieves a similar

temperature drop over 500mm of length.

Half a metre is a considerable clearance that the rigid larger diameter rod device

will need, while a thin, flexible waveguide can possibly be bent around corners to

reach into inaccessible areas.

Low attenuation and high corrosion resistance

The waveguide merely acts as a channel to send/receive the signal to and from an

area where it will interact with a structure to collect information. Ideally this should

occur without losses along the path that the signal is sent, therefore losses in the

waveguide should be minimised. In this respect longitudinal modes perform better

since they are attenuated less at high temperatures. According to Papadakis et al.

[66] there is no significant increase in the longitudinal or shear wave attenuation of

steel at 2MHz up to temperatures of ∼ 700◦C. Above 700◦C the shear wave at-

tenuation starts to increase considerably to about 0.5 Np/cm at 1100◦C, while the

longitudinal attenuation increases moderately and then reduces again to 0.1 Np/cm

at 1100◦C. However shear waves allow the use of lower frequencies for the same

resolution due to their slower wave velocity. Attenuation due to the grain size of the

material may also become important (see Reynolds and Smith [67]).

The waveguide material will also have to be robust enough to withstand an aggres-

sive environment and should be highly corrosion and radiation resistant. Therefore

stainless steel or ceramics are materials of choice for the waveguide.
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5.3 Non-dispersive waveguides in the literature

The work reported in the literature has mainly been motivated by the application

of flow monitoring of hot fluids in pipes. A substantial number of publications were

found to be in the form of patents. Lynnworth and co-workers [68], [69], [70] have

developed a series of wire bundle systems in order to produce marginally dispersive

propagation of extensional waves along a waveguide system. They identified disper-

sion as the main problem. In order to minimise dispersion in the waveguide they

excite the L(0, 1) mode in very thin wires. Due to the small diameter of the wires the

waveguide operates at low frequency thickness products where the phase velocity is

almost frequency independent and marginally dispersive, see section 2.6. In order

to obtain a strong signal many wires were put together in a bundle. Winston and

Brunk [71] have suggested a similar method using single or multiple wires, however

they did not specify any further information about an implementation of the method.

Heijnsdijk and van Klooster [72] have proposed a coiled foil waveguide as an alterna-

tive to a bundle of rods. The thickness of the foil is arranged to be much smaller than

the smallest wavelength to be propagated; this ensures that the frequency thickness

product of the foil is very low and therefore compressional pulses will essentially

propagate non-dispersively along the foil. The foil is coiled around an axis parallel

to the propagation direction and so if unwrapped would be very long in the direction

parallel to propagation. This mimics a plane wave propagating along the foil where

interferences from edges are kept to a minimum.

Jen and co-workers [73], [74], [75], [76] have tried to limit the number of modes

travelling in a thin bar by adding an attenuative cladding on the outside of the bar.

The bar can be of a tapered shape. It is essentially an attempt to remove the effects

of the waveguide boundaries mainly by damping and limiting the reflections of the

surface. The number of trailing echoes is thus almost entirely removed; however

the effects of dispersion are not entirely removed and the signal is slightly delayed,

slightly distorted and strongly attenuated. This method is an improvement to even

older solutions that utilise uniformly and non-uniformly threaded bars as waveg-
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uides [77], [78]. Nevertheless Jen’s method, like the threaded bars, suffers from high

attenuation over relatively short propagation distances. The relatively high attenu-

ation limits the propagation distance for this waveguide. At the same time a longer

waveguide is needed to isolate the transducer from high temperatures due to the

large diameter of the waveguide (see figure 5.1).

For the purpose of fluid flow metering Lynnworth [79] also patented a device that

he called the ”hockey stick”. It carries a shear wave in a rectangular section bar to

an angled section. The angle of the end of the ”hockey stick” is coupled to a pipe

wall in order to promote mode conversion from the shear wave to a compressional

wave in the liquid. On the other side of the pipe the compressional wave converts

back to a shear wave and is picked up in a similar device. A sketch of the ”hockey

stick” system for fluid flow metering is shown in figure 5.2.

5.4 Wave propagation in rectangular strips

The modelling of very wide plates is accurately achieved by the assumption of an

infinitely wide plate. The shorter the width of the plate/strip becomes the more

it starts influencing the wave propagation and it becomes necessary to model the

rectangular strip as a one dimensional waveguide with a constant cross section; a

family of modes can propagate along the waveguide. Mindlin and Fox [80] were

the first to describe the propagating modes of a bar of rectangular cross section.

Their solution was made up of a superposition of several flexural, longitudinal and

shear modes that propagate in infinite plates of the width and thickness of the bar

respectively. The solutions for the infinite plates were superposed in order to fulfil

the boundary conditions of zero stress all around the perimeter of the cross section.

This method enabled them to determine the dispersion characteristics of the bar

at distinct frequencies and aspect ratios of the bar. A solution for all frequencies

and aspect ratios was however not possible. More recently the continuous tracing of

dispersion curves for wave propagation in structures of arbitrary cross section has

become possible through the use of finite element (FE) eigensolvers. Wilcox et al.
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[81], Mukdadi et al. [82], Hayashi et al. [83] and Gavric [84] have reported methods

of tracing dispersion curves for L-shaped sections, rail heads and strips.

The method of Wilcox et al. has the advantage that it can be carried out with

standard finite element programs. It has been employed here to analyse the modes

propagating in 1mm thick steel strips of a much larger width (> 15mm was chosen).

The method works by defining an axisymmetric model with a very large radius

compared to the dimensions of the cross section. The section of the axisymmetric

body represents the cross section of the wave guide, see figure 5.3. Due to the very

large radius the structure approximates a straight waveguide. For the finite element

eigensolver a specific cyclic order can be specified. This specifies the number of

wavelengths that exist around the circumference of the axisymmetric body. For

example a cyclic order of 1 corresponds to a wavelength equal to the circumference

of the structure. For a cyclic order of 2 there are two wavelengths around the

circumference and so on. Therefore the wavelength of the solution is determined by

the following equation:

λ =
2πR

Corder

(5.1)

where R is the radius of the model and Corder is the cyclic order of the FE eigensolver.

At each cyclic order the FE-eigensolver routine will determine several resonant fre-

quencies. These frequencies correspond to different modes. The wavenumber dis-

persion curves for the meshed cross section can now be determined by plotting the

resonant frequencies against the wavenumber, which is determined using equation

5.2 and the identity

k =
2π

λ
(5.2)

where k is the circular wavenumber and λ the wavelength. This method therefore

yields a set of discrete frequency solutions at each wavenumber. A typical set of

results is shown in figure 5.4. Wilcox et al. developed software that connects adja-

cent solution points to form a continous solution line in the wavenumber frequency
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domain. This represents a mode. The joining up of adjacent points to a line is car-

ried out by comparing the mode shapes of adjacent solutions and by using the slope

of the curve of existing solutions to predict the continuation of the curve, which is

similar to the method presented by Lowe [23]. A software coding of this had been

developed by Wilcox and was merely used here to extract results for the desired

geometries. The finite element software that determined the eigen solutions was the

FINEL 77 code which was developed by Hitchings [85] at Imperial College.

Phase velocity dispersion curves can be obtained from the wavenumber frequency

plot by converting them using the following identity:

Cph =
ω

k
(5.3)

Once the phase velocity is determined the group velocity can be calculated using:

Cgr =
∂ω

∂k
= Cph + k

∂Cph

∂k
(5.4)

An interesting aspect to note about the technique is that the determined FE eigen

solutions are confined to a rectangular domain in the frequency - wavenumber

space. However when this is transformed into a phase velocity - frequency space

the solutions will be bound in a space between the two lines Cph = (1/kmin)ω and

Cph = (1/kmax)ω. This is illustrated in figure 5.5.

The mode shapes of each mode are a direct result of the FE analysis and can be

extracted at each frequency.

5.4.1 Dispersion curves for rectangular strips

Using the technique described in the previous section dispersion curves for rectan-

gular strips were obtained. The results for steel (ρ = 7932kg/m3, E = 216.9GPa,

ν = 0.2865) strip geometries of 1 mm thickness and width 15 and 30 mm will be

presented here. A sketch of the finite element model that was defined is shown in

figure 5.3. After the finite element program (FINEL 77 [85]) was run the data was
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post processed using the codes developed by Wilcox et al. [81]. Figure 5.6 shows the

frequency-wavenumber and phase velocity-frequency dispersion curves. The figure

looks very busy because many more propagating modes exist at lower frequencies

than in the infinite plate case. These extra modes are mainly due to the finite width

of the strip.

In figure 5.6 two modes are highlighted. These modes were named A0* and SH*.

The A0* mode is very similar to the commonly known A0 mode in an infinite plate.

It is a flexural mode with respect to the thickness (x direction), however due to the

finite width the mode also has a variation across the width (y direction). In this

case the mode is symmetric about the width with maximum displacement at the

centre of the rectangular strip. The relationship of the mode to the A0 mode in an

infinite plate is underlined by their similarity in phase velocity. Figure 5.7 shows the

mode shape of the A0* mode at 2.5 MHz. The main displacement component is in

the x direction and displacements are concentrated at the centre of the strip. This

is the strip mode that would preferentially be excited to promote mode conversion

to a QS-strip mode and carry out fluid property measurements similar to those in

chapters 3 and 4.

The SH* mode was identified as the lowest order shear horizontal mode that exists

in the rectangular strip. Strictly speaking the term ’shear horizontal’ only makes

sense if the plate is infinite. Here the width is much larger than the thickness of the

plate and therefore ’shear horizontal’ mode refers to a mode with similar polarisa-

tion to an SH mode in the infinite plate. The same mode could also be described

as bending in the width-propagation direction plane. Shearing with respect to the

thickness of the strip is bending with respect to the width of the strip. An equivalent

to the SH0 mode in an infinite plate does not exist in a strip. The SH* mode has a

cut-off that depends on the width of the strip. At frequencies well above the cut-off

the mode asymptotes to the shear velocity of the strip. The mode shapes of the

SH* mode at different frequencies are shown in figure 5.8. The figure shows that at

high frequencies the y displacement component is dominant and concentrated in the

centre of the strip. The mode shape is constant across the x direction. Also near
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cut-off there are displacements at the edges of the strip. This is better illustrated

in figure 5.9 which shows the evolution of the dominant y displacement across the

width of the strip over a range of frequencies.

The influence of the shape of the excitation at the end section of the strip was investi-

gated in order to find the best way to excite the SH* mode strongly. A finite element

model for a 15mm wide steel strip was prepared in the ABAQUS finite element soft-

ware. The model was two dimensional with a plane stress condition in the thickness

direction of the strip. Due to its special polarisation the SH* mode only contains σzy

stress components, which satisfy the plane stress condition (σxx = σxy = σxz = 0).

A frequency domain solver was used to solve the problem. At one end of the strip

a steady, dynamic force was applied while an absorbing region at the other end of

the strip prevented any reflections of the excited waves.

A sketch of the FE model is displayed in figure 5.10. Square quadratic elements of

size 0.25mm were used to mesh the strip and the absorbing region. The viscoelas-

tic parameters of the absorbing region were increased in a cubic fashion from the

interface with the strip. They were determined as described by Drodz et al. [86].

Different distributions of exciting force over the width of the steel strip (ρ = 7932

kg/m3, E = 216.9 GPa, ν = 0.2865) were used to see the influence of the excitation

force profile on the excited waves in the strip.

The results of the FE analysis are displayed in figure 5.11. In the figure three differ-

ent profiles of excitation force across the width are shown as well as the y (width)

direction displacement field that they produce. For a uniformly applied force the

displacement field (figure 5.11a ) in the strip becomes relatively complicated. It can

be concluded that many modes are excited and interfere. If the stress profile of the

SH* mode (from the FE eigensolver) is applied at the strip end (figure 5.11b ), a

pure mode can be excited in the strip. Displacements are concentrated at the centre

of the strip. For a triangular forcing profile, the SH* mode is also preferentially

excited (figure 5.11c ). However some other modes are also excited so that the dis-

placement field in the strip is not as uniform as in the case of the exact mode shape
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forcing which is visualised in figure 5.12. Figure 5.12 shows that differences between

the exact mode shape excitation and the excitation by a triangular force profile are

mainly caused at the edges of the strip. It was concluded that any excitation that

resembles the mode shape better than a triangular forcing will preferentially excite

the SH* mode in the strip.

It was later realised that the SH* mode could also be modelled with the DISPERSE

software. DISPERSE usually only traces dispersion curves for infinitely wide plates.

The software assumes plane strain conditions to model the infinite width of the plate.

Assuming that the direction in which the structure is infinite is the x direction of

figure 5.8, this implies

∂

∂x
= 0. (5.5)

The x direction is the thickness direction of the plate or strip. If the mode shape

across the thickness (x) is constant then the derivative of any variable with respect

to the x direction equals zero and the plane strain condition of equation 5.5 is ful-

filled. The mode shape of the SH* mode is constant across the thickness of the

strip (see figure 5.8) and can therefore be modelled with the DISPERSE software

assuming bending of an infinite plate of thickness equal to the width of the strip

(as soon as the mode shapes become non-uniform across the thickness of the strip

this analysis breaks down which is the case for most of the other strip modes). It

was found that the first higher order anti-symmetric plate mode A1 (see figure 2.1)

corresponds to the identified SH* mode in the strip. Figure 5.13 shows the phase

velocity dispersion curves obtained using Disperse and the FE routine described by

Wilcox et al. [81]. The results are in virtually perfect agreement.

It was sought to define the range of operational frequencies in which the SH* mode

propagates virtually non-dispersively and can be successfully excited. It was found

that the mode had to fulfill two criteria to do this:

1. Since the spatial transducer output is unlikely to change with frequency, the mode

shape of the mode should not vary by more than 10% over the range of frequencies
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contained within the excitation signal.

2. In order to guarantee very low levels of dispersion the phase velocity of the mode

should not vary by more than 2% over the range of frequencies contained within the

excitation signal.

By analysing the phase velocity dispersion curves and the mode shape of the SH*

mode it was found that these criteria are fulfilled above a frequency-width product

of 15MHz mm for a steel strip. To make this condition independent of the material

the frequency width was normalised by the shear wavelength of the material. The

shear wavelength of a 1 MHz signal in steel is approximately 3mm. The strip has

to be 15mm wide at 1MHz to fulfill the above conditions. Therefore the width of

a 1 mm thick strip has to be at least 5 bulk shear wavelengths to ensure the pos-

sibility of exciting a virtually non dispersive SH* mode. It can be concluded that

if a broadband signal is excited the width of the strip has to be larger than 5 bulk

shear wavelengths of the lowest frequency component contained within the signal.

While this criterion is true for the SH* mode in waveguides of any thickness as long

as the mode shape is constant across the thickness, thin waveguides of thicknesses

less than a shear bulk wavelength are more flexible, cheaper and more practical.

5.5 Experimental work and preferential excita-

tion of a single mode

Initially experiments on rods and wires were carried out. The traditional route of

minimising the frequency-radius product to achieve non-dispersive propagation was

employed. This had the advantage of limiting the number of propagating modes

in the wire to the fundamental three modes which can easily be excited selectively

by choosing appropriate transduction methods. At low frequency-radius products

this also makes wave propagation virtually non-dispersive for the L(0, 1) mode, the

T(0, 1) mode being non-dispersive anyway. Since excitation of the T(0, 1) mode

at high frequencies becomes difficult with standard transducers (due to the short

wavelength), experiments were focused on the L(0, 1) mode which could be excited
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at the cross section of the wire end. The main problems with these traditional

methods becomes the transduction of energy into very thin wires, see 5.5.1.

When difficulties with wire experiments arose, attention was turned to experiments

with rectangular cross section strips. The move to a strip geometry was also moti-

vated by the better source characteristics of a strip source on a half space compared

to a point source, see chapter 6. As was shown above in section 5.4, for a rectangular

strip waveguide the traditional method of achieving low dispersion by reducing the

frequency thickness product does not apply. On the contrary the SH* mode in a

strip becomes less dispersive at higher frequencies (frequency-width products). For

the strip mode attention was focused on the transducer loading distribution required

to achieve pure mode excitation. Experiments with rectangular strips are described

in section 5.5.2.

5.5.1 Rods and Wires

At first two experiments were carried out to highlight the problems of dispersion

and multiple mode excitation in larger radius rod waveguides compared to small

radius wire waveguides. For this purpose a 160mm long and 5mm diameter stain-

less steel rod and a 160mm long bundle of 18 steel wires of 1mm diameter were

made. A 1MHz standard ultrasonic transducer (Panametrics) was coupled to the

waveguide ends using ultrasonic coupling gel. A waveform generator sent a 5 cycle

1 MHz Hanning windowed toneburst. The received echo was recorded on a digi-

tal storage oscilloscope (LeCroy 9400) and then transferred to a PC. The received

signals showing multiple reflections from the rod end, schematics of the waveguides

and a group velocity dispersion curve for steel rods are shown in figure 5.14. The

figure illustrates the detrimental effects of the excitation of multiple modes and the

spreading out of signals due to dispersion. The 5 mm diameter rod clearly exhibits

both signals due to multiple modes and strong dispersion. Multiple mode excitation

is prevented in the case of the bundle. However the signal is still slightly distorted

due to dispersion. As predicted by the dispersion curves in figure 5.14 the group

velocity of the waves in the thicker rod is slower which manifests itself in the later

arrival of the main signal packet.
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The signal transmission from the transducer into the rod and bundle was very inef-

ficient and the detected signals were very weak. It was also attempted to bond piezo

ceramic elements directly to the bundle using adhesive. This was known to work

well at low frequency in a solid rod. However due to the relatively large diameter of

the piezo ceramic discs, radial resonances in the disc were excited at high frequen-

cies and the discs proved to be useless for L(0, 1) excitation in the wire bundle. An

attempt was then made to isolate a single wire in order to excite a strong signal in

the single wire. Two possible ways of achieving this were:

1. the amplification of the signal of a standard ultrasonic transducer by means of a

horn

2. the direct bonding of a piezo electric disc of the diameter of the wire to the end

of the wire.

Nicholson and McDicken [87] have reported experimental trials to transmit ultra-

sonic energy via a horn into wires. They tried several different shapes of horns and

did transmit energy through the horn into the wires. However the signal shapes

were severely distorted and signs of excitation of multiple modes in the wires were

shown. Tang and Lau [88] modelled sound transmission through a non-uniform

section, similar to a taper, and also concluded that the transmitted signal is very

complicated and hard to predict.

Both the above studies were carried out at frequencies where the wavelength of the

wave is considerably smaller than the dimension of the cross section. The author

believes that this was the cause of the problem. Many modes can exist across the

large diameter of the taper and therefore a distorted and complicated multi mode

signal is transmitted into the wire. A possible remedy for this problem was thought

to be the use of a hollow tapered section, similar to a funnel, that would connect

the transducer to the wire. The wall thickness of the funnel would be chosen to be

much smaller than a wavelength. Finite element simulations of propagation from

the tapered hollow section to the wire initially showed good results and minimal

signal distortion. However the manufacture of a thin hollow tapered section was

found to be difficult and since a wire point source on a half space was found to be
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undesirable, work on a prototype was abandoned.

For the second approach miniature piezo electric discs had to be manufactured since

piezo discs are not readily available in sizes below 1mm radius. Ideally the piezo

electric disc had the same diameter as the wire waveguide and a thickness equal

to or smaller than the waveguide diameter. This ensured that the resonances of

the piezo disc lay above the desired operating frequency. The piezo disc was then

attached to the wire with epoxy. Very strong and clean signals could be produced

in a 1mm thick wire at up to 1 MHz using this method, see figure 5.15. However

to operate at frequencies above 1 MHz it was found that the disc diameter had

to be reduced well below 1mm diameter. At those dimensions the manufacture

becomes impossible without sophisticated machinery and this becomes an expensive

procedure. For this reason and the poor performance of a wire waveguide source

on a half space (see section 6) alternative methods enabling the excitation of non-

dispersively propagating waves in waveguides were sought.

5.5.2 Rectangular strips

The experimental investigation for wave propagation in rectangular strips was fo-

cused on exciting A0* and SH* modes. To achieve this the exciting transducer had

to mimic the mode shape as closely as possible. Additionally for broadband signals

the mode shape should not change significantly over the range of excited frequencies.

For clean excitation of the A0* and SH* modes the simple uniform excitation across

the waveguide width that is employed for the fundamental modes is insufficient.

However since the mode shapes are uniform across the thickness the transducer out-

put has to be varied across the width of the strip only, see figure 5.7 and figure

5.8. Displacements for both modes are strong at the centre of the strip and decay

towards the edges in approximately parabolic fashion. The main difference between

the two modes is the polarisation of the A0* mode in the thickness (x) direction

and the polarisation of the SH* mode displacements in the width (y) direction.

It was found that good results could be achieved by simply coupling a standard
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circular ultrasonic shear transducer (Panametrics) to the end cross section of the

strip. The circular shape of the piezo electric element within the transducer was

believed to transmit stronger shear stresses at the centre of the strip width than at

the outside and thus led to preferential excitation of the SH* or A0* mode.

SH* mode

Figure 5.16 shows a 5 cycle 2MHz Hanning windowed toneburst that was sent along

a 15mm wide, 1mm thick and 300mm long stainless steel strip and received by the

same standard contact shear transducer after reflection from the far end of the strip.

The 13mm transducer was clamped to the steel strip by a purpose made clamp

using treacle as a shear couplant between the transducer face and the waveguide

end section. The transducer was polarised to cause motion in the direction of the

width of the strip (y direction). Figure 5.16 shows that a very clean signal without

significant dispersion can be excited and received in the strip. The presence of other

modes about 30dB weaker than the main signal can also be seen in figure 5.16.

To be absolutely certain that the desired mode was excited in the above experiment

an in-plane dual head laser doppler vibrometer (Polytech OFV 512) was used to

measure the in-plane surface displacement (y direction) of the strip along the centre

line of the strip. The signal was recorded every 0.5mm over a distance of 200mm at

a sampling frequency of 10MHz (the laser decoder however has a 1.5MHz low-pass

filter built in). This is schematically illustrated in figure 5.17(a). From the mea-

surements a two dimensional Fourier Transform was computed. The 2D-FFT has

been described by Alleyne and Cawley [89]. It is a technique to detect and iden-

tify multiple modes travelling in a waveguide. The 2D-FFT displays the frequency-

wavenumber relation of the signals that have been measured in the waveguide. This

plot can directly be compared to analytical frequency-wavenumber predictions. In

figure 5.17(b) the 2D-FFT result for a 30mm wide and 1mm thick steel strip is plot-

ted. A line indicating the theoretically predicted SH* mode frequency-wavenumber

relation for a 30mm wide and 1mm thick steel strip (ρ = 7932kg/m3, Cl=6000 m/s,

Cs= 3060 m/s) is also displayed. There is very good agreement between the mea-

sured data and the predicted values for the SH* mode.
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A0* mode

The setup was changed slightly to excite the A0* mode. A 30 mm wide, 0.2mm thick

and 300mm long steel strip was used and the transducer was turned by 90◦ to excite

displacements in the thickness (x) direction. Figure 5.18 shows the 10 cycle 2MHz

pulse echo signal received by the transducer. The A0* mode is very dispersive in

this frequency range which explains the very strong distortion of the 10 cycle signal,

but the signal seems to be very clean without interference from other modes.

Again to verify the excited modes in the strip the laser vibrometer was scanned

along the centre line of the strip and a 2D-FFT was computed. Figure 5.19 shows

the result. Out-of-plane (x direction) displacement measurements were carried out

over a distance of 200 mm at increments of 0.5 mm with a temporal sampling

frequency of 10 MHz (the laser decoder however has a 1.5MHz low-pass filter built

in). This resulted in good resolution in the frequency-wavenumber domain. The

2D-FFT shows that the A0* mode is the dominantly excited mode. Other modes

excited are ∼ 20 dB less strong than the A0* mode.

Finally one more experiment was carried out to show that a quasi-Scholte strip mode

can be excited using a rectangular strip. The same steel strip (0.2 mm thick, 30

mm wide and 300 mm long) was partly immersed in water. This experiment is very

similar to the experiments carried out in chapter 4. The A0* mode is sent along

the strip until it reaches the point where the strip enters the water, at this location

most of the energy converts into the QS* mode (the quasi-Scholte strip mode whose

existence is expected) and travels to the end of the strip to be reflected. At the

point where the strip enters the water the QS* mode reconverts into the A0* mode

of the strip in air. The group velocity of the QS* mode is slower than that of the

A0* mode, therefore a delay in the arrival of the back wall reflection is expected,

the delay increasing the further the strip is immersed into the fluid.

Figure 5.20 shows signals collected when the strip was immersed 0mm and 70mm

into the water. The figure illustrates that the arrival of the A0* mode that converted

into the QS* mode in the water is delayed considerably. The group velocity of the

quasi-Scholte strip mode was extracted from the signals in figure 5.20 using equation
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4.1. The DISPERSE software was also used to predict the quasi-Scholte mode group

velocity for an infinite plate immersed in water. The measurement and prediction

are shown in figure 5.21. The result suggest that the rectangular strip A0* mode

can be used to excite a quasi-Scholte strip mode when the strip is partly immersed

in water. The behaviour also seems to be similar to the infinite plate case.

5.6 Summary

In this chapter wave propagation in waveguides of different geometries was dis-

cussed. The work was initially motivated by the search for a suitable A0 like mode

in a rectangular strip which could be used to excite a QS strip mode for fluid char-

acterisation. When the modes of a rectangular strip were analysed a marginally

dispersive shear horizontal type mode was found. The potential of this mode in

applications like ultrasonic buffer waveguides was realised and research was diverted

towards the development of an ’acoustic cable’ waveguide system that allows the

transmission of ultrasonic energy from a transducer in a safe environment to an

object that is to be interrogated in a harsh environment or a place where access is

limited.

It was found that to date publications report a reasonable amount of work that

has been carried out on the subject of non-dispersive waveguides. Most of this

work was motivated by the need for high temperature flow measurements. In the

published work the major problems of dispersion and presence of multiple modes

were overcome by working at low frequency thickness/radius products. The use

of the SH* strip mode that is suggested here differs from the traditional methods

since it is non-dispersive at high frequency thickness (width) products. The mode

can be selectively excited due to its distinct mode shape that is concentrated in

the centre of the strip. Some experimental results for the traditional low frequency

radius regime excitation of signals in cylindrical structures were presented. The

experimental excitation of the SH* mode was also demonstrated. With the current

transduction method in the pulse echo mode the SH* mode could be excited and

received at least 30dB stronger than other modes of the strip.
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5.7 Figures
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Figure 5.1: Temperature distribution along a (—) steel wire of 0.5mm radius, a (- - -)

steel rod of 10mm radius and a (· · ·) rectangular steel strip of 15mm and 1mm width and

thickness respectively. One end cross section of each is maintained at 600◦C while the air

surrounding the waveguide is at 25◦C. Calculation after Mills [65] with steel conductivity

of k = 15 W/m/K and heat transfer coefficient of free convective air hc = 1 W/m/K.
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Figure 5.2: Sketch of the ”hockey stick” system for fluid flow metering (after Lynnworth

[79])

Figure 5.3: Sketch of the geometry of the FE model used to obtain the dispersion curves

of a strip of rectangular cross section (see text for dimensions).
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Figure 5.4: Sketch of the frequency-wavenumber results obtained from a FE eigen solver

at different cyclic orders.

Figure 5.5: Sketch of the frequency-wavenumber results transformed into the phase

velocity frequency domain.
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Figure 5.6: Dispersion curves for a 1mm thick and 30mm wide rectangular steel strip de-

termined by FEM a) frequency-wavenumber b) phase velocity frequency. Two interesting

modes that correspond to the lowest order shear horizontal mode (SH*) and the lowest

order flexural mode (A0*) that is symmetric with respect to its width are highlighted by

the bold dashed (- - -) lines.
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Figure 5.7: Modulus of the displacement mode shape in the x, y and z direction of the

A0* mode at 2.5 MHz.
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Figure 5.8: Modulus of the displacement mode shapes of the SH* mode in the x, y and

z directions at a) 0.14, b) 0.5 and c) 2 MHz of a 15mm wide and 1mm thick rectangular

steel strip.
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Figure 5.9: Evolution of the SH* mode y displacement mode shape of a 30mm wide and

1mm thick steel strip over a range of frequencies.

Figure 5.10: Sketch of the 2D plane stress model that was defined in ABAQUS to analyse

the effect of different excitation force profiles.
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Figure 5.11: Y-direction displacement field output of the plane stress steady state fre-

quency domain finite element model of a steel strip (15mm) under a) rectangular excitation

force profile b) exact mode shape excitation force profile c) triangular excitation force pro-

file across the width of the strip. The difference between cases b) and c) is highlighted in

figure 5.12.
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Figure 5.12: Zoom on the Y-direction displacement fields of figure 5.11 b) and c) high-

lighting the subtle difference between the field excited by a triangular forcing profile and

the exact mode shape forcing profile.
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Figure 5.13: Phase velocity curves for the SH* mode of a 1mm thick rectangular steel

strip of width indicated in the legend and traced using the FE eigensolver routine written

by Wilcox et al. [81] and the DISPERSE software [22] . Note that the cut-off of the modes

occurs at the same frequency-width product (i.e. the cut-off of the 30mm wide strip occurs

at half the frequency of the cut-off of the 15mm wide strip).
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Figure 5.14: Schematics and pulse echo signals received from a) a solid 5mm diameter

and 160mm long steel rod b) a bundle of 18 steel wires of diameter 1mm. The group

velocity dispersion curve for rod/wire waveguides is also shown in c).
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Figure 5.15: Pulse echo signal (0.8 MHz) excited and received by a 1mm diameter and

0.5mm thick piezo disc attached to a 0.5m long steel wire of 1mm diameter.

Figure 5.16: 2 MHz centre frequency SH* signal received in pulse echo mode from a

standard shear transducer coupled to the end of a 15mm wide and 1mm thick stainless

steel strip.
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Figure 5.17: a) Sketch of the in-plane laser doppler vibrometer scanning configuration

along the strip. b) Two dimensional fourier transform of in plane surface displacements

(polarised in the width direction of the strip) along the centre line of 1mm thick and 30mm

wide the steel strip. The dashed line (- - -) shows the predicted dispersion relation for the

SH* mode of steel (ρ = 7932kg/m3, Cl = 6000 m/s, Cs = 3060 m/s).

147



5. Non-dispersive wave propagation in thin flexible waveguides

Figure 5.18: 10 cycle 2 MHz centre frequency A0* signal received in pulse echo mode

from a standard shear transducer coupled to the end of a 30mm wide and 0.2mm thick

stainless steel strip.
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Figure 5.19: a) Sketch of the out-of-plane laser doppler vibrometer measurements on

a strip. b) Two dimensional Fourier Transform of the out-of-plane displacements of the

centre line of a 0.2mm thick and 30mm wide steel strip along the centre line of the strip.

The dashed line (- - -) shows the predicted dispersion relation for the A0* mode of steel

(ρ = 7932kg/m3, Cl = 6000 m/s, Cs = 2840 m/s).
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Figure 5.20: 2 MHz centre frequency signal received in pulse echo mode from a standard

shear transducer coupled to the end of a 30mm wide and 0.2mm thick stainless steel strip

a)just touching a water bath and b) immersed 70mm into a water bath.
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Figure 5.21: Group velocity for the quasi-Scholte mode of an infinite plate in water as

predicted by DISPERSE (thin line) and measured group velocity of a thin stainless steel

strip (0.2mm thick, 30mm wide and 300mm long) immersed in water (bold line).
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Chapter 6

Waveguide sources on half spaces

In the previous chapter wave propagation along thin flexible waveguides was dis-

cussed. The objective was to find a waveguide geometry that allowed the transmis-

sion of a strong and undistorted signal over relatively long distances. The traditional

approach of reducing the frequency thickness product of the waveguide and a new

approach using a single shear horizontal mode at higher frequencies were identified

as possible techniques.

Once the ultrasonic energy has been excited in the waveguide and a signal has been

transmitted non dispersively along the waveguide up to the surface of the object

that is to be interrogated, the ultrasonic signal has to enter the object. This is a

completely new challenge and the junction of the waveguide and the structure has to

be optimised to transmit a maximum of energy in the direction of interest within the

structure without distorting the signal. Therefore the characteristics of waveguide

sources on the structure has to be studied.

This chapter is dedicated to the investigation of waveguide source characteristics on

half spaces of elastic material. Semi-infinite half spaces are used since the waveg-

uide is believed to be thin and flexible, which implies that its thickness is small

compared to the structure and even the wavelength of the wave. Once attached to

the structure the waveguide will transmit stresses and displacements from its free
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end (transducer location) to the surface of the structure. It is assumed that the strip

has very low impedance compared to the half space and therefore does not restrain

the surface of the half space. This conveniently makes it possible to uncouple the

waveguide from the surface and simply consider a surface loaded by a distribution

of forces.

Traditionally the solution to surface loading of a half space has attracted a great

deal of interest and many publications can be found on this subject. However the

subject is complex and many lengthy mathematical elaborations can be found in

textbooks. Graff [17] and Achenbach [90] give excellent descriptions of the solution

methods for sources on half spaces. A detailed study of the techniques is far beyond

the scope of this chapter, therefore only the simplest solution for an anti-plane shear

line source will be outlined. For other cases the solutions that were reported in the

literature will be quoted and their significance with respect to the waveguide source

will be discussed.

6.1 Strip sources on a half space

Figure 6.1 displays schematics of the different loading conditions for strip sources

that were considered. The loads are constant across the strip so that in the limit of

infinitely small thickness a perfect line source is obtained. The infinite strip source

in this case represents a plate mode entering the half space from an infinitely wide

plate. The mode amplitude is uniform across the width. Even though in real life

the waveguide will be a finite strip and the mode amplitude will not necessarily be

uniform across the width of the strip the line source is a good approximation because

the aspect ratio of the strip is large and while the thickness will be of the order of

a wavelength the strip will be many wavelengths wide. The different fundamental

modes in a plate represent the various loading cases. The S0 mode will cause normal

loading of the half space, the SH0 mode will cause anti-plane shear loading and the

A0 mode will cause tangential shear loading. The S0 and SH0 modes are the most

interesting since they can propagate with low dispersion in the waveguide leading

to the source point on the half space.
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The solution for normal or tangential in-plane loading of a strip source on a half

space is much more complicated than anti-plane shear loading. Due to normal and

tangential in-plane sources, a shear, a compressional and a Rayleigh surface wave

are excited in the half space in order to satisfy the boundary condition imposed by

the loads. The problem is also commonly known as ’Lamb’s problem’ since Lamb

[91] was the first to present a solution. Graff [17] gives references to researchers who

subsequently contributed to or extended the analysis.

The work by Miller and Pursey [92] is one of the most comprehensive and it is often

quoted in the context of waves excited by surface loads. The expressions that they

derived for the distribution of shear and compressional waves excited by different

surface sources will be recalled. Surface waves will also be excited by the sources.

However surface waves do not penetrate into the structure and thus become of

limited use for structural investigations. Therefore this study was focused on the

shear and compressional waves that spread into the half space. The case of tangential

anti-plane shear loading of the half space will be considered first.

6.1.1 Tangential anti-plane loading

The analysis presented here follows that presented by Graff [17] and Achenbach [90]

closely. Consider the half space displayed in figure 6.1a. The half space is defined

by y ≥ 0. Waves are generated by a distribution of harmonically oscillating loads

represented by

σyz(x, 0, z, t) = τ(x)eiωt (6.1)

σyy(x, 0, z, t) = σyx(x, 0, z, t) = 0. (6.2)

The problem is uniform in the z-direction and therefore two dimensional. The shear

tractions cause motion in the z direction only (uz = uz(x, y, t)), and the equations
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of motion can be reduced to

∂2uz

∂x2
+

∂2uz

∂y2
=

1

C2
T

∂2uz

∂t2
(6.3)

where CT is the shear wave velocity in the half space. By assuming harmonically

oscillating displacements of the form

uz(x, y, t) = uz(x, y)eiωt (6.4)

and the identity kT = ω
CT

equation 6.3 reduces to

∂2uz

∂x2
+

∂2uz

∂y2
+ k2

T uz = 0. (6.5)

The boundary condition due to the surface load can now also be expressed as

μ
∂uz

∂y
= τ(x) at y=0 (6.6)

where μ is the shear modulus of the material. Using Fourier transformation (indi-

cated by adding * to a variable) equation 6.5 can be rewritten in the form of an

ordinary partial differential equation

∂2u∗z

∂y2
− (ξ2 − k2

T )u∗z = 0. (6.7)

with solution

u ∗z (ξ, y, ω) = Ae−γy + Beγy (6.8)

where

γ2 = ξ2 − k2
T . (6.9)
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Using the transformed boundary condition from 6.6

μ
∂u∗z

∂y
= τ ∗ (ξ) at y=0. (6.10)

results in the solution in the Fourier domain

u ∗z (ξ, y) = −τ(ξ)

μγ
e−γy. (6.11)

All that remains is to invert the solution

uz(x, y) = − 1

μ2π

∫ ∞

−∞

τ ∗ (ξ)

γ
e−γye−iξxdξ. (6.12)

and insert the specific loading conditions in the integral. For a strip of uniformly

applied loads as shown in figure 6.1a this is expressed by

τ(x) =

⎧⎨
⎩ τ0, for | x |< a

0, for | x |> a
(6.13)

and in Fourier transformed form

τ ∗ (ξ) =
2τ0

2π

sinξa

ξa
. (6.14)

therefore the solution for the anti-plane strip loading becomes

uz(x, y) = − τ0

μπ

∫ ∞

−∞

sinξa

γξa
e−γye−iξxdξ. (6.15)

Equation 6.15 is the solution to the problem. However equation 6.15 is in form of

an integral. The evaluation of this integral is usually the most challenging part of

the analysis. Achenbach [90] shows a lengthy derivation for the special case of a line

source, when the strip width ’2a’ tends to zero. The solution is transformed into

polar coordinates and the final result becomes

uz(x, y, ω) =
Pi

2μ
H

(2)
0 (kT r) (6.16)
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where r is the distance from the origin located at x = y = 0, P is the loading force,

μ the shear modulus of the material and H2
0 (x) is the Hankel function of the second

kind.

Equation 6.16 shows that the displacement field is entirely dependent on the distance

(radius) of a point in the half space from the source point, the field therefore spreads

cylindrically into the half space. Figure 6.2 shows a contour plot of the magnitude

of the displacement field computed using equation 6.16 for a SH line source on a

half space.

6.1.2 Normal line source loading

Miller and Pursey [92] found an approximation for the displacements in the field

far from a very thin strip source of thickness 2a. They separated the displacement

fields into displacements due to compressional waves (UR) and displacements due to

shear waves (Uθ)

uR ∼ aei(3/4π−R)

μ

√
2

πR

cosθ(k2 − 2sin2θ)

F0(sinθ)
(6.17)

uθ ∼ aei(5/4π−kR)

μ

√
2k5

πR

sin2θ
√

k2sin2θ − 1

F0(ksinθ)
(6.18)

where

F0(ξ) = (2ξ2 − k2)2 − 4ξ2(ξ2 − 1)1/2(ξ2 − k2)1/2 (6.19)

and

k2 =
C2

l

C2
s

. (6.20)

In the above equation R is the distance (radius) from the origin (centre of the

strip), θ is the angle from the normal (y direction) and μ is the shear modulus

of the material. The normalised result of these functions for a steel half space is
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plotted in figure 6.3. It can be seen that, as intuitively expected, the compressional

waves are directed forwards into the half space. Two shear wave lobes are also sent

into the semi infinite solid by the source. In this case the maximum amplitude

of the excited shear waves is travelling approximately at 45◦ to the normal. This

angle changes slightly depending on the material properties. Figure 6.3 does not

give any indication of the relative amplitude of the shear waves compared to the

compressional waves. Therefore in figure 6.4 both fields are shown in the correct

amplitude ratio. Figure 6.4 leads to the conclusion that the normal line source

excites shear waves more strongly than compressional waves.

6.1.3 Tangential line source loading

Miller and Pursey [92] also treated the case of a tangential line force on a half space.

They found the following approximate solutions for the displacement fields

uR ∼ aei(3/4π−R)

μ

√
2

πR

sin2θ(k2 − sin2θ)

F0(sinθ)
(6.21)

uθ ∼ aei(3/4π−kR)

μ

√
2k7

πR

cosθcos2θ

F0(ksinθ)
(6.22)

where F0 and other variables are the same as in equations 6.17-6.20.

These functions were also plotted and are displayed in figure 6.5. Figure 6.6 shows

the relative amplitudes of both shear and compressional waves. The shape of the

lobes of excited waves are considerably different compared to the normal line source.

Under tangential surface loading the compressional waves travel at a shallow angle

(∼ 30◦) into the half space, while shear waves penetrate into the half space in a

generally normal direction to the surface with a strong peak at about 30◦ to the

normal. The shear wave amplitude is considerably stronger than the compressional

wave amplitude as shown in figure 6.6.
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6.2 Circular sources on a half space

Line sources do not exist in practice even though they can be approximated rea-

sonably well by a wide and thin strip. However rod waveguides that cause circular

sources on a half space are easily available, which makes this geometry very at-

tractive. Miller and Pursey [92] also investigated the source characteristics of small

circular sources on a half space. They found the following expressions for the far

field displacement characteristics of compressional and shear waves:

uR ∼ − a2

2μ

e−iR

R

cosθ(k2 − 2sin2θ)

F0(sinθ)
(6.23)

uθ ∼ ia2k3

2μ

e−ikR

R

sin2θ(k2sin2θ − 1)

F0(ksinθ)
(6.24)

where 0 ≤ θ < pi/2, and the radius of the circular source is given by a.

Again the results of equations 6.23 and 6.24 were plotted and are displayed in figure

6.7; figure 6.8 displays the relative amplitudes. For a point source normal to the

surface the excited shear wave is stronger than the compressional wave. The shear

wave lobes enter the half space at a shallower angle than in the normal line source

case and the lobes have a rounder shape. The shape of the compressional wave lobe

remains almost the same as for the normal line source.

The final case that was considered by Miller and Pursey [92] was a circular torsional

radiator on the surface of a half space. Again their analysis yielded an approximate

expression for the displacement field excited by the torsional source

uθ ∼ −ia4

8μ

e−iR

R
sinθ (6.25)

For the torsional radiator no compressional waves are excited, which potentially

removes some complexity in the excited signals. The excited displacement field is

shown in figure 6.9. Shear waves are excited and travel in two lobes outward from

the source. No waves are directed normally (along the y axis) into the half space.

The shear wave amplitude grows with angle from the normal to reach a maximum
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when the waves are travelling parallel to the surface.

In a second paper Miller and Pursey [93] investigated how much of the source en-

ergy from a normal point source is converted into each of the different wave types.

Woods [94] summarised this information in the sketch shown in figure 6.10. Most

of the source energy is transformed into a Rayleigh wave and stays trapped at the

surface. Only 26% of the energy converts into shear waves that travel at an angle

∼ 45◦ to the excitation (y) direction. Just 7% of the energy is converted into com-

pressional waves that travel normal to the surface into the material (in the direction

of the source and y axis). A normal point source is very efficient at creating surface

disturbances but rather bad at exciting waves that penetrate into the material.

Miller and Pursey [93] further investigated the effect of the energy transfer of a

combination of sources on the surface. They found that by augmenting the number

of sources to three and distributing them in an equilateral triangle the amount of

energy that is transferred into compressional waves (∼ 31%) can be increased to

come close to that of the shear wave energy (∼ 43%) and even exceed the energy

converted into a surface wave (∼ 26%). But such sources become more complicated

to create and if each of them were separate waveguides the interpretation of results

would be complicated by crosstalk.

6.3 Choice of the most suitable waveguide source

on a half space

In chapter 5 it was shown that several strategies can be successfully employed to

achieve non-dispersive wave propagation along a waveguide. The geometry of the

waveguide dictates which type of wave mode (shear/compressional/flexural) can

successfully be excited and propagate non-dispersively in a certain range of frequen-

cies. However the waveguide geometry also determines the source geometry unless

the system is even further complicated by creating an adapter section that con-

nects the waveguide to the object surface. The radiation patterns of bulk shear and
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compressional waves due to line sources, strip sources and circular point sources

show that for cases with normal loading, i.e. compressional waves incident from the

waveguide, a dominating surface wave and strong shear waves at about ∼ 45◦ to

the normal are excited. The fraction of energy excited as compressional waves is

very low, ∼ 7% for a circular point source. The geometry change from a circular

point source to a line source does not show a great deal of improvement. Therefore

a waveguide that transmits and receives compressional waves is not very efficient for

thickness gauging of a structure from a remote location.

Circular torsional radiators on a half space show improvements compared to the

normally loading sources since only shear waves are excited in the object. However

the polar distribution of the excited shear waves is not ideal. Surface skimming

shear waves are excited most strongly, while no waves at all are excited in the di-

rection normal to the surface (y axis). Another problem is the reception quality of

such torsional radiators. A shear wave that will be scattered back to the source area

(junction of waveguide and object), will not be polarised to excite torsional waves

in the waveguide. The polarisation of such waves would be more optimised to excite

flexural waves, however these would not be effectively received by a torsional wave

transducer at the end of the waveguide.

Line sources that cause normal tangential loading on a half-space show favorable

source characteristics compared to normal line sources. Shear waves are excited

strongly in a direction parallel to the waveguide axis. However surface waves and

compressional waves at non-normal angles are also excited. This method was also

ruled out because it would need a strongly dispersive flexural waveguide mode to

act as a source. This would complicate the design of the excitation method.

It was found that a line or strip source exciting anti-plane shear motion showed the

most desirable source characteristics. An anti-plane shear source solely excites shear

horizontal waves in the half space. Surface waves or compressional waves are not

excited. Also an ideal line source causes perfectly cylindrical spreading of wavefronts

in the half space. This ensures that all areas of the half space are irradiated equally
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strongly, preventing the creation of blind spots. In real life however the source will

have the form of a strip of finite thickness and width.

A two dimensional Huygens model was used to approximate the field produced by

the strip source in a plane of the half space. Huygens’ principle states that every

point on a wavefront acts as a source, emitting waves at velocity c. Using Huygens’

principle the field of a transducer is approximated by superposition of the field of

many point sources. The point sources are evenly distributed over the area of the

transducer. The amplitude at any point in the field was calculated by:

A(x, y) =
Tn∑
1

e(ikDTn(x,y))√
DTn(x, y)

(6.26)

where A is the field amplitude at point (x,y), k is the wavenumber of the wave, DTn

is the distance to each individual point source on the transducer and Tn is an in-

dex for the different point sources that model the transducer. For more information

on modelling transducers using Huygens’ principle see for example Wilcox et al. [95].

Using the model it was verified that as long as the thickness of the strip was less

than a wavelength and the width of the order of several wavelengths the cylindrical

radiation pattern would not be significantly altered. The radiation from such a

finite strip source rather resembles a barrel shape with cylindrical spreading in the

thickness direction of the strip and a relatively clearly defined beam of the width of

the strip in the width direction of the strip. Two dimensional radiation patterns in

the thickness and width direction predicted by a 2D-Huygens model are shown in

figure 6.11. The model assumes a monochromatic wave and excitation of only shear

waves in the half space. This assumption is reasonable if edge effects are small and

can be ignored. Even though the three dimensional field will be different, the two

dimensional simulations are believed to give an idea of the shape of the field that is

to be expected.
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6.4 Wave reflection at the waveguide half space

joint

The ideal configuration of the ’acoustic cable’ allows it to be operated in pulse

echo mode. Here a signal is sent along the waveguide, transforms into a bulk wave

in the structure, interacts with features of the structure, returns to the waveg-

uide/structure junction and is converted into the same waveguide mode to be finally

picked up by the transducer again. Therefore it is necessary for the waveguide source

to efficiently excite waves in the right direction. It also has to be ensured that most

of the energy enters the structure, otherwise a very large entry reflection might mask

the more interesting signals that return from the object to be investigated.

A finite element study was carried out to investigate the influence of the strip thick-

ness on the size of the entry reflection. A three dimensional model of thin steel

(ρ = 7932kg/m3, Cl = 6000m/s and Cs = 3260m/s) strips entering an infinite plate

at normal angle was created. The plate was 6mm thick and the infinite direction

was modelled by 3mm of real elements connected to infinite elements at the edges

in order to extend the boundary to infinity. These infinite elements were also used

at the edge of the strip and the block to extend the width of both to infinity. (The

reader may rightly wonder why the model was not carried out in two dimensions if

the width of the strip was made infinite; however a three dimensional model had to

be used because the ABAQUS explicit finite element software does not model shear

horizontal waves in two dimensions). A symmetry condition in the centre of the

strip was used to reduce the model size. The mesh was made up of cubic elements

of sizes between 1/8 − 1/10 of the shear wavelength of the material at the centre

frequency. Sketches of the side view, top view as well as a three dimensional view of

the model are shown in figure 6.12. The mesh and the infinite element boundaries

that were used for the analysis are also shown in the figure.

The ABAQUS finite element software was used. A time marching explicit solver

that automatically determines the time step was chosen and a uniform anti-plane

shear load was applied across the strips end section. Temporally a 5 cycle Hanning
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windowed toneburst at 2 MHz centre frequency was applied. Signals were monitored

at a point in the centre of the strip at the excitation location, see figure 6.12. The

analysis resulted in time traces such as the one shown in figure 6.13.

The reflection coefficient was determined from the results for strips of thicknesses

0.25− 1.5mm. The incoming signal was isolated and the entry reflection signal was

isolated. The Fourier transforms of both signals were obtained and the reflection

coefficient was defined as ratio of the amplitude of the signal reflected by the junction

and the incoming signal at the centre frequency (2MHz)

CEntry =
Areflected

Aincoming

. (6.27)

Figure 6.14 shows the reflection coefficients obtained for different thicknesses of

strips. The figure clearly shows that the thinner the strip is the more energy is

reflected. (This result is in agreement with results reported by Vogt [36] for the

entry reflection of the L(0, 1) mode of a thin wire embedded in curing adhesives

like epoxy.) The thicker the strip becomes the more energy is transferred into the

half-space and the more collimated its beam becomes. Once the thickness of the

source exceeds a bulk wavelength in the material side lobes will appear in the field

excited by the source; this is believed to be undesirable since it limits the field of

view. For the current operational frequency of 2 MHz the shear wavelength of steel

is approximately 1.5mm. Therefore a waveguide strip of thickness of about 1mm

will still show good performance without any local minima (blind spots in the field

of view) in the beam pattern .

6.5 Summary

In this chapter the source characteristics of different waveguide sources on a half

space were considered. The waveguide was considered to transmit a distribution

of loads to the surface of the object, which is modelled as a half space since it is

assumed to be much larger than the thin and flexible waveguide. This allowed the

analysis of the strip and object to be uncoupled so that the forcing from the strip
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was simply modelled as distribution of loads on a half space. The subject has been

thoroughly treated in the literature. Work presented in text books such as Graff

[17] and excellent papers on different sources on infinite elastic solids by Miller and

Pursey [92], [93] was recalled and its consequences for the purpose of remote waveg-

uide excitation and reception were considered.

It was found that a source of anti-plane shear on a half space was most suited to the

application. Other sources, especially those with normal loading, have the disad-

vantage of sending a very strong surface wave, a strong shear wave and a very weak

compressional wave at different angles into the structure. For torsional sources the

excitation of shear waves alone is possible, however reception would have to occur

in the form of flexural modes which are not well suited for transmission along the

waveguide. For the same reason tangential shear sources on the half space were

ruled out.

The selected anti-plane shear source had the advantage of only exciting shear hori-

zontal waves in the half space. The waves also spread cylindrically into the object

under investigation which maximises the field of view. The entry reflection is min-

imised when the strip thickness is large, however in order to ensure reasonably

cylindrical spreading of the wave in the half space the waveguide thickness has to

stay below the wavelength of a shear bulk wave.
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6.6 Figures

��

��

��

Figure 6.1: Schematics of the different line source (2D) loading conditions that were

considered a) anti-plane shear loading b) normal loading c) tangential shear loading. The

sources are infinitely long in the z direction and have a finite width in the x direction

(from -a to a).
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Figure 6.2: Contour plot of the uz displacement field magnitude for a SH-line source on

a half space of steel.
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Figure 6.3: Angular distribution of the magnitude of the displacement for a) compres-

sional waves b) shear waves excited by a normal line source on a steel (CL = 6000m/s,

Cs = 3260m/s) half space.
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Figure 6.4: Displacement fields for the shear (- - -) and compressional (—) waves excited

by a normal line source with correct relative amplitude ratios.
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Figure 6.5: Angular distribution of the magnitude of the displacement for a) com-

pressional waves b) shear waves excited by a tangential shear line source on a steel

(CL = 6000m/s, Cs = 3260m/s) half space.
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Figure 6.6: Displacement fields for the shear (- - -) and compressional (—) waves excited

by a tangential shear line source with correct relative amplitude ratios.
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Figure 6.7: Axisymmetric angular distribution of the magnitude of the displacement for

a) compressional waves b) shear waves excited by a normal circular point source on a steel

(CL = 6000m/s, Cs = 3260m/s) half space.
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Figure 6.8: Axisymmetric displacement fields for the shear (- - -) and compressional (—)

waves excited by a normal point source with correct relative amplitude ratios.

Figure 6.9: Axisymmetric displacement fields for the shear (—) waves excited by a

circular torsional source on a steel (CL = 6000m/s, Cs = 3260m/s) half space.
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Figure 6.10: Sketch of the different wave types excited by a normal point force on a half

space and their share of the total excitation energy. (After Woods [94] , for Poisson’s ratio

∼ 1/4)
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Figure 6.11: Two dimensional Huygens models of a) a 1mm source and b) a 15mm

source in a plane. The sources are modelled by 21 point sources distributed evenly along

the transducer line. The wavelength is 1.5mm which approximately corresponds to a

2MHz shear wave in steel.
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Figure 6.12: Schematic of the finite element mesh used to analyse the reflection coefficient

of a shear horizontal wave in a waveguide entering a half space of the same material (steel).
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Figure 6.13: Timetrace obtained from the finite element (ABAQUS) analysis of the

model in figure 6.12 of a 1mm thick strip in which a 5 cycle 2MHz shear horizontal wave

enters a steel half space.

Figure 6.14: SH-wave reflection coefficient for different waveguide thicknesses at the junc-

tion to a half space. Results were obtained using the ABAQUS finite element modelling

software.
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Chapter 7

Remote thickness gauging using a

waveguide

7.1 The waveguide-structure joint

The outcome of chapter 6 showed that theoretically a shear horizontal line source

is best suited for exciting waves in an object that is to be investigated. Simulations

showed that a perfect joint between the waveguide and a plate of the same material

ensured that most of the energy was transmitted from the waveguide into the object

(see section 6.4).

In practice the position of attachment of the waveguide is rarely known prior to the

installation of the structure; the waveguide is added later for monitoring applica-

tions. Therefore the waveguide will have to be attached to the structure in some

way. Permanent attachment is possible by bonding, welding, brazing, soldering or

other methods. Detachable attachment methods like clamping can also be envis-

aged. The permanent attachment methods are potentially preferable because they

optimise ultrasonic coupling between both parts while clamped contact will cause

high losses even if a coupling agent is used. However defects in the bonding method

and alterations that it causes to the joint geometry might adversely affect the wave

propagation through the junction. Also the use of standard coupling agents will not
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7. Remote thickness gauging using a waveguide

be possible at elevated temperatures. The different joining techniques were investi-

gated experimentally.

7.2 Experimental setups for thickness gauging

It was decided to set up a thickness gauging experiment to test the different joining

methods on specimens of the same thickness. The stainless steel strip geometry

(1mm thick, 15mm wide and 300mm long) and thickness of the steel plate specimen

(6mm) were kept constant while only the joining method was altered. The experi-

ments were carried out in the pulse echo and pitch catch modes. Measurements in

the pulse echo mode would be the preferred embodiment since only one waveguide

is needed to send and receive the signal. Figure 7.1 illustrates the different test

configurations.

Excitation of the SH* mode in the stainless steel strip was achieved in the same way

as in chapter 5. A 5 cycle 2MHz Hanning windowed toneburst was sent and received

by a standard ultrasonic shear transducer (Panametrics). The 13mm diameter shear

transducer was clamped to the waveguide end with treacle as a shear couplant. It

was ensured that the polarisation direction of the transducer was parallel to the

width of the strip. The clamp design was optimised to minimise its effect on the

mode propagating in the strip. The SH* mode energy is concentrated at the centre

of the strip (see section 5.4.1) and it is therefore not strongly influenced by attach-

ments to the edges. This arrangement was used to attach two blocks to either side

of the strip. The blocks sandwiched the edges of the strip and bolts were used to

tightly push the blocks onto the strip in order to strongly grip onto the edges of the

strip. A back plate was then bolted to the four blocks that were just clamped to

the strip. In between the back plate and the strip end a transducer was inserted

and thus clamped against the end of the strip. Figure 7.2 illustrates the transducer

clamp.
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7.2.1 Coupling with coupling agent

The pulse echo mode experiment with treacle as coupling agent is the simplest: once

the surface of the plate had been evenly covered with treacle the strip was manually

pushed onto the surface at right angles. Signals were collected and are displayed in

figure 7.3.

Figure 7.3 shows a pulse echo signal when the strip is not in contact with the plate

and a signal when strip and plate are in contact. The signal when both pieces are

coupled is slightly less strong. However there are no additional echoes from within

the plate specimen, which leads to the conclusion that not enough energy is sent and

received through the shear-couplant joint to enable inspection of the plate specimen

in the pulse echo mode.

After the negative results of the pulse echo mode experiments, experiments in the

pitch catch mode (see figure 7.1 II a) were performed. Two strip waveguides were

fixed together so that they were roughly parallel and separated by a gap of 1mm

at the remote end with respect to the transducer. The assembly was then manu-

ally put in contact with the plate specimen. A signal was sent from one waveguide

and received on the other strip. Signals were collected and are displayed in figure 7.4.

For the pitch catch mode good results were obtained as shown in figure 7.4. The

signals are much weaker (∼ 30dB) than the control signal (unattached pulse echo

signal of the sending strip), however the backwall echoes from the plate specimen

are clearly visible. The better but weaker signals are achieved because only the

signals that were transmitted from the sending waveguide into the plate are picked

up by the receiving waveguide. In the pulse echo mode these weaker signals were

completely masked by coherent noise from waveguide modes that were either excited

by the transducer or caused by mode conversion at the junction of the strip and the

plate.
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The first arrival in figure 7.4b is a shear horizontal wave that was excited on the

surface of the plate and travelled across the 1mm gap directly into the receiving

strip. Later arrivals are echoes that have travelled to the backwall, were reflected

and then reached the receiving waveguide or completed further reflections between

the top and bottom surface of the plate before reaching the strip receiver. Figure 7.5

shows the different paths that the SH wave travels in the plate specimen. The time

delay between different echoes can be used to evaluate the thickness of the material

if the shear velocity is known (or the shear velocity if the thickness is known).

7.2.2 Welded and soldered strips

Finite element simulations (see section 6.4) predicted good functioning of a T-

junction between the waveguide strip and the plate specimen. The most intuitive

practical implementation of joining the two parts was by means of welding. Tung-

sten inert gas (TIG) welding was initially used to attach the strip to the plate. Due

to the thinness of the strip and the relatively large plate dimensions the welding is

very difficult. Problems that were encountered were burning through the steel strip,

material burn off at the edges of the strip and excessive build up of flash along the

joint. Despite these difficulties a welded sample was produced.

Silver soldering was identified as another possible joining method. The silver solder

has a lower melting point (∼ 1000◦C) than the steel and therefore problems like

burning off or burning through the steel strip can be avoided. It is also known that

the solder material fills gaps very effectively which limits the formation of defects

within the joint. Six samples with silver solder joints were also produced.

A pulse echo measurement on a welded sample is shown in figure 7.6. The returning

signal amplitude is reduced compared to an unattached strip and many more wave

packet arrivals interfere. Noticeably the strongest arrival occurs at the same time as

the end reflection in an unattached strip, therefore it is believed to be the reflection

from the interface. A signal arrival prior to the interface reflection can also be recog-
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nised. This signal is believed to be due to flash and defects on the strip waveguide

that are located in front of the junction with respect to the transducer. Another

strong arrival occurs about 4μs after the interface reflection and could reasonably

be attributed to the backwall of the plate. However the signal contains very strong

coherent noise (∼ 6dB below the maximum amplitude) which makes the attribution

of features in the signal very difficult and unreliable. The excessive noise level is

believed to be caused by defects, geometry changes and imperfection introduced

during the welding process.

The silver soldered strips were then investigated. Figure 7.7 displays the time traces

collected from the six samples. On examination of figure 7.7 one first notices that

all samples show distinctly different signals. By comparison with the control sig-

nal from an unattached strip of the same dimensions a strong but very differently

shaped entry reflection from the waveguide-plate interface can be identified in each

sample. Smaller amplitude signals preceding the entry reflection can also be no-

ticed: after soldering the joint was cleaned by grinding and filing during which the

waveguide close to the joint could have become damaged by momentary contact with

tools. Strong but very late arrivals at around 215μs are believed to be due to the

finite plate dimensions (50 by 50 mm). These signals are very complicated and thus

merely indicate that energy transmission from the waveguide into the plate is strong.

Even though the SS1 sample showed a reasonable result it was concluded that weld-

ing or soldering are unsuitable attachment processes for the waveguide. The large

variation in outcome between samples that were prepared in the same fashion is

unacceptable for the construction of a reliable NDT device.

7.2.3 Clamped contact

A clamp had to be designed for the attachment of the strip or strips to the plate

specimen. Theoretically a clamp similar to the transducer clamp (see figure 7.2)

could have been employed for the coupling of a single waveguide in pulse echo
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mode. However with the need for pitch catch experiments in mind a new clamp was

developed. Two 1mm deep, parallel channels separated by a 1mm gap were cut into

two blocks. The strips were slotted into the channels, which allowed the strips to

be rigidly locked into position by pulling the two blocks together using bolts. Slots

were cut into the bottom of the clamping blocks to allow them to be bolted onto the

specimen plate. Figure 7.8 shows a top and front view of the clamping arrangement.

The clamp was attached to the plate specimen and pulse echo and pitch catch time

traces were recorded. Figure 7.9 shows the results. It was seen that the pitch catch

signal is about 30 dB weaker than the pulse echo signal. In the pulse echo mode, sig-

nals that were transmitted into the plate specimen and returned into the waveguide

are too weak to surpass the coherent noise levels within the waveguide. However

good results were obtained in the pitch catch mode. The results of the clamped

waveguides in the pitch catch mode were comparable to those of the manual cou-

pling with shear couplant which were shown in figure 7.4b.

7.3 Room temperature thickness gauging with shear

couplant

In the previous section it was shown that pitch catch mode experiments are success-

ful when the waveguides are clamped to the structure or if shear couplant is used at

the interface. Here results of thickness measurements on a calibration block using a

shear coupling agent are presented. The use of coupling agent rather than clamping

was chosen simply for reasons of easy implementation. The calibration block was

made of steel. It contained 6 steps in thickness. A sketch of the block is shown in

figure 7.10.

Time traces recorded by the SH* mode waveguide system are displayed in figure

7.11. The first arrival stays constant for all block thicknesses while the second and

later arrivals are delayed in proportion to the thickness of the block. This is ex-
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pected since the first signal corresponds to the signal travelling from the sending

waveguide along the surface of the block to the receiving waveguide. Therefore the

first signal is independent of the thickness of the block. Later arrivals are echoes

from the other side of the block and therefore depend on the block thickness.

From the peak of the envelope of the signal the time difference between the sec-

ond and third arrival was determined and then used to calculate the thickness of

the specimen. The necessary bulk shear velocity was determined by a reference

measurement on the largest thickness of the block. Figure 7.12 shows thicknesses

evaluated by the SH* mode measurement plotted against the thicknesses determined

by means of a caliper. The two measurements agree within 0.1mm (standard error).

Differences are mainly believed to be due to different thicknesses of the coupling

layer. It is believed that measurements using the clamping configuration are more

accurate.

7.4 High temperature measurements

In the previous sections it was shown that the SH* mode waveguide successfully

measures thicknesses at room temperature if used in the pitch catch mode. The

technique was ready to be tested at high temperatures. Since joining the strip to

the specimen by welding did not show good results, a clamping configuration was

seen as the only possible method of attachment; standard coupling agent cannot

withstand the high temperatures.

Two 1mm thick, 15mm wide and 500mm long stainless steel waveguides were clamped

to a 6mm thick stainless steel plate. For temperature measurements a thermocouple

was welded onto the steel plate at a location that was unlikely to influence wave

propagation. The specimen was then placed in a furnace. A hole at the bottom

of the furnace allowed the waveguide strips to reach outside the furnace creating a

clearance distance of at least 350mm between the oven and the transducer location.
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According to the predictions in figure 5.1 this clearance distance should be ample

to allow for the temperature to drop from the furnace temperature at the specimen

end of the waveguide to room temperature at the transducer end of the waveguide.

When the furnace was heated to 500 − 600◦C no increase in temperature at the

transducer end could be detected.

During heating the temperature and ultrasonic signals were acquired by a PC. The

temperature was logged every minute using a thermocouple logger (TC08) and the

Picolog software (both from Pico Technologies Ltd.). Ultrasonic signals were ac-

quired using the desktop ultrasonic instrument (DUI) which is a combined arbitrary

function generator and oscilloscope system produced by NDT Solutions Ltd. Signals

were automatically recorded every 3 minutes during heating and every 5 minutes

while cooling.

Figure 7.13 displays signals acquired during a typical heating cycle and a correspond-

ing temperature curve is also shown. The arrival of the group of signals is delayed at

higher temperatures due to the reduction of shear velocity in the waveguide at high

temperatures. An increase in the separation between backwall echoes can also be

identified, however because the propagation path in the plate is very much shorter

compared to the path in the waveguide this effect is more subtle. Signal amplitudes

seem to remain strong suggesting that there is no drastic change in attenuation at

high temperatures.

The experiment was cycled several times and the recorded time traces were then

used to evaluate the shear velocity in the plate specimen. The Hilbert envelope

was used to evaluate the arrival time of a signal packet. Knowing the thickness of

the plate specimen this allowed the shear velocity of the plate to be calculated. A

graph that displays the measured shear velocity from two heating and two cooling

cycles is shown in figure 7.14. The velocity scale in the figure is very detailed which

might misleadingly suggest that the results are very scattered. However the range

of the velocity measured during different cycles at the same temperature is about

50m/s which corresponds to ±0.8% of the overall velocity. There is a linear decrease
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in velocity from ∼ 3100m/s at room temperature to ∼ 2750m/s at 600◦C, which

represents about 10% of the overall velocity.

In the above calculation the thermal expansion of the material in the furnace and

the corresponding thickness change has been neglected. For stainless steel Kaye and

Laby [62] quote an expansion coefficient of 19.7 ∗10−6/K at a temperature of 500◦C.

Below this temperature the expansion coefficient is slightly less and above slightly

higher. Using a round figure of 20 ∗ 10−6/K for the whole 600◦C the expected thick-

ness change due to heating is about 1.2%. Therefore the path that the ultrasonic

wave travels and the evaluated velocity is also expected to change by ∼ 1.2%. Com-

pared to the measured 10% decrease in velocity the change in thickness and velocity

due to thermal expansion of ∼ 1.2% is therefore believed to be negligible.

The furnace was kept running at a temperature of 500◦C for a period of four weeks to

demonstrate the long-term stability of the monitoring system. The temperature was

monitored every hour to ensure continuity, and temperature and ultrasonic sample

traces were recorded every 12 hours. The first and the last collected time traces

are shown in figure 7.15. Signal amplitudes increased with time and better signals

were achieved after long periods at high temperature. This is believed to be due to

changes that occur at the waveguide/specimen junction. High clamping pressures

and the increased temperature seem to improve ultrasonic shear wave transmission

through the joint which leads to the conclusion that long term monitoring at high

temperatures is possible.

7.5 Summary

In the previous sections the attachment of a strip waveguide to a plate specimen

was investigated in order to find a joining method that allows clean transmission

and reception of the SH* mode into and from the plate. Manual coupling with

shear coupling agent, permanent attachment methods like welding or soldering and
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attachment via a clamp were tested in the pulse echo and pitch catch modes.

The pulse echo mode was found to be unsuitable for manual coupling with shear

couplant and the different clamping configurations because not enough energy was

transmitted through the imperfect junction of the waveguide and the specimen. For

the permanently attached strip waveguides it was observed that enough energy could

be transmitted and received through the joint, however the geometrical imperfec-

tions and defects introduced by the welding and soldering processes caused severe

distortion of the received signal shape. Partial reflections, reverberations and mode

conversions in and at the joint made the returning signal uninterpretable. Since

these effects would also be encountered in the pitch catch mode a permanent waveg-

uide attachment by welding or soldering was ruled out.

Experiments with clamping and coupling by shear couplant in the pitch catch config-

uration proved to be successful. It was shown that different thicknesses of specimens

could easily be evaluated. Furthermore the waveguide specimen assembly was suc-

cessfully tested in a furnace at temperatures between 500−600◦C and could be used

to evaluate the thickness of the sample or alternatively monitor its shear velocity.

Experiments during different heat cycles showed that the clamping configuration en-

sured good ultrasonic contact over a wide range of temperatures and for a long time.

The longest test time over which the sample stayed at over 500◦C continuously was

four weeks. Signal clarity and amplitude was noticed to improve over the long test

time, this was believed to be due to favorable changes that occur at the interface

between waveguide and specimen under the influence of pressure and temperature.
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7.6 Figures
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Figure 7.1: Schematics of the thickness gauging test configurations in pulse echo (I) or

pitch catch (II) mode for the different joining methods: a) shear coupling by coupling

agent b) welding or soldering c) clamping by means of a purpose made clamp.
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Figure 7.2: Sketch of the attachment configuration of a transducer to a strip.
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Figure 7.3: SH* mode pulse echo signal received through a 1mm thick and 15mm wide

steel strip coupled to a 6mm thick steel plate: a) signal before coupling b) signal when

strip is manually pushed onto the treacle covered steel plate surface.
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Figure 7.4: SH* mode signal received through a 1mm thick and 15mm wide steel strips

coupled to a 6mm thick steel plate: a) signal in pulse echo mode before coupling b) signal

when a second strip is manually pushed onto the treacle covered steel plate surface close

to the exciting strip.
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Figure 7.5: Signal paths that the SH waves travel in the plate specimen when the pitch

catch mode is employed.
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Figure 7.6: SH* mode pulse echo signal received through a 1mm thick and 15mm wide

steel strip welded to a 6mm thick steel plate: a) signal before welding b) signal after

welding.
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Figure 7.7: SH* mode pulse echo signals received through 1mm thick and 15mm wide

steel strips attached to a 6mm thick steel plate by means of silver soldering.
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Figure 7.8: Top and front view of the clamp that was used to attach two strip waveguides

to the sample plate.
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Figure 7.9: SH* mode signals send and received through one or two 1mm thick and 15mm

wide steel strips clamped to a 6mm thick steel plate: a) pulse echo signal on sending strip

b) pitch catch signal received on second strip (pictured signal already 17dB amplified

compared to signal in a)).
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Figure 7.10: Sketch of the calibration block comprising of 6 steps (dimensions in mm).
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Figure 7.11: 5 cycle 2MHz Hanning windowed tonebursts sent and received by the SH*

mode waveguide system coupled to the calibration block of figure 7.10.
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Figure 7.12: Thickness measured using the SH* mode plotted against the thickness

measured using a caliper.
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Figure 7.13: a) Signals and b) temperature recorded during a typical heating cycle.

(Heating from 20◦C to 500 − 600◦C usually took about one to one and a half hours.)
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Figure 7.14: Shear velocity of the plate specimen evaluated during different heating and

cooling cycles. (—) first heating cycle, (- - -) first cooling cycle, (· · ·) second heating cycle,

(· - ·-) second cooling cycle.

201



7. Remote thickness gauging using a waveguide

330 335 340 345 350 355 360
-0.01

-0.005

0

0.005

0.01

Time ( s)

A
m

p
lit

u
d

e
 (

V
)

330 335 340 345 350 355 360
-0.01

-0.005

0

0.005

0.01

Time ( s)

A
m

p
lit

u
d

e
 (

V
)

a)

b)

Figure 7.15: Waveguide remote monitoring system signal with sample at 500◦C a) at

start of experiment and b) after 4 weeks.
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Chapter 8

Conclusions

8.1 Thesis Review

In this thesis the use of guided waves for fluid property measurements and remote

structural monitoring was investigated. The use of guided ultrasonic waves offers

several advantages over conventional techniques: for the application of fluid prop-

erty measurements the need for a test cell is removed and beam spreading effects

are avoided. For remote structural monitoring the waveguide allows the transducer

to be situated at a distance from the object that is being monitored. This makes

it possible to monitor structures in harsh environments which standard transducers

could not withstand.

Existing guided wave techniques for fluid property measurements use the effect of

leakage or an entry reflection to evaluate the bulk and shear modulus of an embed-

ding medium. These methods however do not allow the evaluation of attenuation

in the surrounding material. Therefore in this thesis an interface wave, called the

quasi-Scholte mode, was used for fluid bulk property measurements. The quasi-

Scholte mode propagates in both the fluid and the waveguide; however its energy

is mainly trapped at the interface between the waveguide and the fluid and decays

away with distance from the waveguide surface. The interface wave is sensitive to

all of the fluid properties.
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In chapter 3 the theory behind the Scholte and quasi-Scholte wave was described.

Then in chapter 4 a series of experiments using the quasi-Scholte mode to measure

fluid properties was discussed. Some of the outcomes of chapter 4 suggested that it

would be beneficial to reduce the width of the plate waveguide as far as possible in

order to reduce errors. When the propagating wave modes in a strip were analysed,

in addition to an A0* mode that is suitable for exciting the quasi-Scholte mode, a

non-dispersive shear horizontal mode was also found. This mode was termed the

SH* mode and it was realised that it could be used for remote inspection of struc-

tures in extreme environments.

Chapter 5 concentrated on investigating the characteristics of wave propagation in

strips of rectangular cross section. It described the techniques used to obtain dis-

persion curves for rectangular waveguides and presented results for steel strips.

A challenging problem is the transfer of the wave from the waveguide into the object

that is to be investigated. The analysis of the wave propagation in the waveguide

and the object was uncoupled by considering the stresses transmitted by the guided

wave mode as a surface load on the test piece. A collection of literature results for

the radiation characteristics of surface sources on half spaces was therefore consid-

ered in chapter 6.

The theoretical findings of chapters 5 and 6 were used to devise an experimental

setup to carry out remote thickness gauging using a waveguide. Experiments eval-

uating different waveguide-structure joints were carried out. Successful thickness

gauging experiments on calibration blocks of different thicknesses were also per-

formed to validate the capabilities of the waveguide sensor. Long-term tests at high

temperatures (up to 600◦C) as well as temperature cycling were also carried out to

verify the robustness of the setup and to show that long term monitoring at high

temperatures using a waveguide is possible.
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8.2 Findings

The work presented in this thesis revealed further insight into the working principles

of ultrasonic waveguide sensors and their potential applications. The modelling of

the quasi-Scholte wave and the construction of a fluid property sensor lead to a

good understanding of the interface wave and its capabilities and limitations when

used to extract fluid properties. A general summary of the findings related to the

quasi-Scholte mode will be given first before findings from the remote waveguide

monitoring system are recalled.

8.2.1 Fluid property measurements using the quasi-Scholte

mode

The theoretical investigation into the quasi-Scholte wave showed that the fraction

of its energy that travels in the fluid depends on the ratios of the fluid density and

bulk velocity to the solid density and bulk velocity. The same is true for the Scholte

wave velocity, which is the velocity that the quasi-Scholte mode asymptotes to at

high frequency thickness products. Therefore to be sensitive to the fluid the right

waveguide material for a certain fluid will have to be chosen. Most fluids are aqueous

solutions for which steel is a suitable waveguide material. Over 99% of the Scholte

wave energy on a steel/water interface is located in the fluid.

The energy distribution between waveguide material and fluid also depends on the

operating frequency-thickness product. At low frequency-thicknesses all the energy

is located in the waveguide while at higher frequency-thickness products most of

the energy travels in the fluid. Sensitivity to the fluid is generally best at high

frequency thickness products with the exception of the quasi-Scholte mode group

velocity which is most sensitive to the fluid bulk velocity at frequency thickness

products around 350kHz-mm (for steel in aqueous fluids). The group velocity of

the quasi-Scholte mode at this frequency-thickness product can be three times more

sensitive than a conventional bulk velocity measurement. However the sensitivity
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to fluid bulk attenuation is not as high and is expected to perform worse than a

measurement in a test cell.

Two attenuation mechanisms of the quasi-Scholte mode were identified. Shear leak-

age attenuates the interface wave due to in-plane surface displacements of the waveg-

uide that set up energy dissipating bulk shear waves in the fluid. The quasi-Scholte

mode is also attenuated by energy scattered or dissipated in the component of the

wave that travels in the fluid. This part of the attenuation is related to the fluid

bulk attenuation and can be used to evaluate the latter if isolated from the shear

leakage.

The excitation method presented excited the quasi-Scholte mode from the plate; it

is therefore not very effective at high frequency thickness products. An optimum

frequency window in which the quasi-Scholte mode is sensitive to fluid properties

and can be excited by a mode conversion from the A0 mode in a free waveguide was

found to lie around 200 − 500kHz mm for steel.

The experiments showed that bulk velocity measurements can be performed to

within 0.5%. For simple Newtonian fluids the viscosity can also be determined with

errors of up to 8%. Bulk attenuation measurements showed poorer performance

(∼ 20% error), which could partly be explained by lower sensitivity, geometrical de-

fects in the setup and the inversion problem being ill-posed. However improvements

in performance are possible and it is believed that a successful strategy to achieve

this would be the optimisation of the geometry of the measurement apparatus.

Possible applications of a quasi-Scholte mode ’dipstick’ could be the monitoring or

measurement of fluid bulk velocities in manufacturing processes or the use as rapid

testing equipment for bulk materials. Since the transducer is separated from the

sensing area, measurements in hot fluids are possible. The quasi-Scholte mode is

also well suited for applications such as fluid level sensing. Attenuation measure-

ment based applications like particle sizing are difficult to carry out with the current
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quasi-Scholte mode setup due to the poor accuracy and the need for a large frequency

bandwidth. However where the differences between viscosity induced attenuation

and fluid bulk attenuation have to be detected the sensor is very useful.

8.2.2 Remote monitoring using a flexible waveguide

The investigation into an ’acoustic cable’ for remote ultrasonic monitoring of struc-

tures in harsh environments was focused on three different issues. The first was the

design of a non-dispersive waveguide, secondly the waveguide source characteristics

had to be optimised and finally a practical implementation of the best possible sys-

tem had to be found.

Even though not absolutely necessary the use of non-dispersive wave propagation

in the ’acoustic cable’ considerably reduces the complexity of the excitation system.

The traditional approach of reducing the frequency-thickness product of the waveg-

uide in order to operate in a region where the fundamental compressional wave mode

in the waveguide is non-dispersive was overcome by using a shear horizontal (SH*)

type mode in a very thin and wide rectangular strip. The strip mode possesses

a cut-off at low frequency-width products; however at high frequency-width prod-

ucts, the SH* mode becomes non-dispersive and asymptotes to the shear velocity

of the waveguide material. The mode shape of the SH* mode is constant through

the thickness of the strip and varies across the width in an approximately parabolic

fashion. The displacements are at a maximum in the centre of the strip and very

small on the strip edges, so that most of the energy travels along the centre of the

strip. Experimentally the SH* mode could reliably and selectively be excited with

an amplitude 30 dB above other undesirable modes.

When studying the literature on source characteristics on a half space an anti-plane

shear source was identified to have the best radiation characteristics. In the 2D limit

of a source of infinite length, which is approximated by the large aspect ratios of the

strip, advantages of the SH source are the excitation of only SH waves in the half
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space: no compressional or surface waves are excited by an ideal SH line source. The

SH source cylindrically spreads in all directions and thus has a wide field of view.

When returning to the waveguide, SH waves in the half space excite the SH* mode

which propagates the signal back to the transducer. Other waveguide sources such

as circular, torsional sources would produce waves that on return to the waveguide

excite different modes from those that created them (flexural modes in this case).

Normal and tangential loading on the half space produces shear, compressional and

surface waves which considerably complicate the analysis. Furthermore the energy

content in the surface wave excited by normal or tangential sources is always very

large; this makes subsurface inspection very difficult.

An experimental study into the joining method revealed that although they trans-

mit most of the wave energy into the structure, permanent attachment methods are

not reliable. Features that are inevitably introduced by the joining process distort

the signal shape and cause reflections that greatly complicate the interpretation

of results. Other methods could only be successfully employed in the pitch catch

mode. While coupling with shear couplant is not possible at high temperatures its

use for thickness gauging experiments at room temperature was possible. Clamping

with a purpose made clamp showed good results, both at low and high temperatures.

A test system was successfully run at high temperatures for a period of over 4 weeks.

Several heating and cooling cycles after the period at constant high temperature also

did not deteriorate the strength or shape of signals. The shear velocity drops by

about 10% with increase of temperature from room temperature to around 600◦C

and must be corrected for if measurements are to be taken at different temperatures.

Experimentally, no issues with increased shear wave attenuation at high tempera-

tures (up to 600◦C) were encountered.
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8.3 Future work

In future a detailed study of the quasi-Scholte mode attenuation of a rectangular

strip waveguide should be carried out in order to improve the quality of the bulk

attenuation measurements that are possible using the QS-mode. The addition of a

torsional wave sensor that allows the evaluation of fluid density at the same time

as a fluid bulk velocity and attenuation measurement would allow the guided wave

sensor to completely characterise the acoustic properties of a fluid. This is not com-

monly achieved by conventional ultrasonic test cells. The characterisation of hot

fluids using the QS mode should also be investigated.

The study of the remote waveguide monitoring sensor has opened many interesting

possibilities for further investigations. The effect of uneven or rough reflectors on

either side of the structure of the waveguide will have to be researched. This simu-

lates the effects of corrosion or erosion that are most likely encountered in real life

situations.

Another field to be explored is the use of the ’acoustic cable’ for defect (crack size)

monitoring over long periods and at elevated temperatures. For this it might be

useful to use the time of flight diffraction technique. Alternatively the construction

of arrays of strips and array techniques for monitoring the structure beneath the

waveguides could be employed. This would require a detailed study of the three

dimensional wave field produced by the SH* strip source.
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Appendix A

Global Matrix Solution

In the global matrix method a matrix of the general solutions of wave propagation in

the system materials is set up with the appropriate boundary conditions (continuity

of stresses and displacements at boundaries). The system of equations results in an

eigenvalue/eigenvector problem that can be solved. The matrix equation for a plate

immersed in two half spaces of viscous fluid is given below. For more details see also

References [53], [23] and [22].

[
A

]
·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Lf−

Tf−

Ls+

Ls−

Ts+

Ts−

Lf+

Tf+

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 0 (A.1)

Where L and T are the amplitudes of the partial longitudinal and transverse waves.

The subscripts f and s refer to the fluid and solid respectively and the + and - signs

indicate the direction of the partial wave. Terminology here is from Lowe [23]. The

matrix A is: A = [B
...C], where
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A. Global Matrix Solution

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

k −k2Tf k kgSL

−k2Lf −k k2Ls −k2LsgSL

iρfBf 2iρfβ
2
fkk2Tf iρsBs iρsBsgSL

−2iρfβ
2
fkk2Lf iρfBf 2iρsβ

2
skk2Ls −2iρsβ

2
skk2LsgSL

0 0 kgSL k

0 0 k2LsgSL −k2Ls

0 0 iρsBsgSL iρsBs

0 0 2iρsβ
2
skk2LsgSL −2iρsβ

2
skk2Ls

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A.2)

C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

k2Ts −k2TsgST 0 0

−k −kgST 0 0

−2iρsβ
2
skk2Ts 2iρsβ

2
skk2TsgST 0 0

iρsBs iρsBsgST 0 0

k2TsgSS −k2Ts k k2Tf

−kgST −k k2Lf −k

−2iρsβ
2
skk2TsgST 2iρsβ

2
skk2Ts iρfBf −2iρfβ

2
fkk2Tf

iρsBsgST iρsBs 2iρfβ
2
fkk2Lf iρfBf

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A.3)

where k is the wavenumber of the guided wave to be solved for, ρs is the solid plate

material density, ρf is the fluid density and the remaining quantities are defined by

the following equations:

k2Lf,s = ±(
ω2

α2
f,s

− k2)1/2 (A.4)

k2Tf,s = ±(
ω2

β2
f,s

− k2)1/2 (A.5)

Bf,s = ω2 − 2β2
f,sk

2 (A.6)

GSL = ei(k2Lsh) (A.7)

GST = ei(k2Tsh) (A.8)
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A. Global Matrix Solution

where k2Lf,s is the component of the longitudinal bulk wave wavenumber in the

direction normal to the plate surface, k2Tf,s is the component of the shear bulk wave

wavenumber in the direction normal to the plate surface, Bf,s, GSL and GST are

multiplication factors, h stands for the plate thickness. α and β are the complex

bulk velocities defined by:

αn =
cl

1 − i κl

2π

(A.9)

βn =
cs

1 − iκs

2π

(A.10)

The media are indicated by the subscripts f and s, which stand for fluid and solid

in the subscripts of other quantities.

The equations A.4 and A.5 contain a square root expression; this results in several

possible solutions, some of which may be unphysical (e.g. waves with negative

attenuation). Therefore care should be taken to chose the right sign of the expression

under the square root before entering equations A.4 and A.5 into matrix A.

A solution of equation A.1 exists if matrix A is singular, i.e. when the determinant

of the matrix equals zero. There are several wavenumbers that satisfy the equation

at each frequency. These are the different propagating modes that may exist. One of

these propagating modes is the quasi-Scholte mode. The complex wavenumber gives

the phase velocity ( ω
kre

) and attenuation (kim) of the mode. By specifying one of the

partial wave amplitudes and substituting the complex wavenumber into equation

A.1 the mode shape can be determined at each frequency. The mode shape is the

distribution of displacements, stresses, strains and similar characteristics through

the cross section of the plate.

212



Appendix B

Derivation of an approximate

formula for the SH-wave

attenuation

The approach here follows closely the derivation of the approximate attenuation of

the longitudinal L(0,1) mode in [30]. The system that is described is a plate of

thickness h as shown in figure 3.16. The guided wave attenuation for a cross section

of a wave guide can be expressed by use of the average power flow:

α =
∂P
∂z

2Parea

(B.1)

Where Parea is the average power flow across the cross section of the waveguide, z

is the propagation direction. ∂P
∂z

describes the energy leakage across the boundary

of the waveguide. We will first evaluate this term.

Assume a Newtonian fluid with appropriate relaxation time. The viscous skin depth

is defined as

δ = (2η/ρfω)1/2 (B.2)

Where η is the liquid viscosity, ρf the fluid density and ω the angular frequency.

Therefore an expression for the velocity in the liquid adjacent to the waveguide can
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B. Derivation of an approximate formula for the SH-wave attenuation

be expressed as

v = v0exp(−y/δ) (B.3)

Where v0 denotes the surface velocity of the waveguide and y the distance from the

surface in the liquid.

The quantity ∂P
∂z

, the change in average power flow, is the power leaving the waveg-

uide cross section. Therefore it is the dissipated power over a unit surface area. This

quantity is found by integrating the power flow per unit width of the plate across

the top and bottom surfaces of the plate

∂P

∂z
= 2

∫ 1

0

1/2τ0v0dx (B.4)

where

τ0 = η
∂v

∂y
|y=0= −ηv0/δ (B.5)

and thus

∂P

∂z
= −v2

0(ρfωη/2)1/2 (B.6)

The second quantity that has to be evaluated to find the guided wave attenuation

is the term Parea, the average power flow across the cross section of the plate. Using

the Poynting vector:

Parea =

∫ 1

0

∫ h

0

−v∗σ/2dydx (B.7)
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B. Derivation of an approximate formula for the SH-wave attenuation

Where v∗ stands for the complex conjugate of the velocity and σ the stress at any

point within the cross section. The velocity and stress field variation can be de-

scribed using the displacement distribution for the SH mode [8]:

ux = Bei(kz−ωt) (B.8)

vx =
dux

dt
= −iωBei(kz−ωt) (B.9)

σx = G
dux

dz
= ikBGei(kz−ωt) (B.10)

Hence,

Parea =

∫ 1

0

∫ h

0

ωkB2G

2
dydx (B.11)

and using the identities k = ω
c

and c =
(

G
ρs

)1/2

yields:

Parea = −1

2
ω2B2(Gρs)

1/2h (B.12)

Now substituting the expression v0 = −iωB for the velocity at the interface into the

∂P
∂z

term obtained earlier yields the guided wave attenuation:

α =
∂P
∂z

2Parea

=
−v2

0(
ηρf ω

2
)1/2

−ω2B2(Gρs)1/2h
(B.13)

after rearranging and cancellations,

α = − 1

2h

(
2ρfωη

ρsG

)1/2

(B.14)
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Appendix C

Phase and group velocity

Generally the solution to wave propagation problems results in an expression of the

form

u(x, t) = Aei(kx−ωt) (C.1)

where u is the displacement, A is the amplitude, k is the wavenumber of the wave,

x the spatial position of the wave along the propagation direction, ω is the angular

frequency and t the time. If the wavenumber k is allowed to be complex then

k = kr + iki (C.2)

with kr being the real part of the wavenumber and ki being the imaginary part of

the wavenumber. Using C.2 allows us to rewrite equation C.1

u(x, t) = Ae−kixei(krx−ωt) = Ae−αxei(krx−ωt) (C.3)

with ki the imaginary part of the wavenumber being equal to α, the attenuation of

the wave.

Equation C.3 now contains two separable terms, the first being Ae−αx that stands for

an amplitude that decays with propagation distance due to dissipative mechanisms,

216



C. Phase and group velocity

and the second term ei(krx−ωt) that expresses the harmonic oscillations of the wave

in time and space. The second term may be used to derive the phase velocity. For

propagation at constant phase the term in the brackets of the exponential has to

equal zero

(krx − ωt) = 0 (C.4)

thus

x

t
=

ω

kr

= cp (C.5)

where cp is the phase velocity which describes the velocity at which the phase of the

wave travels through space.

Cheeke [96] recalls that wave propagation at a single carrier frequency does not

contain any information but the frequency of the wave. To transmit information

the carrier has to be modulated with another frequency. The combination of sev-

eral propagating frequencies forms a wave packet. The wave packet also propagates

through the medium but at the group velocity, which in general is different from

the phase velocity. A simple example for the derivation of group velocity of two

frequencies was shown by Stokes [97] and is also given in Rose [8]. Rose also gave

the following derivation of group velocity:

Consider the phase change of an individual frequency component at time increment

t = t0 + dt,

dPi = (ki(x0 + dx) − ωi(t0 + dt)) − (kix0 − ω0t) = kidx − ωidt (C.6)

now for the wave group to remain unchanged, the phase changes have to be the

same for all of its constituent frequency components, therefore

dPi − dPj = 0 or (ki − kj)dx − (ωi − ωj)dt = 0 (C.7)
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which can be rewritten as

dx

dt
− dω

dk
= 0 (C.8)

this defines the group velocity as

cg =
dω

dk
(C.9)

The group velocity is the velocity at which a wave packet moves through space

(strictly speaking the wave packet travels at the energy velocity [98] however if

the attenuation is low as in most real life cases the group velocity is a very good

approximation). As with the phase velocity, the group velocity can be frequency

dependent; actually the group velocity is a derivative of the wavenumber (and thus

also the phase velocity). When the velocities are functions of frequency, the wave

propagation is said to be dispersive. A wave packet is always made up of several

frequencies. In dispersive media each constituent frequency will travel at a specific

velocity. Therefore the shape of a wave packet will be distorted with increasing

propagation length. This is the most significant feature of dispersion.

Figure C.1 shows a plot of the phase and group velocities of the lowest order anti-

symmetric Lamb wave mode A0 of a 1mm thick steel plate as a function of frequency.

At low frequencies the mode is very dispersive, meaning that there is a relatively

steep velocity slope.

Figure C.2 shows simulated excitation signals and signals that have propagated

for 100mm as A0 mode (the signals were simulated using the DISPERSE software

[22]). Their frequency spectra are also shown. It can be seen that the signal in a)

is made up of a broad bandwidth of frequencies and therefore is distorted more as

the frequency components travel at different velocities and spread out. The signal

in b) has a rather narrow frequency bandwidth and disperses less with distance. In

Figure C.2 a) it can also be seen that the higher frequency components of the signal

arrive earlier than the low frequency components. This can be predicted from the

dispersion curve (C.1).
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C. Phase and group velocity

C.1 Retrieving phase and group velocity from mea-

surements

The accurate retrieval of phase velocity and group velocity data from measurements

is of utmost importance in non-destructive testing applications. In relatively non-

dispersive media such as metals the characteristic velocity of the material is usually

obtained on a sample specimen. With the knowledge of the ultrasonic velocity

in the material other techniques such as thickness gauging or defect monitoring

can be used. In dispersive media, for example suspensions of particles in a liquid

or adhesives, the velocity dispersion itself contains information about the material

and can therefore be used for material characterization. An example of this is the

measurement of particle size distribution in suspensions [3]; other examples of fluid

characterization are well summarized in Povey’s book [1].

The measurement of phase velocity is usually based on the comparison of the phase

information of two signal pulses that have travelled over two different lengths in the

material. A standard procedure for this type of measurements is the phase spectrum

method [99]. Another similar method that does not rely on the temporal separation

of the two signals to be analyzed is the amplitude spectrum method [60]. In the

following section the theoretical background behind these two standard methods

will be recalled.

Consider a harmonic wave propagating in an unbound medium. The displacements

in the positive propagation directions can be expressed as follows

u(x, t) = Aei(ωt−kx−φ)e−αx (C.10)

where, u is the displacement, t is the time, x is the propagation distance, ω is

the frequency, α the attenuation and φ an arbitrary phase angle. Using Fourier

transformation and some algebra [60] this can be rewritten in the form

F (u(x, t)) = F (u(0, t))ei(−kx)e−αx (C.11)

where F indicates a Fourier transformed entity. In this case the wavenumber k and

the attenuation α are real. The factor e−αx will therefore not influence the phase
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of the signal but only its amplitude. The signal amplitude can be calculated at two

different positions as

F (u(x1, t)) = F (u(0, t))ei(−kx1)e−αx1 (C.12)

F (u(x2, t)) = F (u(0, t))ei(−kx2)e−αx2 (C.13)

which when rewritten in the form of a magnitude and phase yields the following:

F (u(x1, t)) = A1e
i(−kx1+φ01) = A1e

i(φ1) (C.14)

F (u(x2, t)) = A2e
i(−kx2+φ02) = A2e

i(φ2) (C.15)

Now the difference in phase of the two signals at their respective positions allows

the phase velocity to be extracted.

dφ = φ2 − φ1 = −k(x2 − x1) (C.16)

but k = ω
cp

, therefore

dφ = − ω

cp

(x2 − x1) and cp =
ω(x2 − x1)

−dφ
(C.17)

Equation C.17 gives a simple expression to evaluate the phase velocity from signals

collected at two position along a signal path. However there is a caveat. For the

simple expression to work accurately and reliably, the absolute phase difference at

each frequency has to be determined. From the signals the phase information will be

extracted in a wrapped form, this means that the phase will be limited to values in

the range of -π to π. The absolute phase however has to be in an unwrapped form.

The unwrapping of the signal causes a problem and is only possible in frequency

regions where a strong signal is present. Also unwrapping algorithms are not perfect

and an error of 2π can easily be introduced to the unwrapped phase. In cases where

the frequency spectrum does not contain any signal at low frequencies, the phase

information at low frequencies will be entirely made up of noise. This will make

it impossible to unwrap the phase and find the absolute unwrapped phase of the

signal.
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C.2 Retrieving phase velocity by cosine interpo-

lation

One of the main problems of methods using the phase spectrum method is the

phase uncertainty due to the wrapping from −π to +π. Further errors are also

introduced by errors in the distance measurement between two transducer locations.

If several transducers can be used to collect signals over a short distance (usually

less than a wavelength), or one transducer can be scanned over the surface, a cosine

interpolation can be used to accurately determine phase velocity. Here the approach

as used by Simonetti [100] is recalled. Consider the Fourier transform of a signal

that has been received at a reference position:

S(ω)ref = A(ω)ei(−kr(ω)xref )e−α(ω)xref (C.18)

where S is the received signal, A is the complex amplitude of the travelling wave,

kr is the real wavenumber of the wave, α is the attenuation of the wave and xref

the position at which the signal is received. Note here that all quantities except the

distance are frequency dependent. The signal at any other position (x1) along the

travelling path of the wave can be expressed as:

S(ω)1 = A(ω)ei(−kr(ω)x1)e−α(ω)x1 (C.19)

Now we can divide the first expression by the second to eliminate the effects of the

signal amplitude.

S(ω)ref

S(ω)1
= e

i(−kr(ω)xref )

ei(−kr(ω)x1)
e
−α(ω)xref

e−α(ω)x1
= ei(kr(ω)(x1−xref )e−(α(ω)(x1−xref )

= Fei(kr(ω)(x1−xref )

= F (cos(kr(ω)(x1 − xref )) − isin(kr(ω)(x1 − xref )))

(C.20)

where F is a real factor depending on the wave attenuation. Thus it can be concluded

that the real part of the signal ratio is related to the cosine of the wavenumber-
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distance product. By evaluating the real part of the signal ratio at different distances

from the reference signal the phase velocity can be found using a cosine interpolation.

R(
S(ω)ref

S(ω)1

) = F (cos(kr(ω)(x1 − xref )) = F (cos(
ω

Cph(ω)
(x1 − xref )) (C.21)

Figure C.3 shows signals that have been created using the dispersion characteristics

of an A0 mode, determined using the DISPERSE software. The signals are 5 cycle

Hanning windowed tonebursts with a centre frequency of 500 kHz that have been

propagated over distances ranging from 100 to 105.5 mm from the source. The

signals were processed as described by the above procedure and a cosine interpolation

was carried out at the centre frequency. Figure C.4 shows the real part of the ratio

of the spectra of the different signals and the reference signal as well as the best

result of the cosine interpolation at the signal centre frequency of 500 kHz.

This method works very well and is very accurate provided the distance data is

available at a good enough accuracy. However a major drawback is the need of

a relatively large set of data to calculate the phase velocity, on average about 8

signals at different distances are needed. The method also only works well if the

interval between the scanning points of the signals is much less than a wavelength;

this avoids aliasing.

C.3 Group velocity measurement using the zero

phase slope

The author learned about the method of zero phase slope in private discussion

with Prof. Peter Nagy [101] who developed and used the method previously. The

fundamental idea behind the determination of group velocity using the zero phase

slope method is the evaluation of the Fourier transform of the signal within a window

that is swept over the time domain signal. When the window is aligned with the

group arrival time of a frequency component within the signal the phase slope of

the frequency component will tend to zero. Thus the group arrival time is evaluated

by sweeping a window over the time domain signal and evaluating the phase slope

for each frequency. At the zero phase slope point the window centre coincides with
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the frequency group arrival. This can be shown using the shift property of Fourier

transforms:

F (f(t)) =
∫ +T

−T
f(t)e−iωtdt = F (ω)

F (f(t − tshift)) =
∫ +T

−T
f(t − tshift)e

−iωtdt =

∫ +T

−T
f(t − tshift)e

−iω(t−tshift)e−iωtshiftd(t − tshift)

= e−iωtshiftF (ω)

(C.22)

Consider now the Fourier transform of the displacement signal of a travelling wave

F (u(x, t)) = F (ω)e−i(kx)e−iφ0 (C.23)

when the time origin of the signal is shifted to the right by a delay tshift the shift

property of the transform leads to the following expression

F (u(x, t))tshift
= F (ω)e−i(kx)e−iφ0e−iωtshift (C.24)

Rewriting the expression yields

F (u(x, t))tshift
= F1e

−iφe (C.25)

where F1 is a constant and φe is the overall phase angle. The overall phase φe has

several components:

φe = −i(kx + φ0 + ωtshift) (C.26)

thus the phase slope can also be found to be

dφe

dω
= − dk

dω
x − tshift (C.27)
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but cg = dω
dk

, therefore

dφe

dω
= − x

cg
− tshift (C.28)

if x �= 0 the only condition that fulfils equation C.28 at zero phase slope is

dφe

dω
= 0 = − x

cg

− tshift = −Tg − tshift (C.29)

and thus

Tg = −tshift (C.30)

Where Tg = x/cg is the group arrival time of the signal. However if the window

position, i.e. the time frame, stays the same then the group velocity of the signal

can be found by the following expression.

dφe1

dω
− dφe2

dω
= −x1

cg
− tshift − (−x2

cg
− tshift)

= x2−x1

cg

(C.31)

and thus

cg = x2−x1
dφe1
dω

− dφe2
dω

(C.32)

Equation C.32 was used to retrieve the group velocity from two 1 cycle broadband

signals with centre frequency 500 kHz. The signals have again propagated as the A0

mode on a 1mm thick steel plate for 100 and 200mm respectively and are depicted

in figure C.5.

Both signals were Hanning windowed and then a fast Fourier transform algorithm

was used to calculated their spectra. The phase was unwrapped and the phase slope
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was calculated. It should be mentioned here that unwrapping the phase to calculate

the phase slope does not cause similar problems as encountered in the determina-

tion of the absolute phase of the signal (as in section C.1) since the phase slope does

not depend on the absolute value of the phase but only on its local variation. The

method therefore is insensitive to noise in the measured phase at low frequencies,

which makes the determination of the absolute phase very difficult if not impossible.

The phase slope of both signals is shown in figure C.6.

The calculated group velocity is shown in figure C.7. The performance of the method

is very good if a clear signal is available. Figure C.8 shows the error in computed

group velocity. The error is in the region of 0.05% for the higher frequency content

of the signal. At lower frequencies higher errors are encountered. This is due to

distortion of the signal caused by windowing with the Hanning window. Lower fre-

quency components are longer in the time domain and therefore are more distorted

by the window and hence larger errors are encountered.

C.4 Velocity measurement using the amplitude

spectrum method

The amplitude spectrum method is a versatile technique to retrieve the wave velocity

from a signal that contains two distance separated signals (here a front reflection

and a back wall reflection from a plate-like specimen of uniform thickness). The

technique was first described by Pialucha [60], whose description will be followed

here. The simplest case of a signal consisting of a front face and backwall reflection

will be treated. The analysis starts with an identity that Sachse and Pao [99] derived

for the Fourier transform of an arbitrary signal:

F (u(x, t)) = F (u(0, t))e−ikxe−αx (C.33)

where u(x, t) is the displacement function of a signal in space and time, F() denotes

Fourier transformation, k is the wavenumber of the wave, α is the wave attenuation
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and x is a spatial coordinate.

The above identity shows that the Fourier transform of a signal at a position x can

be expressed as a function of the Fourier transform at a reference position x = 0

and the wave propagation characteristics. This can be used to write an expression

for the Fourier transform of a signal containing a front face and back wall reflection

from a plate. The first arrival is taken as a reference signal at position x = 0 and

the second arrival is assumed to be a distance x = 2T (T for thickness) separated

from the first echo. Therefore the total recorded signal is the sum of the reference

signal and the signal at distance x:

S = F (u(0, t)) − F (u(2T, t)) = F (u(0, t))[1 − e−ik2T e−α2T ] (C.34)

The attenuation term e−α2T can be replaced by a positive constant say Q.

S = F (u(0, t))[1 − Qe−ik2T ] (C.35)

F(u(0,t)) is assumed to be a slowly varying function. The term in brackets becomes

an oscillatory term that causes the total signal amplitude spectrum to have a series

of minima and maxima. The location of the minima occur when

e−ik2T = 1. (C.36)

This in turn occurs when

2Tω

cp

= 2πm. (C.37)

Where cp is the phase velocity of the material, T the thickness of the plate like

specimen and m the index of the minimum in the spectrum. Therefore the phase

velocity of the material can be evaluated if the index m of the minimum is known:

cp =
2Tf

m
(C.38)
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where ω = 2πf . Examples of the use of equation C.38 to determine the phase veloc-

ity computed from a signal and its first backwall reflection are extensively described

by Pialucha et al. [60]. Here an example of a slight variant of the Amplitude Spec-

trum method which the author has used will be described. In this case the group

velocity rather than the phase velocity of the signal will be determined (a strict

proof which shows that the variant allows group velocity determination has not

been carried out but from experience it is known that the method yields reasonable

results):

cg =
2TΔF

ΔM
(C.39)

where ΔF is the frequency difference between two minima and ΔM the difference

in index number M. Equation C.39 can be simply derived from equation C.36 by

replacing k with ∂k and using the identity cg = ∂k/∂ω for the group velocity.

The DISPERSE software was used to simulate two A0 mode signals that have prop-

agated 100 and 120mm from the source. The signals are shown in figure C.9. As

predicted by theory the Fourier transform of the sum of both signals in figure C.9 a)

and b) contains a series of minima and maxima. An image of the spectra of the sum

of signals a) and b) is shown in figure C.10. The index number of each minimum as

well as the frequency difference (ΔF ) between minima is shown.

Using equation C.39 the group velocity of the signals was then computed. Figure

C.11 shows the group velocity that was computed using the Amplitude Spectrum

method as well as the correct group velocity from the DISPERSE software. The

relative error between the velocity evaluated by the amplitude spectrum method

and the original group velocity from the DISPERSE software was also computed

and is shown in figure C.12.

Figure C.12 shows that the performance of the method is very good and the error

in computed group velocity is small. As in the zero phase slope method the error

is in the region of 0.05% for the higher frequency content of the signal. At lower

frequencies higher errors are encountered and again this is believed to be due to

227



C. Phase and group velocity

distortion of the signal caused by windowing with the Hanning window before the

Fourier transform is evaluated. Lower frequency components are longer in the time

domain and therefore are more distorted by the window which results in larger errors.

C.5 Preferred method for velocity evaluation

Before choosing any of the above methods for a velocity measurement it has to be

stressed that the above analysis assumed that signals are due to a single propagating

mode only. The above examples also have not taken any noise into account and can

therefore give no indication of the methods robustness with respect to noise levels.

The velocity measurement method that is sought here is for the quasi-Scholte mode;

therefore apart from good accuracy there are a couple of other desirable features

that the measurement method should possess. For reasons of practicality, ideally

only two signals at each of the two immersion states will be needed to evaluate the

velocity. Due to the dispersiveness of the signals the velocity measurement method

should also be able to detect the velocity variations with frequency. For the quasi-

Scholte mode the measurement of group velocity is preferred.

The method of cosine interpolation requires measurements at more than 5 distances

along the propagation path of the wave which is impractical. It also evaluates the

phase velocity while the group velocity is more desirable for quasi-Scholte mode

applications. It was therefore not chosen.

The Amplitude Spectrum method and the method of zero phase-slope are very

similar and also perform equally well. However the method of zero phase-slope is the

preferred measurement method. Its main advantage are the determination of group

velocity at each point within the frequency spectrum, while the amplitude spectrum

method only allows the evaluation at discreet frequencies where minima occur within

the signal of the combined spectra. The Amplitude Spectrum method also runs
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into resolution problems when the term ΔF becomes small and of a comparable

magnitude to the frequency resolution of the spectrum (see section 4.7).
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C.6 Figures

Figure C.1: Phase(—) and group velocity (- - -) dispersion curve of the A0 mode of a

1mm thick steel plate (ρsteel = 7932kg/m3,Cl = 5959.5m/s, Cs = 3260m/s).
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Figure C.2: Simulated excitation signals (- - -) and signals after 100 mm propagation (—

) as A0 on a 1mm thick steel plate (ρsteel = 7932kg/m3,Cl = 5959.5m/s, Cs = 3260m/s).

a) for a 1 cycle Hanning windowed toneburst with centre frequency 500 kHz b) frequency

spectrum of a) c)for a 5 cycle Hanning windowed toneburst with centre frequency 500 kHz

d) frequency spectrum of c)
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Figure C.3: Signals of the A0 mode propagated over distance from 100 to 105.5 mm

from the source.

Figure C.4: Real part of the quantity (S(ω)ref

S(ω)x
) [+] and the best result of the cosine

interpolation cos( ω
Cph(ω)(x1 − xref )) [—] for a phase velocity of 1905 m/s at 500 kHz.
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Figure C.5: A0 mode signals that were used to test the zero phase slope method for

group velocity measurement. Signal in a) has travelled for 100mm and signal in b) for

200mm as A0 mode in a 1mm thick steel plate.
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Figure C.6: Phase slope of both signals in figure C.5. [(- - -) signal a), (—) signal b)]

Figure C.7: Group velocity obtained using the zero phase slope method (- - -) and the

group velocity curve that was used to simulated the signals(—)
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Figure C.8: Group velocity error calculated from the results in figure C.7.

��

��

	�

Figure C.9: DISPERSE simulations of A0 mode signals on a 1mm thick steel plate that

have propagated a) 100mm from the source, b) 120mm from the source and c) the sum of

both signals in a) and b).
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Δ�

Figure C.10: Fourier transform of the signal c) in figure C.9 displaying a series of minima

and maxima.

Figure C.11: Group velocity computed at each minimum using the amplitude spectrum

(+) and the DISPERSE software reference group velocity (- - -) from which the signals in

C.9 were computed.

236



C. Phase and group velocity

Figure C.12: Percentage group velocity error of the group velocity computed with the

Amplitude spectrum method compared to the original DISPERSE data that signals were

produced from.
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