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Abstract

Modern infrastructure and industrial plants have a finite design life. Their effective and profitable
operation depends on well organized maintenance and condition assessments. Non-destructive
evaluation and inspection is a key tool for condition assessment. However, despite best efforts, full
inspection coverage of a plant is not always possible because of access problems, time constraints
and limited budgets.

Many inspection companies are beginning to use partial coverage inspection (PCI) techniques
to solve this problem. PCI describes the use of inspection data collected from a small area of the
component to extrapolate to the condition an the rest of the component. Extreme value analysis
(EVA) is a technique of particular interest for this application as it allows an inspector to construct
a statistical model of the smallest thickness measurements across the component. This model can
then be used to extrapolate to the most likely minimum thickness.

In this thesis, an analysis of the uncertainties that can arise when using EVA for extrapolation
is performed. A clear outline of the uncertainties expected to result from EVA extrapolation is
presented and it is made usable for inspectors. In addition, a simple test algorithm to analyse
when EVA is suitable for a set of inspection data is described. It is hoped that the work described
in this thesis will enhance confidence in the practical use of the technique in the field.

Furthermore, the effect of surface roughness on ultrasonic thickness measurements is investi-
gated with joint experimental and computational studies. It is shown that the thickness measure-
ment distribution can differ significantly from the actual thickness distribution, particularly for
the smallest values of thickness and with rougher surface conditions. Consequently, extrapolations
from extreme value models using ultrasonic thickness data are shown to be conservative compared
to the true condition of the component.

1



Copyright Declaration

The copyright of this thesis rests with the author and is made available under a Creative Commons
Attribution Non-Commercial No Derivatives licence. Researchers are free to copy, distribute or
transmit the thesis on the condition that they attribute it, that they do not use it for commercial
purposes and that they do not alter, transform or build upon it. For any reuse or redistribution,
researchers must make clear to others the licence terms of this work

2



Declaration of Originality

The content of this thesis is the result of independent work carried out by myself under the
supervision of Dr. Frederic Cegla. Appropriate references have been provided wherever use has
been made of the work of others.

Daniel Joseph Benstock

Thursday 21st April, 2016

3



Acknowledgements

I would like to express my most sincere gratitude to my supervisor Dr. Fred Cegla. Your advice and
mentoring over the past three years has help me to be productive and to develop the skills required
to perform research. When I compare myself to when I joined the group, I can only conclude that
you have made a huge contribution to both my personal and professional development.

I am indebted to Peter Cawley for offering me a place to study in the Non-destructive testing
(NDT) group at Imperial College. Your feedback on both my written work and my conference
presentations has helped me to become a more diligent and confident student.

I am most grateful to all of my colleagues in the Non-destructive testing group at Imperial
College. It has been wonderful working with you all. In particular: Tristan, for organising frequent
visits to Chelsea football club, Jack and Fan, for proving to be formidable squash partners, Nick
Brierley, for lively debate at lunch, and Andrew Jarvis, for helping me settle in when I first started.

I’d like to thank Mark Stone and Gordon Davidson at Sonomatic Ltd. for their advice and
assistance when I was developing my simulations of rough surface measurements. It was a great
experience discussing the project with you and being able to see the technology you’ve devel-
oped in Warrington. I’d also like to thank Simon Burbidge, who runs the Imperial College High
Performance Computing (HPC), for his help when I first started to use the HPC.

To have achieved this much, you have to have a strong foundation. At Leeds Grammar School
I certainly developed that and I want to extend my thanks to everyone that taught me there.
In particular: Peter Jolly and Mark Bailey, for being such great role models, and Derek Fry, for
inspiring my lifelong love of science.

I extend my most heartfelt thanks to my friends, particularly Kristina, Hillary, Brad and Dan,
whose support over the last few months will never been forgotten. Finally, I want to thank my
parents, sisters and grandparents, to whom this thesis is dedicated. Your love and support and
made all of this possible.

4



Contents

1 Introduction 21

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.2 Partial Coverage Inspection (PCI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.3 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2 Extreme Value Analysis 30

2.1 Statistical modelling of corrosion data . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2 Extreme value analysis (EVA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3 Block Size Selection 42

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2 Blocking procedure to check EVA’s assumptions are met (Blocking algorithm) . . . 45

3.3 Simulation set up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.4 Performance of the algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.5 More realistic corrosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.5.2 Pit selection algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4 Extrapolation using extreme value analysis 77

4.1 Introduction to extrapolation using extreme value models . . . . . . . . . . . . . . . 77

4.1.1 Confidence intervals for the return levels . . . . . . . . . . . . . . . . . . . . 82

5



4.1.2 Chapter Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.2 Validating the return level for inspection data . . . . . . . . . . . . . . . . . . . . . 85

4.3 Errors associated with extrapolation . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.4 Testing an extrapolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5 Distributed Point Source Method 110

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.2 Modelling reflected ultrasonic signals . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.3 The distributed point source method (DPSM) . . . . . . . . . . . . . . . . . . . . . 114

5.3.1 Frequency domain calculations . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.3.2 Time Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.4 Validation of the DPSM code by comparison to an analytical solution . . . . . . . . 117

5.4.1 Analytical Solution for the on-axis field of the resilient disc . . . . . . . . . . 117

5.4.2 Direct comparison to the analytical solution . . . . . . . . . . . . . . . . . . 119

5.4.3 Boundary points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.4.4 Passive point source density . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.4.5 Backwall size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.4.6 Roughness discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6 Accuracy of ultrasonic thickness C-scans 131

6.1 Modelling a C-scan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.2 Simulation Set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6.2.1 Simulation parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6.2.2 Timing algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

6.3 Experimental Set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

6.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

6.4.1 Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

6



6.4.2 Empirical cumulative distribution functions (ECDF) . . . . . . . . . . . . . 142

6.4.3 Standard deviations of the thickness measurements . . . . . . . . . . . . . . 149

6.4.4 Frequency Dependence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

6.4.5 Example of an extreme value model generated from inspection data . . . . . 154

6.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

7 Conclusions 158

7.1 Thesis Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

7.2 Main findings of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

7.2.1 Extreme value analysis for partial coverage inspection . . . . . . . . . . . . . 161

7.2.2 Accuracy of ultrasonic thickness measurements . . . . . . . . . . . . . . . . . 163

7.3 The next steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

A List of publications 176

B Copyright Permissions 178

7



List of Figures

1.1 An illustration of a C-scan of a section of corroded pipe. The ultrasonic transducer

is moved across the surface and at regular spatial intervals, indicated by the grid, an

ultrasonic pulse is transmitted into the component. The pulse is reflected from the

corroded back wall of the component (A). The reflected signal is recorded (B), the

time of flight is extracted from it and used to calculate a measurement of thickness.

Thickness measurements from across the inspection area are presented as a thickness

map (C). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.2 An example partial coverage inspection. An inspector collects data from the green

area and uses it to construct a statistical model. The statistical model (represented

by a black box) is used to extrapolate to the condition of the larger red area.

Hypothetically this area could be as large as the entire component. . . . . . . . . . 26

2.1 (a) A thickness map of a Gaussian distributed Gaussian correlated rough surface

with RMS=0.1mm and correlation length 2.4mm. (b) The empirical cumulative

distribution function extracted from the thickness map above. The black crosses are

the estimated values of the cumulative distribution function while the red dashed

line is a Gaussian distribution that has been fitted to the data. . . . . . . . . . . . . 32

8



2.2 Three examples of the probability density function of the generalized extreme value

distribution with different values of the shape parameter(k). The blue, red and black

lines are the probability density functions for distributions with shape parameters of

k = −0.5, 0, 0.5 respectively. Each distribution has the same location (µ) and scale

(σ) parameters. The undamaged thickness of the component in these examples was

10mm. From the authors experience, thickness minima can usually be modelled

by distributions with k ≤ 0. An example of a distribution with k > 0 has been

included here for completeness. This type of distribution could occur, for example,

if a process in the component was causing a build up of deposits. In this thesis

components only undergoing wall loss are considered so distributions with k > 0 are

not discussed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.3 An example of a thickness map split into 25 blocks. From each block the minimum

thickness (highlighted in red) is selected. This set of measurements form a sample

of minima for the construction of the EV model. . . . . . . . . . . . . . . . . . . . . 38

2.4 A histogram of a set of 100 thickness minima extracted from a correlated Gaussian

surface with RMS height 0.1mm and correlation length 2.4mm. Each thickness

measurement is represented by a bar, the height of which is proportional to the

frequency of the measurement occurring. The extreme value model which has been

fitted to this set of minima is shown by the red line. The distributional parameters

are shown in the top left corner. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.1 An extreme value probability plot of two sets of minima extracted from a 200 by

200mm correlated Gaussian surface with mean thickness 10mm, RMS=0.1mm and

correlation length 2.4mm using block sizes of 20mm (red crosses) and 40mm (blue

crosses). The scale of the axes has been designed such that, if the model provides

a good description of the data, then the crosses will lie on a straight line (the

black dashed line drawn through each set of points). For the 20mm block size the

R2=0.95, while for the 40mm block size was R2=0.97. . . . . . . . . . . . . . . . . . 44

9



3.2 Autocorrelation function of a Gaussian surface generated with RMS=0.2mm and

correlation length 2.4mm, showing the estimated correlation length λc and that the

function drops to nearly zero at a distance of 2λc. . . . . . . . . . . . . . . . . . . . 47

3.3 A pair of ECDFs generated from adjacent blocks. The Kolmogorov-Smirnov test

extracts the largest vertical distance between the ECDFs and compares it to a

critical value. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.4 Kolmogorov probability density function and illustration of a a hypothesis test to

check if two sample are from the same distribution. . . . . . . . . . . . . . . . . . . 50

3.5 A flow chart of the proposed blocking method. A user will input an ultrasonic thick-

ness map and the algorithm will split it into a number of equally sized blocks. The

blocks will then be tested to ensure that there is evidence they meet the assumptions

made by extreme value analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.6 A histogram of the Talysurf measurements extracted from several lines (100mm in

length) of the inner surface of a pipe (mean thickness 7.7mm) which has undergone

sulphidation corrosion. The black line is a Gaussian, whose parameters have been

estimated from the measurements which have been expressed as a deviation from

the mean thickness of the pipe. This figure is taken from a published article by the

author [1]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.7 (a,b) Example thickness maps from correlated Gaussian surface (a) and correlated

exponential surface (b) with RMS height 0.1mm and correlation length 2.4mm,

showing the position of each measurement with each point colour coded proportional

to its magnitude. (c) Empirical cumulative distribution functions calculated from

the Gaussian (blue) and exponential (red) thickness maps. The ordinate axis shows

the probability of measuring a thickness of less than the corresponding value on the

abscissa. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

10



3.8 Histograms of the number of Gaussian surfaces against block size at different signif-

icance levels, showing the number of surfaces for which the algorithm has selected

a given block size. With a significance level of 1%, the algorithm could not find a

suitable block size for 1% of the surfaces, this increased to 20% with a signficance

level of 5%. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.9 Histograms of the number of exponential surfaces against block size at different

significance levels, showing the number of surfaces for which the algorithm has

selected a given block size. With a significance level of 1%, the algorithm could

not find a suitable block size for 3% of the surfaces, this increased to 30% with a

signficance level of 5%. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.10 Histograms of the number of Gaussian surfaces against scan return period at differ-

ent significance levels. With a significance level of 1%, scan return periods ranged

as far as 14 scans, which corresponded to block sizes greater than 40mm. On in-

creasing the significance level to 5%, the algorithm did not select a block size for

these surfaces and the range of scan return period decreased. . . . . . . . . . . . . . 62

3.11 Histograms of the number of exponential surfaces against scan return period at

different significance levels. With a significance level of 1%, scan return periods

ranged as far as 14 scans, which corresponded to block sizes greater than 40mm.

On increasing the significance level to 5%, the algorithm did not select a block size

for these surfaces and the range of scan return period decreased. . . . . . . . . . . . 63

3.12 Box plots showing the spread in the return period for the block size selected by the

algorithm for the Gaussian surfaces with (a) RMS=0.1mm at the 1% significance

level, (b) RMS=0.2mm at the 1% significance level, (c) RMS=0.3mm at the 1%

significance level, (d) RMS=0.1mm at the 5% significance level, (e) RMS=0.2mm

at the 5% significance level and (f) RMS=0.3mm at the 5% significance level. . . . . 64

11



3.13 Box plots showing the spread in the return period for the block size selected by the

algorithm for the exponential surfaces with (a) RMS=0.1mm at the 1% significance

level, (b) RMS=0.2mm at the 1% significance level, (c) RMS=0.3mm at the 1%

significance level, (d) RMS=0.1mm at the 5% significance level, (e) RMS=0.2mm

at the 5% significance level and (f) RMS=0.3mm at the 5% significance level. . . . . 65

3.14 An example of a thickness map taken from a subsea pipeline. Reproduced from

Stone [2, fig. 1]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.15 An ECDF extracted from an inspection of an in-service separator undergoing cor-

rosion.Reproduced from Stone [2]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.16 (a) A colour map of simulated inspection data from across a numerically generated

pitted surface. (b) The empirical cumulative distribution function calculated from

the colour map shown in (a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.17 A flow chart summarising the threshold selection method. . . . . . . . . . . . . . . . 72

3.18 A comparison of the ECDF of all of the thickness measurements (blue) with the

thickness measurements greater than the threshold (red). The algorithm has se-

lected a threshold which has removed the exponential tail from the distribution. . . 73

3.19 (a) A colour map of simulated inspection data from across a numerically generated

pitted surface. (b) A classification map corresponding to the colour map in (a).

All of the thickness measurements above the threshold (general corrosion distribu-

tion) are coloured white, those below it are coloured black (the pitting corrosion

distribution). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.1 An example of a probability density function of a generalized extreme value dis-

tribution. The red dashed line is the M th return level and the red shaded area is

defined in equation 4.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.2 An example of a deviance function for a return level, rM , of a generalized extreme

value distribution. A (1-α)% confidence interval is the set of rM for which D(rM)

exceeds cα. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

12



4.3 A histogram of the minimum thickness measurements from 1000 48 by 48mm cor-

related Gaussian surfaces with mean thickness 10mm, RMS=0.1mm and correla-

tion length 2.4mm. The return levels (black crosses) and confidence intervals (blue

crosses) at each extrapolation ratio calculated from an extreme value model con-

structed from a 240 by 240mm Gaussian surface of the same statistics have been

overlaid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.4 A histogram of the minimum thickness measurements from 1000 48 by 48mm cor-

related exponential surfaces with mean thickness 10mm, RMS=0.1mm and correla-

tion length 2.4mm. The return levels (black crosses) and confidence intervals (blue

crosses) at each extrapolation ratio calculated from an extreme value model con-

structed from a 240 by 240mm exponential surface of the same statistics have been

overlaid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.5 The average width of the return level confidence intervals, expressed as a percentage

of the return level, calculated from 100 extreme value models constructed from

240mm by 240mm Gaussian surfaces, as a function of extrapolation ratio. Up to an

extrapolation ratio of 1 (the size of the inspection area), the width of the confidence

intervals is constant. Past this point the model is being used to extrapolate and

the confidence intervals grow. The rate of growth is determined by the number of

minima used to construct the model. . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.6 The average width of the return level confidence intervals, expressed as a percent-

age of the return level, calculated from 50 extreme value models constructed from

240mm by 240mm exponential surfaces, as a function of extrapolation ratio. Up to

an extrapolation ratio of 1 (the size of the inspection area), the width of the confi-

dence intervals is constant. Past this point the model is being used to extrapolate

and the confidence intervals grow. The rate of growth is determined by the number

of minima used to construct the model. . . . . . . . . . . . . . . . . . . . . . . . . . 94

13



4.7 Extreme value probability plots for sets of minima extracted from a 240mm square

correlated Gaussian surface with RMS=0.1mm and λc = 2.4mm. Thickness minima

were extracted using block sizes of 24mm (black), 40mm (blue), 48mm (red) and

60mm (green). As the block size is increased, the extreme value models (black

dashed lines) become better descriptions of the smallest minima in each sample. . . 95

4.8 The average return level (blue crosses) and confidence intervals (red crosses) calcu-

lated from 50 different extreme value models constructed using 240mm by 240mm

inspections of a Gaussian surface corresponding to an extrapolation ratio of 10. Each

model was constructed using a different number of minima (x-axis) and the aver-

age confidence intervals were compared to the smallest thickness across the surface

(black dashed line). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.9 The average return level (blue crosses) and confidence intervals (red crosses) calcu-

lated from 50 different extreme value models constructed using 240mm by 240mm

inspections of an exponential surface corresponding to an extrapolation ratio of

10. Each model was constructed using a different number of minima (x-axis) and

the average confidence intervals were compared to the smallest thickness across the

surface (black dashed line). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.10 The average return level (blue crosses) and confidence intervals (red crosses) calcu-

lated from 50 different extreme value models constructed using 240mm by 240mm

inspections of a Gaussian surface corresponding to an extrapolation ratio of 50. Each

model was constructed using a different number of minima (x-axis) and the aver-

age confidence intervals were compared to the smallest thickness across the surface

(black dashed line). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

14



4.11 The average return level (blue crosses) and confidence intervals (red crosses) calcu-

lated from 50 different extreme value models constructed using 240mm by 240mm

inspections of an exponential surface corresponding to an extrapolation ratio of

50. Each model was constructed using a different number of minima (x-axis) and

the average confidence intervals were compared to the smallest thickness across the

surface (black dashed line). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.12 The average return level (blue crosses) and confidence intervals (red crosses) calcu-

lated from 50 different extreme value models constructed using 240mm by 240mm

inspections of a Gaussian surface corresponding to an extrapolation ratio of 100.

Each model was constructed using a different number of minima (x-axis) and the

average confidence intervals were compared to the smallest thickness across the

surface (black dashed line). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.13 The average return level (blue crosses) and confidence intervals (red crosses) calcu-

lated from 100 different extreme value models constructed using 240mm by 240mm

inspections of an exponential surface corresponding to an extrapolation ratio of

10. Each model was constructed using a different number of minima (x-axis) and

the average confidence intervals were compared to the smallest thickness across the

surface (black dashed line). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.14 The return level (blue cross) and confidence intervals (red cross) corresponding to an

extrapolation ratio of 50 calculated using an extreme value model constructed from

a single, randomly selected, 240mm by 240mm inspection of a Gaussian surface

corresponding to an extrapolation ratio of 50. The smallest thickness across the

surface is shown as the black dashed line. . . . . . . . . . . . . . . . . . . . . . . . 105

5.1 Examples of signals scattered from a flat surface ((a)) and a rough surface ((b)),

showing the sent signal (labelled ”outgoing” in figures), the first backwall reflection

(labelled ”reflected” in figures) and the time of flight (calculated using a peak to

peak algorithm, described later in this chapter) that is used to evaluate thickness.

Reproduced from Benstock et al. [1]. . . . . . . . . . . . . . . . . . . . . . . . . . . 111

15



5.2 Schematic showing the simulation cell for a single thickness measurement. The 6mm

5MHz longitudinal wave transducer and the rough surface are represented by point

sources separated by 0.1mm, w = 10mm is the mean thickness of the material. The

size of the rough surface patch required for the simulation is determined by the

mean thickness of the component. For a 10mm mean thickness the size of the patch

required was 9mm by 9mm. Reproduced from Benstock et al. [1]. . . . . . . . . . . 118

5.3 Comparison between the analytical solution and DPSM solution with different point

source densities for the on-axis field (f=5MHz), for a disc of radius 3mm into a

medium with c=5960m/s. Reproduced from Benstock et al. [1]. . . . . . . . . . . . 120

5.4 A comparison of the pressure distributions across the surface of the transducer, cal-

culated on the line (Z=0, Y=0,X). The red line gives the diameter of the transducer.

The pressure distribution with no boundary source points (black dashed line) shows

poor matching to the zero pressure boundary condition. The addition of boundary

points (BP), leads to much better matching to the boundary conditions used in the

analytical solution, which rises to 1 at x=-3, is then constant up to x=+3 where it

returns to zero. Reproduced from Benstock et al. [1]. . . . . . . . . . . . . . . . . . 121

5.5 An example of a discretised 6mm diameters circular transducer. The pressure at

the blue points was set to one; the pressure at the red boundary points was set to

zero. Reproduced from Benstock et al. [1]. . . . . . . . . . . . . . . . . . . . . . . . 123

5.6 Comparison between analytical solution (solid black line) with radius 3.05mm and

DPSM (dashed black line) with boundary points (f=5MHz). The DPSM calculation

was performed with an active point source separation of λ
12

(0.1mm). The frequency

was chosen as it will be used as the centre frequency of the Hann window pulse used

in the simulations in chapter 6. The effective bandwidth of a 5MHz Hann window

pulse is 3MHz. Reproduced from Benstock et al. [1]. . . . . . . . . . . . . . . . . . 125

16



5.7 Comparison between the analytical outgoing signal at 50λ
3

and the DPSM calculated

signal at 50λ
3

(and their Hilbert envelopes). It is believed that the major source of er-

ror is the slightly different effective radius of the disc as a result of the discretisation.

Reproduced from Benstock et al. [1]. . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.8 The variation of the difference between the maximum of the Hilbert envelope of the

analytical signal and the maximum of the Hilbert envelope of the DPSM calculated

signal as a function of increasing point source density. A point source density of

147λ−2(103mm−2) was chosen as this was the first point where the error reduced

to 1% of the maximum of the Hilbert envelope of the analytical signal. The crosses

show data from a flat backwall reflection and the circles from sinusoidal surfaces.

Reproduced from Benstock et al. [1]. . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.9 The variation of the error, calculated as the percentage difference between the maxi-

mum of the Hilbert envelope of the DPSM and analytical signals, with square patch

size. A patch size of 9mm2 was chosen. Reproduced from Benstock et al. [1]. . . . . 129

6.1 An example of a mild steel plate (300mm by 300mm external dimensions) with a

Gaussian height distributed roughness profile. Reproduced from Benstock et al. [1]. 137

6.2 A: a comparison between the measured RMS surface variation using Talysurf plotted

as a function of the RMS surface variation of the surface and the target RMS (black

dashed line). B: the correlation length of the plates extracted using Talysurf plotted

as a function of the RMS surface variation of the surface and the target RMS (black

dashed line). Reproduced from Benstock et al. [1]. . . . . . . . . . . . . . . . . . . . 138

6.3 (a) Schematic showing the experimental set-up. The water path was set to as small

as possible (32mm) to minimize the differences between the contact set up used in

the simulations and the immersion set up in the experiments. This is in the far-field

of the transducer (near field distance 10.8mm). (b) An example of a full A-scan

collected by the experimental set up. Reproduced from Benstock et al. [1]. . . . . . 140

17



6.4 Two signals from the same rough surface (RMS=0.3mm), illustrating the amount of

distortion that the rough surface can introduce to the pulse shape. The top figure

(A) is the raw signal shape and the bottom (B) is the Hilbert envelope plotted on

a logarithmic scale. Reproduced from Benstock et al. [1]. . . . . . . . . . . . . . . . 141

6.5 The mean signals from the RMS=0.1mm (dotted), 0.2mm (solid) and 0.3mm (dot-

dashed) surface. In the top figure (A) are the mean signals from the experimental

data and in the bottom (B) are the simulated results. There is a shift in time

for the experimental results, as the plates have slightly different mean thicknesses.

Reproduced from Benstock et al. [1]. . . . . . . . . . . . . . . . . . . . . . . . . . . 143

6.6 The empirical cumulative distribution function of thickness measurements extracted

using the envelop peak algorithm from the RMS=0.1mm (blue), 0.2mm (green) and

0.3mm (red) surfaces. The crosses indicate the experimental results and the circles

indicate the simulated results. Reproduced from Benstock et al. [1]. . . . . . . . . . 145

6.7 The empirical cumulative distribution functions for the RMS=0.1mm surface with

different timing algorithms. The blue markers are from EPD, the red from TFA and

the green from XC. The crosses are the experimental data points and the circles are

the simulations. The black dashed line is the ECDF calculated from the point cloud

of thickness values used to generate the surface. Reproduced from Benstock et al. [1].146

6.8 The empirical cumulative distribution functions for the RMS=0.2mm surface with

different timing algorithms. The blue markers are from EPD, the red from TFA and

the green from XC. The crosses are the experimental data points and the circles are

the simulations.The black dashed line is the ECDF calculated from the point cloud

from the point cloud of thickness values used to generate the surface. Reproduced

from Benstock et al. [1]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

18



6.9 The empirical cumulative distribution functions for the RMS=0.3mm surface with

different timing algorithms. The blue markers are from EPD, the red from TFA and

the green from XC. The crosses are the experimental data points and the circles are

the simulations.The black dashed line is the ECDF calculated from the point cloud

from the point cloud of thickness values used to generate the surface. Reproduced

from Benstock et al. [1]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

6.10 The standard deviation of the thickness measurements plotted as a function of

RMS surface variation, for the EPD (A), TFA (B) and XC (C). The crosses (long

dashed line) indicate the simulated results and the circles (solid line) indicate the

experimental results. The black dashed line is the standard deviation which would

be expected, given the point cloud. The wavelength of the centre frequency of the

pulse is λ = 1.2mm. Reproduced from Benstock et al. [1]. . . . . . . . . . . . . . . 151

6.11 The standard deviation of the thickness measurements (extracted using EPD) plot-

ted as a function of the RMS surface variation, given as a fraction of the wavelength

of the transmitted pulse. The black dashed line is the expected standard deviation

calculated by averaging over the footprint of each measurement. Reproduced from

Benstock et al. [1]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

6.12 The cumulative distributions functions for the minimum thicknesses selected by the

blocking algorithm from the experimental ultrasonic C-scan of the RMS=0.3mm

plate. The minima selected from the point cloud used to machine the surface are

denoted by the stars while the minima selected from the experimentally measured

thickness map are show by the triangles. The dashed lines are maximum likelihood

fits of the generalised extreme value distribution to each set of minima. . . . . . . . 155

19



List of Tables

1.1 Definitions of damage environments, as outlined in [3] . . . . . . . . . . . . . . . . . 27

4.1 The different block sizes and the corresponding number of minina used to generate

the extreme value models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

20



Chapter 1

Introduction

1.1 Introduction

Assessments of the condition of in-service engineering components are an important part of en-

suring operational safety and integrity during a facility’s lifetime. Failure to assess damage can

have catastrophic consequences [4] and lead to potential criminal prosecution [5]. In the United

Kingdom, regulators require evidence that a plant is safe to run throughout its lifetime. Plant

operators must provide evidence of plant integrity and safety. The operators identify the key com-

ponents to survey and ask independent contractors to inspect these components at regular time

intervals. The condition of the component is reported back to the operator who repairs or replaces

the component if required and presents the results of this inspection to the industry regulator. As

efficient and safe operation becomes increasingly important to nations and industries the value of

inspection services will increase. The world wide NDE market is estimated to be worth $5.6bn 1

[6].

Inspections are carried out using techniques from the field of non-destructive evaluation (NDE).

NDE encompasses a range of methods such as ultrasonics [7, 8], radiography [9, 10], eddy current

testing [11] and thermography [12, 13]. One of the most commonly used techniques in NDE is the

ultrasonic thickness (UT) measurement (figure 1.1A). Measurements are made using an ultrasonic

transducer which is coupled to the surface of the component using water or a water-based couplant.

1in 2012

21



An ultrasonic pulse is transmitted into the component, reflects from the rear wall of the component

and the reflected pulse is recorded (figure 1.1B). A measurement of thickness can be extracted from

this signal using one of a number of algorithms to extract a time of flight from the signal, each of

which have varying accuracy [14]. The thickness of the component is given as:

t =
τ · cL

2
(1.1)

where τ is the time of flight, cL is the speed of sound in the material and t is the thickness of the

component.

UT measurements are usually performed as a C-scan over a large area. The transducer is

moved across the surface of the component in a pre-described pattern with measurements taken

at regular spatial intervals (figure 1.1). The thickness measurements are used to form a thickness

map, which represents each thickness measurement using a coloured pixel (figure 1.1C).

It is common practice to schedule shut down periods to allow for these inspections as, more

often than not, they require access to hazardous areas of a facility that cannot be accessed during

operation. This incurs a loss of revenue to the facility owner due to the shut down periods in

addition to the cost of the inspection. Even with the best efforts, access to the entire component

is often restricted due to access problems (i.e. parts of the component concealed by pipework or

insulation), time constraints or a limited inspection budget. Consequently, full inspection is not

always possible.

For these reasons there is pressure to increase the efficiency of inspections, such that they can

be performed in shorter periods of time or require access to smaller areas of the component. This

has led to the development of new inspection strategies and technology, a prime example of which

is guided wave testing (GWT). Guided wave based systems allow inspection of large areas of a

component from a single inspection point [8]. Testing is performed by affixing a ring of transducers

around the outside of the component. This ring of transducers excites an ultrasonic guided wave

in the material.

The inspector can select a specific mode to excite in the component. Typically, a non-dispersive

mode is selected as this allows the wave to propagate for long distances, and usually the shear
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Figure 1.1: An illustration of a C-scan of a section of corroded pipe. The ultrasonic transducer is
moved across the surface and at regular spatial intervals, indicated by the grid, an ultrasonic pulse is
transmitted into the component. The pulse is reflected from the corroded back wall of the component
(A). The reflected signal is recorded (B), the time of flight is extracted from it and used to calculate a
measurement of thickness. Thickness measurements from across the inspection area are presented as a
thickness map (C).
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wave is deployed because it is relatively insensitive to fluid contents within the pipe. Defects can

be detected by recording the reflected signal from the defects and examining both its frequency

content and amplitude. This approach has been shown to effectively detect defects that have

removed a few percent of the cross-sectional area of the pipe over tens of metres [15, 16]. GWT

can significantly reduce the time required for an inspection. However, GWT is a screening method

that doesn’t directly determine the integrity of the pipe: instead it is used to identify locations of

concern, and then these are followed up by local inspections using conventional methods of NDE.

Some approaches have removed the need for inspection enforced shut-down periods by per-

manently installing sensors at positions of interest across the component. Cegla et al. describe

a permanently fixed sensor which separates the transducer from high temperature environments

using a wave-guide [18]. These sensors have seen applications at many facilities around the world

[19]. In contrast to guided wave based techniques these sensors are capable of measuring very

small changes in wall thickness [20] at a limited number of locations. As the measurements from

these sensors are associated with a small area directly under the sensor they may not adequately

sample the component to detect localised degradation over a large area.

Both of these approaches increase the efficiency of condition assessment by reducing the amount

of time or area required for inspection. However, neither of these approaches are suitable for

all applications. Guided wave based methods can inspect large areas of a component, but are

insensitive to small changes in wall thickness. Fixed sensors on the other hand are fixed in place,

providing high resolution over very limited areas. There is a need for an intermediate between

these two techniques; a method that combines sensitivity to wall thickness changes with large

enough area coverage [21].

Statistical modelling is a promising approach to achieve this goal. If an inspector only has

access to inspection data from a small area it can be used to build a statistical model. This sta-

tistical model can be used, assuming that the inspection area is representative of the condition of

the component, to extrapolate to the condition of much larger areas of a component, as illustrated

in figure 1.2. This approach, known as partial coverage inspection (PCI), has seen limited use in

industry (for examples, see Stone [2], Terpstra [22] and Hawn [23]). However, progress towards
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widespread use has been limited as there are no reliable guidelines for the statistical extrapolation

of inspection data [24]. This thesis describes the development of guidelines for performing par-

tial coverage inspection. In the next two sections, background literature around partial coverage

inspection (PCI) is reviewed (section 1.2) and the aims and structure of the thesis are outlined

(section 1.3).

1.2 Partial Coverage Inspection (PCI)

Inspection strategies based on limited data are becoming more commonplace in asset management.

Certain areas are more safety critical or degradation mechanisms (such as corrosion) are known to

be more aggressive in particular parts of the plant. These areas are considered to be at a higher risk

of degradation than others. Therefore, to be most economical, asset owners prioritise inspections

in these sample areas. This approach is know as risk based inspection (RBI) [25].

Sometimes inspectors can only access a fraction of these areas, due to time or budget con-

straints. In this situation partial coverage inspection [PCI] (also often called: non-intrusive in-

spection) can be used to infer the condition of inaccessible areas of the plant [22] (illustrated in

figure 1.2). An inspector measures the thickness of a component across an accessible area, which

is assumed to be under the same conditions as the inaccessible region. These measurements can

be used to form a cumulative distribution function (CDF), which can be used to draw conclusions

about the inaccessible area. The measured distribution can differ quite significantly depending on

the mode of damage occurring. Typically, general corrosion shows Gaussian or skewed Gaussian

wall thickness distributions, while pitting tends to exhibit a double exponential type distribution

[2, 26, 27]. PCI is attractive as it has the potential to estimate the condition of very large areas of

a component using small samples of data.

There are no existing guidelines as to when PCI is a suitable tool for condition assessment.

This is problematic as the suitability of PCI is highly dependent on the nature of the damage

occurring. The operator must be confident that the inspection data is representative of the rest of

the component. Different parts of a component will be undergoing different modes of degradation,

depending on, for example, local pressure variations, pH levels or geometry. For example, if very
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Figure 1.2: An example partial coverage inspection. An inspector collects data from the green area and
uses it to construct a statistical model. The statistical model (represented by a black box) is used to
extrapolate to the condition of the larger red area. Hypothetically this area could be as large as the entire
component.
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isolated pitting is present, an inspector could measure a thickness distribution unrepresentative of

the rest of the condition of the component.

Furthermore the accuracy and reliability of PCI is dependent on the inspection data collected.

Different spatial sampling or inspections of different areas will all produce different sets of data

and, subsequently, different conclusions about the condition of the remainder of the component.

Round robin tests between groups of different operators on the same flaw showed that differences

in inspection teams can lead to up to 25% differences in flaw sizing [28]. In terms of condition

assessment, this is less than ideal. It could lead to inspectors drawing different conclusions about

the same component.

The central problem with PCI is how to reliably and accurately extrapolate from partial cov-

erage to the full condition of the component. Great strides would be made towards this goal with

the development of general guidelines for the use of PCI. Det Norske Veritas (DNV) has pub-

lished a recommended practice document for the non-intrusive inspection of pressure vessels [3].

In this report, three different damage environments are outlined, these are repeated in table 1.1.

Although these have been described for pressure vessels, they can be applied to other components

and provide a useful reference for discussing PCI.

Type Definition
A Degradation mechanism not expected to occur.

Inspection is required to confirm there is no onset of the degradation
mechanism.

B Degradation mechanism expected, with low to medium progression.
Location of degradation can be predicted. However, it is not antici-
pated to impact on vessel integrity in the medium term (typically at
least two outage periods).
Inspection required to confirm corrosion risk assessment predictions.

C Degradation expected with medium / high progression. Location of
degradation can not be predicted. It may impact on vessel integrity in
the medium term (typically at least two outage periods). Inspection
required to confirm absence of flaws of critical size.

Table 1.1: Definitions of damage environments, as outlined in [3]

One of the keystones of PCI is that the inspection data must be representative of the damage
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occurring across the extrapolation area (figure 1.2). This requirement will almost certainly be met

for type A degradation. Type A is expected to have no or very slow degradation, only a small

inspection area (1-10%) is required to sufficiently sample the damage. This is in contrast to type

C corrosion. Degradation is occurring unpredictably, with different modes of damage occurring in

different locations. A full inspection is required to ensure their detection [21].

At the moment, PCI is restricted to type A components as many contractors or facility operators

are unsure as to when PCI will provide results that they can have confidence in. Applications of

PCI could be extended to assess type B components as the degradation in most of these components

is relatively predictable with more inspection data (10-50% of the component). The development

of a structured approach towards performing PCI, which outlines how to verify whether PCI is

suitable, will increase confidence in PCI as a tool for condition assessment [24].

1.3 Outline of the thesis

This thesis aims to outline guidelines for performing PCI with ultrasonic inspection data. The

primary focus of this thesis is a method for PCI known as extreme value analysis (EVA). In chapter

2, the motivation for focussing on EVA will be described alongside a review of existing literature.

A section in this chapter will describe the theory behind EVA and highlight key assumptions the

model makes.

In chapter 3 a method for constructing extreme value models using inspection data is described.

The method checks that the assumptions made by EVA are met by the inspection data. This

approach is validated using a large amount of numerically generated inspection data.

The main goal of PCI is the extrapolation from an inspection of a sample area of a component

to the condition of a larger area. Extrapolation itself is impossible to validate as validation would

require data from outside of the inspection area which is typically unavailable to an inspector.

However, it is possible to quantify the uncertainties associated with EVA through the calculation

of confidence intervals. In chapter 4 a method for calculating confidence intervals around the

smallest expected thickness in the extrapolated area is described. This method is validated by

comparison to large amounts of numerically generated data.
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Extrapolation is sensitive to errors from many different sources. The method for constructing

extreme value models ensures that the inspection data will meet the assumptions made by EVA

and the calculation of confidence intervals allows an inspector to quantify the uncertainty asso-

ciated with an extrapolation made from the model. Most inspection data takes the form of an

ultrasonically measured thickness map (figure 1.1) measured across a rough surface resulting from

a degradation process. It has been shown that ultrasonic thickness measurements across rough

surfaces can be inaccurate [14].

Any bias or uncertainty in the inspection data will be magnified by extrapolation. The effect

of bias in the inspection data on extrapolation must be well understood to effectively use EVA.

Subsequently, a joint computational and experimental study of ultrasonic thickness measurements

across rough surfaces was performed. This study is described in chapter 5 and 6.

Chapter 5 describes the distributed point source method (DPSM), which was used to simu-

late the large number of ultrasonic signals collected as part of a C-scan. The development of a

modification to the DPSM, to improve its accuracy when compared to an analytical benchmark,

is described. Appropriate parameters for the simulation of a typical C-scan were found with a full

convergence study.

The DPSM was used to simulate C-scans of three different rough surfaces. The results of these

simulations are presented in chapter 6 alongside the results from experimental C-scans of the same

surfaces machined onto steel plates. The simulations and experiments were compared to validate

the results of the simulations. Extreme value models were constructed from the data to investigate

the effect the use of ultrasonic thickness data has on an extrapolation.
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Chapter 2

Extreme Value Analysis

2.1 Statistical modelling of corrosion data

Partial coverage inspection (PCI) is based on the construction of a statistical model from inspection

data collected across a sample area (figure 1.2). Statistical modelling is an important tool in many

areas of science and engineering. It has been used in applications as wide ranged as quantifying

the uncertainty around the output from a measurement tool [29] or predicting the lifetime of

engineering components [30, 31]. In NDT specifically, statistical modelling has been used to study

the probability of missing critically sized defects in an inspection [32], to study the reliability of

inspections [33, 34] and the probability of component failure [35]. A statistical model will reproduce

the behaviour of a random variable, providing a probability of a given value of the random variable

occurring. For PCI this random variable is the measured thickness of the component (or the wall

loss) across the inspection area.

Inspection data usually comes in the form of a thickness map (figure 2.1a). The thickness at

each position in the map is represented by a coloured pixel, providing a qualitative overview of the

degradation in the inspection area. The thickness map can be converted into a more quantitative

presentation of the data by calculating an estimate of the cumulative probability distribution of the

thickness measurements. This is calculated by sorting the thickness measurements in ascending

order, assigning each thickness measurement a rank and using this rank to calculate the empirical
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cumulative distribution (ECDF) function:

F (x) =
i

N + 1
(2.1)

where x is a measurement of thickness, i is its rank and N is the total number of thickness

measurements. F (x) is the probability of measuring a thickness of less than x. An example of

a cumulative distribution function generated from the thickness map in figure 2.1a is shown in

figure 2.1b. The ECDF is an estimate of the probability of measuring a thickness less than a given

value. A number of examples of ECDFs generated from inspection data collected from in service

engineering components can be found in [2].

In addition to the empirical estimate of the cumulative probability distribution, it is common

practice to fit a probability distribution to the thickness measurements. Thickness measurements

can be distributed in many different ways. Their distribution is determined by the conditions the

component is subjected to. Different temperatures, pH, and surface conditions can all produce

different distributions. There are usually many different degradation mechanisms occurring across

the inspection area, consequently, by the central limit theorem, the overall thickness distribution

often tends to be Gaussian or Gaussian correlated [36]. However, localised corrosion mechanisms

can often produce exponential [27] or more exotic distributions [2].

The Gaussian distribution is defined by two parameters: the mean (m) and the standard devi-

ation (s). The probability of obtaining a measurement of less than x from a Gaussian distribution

is given by:

F (x) =
1

s
√

2π

∫ x

∞
e−

(t−m)2

2s2 dt (2.2)

where F (x) is the probability of obtaining a measurement of less than x. In figure 2.1b this dis-

tribution has been fitted to thickness measurements using maximum likelihood estimation (MLE)

[37, p. 824] and plotted alongside the empirical cumulative distribution function.

MLE is a method of estimating the parameters of a distribution from a given set of data.

The method is based on the joint distribution of the set of measurements, conditioned on the

parameters of the distribution. For example, for the normal distribution the joint distribution is

31



X/mm

Y
/m

m

 

 

1 100 200

1

100

200

T
h
ic

k
n
e
s
s
/m

m

9.6

10

10.4

(a)

9.5 10 10.5
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Thickness[x]/mm

F
(x

)

 

 

ECDF

Fitted CDF

(b)

Figure 2.1: (a) A thickness map of a Gaussian distributed Gaussian correlated rough surface with
RMS=0.1mm and correlation length 2.4mm. (b) The empirical cumulative distribution function ex-
tracted from the thickness map above. The black crosses are the estimated values of the cumulative
distribution function while the red dashed line is a Gaussian distribution that has been fitted to the data.
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given by:

f(x1, x2, x3, ..., xN |m, s) = f(x1|m, s)f(x2|m, s)f(x3|m, s)...f(xN |m, s) (2.3)

where m and s are the mean and standard deviation of the distribution and xi are a set of

observations. Alternatively, this can be though of in terms of the likelihood function, which is

defined as:

L(m, s|x1, x2, x3, ..., xN) = f(x1, x2, x3, ..., xN |m, s) (2.4)

where L is the likelihood of the parameters µ and σ given xi. The larger the likelihood of a pair

of parameters (µ,σ), the better the fit of model to the data.

Maximisation of the likelihood will provide a best estimate for the parameters given the ob-

served data. In practice the likelihood is normally expressed as the log-likelihood as it is often

easier to work with:

L(µ, σ|x1, x2, x3, ..., xN) = log(L(µ, σ|x1, x2, x3, ..., xN)) =
N∑
n=1

f(xi|µ, σ) (2.5)

as the logarithm is a monotonic function, maximisation of equation 2.5 is equivalent to maximisa-

tion of equation 2.4. For the normal distribution the log-likelihood function is given by:

L(µ, σ|x1, x2, x3, ..., xN) =
−1

σ
√

2π

N∑
i=1

(x− µ)2

2σ2
(2.6)

Maximisation of this function will provide estimates for the parameters of the normal distribution

given the set of data. There are alternative methods to maximum likelihood estimation. such as

the method of moments and least squares regression. However, in this thesis, MLE estimation is

used exclusively as maximum likelihood methods are very flexible and they can be used to estimate

distributional parameters for a large variety of problems.

The Gaussian distribution provides a good fit to the set of data, as shown by the red dashed

line in figure 2.1b. Both the ECDF and the fitted distribution are models for the thickness

measurements in the inspection area (blue area in figure 1.2). Both models provide information

on the average behaviour of the thickness measurements. However, condition assessment is most
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concerned with assessing the largest extent of the wall loss in a component. From a constructed

model, the probability that x is the smallest thickness in an area the size of the inspection area

is F ′(x) = 1 − F (x). Consequently, the probability that x is the smallest thickness in an area N

times the initial inspection area is given by:

F ′n(x) = F ′(x)N = (1− F (x))N (2.7)

where F ′n(x) is an empirical distribution of the smallest thickness in an area N times the inspection

area. Hypothetically, a fitted distribution such as equation 2.2 could be used with equation 2.7 to

compute the exact analytical form of the distribution of the minimum thickness in a given area.

However, any small inaccuracy in F ′(x) will be magnified in F ′(x)N .

An alternative approach is to accept that F ′ is unknown and to look for a limiting form of the

distribution F ′N . Extreme value analysis describes such an approach. It shows that, under certain

assumptions, the distribution of F ′N will be a generalised extreme value distribution (GEVD). In

this chapter, the theory behind extreme value analysis (EVA) will be described with a review of

existing literature concerning its application to inspection data. This will be followed by a simple

example of the process of generating an extreme value model from a sample of simulated inspection

data.

2.2 Extreme value analysis (EVA)

The study of extreme values is a well-developed topic, finding applications to topics as varied

as finance [38, 39], structural design [40, 41, 42], environmental modelling [43, 44] and even the

assessment of risk of terrorist attacks [45]. Its use for analysis of corrosion data is discussed in [31].

Kowaka provides a number of examples of the use of extreme value analysis to extrapolate from

C-scans of reduced areas of a plant to larger areas of components. Further examples are provided

in [46, 23, 26, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57].EVA gained limited popularity in Japan in

the 1970s. However, due to the lack of available computational power, processing large amounts

of C-scan data was infeasible, which led to it falling out of favour.
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In recent years, the use of an extreme value approach has regained popularity. A report

prepared for the Health and Safety Executive (in the UK) assessed current available methods and

the barriers to their adoption. It concluded that there are readily available statistical methods for

the analysis of corrosion data. However, these methods are not used due to poor dissemination to

engineers and the lack of any readily available computational tools [24]. The report also mentions

that extreme value theory can be used to extrapolate from sample inspection data to assess large

areas of a plant. This extrapolation technique was first developed in the 1970’s. Hawn made

probabilistic assessments of the condition of an underground pipeline. He used EVA to show that

the size of corrosive pits would not exceed a given limit in an area 5820 times the initial inspection

area [23].

Previous examples of EVA take advantage of the Fisher-Tippet-Gnedenko theorem [58] which

provides a limiting form for equation 2.7 (the probability of obtaining a minimum thickness x in

an area N times the inspection area). The theorem shows that in the limit N →∞ equation 2.7

is a generalised extreme value distribution (GEVD):

Φ(x|µ, σ, k) = 1− exp

{
−
[
1 + k

(
x− µ
σ

)]−1/k}
(2.8)

where µ is the location parameter, which determines the size of the minima; σ is the scale param-

eter, which determines the spread of the minima; and k is the shape parameter, which determines

the shape of the distribution. The shape parameter can loosely be thought of as controlling the

skewness of the distribution, that is the difference between the mean and the median of the dis-

tribution. Φ(x|µ, σ, k) is the probability of measuring a thickness minimum of less than x. A full

discussion of a suitable size for N for equation 2.8 to be a valid model can be found in chapter 3.

Examples of GEVDs are shown in figure 2.2.

Equation 2.8 can be used as a model for the smallest thickness measurement in a prescribed

area. However, for this to be possible, an inspector must calculate values of µ, σ and k. With

a standard statistical model this can be accomplished by fitting the model to the collected data.

From the authors experience thickness minima are usually modelled using distributions with k ≤ 0,

real examples of this can been found in Hawn [23, 27, 46]. The derivation of equation 2.8 is based on
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Figure 2.2: Three examples of the probability density function of the generalized extreme value distribu-
tion with different values of the shape parameter(k). The blue, red and black lines are the probability
density functions for distributions with shape parameters of k = −0.5, 0, 0.5 respectively. Each distribu-
tion has the same location (µ) and scale (σ) parameters. The undamaged thickness of the component in
these examples was 10mm. From the authors experience, thickness minima can usually be modelled by
distributions with k ≤ 0. An example of a distribution with k > 0 has been included here for complete-
ness. This type of distribution could occur, for example, if a process in the component was causing a
build up of deposits. In this thesis components only undergoing wall loss are considered so distributions
with k > 0 are not discussed.
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the convergence the sequence of renormalised thickness measurements. The shape of distribution is

determined by the the way this sequence converges, which depends on the family of distributions the

thickness measurements belong to. The thickness distributions studied in this thesis are restricted

to be Gaussian and exponential, which both lead to extreme value distributions with k ≤ 0 [41].

In practice, it would be unusual for a GEVD with k > 0 to occur in components undergoing only

wall loss as this would imply wall thickness growth.

An extreme value (EV) model is a model for the minimum thickness in an area as opposed

to the thickness. An inspector requires a sample of thickness minima to calculate values of µ, σ

and k. A sample of minima can be extracted from a number of different thickness maps from

different areas [23], or from a single thickness map [31]. Performing multiple inspections to obtain

different thickness maps can often be infeasible for the reasons discussed in chapter 1. As a

consequence, selecting a sample of minima from a single thickness map is often the best option for

PCI applications. A sample of minima can be selected from a thickness map by dividing the map

into a number of equally sized blocks (shown in figure 2.3). The minimum thickness is selected from

each of these blocks. These measurements form a set of minima which can be used to calculate the

parameters in equation 2.8. An example of a histogram of a set of 100 thickness minima extracted

from a correlated Gaussian surface with RMS height 0.1mm and correlation length 2.4mm is

shown in figure 2.4. Each thickness measurement is represented by a bar, the height of which is

proportional to the frequency of the measurement occurring. A GEVD, which has been fitted to

the set of minima, is shown by the red line. The GEVD provides a good description of the data.

2.3 Discussion

Currently, EVA is not widely used with inspection data for a number of different reasons. At

the time of writing, there are no guidelines as to when EVA will be a suitable tool for analysing

inspection data. EVA makes the assumption that the thicknesses in each block used to extract the

minima are independent and identically distributed. DNV’s classification scheme (summarised in

table 1.1) provides a useful point of reference when discussing this [3]. It should be kept in mind

that this classification system, although it is in use in the field, should not be taken as an absolute
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Figure 2.3: An example of a thickness map split into 25 blocks. From each block the minimum thickness
(highlighted in red) is selected. This set of measurements form a sample of minima for the construction
of the EV model.
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Figure 2.4: A histogram of a set of 100 thickness minima extracted from a correlated Gaussian surface
with RMS height 0.1mm and correlation length 2.4mm. Each thickness measurement is represented by
a bar, the height of which is proportional to the frequency of the measurement occurring. The extreme
value model which has been fitted to this set of minima is shown by the red line. The distributional
parameters are shown in the top left corner.
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authority on the types of damage that could occur. There is much more subtlety in the types

of damage that could occur than can be described by categorical classification. However, for the

purposes of describing the situations in which EVA it is a useful tool.

For some types of degradation the damage mechanisms will be slow and uniform across the

entire component (type A in DNV’s guidelines [3]), while some types of degradation can be aggres-

sive and unpredictable (type C in DNV’s guidelines [3]). Type B degradation encompasses most

of the types of damage in-between. The degradation is usually progressing at a low to medium

rate and any localised areas of degradation occur at predictable locations.

An inspector would be able to use EVA to build a model for type A degradation as EVA’s

assumptions will be met in the inspection area and the assumption is made that this area is

representative of the remainder of the component. In contrast, it would be unsuitable for type

C degradation as EVA’s assumptions will not be satisfied by the inspection data nor will it be

likely that the inspection area is representative of the remainder of the component. For type B,

the decision is less clear, as different modes of damage can occur in different areas the inspector

must have further information about the vessel in order to be sure EVA is a suitable tool.

Without suitable information about the types of damage occurring across the vessel an inspector

can not be confident in the extreme value model regardless of the damage classification. The type of

damage that is occurring can change over time or may not have been correctly identified in the first

place. This can lead to the inappropriate classification of a component. This is a particular issue

with type A damage as the assumption is made that the damage is occurring slowing and uniformly.

Over time this could change. Small isolated defects could occur due to, for example, changes in

operating conditions. Therefore any PCI inspection, particularly a scheme based on EVA, must

be accompanied by screenings of the full vessel in order to confirm whether the assumptions made

for PCI are valid. At the moment an inspector relies on their judgement to determine when this

is the case, which is not ideal as it can be prone to human error. For an inspector to be truly

confident in an EV model guidelines to determine when it is a suitable tool are required.

In addition to this there is no established method for selecting a block size. This is a key step

in constructing an extreme value model. To generate a model one requires a sufficient sample size,
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which requires a smaller block size. However, the smaller the block size the more likely that the

thickness selected will not be an example of an extreme of the distribution. Current methods for

selecting block sizes focus on examining the fit of the GEVD to the set of minima selected using

that block size [59, 60]. However, these methods often do not ensure that the underlying thickness

measurements satisfy the assumptions made by EVA.

There is a clear need for a structured approach to constructing EV models from inspection

data. Such an approach will ensure that the assumptions made by EVA are met by the data and

that an appropriate block size is selected. In the next chapter the development of such a framework

is detailed, outlining an approach for selecting block sizes by ensuring that there is evidence the

thickness measurements in each block are independently and identically distributed. Following

this, chapter 4 investigates the uncertainties associated with an assessment of the minimum wall

thickness of a component based using EVA.
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Chapter 3

Block Size Selection

3.1 Introduction

A major problem with existing applications of EVA to corrosion data is that the analysis is depen-

dent on the judgement of the analyst and does not necessarily check that the data is suitable for

EVA (i.e. they do not check that there is evidence the assumptions made by EVA are fulfilled).

For example existing methods for selecting a suitable block size have focussed on examining the

fit of the GEVD to the set of minima selected using that block size. Glegola selected a block size

by extracting sets of thickness minima using multiple block sizes [59]. For each set of minima the

quality of the fit to the GEVD was examined and the block size which gave the best fit to the

GEVD was used for the analysis.

Figure 3.1 shows the probability plot of two different extreme value models extracted from a

200 by 200mm correlated Gaussian surface using block sizes of 20mm (red crosses) and 40mm

(blue crosses). Empirical cumulative distribution functions for each set of minima were calculated

using equation 2.1 and plotted on a scale such that the points will lie on the black dashed line if

they are a good fit to the extreme value model. Both of these models capture the majority of the

thickness minima well; the majority of the thickness minima in each set lie on a straight line. For

the 20mm block size R2=0.95, while for a block size of 40mm, R2=0.97. This suggests that the

40mm case is a better model for the thickness minima. However, as the difference is so slight, this

metric cannot be used in isolation to make a decision on the most suitable block size. An inspector
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must use their judgement to make a decision.

The EV model constructed using a 40mm block size models the smallest thickness measure-

ments more accurately. For EVA of inspection data, these are the most important measurements.

Therefore, in this case, the inspector should use a block size of 40mm. As a general rule, the larger

the block size, the better the model will capture the behaviour of the smallest thickness minima,

assuming the underlying thickness distribution meets the assumptions made by EVA.

An EV model may show a good fit to the majority of the data, but if it does not accurately model

the smallest measurements then it is not a good model for condition assessment purposes. Model fit

does not provide a perfect method for selecting a block size to construct an EV model for condition

assessment, but it can be used alongside the inspector’s judgement to build an effective model.

Schneider described an alternative approach. He selected a block size to ensure that the minima

from each block were independent [52]. Schneider examined the two dimensional autocorrelation

function of the thickness map and chose a block size, L, such that thickness measurements separated

by L were weakly correlated. In contrast to Glegola’s method this approach chooses a block size

based on one of the assumptions of EVA. However, in addition to the independence of thickness

measurements, EVA also assumes that the probability distribution of thickness measurements in

each block is identical.

Ensuring that there is evidence that both of these assumptions are met is key to implementing

an extreme value model for partial coverage inspection. Thickness maps from corroded compo-

nents are often complex as they undergo damage from different modes (e.g. pitting corrosion as

opposed to uniform corrosion). Each damage mode will produce a different thickness measurement

distribution. If one naively builds an extreme value model, the complexity of the surface can vio-

late the assumptions of an extreme value model. Due to the risks involved in drawing conclusions

from an inappropriate model (e.g. component failure leading to loss of life), an analyst should

gather a body of evidence which supports their choice of model. This will reduce the chance that

an inappropriate model will be used for PCI.

In summary, the current state of the art offers methods for building extreme value models

from inspection data which can lead to subjective models as they rely on the judgement of the
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Figure 3.1: An extreme value probability plot of two sets of minima extracted from a 200 by 200mm
correlated Gaussian surface with mean thickness 10mm, RMS=0.1mm and correlation length 2.4mm
using block sizes of 20mm (red crosses) and 40mm (blue crosses). The scale of the axes has been designed
such that, if the model provides a good description of the data, then the crosses will lie on a straight line
(the black dashed line drawn through each set of points). For the 20mm block size the R2=0.95, while
for the 40mm block size was R2=0.97.

44



analyst rather than compliance to an objective set of requirements. In this chapter a data analysis

procedure is introduced that checks that all of EVA’s assumptions are met and which an analyst

can refer to when developing extreme value PCI models. This is a novel contribution to the field,

there is currently no established framework for the construction of extreme value models from

inspection data. This chapter begins with a description of the framework in which EVA can be

applied to ultrasonic thickness maps of corroded engineering components (section 3.2). Section 3.4

presents evidence that the presented approach yields sensible results when applied to simulated

surfaces and data acquired by ultrasonic measurements. This is followed by a discussion of these

results and conclusions (section 3.6). The majority of this chapter has been submitted to Corrosion

Science as part of a paper.

3.2 Blocking procedure to check EVA’s assumptions are

met (Blocking algorithm)

Schemes to partition thickness maps must tread the line between ensuring there are a sufficient

number of sample minima and that the thickness measurements selected are extreme deviations

from the median thickness. Too large a block size and there will not be enough minima to extract

parameters for the GEVD; too small and the sample will not be representative of the extremes

of the thickness distribution. An effective scheme will balance these requirements whilst ensuring

that there is evidence that the assumptions made by EVA are met by the inspection data.

In this light, this chapter describes a framework for checking that all of EVA’s assumptions

are met prior to building a model. First, we check the independence of the underlying thickness

measurements by calculating the autocorrelation function of the thickness map:

C(x′, y′) =

∫ ∞
−∞

∫ ∞
−∞

T (x, y)T (x′ − x, y′ − x)dx′dy′ (3.1)

where C(x′, y′) is the correlation between a thickness measurement T (x′, y′) and T (x, y). C(x′, y′)

is a two-dimensional surface reflecting the fact that the thickness map spans two horizontal di-
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mensions, described by the x and y coordinates.

The surfaces studied in this thesis have been restricted to isotropic autocorrelation functions.

Consequently, the autocorrelation function for all of the test cases is symmetric in the x and y

directions and all the information about the correlation structure can be obtained from C(x′, y′ =

0). This is easily expandable to non-isotropic surfaces as the autocorrelation function can be

calculated in any direction. Figure 3.2 shows an example of an autocorrelation function calculated

from one of the test surfaces. The ordinate axis is the correlation between two measurements,

where 1 indicates perfect correlation and 0 indicates no correlation, while the abscissa is the

distance between the pair of measurements. Measurements separated by smaller distances are more

correlated, which indicates that measurements closer together are likely to be interdependent.

It is common practice to define a correlation length λc for a surface, which is defined as

C(λc) = exp(−1). Using the correlation length, one can define a distance at which one can

ensure two measurements are uncorrelated and likely to be independent. Figure 3.2 shows that

the autocorrelation function of the surface has dropped to zero at a distance of 2λc, therefore it

is imposed that measurements must be at least 2λc apart in order to guarantee that data points

are uncorrelated. Once a correlation length has been calculated, the surface is partitioned into a

number of equally sized blocks. For the 200mm square surfaces studied in this chapter, we chose

block sizes ranging from 10 to 60mm. Starting with the smallest block size, a random sample of

thickness measurements, including the minimum thickness measurement, is selected from every

block. The sample is chosen such that every thickness measurement is separated by 2λc, which

ensures that the thickness measurements in the sample are independent of each other. The algo-

rithm then checks the random samples from every pair of blocks are from the same underlying

thickness measurement distribution using a two sample Kolmogorov-Smirnov (KS) test [61].

The two sample Kolmogorov-Smirnov test is a non-parametric hypothesis test for whether two

random samples come from the same distribution. For a pair of blocks, the algorithm calculates

the ECDFs for a random sample of thickness measurements from each block, an example of which

is shown in figure 3.3. The largest vertical distance, denoted by D in figure 3.4, is extracted from

between pair of ECDFs. This is the test statistic for the two-sample Kolmogorov-Smirnov test.
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Figure 3.2: Autocorrelation function of a Gaussian surface generated with RMS=0.2mm and correlation
length 2.4mm, showing the estimated correlation length λc and that the function drops to nearly zero at
a distance of 2λc.
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Figure 3.3: A pair of ECDFs generated from adjacent blocks. The Kolmogorov-Smirnov test extracts the
largest vertical distance between the ECDFs and compares it to a critical value.
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If one assumes that both samples are from the same probability distribution, the probability

distribution of the test statistic can be calculated [61]. This is particularly useful as it provides

information on how likely the difference between a pair of ECDFs given that they represent the

same distribution. For example, using this distribution, an inspector can specify a level at which

the distance between the between the two ECDFs becomes large enough that they deem it to be

significant.

Figure 3.4 shows the probability density function of D. Integrations of this curve give the

probability of measuring different values of the test statistic. If the probability of measuring D

is high, the thickness measurements are from the same distribution, if it is low it’s unlikely the

samples are from the same distribution. This is formalised by defining a null and alternative

hypothesis:

H0 : The thickness distributions are the same.

Ha : The thickness distributions are not the same.

along with a user specified significance level, which is the probability at which the user deems

it unlikely that the differences due to sampling variability (p in figure 3.4). This user specified

significance level is shown by the red region of figure 3.4. If the test statistic lies in this region then

the test would reject H0 and the measurements would be deemed to be from different distributions.

Selection of a significance level is an important part of this process. Too large a significance

level and the user risks rejecting samples which are from the same distribution, while with too small

a significance level there is a risk samples from different distributions will be selected. Significance

level selection is not a trivial matter as suitable levels of significance can vary from application

to application. In this thesis, significance levels of 0.01 and 0.05 are used, as these are commonly

used in statistical literature. These correspond to values of D that would occur only 1% or 5% of

the time if the samples arose from the same distribution.

The algorithm performs a two-sample KS test on the random samples from every pair of blocks.

If a single pair of blocks fails the two sample KS test, then the algorithm increases the block size

and repeats the blocking process. Otherwise, if every pair of blocks does not fail the two sample
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Figure 3.4: Kolmogorov probability density function and illustration of a a hypothesis test to check if two
sample are from the same distribution.
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KS test, the algorithm has found a block size for which there is evidence the distribution in each

block is identical. The sample of thickness minima extracted using this block size can then be

used to build an extreme value model for the thickness map. The parameters for the GEVD are

then extracted from the sample of minima selected by the algorithm using maximum likelihood

estimation (MLE) [62].

In summary, figure 3.5 shows a graphical form of the proposed algorithm. For the smallest block

size, the thickness map is split into equally sized blocks and a two-sample Kolmogorov-Smirnov

test is performed on the distributions from every pair of blocks. This tests that the thickness

measurements in each block are from the same distribution. If the tests show that the thickness

distribution is the same in every block, the algorithm terminates and this is the correct block size.

Otherwise, the algorithm repeats this process for the next largest block size until there are no

remaining block sizes and we conclude that the inspection data is not suitable for EVA. In this

way the algorithm is selecting a block size by looking for evidence that the partitioned data meets

the assumptions made by EVT.

3.3 Simulation set up

Surfaces produced by corrosion are generated by a large number of independent, random events.

Although the height probability distributions of these events may be very different, the overall

distribution will tend to a Gaussian [36]. There is strong evidence in the literature to support

this claim, for surfaces generated by general uniform corrosion [63, 36, 2, 64]. For more localised

corrosion, the height distribution can follow exponential distributions [27, 26, 2]. The type of

corrosion that can be expected depends on the damage mechanism that is most likely to occur in

the vessel, for the internal operating conditions (temperature, pressure) and chemical conditions

(pH, species present). For the purposes of this study, we restrict ourselves to surfaces generated

by a general uniform corrosion mechanism.

To demonstrate that a Gaussian profile is representative of the type of damage which should

be expected in the case of general corrosion, surface profile measurements were taken from a pipe

sample. The sample was retired from a unit exposed to high temperature sulfidation corrrosion
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Figure 3.5: A flow chart of the proposed blocking method. A user will input an ultrasonic thickness map
and the algorithm will split it into a number of equally sized blocks. The blocks will then be tested to
ensure that there is evidence they meet the assumptions made by extreme value analysis.
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(a uniform corrosion mechanism). A TalysurfTMsurface profile measurement instrument [65] was

used to measure the profile. TalysurfTMdraws a stylus across the surface of the material, measuring

the deflection of the stylus with an interferometer, extracting the surface profile. Several height

profiles from around the inner radius of the pipe were measured. An example of a histogram of

the measured heights is given in figure 3.6.

Rough surfaces were generated using the algorithm described by Oglivy [63]. Other approaches

exist [66], however Oglivy’s was chosen due to it’s computational simplicity. Oglivy’s method

performs a moving average on a set of uncorrelated random numbers, which produces a set of

Gaussian correlated random numbers. The probability distribution function of such a surface is

given by:

p(zi) =
1√
2π
exp(

z2i
2σ2

) (3.2)

where zi is the height of the point at position i above the plane of the mean level of the surface and

σ is the r.m.s. surface variation, which controls the vertical extent of the roughness. The algorithm

commences by drawing a sequence of 2N uncorrelated Gaussian distributed random numbers, vi,

such that:

σ2
v = 〈v2i 〉 =

1

2N + 1

N∑
i=−N

v2i (3.3)

The sequence of random numbers is correlated using a series of weights, such that:

zi =

j=M∑
j=−M

wivi+j (3.4)

where the weights, wj, are normalised:

j=M∑
j=−M

wi = 1 (3.5)

The aim is to pick these weights such that the resulting sequence in equation 3.4 are correlated,

in the horizontal direction, with a Gaussian weighted correlation function:

C(x) =
< h(x0 >< h(x0 + x) >

h2
= exp(

x2

λ2c
) (3.6)
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Figure 3.6: A histogram of the Talysurf measurements extracted from several lines (100mm in length)
of the inner surface of a pipe (mean thickness 7.7mm) which has undergone sulphidation corrosion. The
black line is a Gaussian, whose parameters have been estimated from the measurements which have been
expressed as a deviation from the mean thickness of the pipe. This figure is taken from a published article
by the author [1].
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with a correlation length λc, which controls the distance at which the heights of two points be-

comes statistically independent. The weights can be calculated by comparing equation 3.6 to the

correlation function as calculated from the height of each point above the surface. It is shown by

Oglivy that these weights are given by:

wi = exp(−2(iδx)2

(2λ0)2
) (3.7)

The script used to generate the rough surfaces is the same as in [14] and implemented in

MATLAB[67]. Full details of the roughness generation algorithm can be found in Ogilvy[63]. Sur-

faces which have different correlation lengths in different directions do occur in practice. However,

throughout this thesis an isotropic correlation length is used. Methods to generate non-isotropic

correlation profiles can be found in Hu[66]. Examples of the thickness maps and CDFs produced

by Oglivy’s algorithm can be seen in figure 3.7

The blocking algorithm was tested using a large number of both Gaussian and exponential

surfaces. Gaussian surfaces were generated using sequences of uncorrelated random numbers drawn

from a normal distribution, while the exponential surfaces were generated with sequences drawn

from an exponential distribution. Correlated surfaces were generated from these sequences using

a weighted moving average with weights chosen such that points on the surface had a root mean

squared (RMS) height of 0.1, 0.2 and 0.3mm (examples of Gaussian and exponential surfaces with

RMS=0.3mm can be seen in figure 3.7b), a mean position of 10mm and a Gaussian autocorrelation

function.

For both the Gaussian and exponential height distributions 1000 200 by 200mm surfaces were

generated (with a distance of 1mm between each measurement in both the x and y directions) and

each surface was processed using the blocking algorithm, with candidate block sizes ranging from

20 to 60mm (in steps of 5mm). If the algorithm successfully chose a block size for the surface an

extreme value model was generated using that block size. This model was validated using the scan

return period:

SRP =
R(tmin)

Nblocks

=
1

Φ(tmin|µ, σ, ξ)Nblocks

(3.8)

where Nblocks is the number of blocks the thickness map has been partitioned into, tmin is the

smallest thickness across the surface and R(tmin) is the return level for the smallest thickness
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Figure 3.7: (a,b) Example thickness maps from correlated Gaussian surface (a) and correlated exponential
surface (b) with RMS height 0.1mm and correlation length 2.4mm, showing the position of each measure-
ment with each point colour coded proportional to its magnitude. (c) Empirical cumulative distribution
functions calculated from the Gaussian (blue) and exponential (red) thickness maps. The ordinate axis
shows the probability of measuring a thickness of less than the corresponding value on the abscissa.
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measurement (equation 4.6). If the model adequately describes the surface then SRP ≈ 1 as

there is at least one thickness measurement of tmin. Therefore, this metric provides evidence of

the quality of the extreme value model for that surface.

In the remaining sections of this chapter, the performance of the algorithm described in section

3.2 above will be tested using a large number of surfaces generated using the algorithm described

in section 3.3. The SRP defined in equation 3.8 will be used to examine the behaviour of the

algorithm with different significance levels and conclusions about the suitability of the algorithm

will be drawn.

3.4 Performance of the algorithm

The statistics of the block sizes and scan return periods were calculated to examine the performance

of the algorithm. Figures 3.8a, 3.8b, 3.9a and 3.9b show histograms of the block sizes selected

for each surface. The histograms are a visualisation of the distribution of the block sizes. For

each block size, the number of surfaces for which that block size was selected is visualised using a

bar. The height of the bar is proportional to the number of surfaces for which that block size was

selected.

Figure 3.8a shows the distribution of the blocks selected for Gaussian surfaces using a signifi-

cance level of 0.01. The black, grey and white bars show the results from surfaces with RMS=0.1,

0.2 and 0.3mm. The mode block size selected by the algorithm for the Gaussian surfaces is 40mm.

For comparison, the mode block size for the exponential surfaces (figure 3.9a) was 35mm for both

RMS=0.2 and 0.3mm, and 30mm for RMS=0.1mm. This difference originates in the height distri-

butions of the surfaces. For an exponential distribution, the average deviations from the median of

the distribution are larger than for a Gaussian distribution. Consequently, one requires a smaller

number of thickness measurements and therefore a smaller block size to measure an extreme than

with a Gaussian distribution.

The mode block size of 40mm corresponds to thickness minima sample sizes of 25 for the

Gaussian surfaces and the mode block size of 35mm corresponds to 32 sample minima for the

exponential surfaces. In general this was a sufficient number of minima to be confident about the
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Figure 3.8: Histograms of the number of Gaussian surfaces against block size at different significance
levels, showing the number of surfaces for which the algorithm has selected a given block size. With a
significance level of 1%, the algorithm could not find a suitable block size for 1% of the surfaces, this
increased to 20% with a signficance level of 5%.

58



20 25 30 35 40 45 50 55 60
0

50

100

150

200

250

300

350

400

Block Size/mm

N
u
m

b
e
r 

o
f 
s
u
rf

a
c
e
s

 

 

0.1mm

0.2mm

0.3mm

RMS

(a) Significance level 1%

20 25 30 35 40 45 50 55 60
0

50

100

150

200

250

300

350

400

Block Size/mm

N
u
m

b
e
r 

o
f 
s
u
rf

a
c
e
s

 

 

0.1mm

0.2mm

0.3mm

RMS

(b) Significance level 5%

Figure 3.9: Histograms of the number of exponential surfaces against block size at different significance
levels, showing the number of surfaces for which the algorithm has selected a given block size. With a
significance level of 1%, the algorithm could not find a suitable block size for 3% of the surfaces, this
increased to 30% with a signficance level of 5%.
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quality of the generated extreme value model. However, there are a fraction of the surfaces for

which a block size of greater than 50mm has been selected, which corresponds to smaller samples of

minima (16 for 50mm and 9 for 60mm). Consequently the models generated using these block sizes

will produce poor descriptions of the surface as there is less information from which to estimate

the model parameters. This is evident in figures 3.10a and 3.11a which show the distribution of

the SRPs for the models generated by the algorithm. The mode scan return period is around

1 for both types of surface, which is expected from our definition of SRP. However, some of the

models have a very large SRPs. These models were generated using the larger block sizes (and the

associated smaller sample sizes). In these cases the algorithm has required a much larger block size

in order to find a sufficient level of evidence that the thickness measurements come from identical

distributions.

This level of evidence is determined by the choice of the significance level of the KS test. A

lower significance level means that the algorithm requires less evidence that the distributions are

identical, increasing it raises the amount of evidence required. When the blocking algorithm fails

to find a suitable block size we conclude that there is insufficient evidence that the assumptions

made by EVA are met by that surface. As with any method, there are circumstances in which

EVA is suitable and those in which it is not. Although the assumptions made to generate the

surfaces are congruent with those of EVA, each surface is a random process. Consequently, it will

not necessarily show evidence that the assumptions of EVA are met.

Figures 3.8b and 3.9b show the distributions of block sizes using a significance level of 0.05 for

the Gaussian and the exponential surfaces respectively. The mode block sizes remain the same,

however, there are no longer any surfaces for which a block size of greater than 50mm has been

selected. In fact, the algorithm has failed to find a suitable block size for around 20% of the

Gaussian surfaces and 30% of the exponential surfaces, compared to 1% and 3% at a significance

level of 0.01. These surfaces mostly correspond to the larger block sizes in figures 3.8a and 3.9a.

As a result the distributions of SRPs at a significance level of 0.05 (figures 3.10b and 3.11b) do not

show SRPs greater than 5. For the surfaces in this chapter, this indicates that a significance level

of 0.05 leads to models which more accurately describe the surface. As a general rule, an inspector
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should choose the largest possible significance level as this ensures that the blocking algorithm

does not produce models with very large SRPs.

Figures 3.12 and 3.13 show box plots of the SRP for each block size for the Gaussian and the

exponential surfaces. Box plots provide a visualisation of the distribution of the SRP calculated

from each model. The interquartile range (IQR), represented by the length of each box, is the

bounds within which half of the values of SRP lie. The median of the distribution is shown by the

line in the middle of each box and the whiskers show the range (scan return periods within the

1% and 99% quantiles) which does not contain any outliers. Any values outside of this range are

plotted individually as crosses.

Figures 3.12(a),(b) and (c) show the box plots for Gaussian surfaces with RMS=0.1,0.2 and

0.3mm at a significance level of 0.01. The black dashed line on the figures indicates a scan return

period of 1. For block sizes of 55 and 60mm, the median scan return period deviates significantly

from 1, as the models using these block sizes rely on a small number of minima. There are also a

number of large outliers for some of the smaller block sizes. With a significance level of 0.05, there

is a large reduction in the number of outliers shown in figures 3.12(d),(e) and (f) and there are no

longer any models generated using block sizes greater than 50mm. The average deviation of the

median from the black dashed line is also reduced. This is a consequence of the more stringent

requirements for surfaces deemed suitable for EVA.

This pattern is continued for the exponential surfaces. Figures 3.13(a),(b) and (c) show the box

plots for exponential surfaces with RMS=0.1,0.2 and 0.3mm at a significance level of 0.01. The

median of the SRP for the models generated for each block size was close to 1 with IQRs of around

2 scans. In a similar manner to the Gaussian surfaces, the median SRP deviates significantly from

1 for block sizes greater than 40mm, which indicates that these models are poor descriptions of the

data. At a larger significance level of 0.05, there is a reduction in both the IQR for each set of data

and the number of outliers shown in figures 3.12(d),(e) and (f). This suggests that making the

test requirements more stringent increases the quality of the models produced by the algorithm.
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Figure 3.10: Histograms of the number of Gaussian surfaces against scan return period at different
significance levels. With a significance level of 1%, scan return periods ranged as far as 14 scans, which
corresponded to block sizes greater than 40mm. On increasing the significance level to 5%, the algorithm
did not select a block size for these surfaces and the range of scan return period decreased.
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Figure 3.11: Histograms of the number of exponential surfaces against scan return period at different
significance levels. With a significance level of 1%, scan return periods ranged as far as 14 scans, which
corresponded to block sizes greater than 40mm. On increasing the significance level to 5%, the algorithm
did not select a block size for these surfaces and the range of scan return period decreased.
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3.5 More realistic corrosion

3.5.1 Introduction

The research into EVA presented in this chapter has exclusively dealt with inspection consisting

of a single thickness distribution. This is the type of thickness measurement distribution expected

to be produced by a general corrosion mechanism, a type A degradation mechanism (table 1.1).

In real in-service components degradation can occur by multiple mechanisms simultaneously. An

example of a thickness map measured as part of an inspection of an operational subsea oil pipeline

is shown in figure 3.14 (an example of a type B damage environment).

Figure 3.14 is clearly different from other examples of thickness maps in this thesis (e.g. figure

2.1a). There are areas over which a localised degradation mechanism (pitting) is occurring (the

green and red areas in the image). In these areas the thickness measurement distribution is different

than across the other (blue areas) of the thickness map. This poses a problem for an inspector who

wants to use EVA. If they partition figure 3.14 into a number of equally sized blocks, the thickness

measurements in each block and, therefore, the minima, will originate from different distributions.

This will violate the assumptions made by extreme value theory. A model constructed from this

set of minima will be incorrect.

The ability to handle the data collected from real components is key to increasing the usage

of EVA in industry. The framework outlined in this thesis offers a route to achieving this goal.

The blocking algorithm in chapter 3 would fail to find a suitable block size for figure 3.14 as the

thickness distributions in each block would be different. If the inspector possessed a method to

determine which blocks contain localised corrosion and which do not, then they would be able to

classify each minimum belonging to either the localised distribution or the general distribution.

This would result in two (or more) sets of minima, each corresponding to a different damage

mechanism. An extreme value model could then be constructed for each of them.

Classification can be achieved by hand. An inspector will be able to see which blocks correspond

to the localised corrosion and which do not. However, in some cases it can be hard to distinguish

between the localised areas and the general distribution. This becomes particularly difficult when
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Figure 3.14: An example of a thickness map taken from a subsea pipeline. Reproduced from Stone [2,
fig. 1].
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there are more than two thickness measurement distributions present (the result of many different

degradation mechanisms). A method of automating damage classification, to separate out the

thickness distributions, is required.

An initial investigation into a method of achieving this goal is described in this section. This

investigation used an approach which tried to determine a threshold separating the thickness

distributions associated with the pitting and the general corrosion. A basic example of the use of

this approach is presented, showing that it can achieve some separation between the general and

pitting corrosion distributions with simulated inspection data. However, there are a number of

limitations to this type of approach. The section concludes with a discussion of these shortcomings

with highlights for further work and lines of investigation.

3.5.2 Pit selection algorithms

Localised corrosion often results in clusters of thickness measurements which are significantly

smaller than the majority of the thickness measurements. This is usually exhibited in an ECDF

of the thickness measurements as an exponential tail, an example of which is shown in figure 3.15.

Figure 3.15 is a ECDF of thickness measurements collected as part of an inspection of an in-service

separator undergoing corrosion [2].

The points enclosed in the red ellipse are the pitting tail, while those in the blue box are a

general degradation mechanism. A review of ECDFs by Stone showed that localised corrosion

is usually exhibited by these exponential-like tails [2]. There is a clear transition in figure 3.15

between the measurements associated with general corrosion (highlighted by a black dashed line).

The aim of the algorithm in this section is to calculate the thickness at which this transition occurs.

Figure 3.16 shows an example of simulated inspection data from across an area in which localised

pitting is occurring. The depth of the pits was simulated using the gamma-process model described

by [68]. The resulting surface was overlaid with a correlated Gaussian roughness generated using

the algorithm described in section 3.3. A colour map of the resulting inpsection data is shown in

figure 3.16a and the corresponding ECDF in figure 3.16b. For the purposes of this discussion this

simulated inspection data is used to demonstrate how the method works.
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Figure 3.15: An ECDF extracted from an inspection of an in-service separator undergoing corro-
sion.Reproduced from Stone [2].
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Figure 3.16: (a) A colour map of simulated inspection data from across a numerically generated pitted
surface. (b) The empirical cumulative distribution function calculated from the colour map shown in (a)
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As an initial step the inspector chooses a threshold. The thickness measurements above this

threshold are used to generate an ECDF. This ECDF is compared to the ECDF of all of the

thickness measurements using a two sample Kolmogorov-Smirnov test (see section 3.2). If the test

determines that the ECDFs are the same distribution, then the inspector increases the threshold

and repeats this process. If the test determines that the ECDFs are different, then the inspector

has found a threshold separating the two distributions. This algorithm is summarised in figure

3.17.

This algorithm was used to process the thickness measurement distribution shown in figure 3.16.

The initial threshold was chosen to be the smallest thickness measurement across the thickness

map (8.7mm). At each step of the algorithm this threshold was increased by 0.05mm, until the

ECDFs were significantly different (as determined by the KS test). For this data, the algorithm

selected an threshold of 9.58mm.

Figure 3.18 shows a comparison of the ECDF of all of the thickness measurements (blue) with

the ECDF of all the thickness measurements above the threshold (red). The threshold selected

by the algorithm is shown as a black dashed line. These distributions are clearly quite different,

the exponential tail, indicative of a pitting distribution, is much less pronounced. The algorithm

has successfully selected a threshold which can be used to separate the thickness measurement

distributions.

A further check of the quality of the threshold can be obtained using a classification map. A

classification map for the inspection data is formed by taking the colour map in figure 3.19a and

changing the colour of every pixel below the threshold to black. All pixels above the threshold

are coloured white. Consequently, if the threshold is appropriate, the location of the pits will be

indicated by the black pixels. A classification map for the inspection data is shown in figure 3.19.

By comparing the classification map in figure 3.19b to the thickness map in figure 3.19a, it

is clear that the algorithm has selected a reasonable threshold. The majority of the thickness

measurements belonging to the pits are shown in black. However, the threshold has also selected

a few thickness measurements which do not belong to the pitting distribution, as demonstrated

by the isolated black pixel and it has failed to select a number of thickness measurements around
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Figure 3.17: A flow chart summarising the threshold selection method.
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Figure 3.18: A comparison of the ECDF of all of the thickness measurements (blue) with the thickness
measurements greater than the threshold (red). The algorithm has selected a threshold which has removed
the exponential tail from the distribution.
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Figure 3.19: (a) A colour map of simulated inspection data from across a numerically generated pitted
surface. (b) A classification map corresponding to the colour map in (a). All of the thickness measurements
above the threshold (general corrosion distribution) are coloured white, those below it are coloured black
(the pitting corrosion distribution).
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the outside of the pits.

This is a consequence of the fact that the algorithm does not take into account the spatial

location of the thickness measurements. Pits are clusters of thickness measurements that have a

thickness significantly different than the rest of the distribution. The algorithm does not consider

this. It only looks at the thickness measurement relative to the rest of the distribution, searching for

a threshold which separates out the pits from the general corrosion. Subsequently, when thickness

measurements across pits are relatively close to the values of the thickness in the general corrosion

the algorithm will misclassify them.

This can be worked around in the context of the blocking algorithm described in this chapter.

The inspector needs to know which blocks contain pits so that the minima selected from these

blocks can be processed separately. The algorithm described here allows one to achieve this: it gives

an approximate location of the pits across the surface. An inspector can then use these locations

and an adapted blocking algorithm to generate extreme value models for both the general corrosion

distribution and the pitting distribution.

There are two different approaches an algorithm could take it could either: 1) separate out

the blocks which contain pits, or 2) remove the thickness measurements corresponding to the

pits and process them separately. Both of these approaches require further investigation. For

example, with the first approach, it is possible it will lead to an insufficient number of blocks

and therefore minima to perform EVA with either the pitting measurements or the measurements

from the general corrosion. Therefore, this method is likely to only be useful in cases where there

are enough blocks containing both pits and general corrosion ( 25 each according to the studies

performed in chapter 4).

The second approach also requires further investigation. Simply separating the pitting thickness

measurements from the inspection data does not allow one to construct an extreme value model

from the data. For the general corrosion distribution, it will lead to some blocks containing different

numbers of thickness measurements than the others. A minimum selected from these blocks will

follow a different extreme value distribution than the others. In addition, there is no obvious area

with which to associate the separated thickness measurements.
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3.6 Conclusions

Extreme value analysis can be used to model the thinnest areas of a component and to extrapolate

to the condition of much larger areas that are exposed to the same degradation mechanism. There is

currently no standard methodology to sample the minimum thickness from an ultrasonic inspection

thickness map. This chapter has described an approach to sample the thickness minima by looking

for evidence that the assumptions made by EVA are reasonable for the inspection data. The

algorithm was applied to a large number of surfaces with both Gaussian and exponential height

distributions. It successfully selected a block size for the majority of surfaces and generated extreme

value models which provided good descriptions of the data. Block size selection is a trade-off: too

small a block size and the GEVD will not provide a good model for the minimum thicknesses; too

large a block size and accurate estimates of the model parameters are unattainable.

Smaller block sizes correspond to larger samples of thickness minima (1̃00 minima). The

variation in the quality of models generated using the smaller block sizes is larger than that for the

larger block sizes, which is the result of some of the minima not being extremes of the distribution.

In contrast, larger block sizes ensure that all the thickness measurements in a sample are extremes

at the expense of sample size (1̃6 minima). Smaller samples lead to increased uncertainty in the

parameter estimates for the extreme value models. The data presented in this chapter indicates

that, for the set of surfaces described here, block sizes of 35 to 45mm are most suitable. This block

size selection provides a balance between ensuring the minima are extremes of the distribution,

while limiting the uncertainty associated with a small sample size. Uncertainty associated with

EVA models is a key part to the development of a framework for using EVA as a tool for PCI.

In the next chapter, a study of the uncertainties associated with EVA of thickness minima is

presented. This study provides further important information which can be used by an inspector

when constructing an EVA model.
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Chapter 4

Extrapolation using extreme value

analysis

4.1 Introduction to extrapolation using extreme value mod-

els

To perform partial coverage inspection (PCI), an inspector will perform an ultrasonic thickness

C-scan of a fraction of the component. The resulting thickness map can be used to construct an

extreme value model for the smallest thickness measurements by partitioning the thickness map

into Nblocks equally sized blocks. The blocks are used to construct a sample of thickness minima

by selecting the smallest thickness measurement in each block.

If the thickness minima are selected from sets of thickness measurements that are independently

and identically distributed, the generalized extreme value distribution (GEVD) is the limiting form

of the thickness minima distribution. The GEVD is defined using three parameters: the location

parameter, µ ∈ R, which determines the size of the minima; the scale parameter, σ > 0, which

determines the spread of the minima; and the shape parameter, k ∈ R, which determines the shape

of the distribution. The probability of measuring a thickness minimum less than x is given by:

Φ(x|µ, σ, k) = 1− exp

{
−
[
1 + k

(
x− µ
σ

)]−1/k}
(4.1)
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for 1 + k(x − µ)/σ > 0, where Φ(x|µ, σ, k) is the probability of measuring a minimum thickness

(in a block) of less than x. Examples of probability density functions of GEVDs can be found in

figure 2.2.

Estimates of µ, σ and k can be extracted using maximum likelihood estimation (MLE), a widely

used technique of estimating distributional parameters [69]. The likelihood of a set of thickness

minima is a measure of how probable a set of distributional parameters are given the available data.

For an extreme value model of a set of thickness measurements X = {x1, ..., xN}, the likelihood

function is, derived using Coles [70, eq. 2.7, p. 30]:

L (µ, σ, k|X) =
N∏
i=1

P (xi)

=
N∏
i=1

1

σ

[
1 + k

(
xi − µ
σ

)]−( 1
k)−1

exp

(
−
[
1 + k

(
xi − µ
σ

)]− 1
k

) (4.2)

where L (µ, σ, k|X) is the likelihood of a set of parameters (µ, σ, k) given the set of thickness minima

X. A more detailed description of the maximum likelihood method can be found in section 2.1.

The likelihood function can be thought of as the probability that (µ, σ, k) are the distributional

parameters associated with the set of thickness minima. Maximisation of L (µ, σ, k|x) with respect

to (µ, σ, k) provides the maximum likelihood estimates, (µ̂, σ̂, k̂), for the true values of (µ, σ, k).

For a real application of MLE, an inspector would use the log-likelihood function as it is easier to

work with, from Coles [70, p. 55]:

L (µ, σ, k|x) = ln (L (µ, σ, k|x))

= N ln (σ)−
(

1 +
1

k

) N∑
i=1

ln

([
1 + k

(
xi − µ
k

)])

−
N∑
i=1

[
1 + k

(
xi − µ
k

)] (4.3)

where L (µ, σ, k|x) denotes the log-likelihood of the model. Maximisation of the log-likelihood with

respect to (µ, σ, k) is equivalent to maximisation of the likelihood function [70, p. 31]. For the

remainder of this thesis, references to the likelihood will refer to the log-likelihood.
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Once an extreme value model has been constructed from the thickness minima, an inspector

can use this model to perform PCI. This will require extrapolations to areas larger than the initial

inspection using the extreme value model. There are two methods avaliable for extrapolation of

an extreme value model: the return level method and the distributional method. The return level

method is used to draw conclusions about areas larger than the initial inspection by mapping them

to quantiles of the EV model, whilst the distributional method attempts to directly construct a

model for the minimum in the extrapolated area.

In the literature, the return level method is by far the most widely used for extrapolation. Ex-

amples of return level calculations can be found in fields as varied as hydrology[40] and finance[38].

There are a limited number of examples of the calculation of return levels using corrosion data

in the public domain. For example, Hawn used the return level to show that the pit depth along

a buried pipeline is not expected to exceed a prescribed limit in 5280 times the initial inspection

area[23].

The M th return level, rM is defined as the thickness threshold which will be surpassed only

once (on average) in M blocks of an inspection. The expected number of thickness measurements

greater than the return level in a sample of M thickness minima is given by:

E(N(x > rM)) = MP (x > rM) = M(1− Φ(x|µ, σ, k)) (4.4)

where P (x > rM) is the probability of measuring a thickness measurement greater than the return

level. From the definition of return level (E(N(x > rM)) = 1),

MP (x > rM) = 1

P (x > rM) =
1

M

Φ(x|µ, σ, k) = 1− 1

M

(4.5)

Equation 4.5 is visualised in figure 4.1 as the area bound to the right of the red dashed line and

the probability density function1 It is equivalent to the M th quantile of the GEVD. The position

1An explanation of the probability density function can be found in chapter 2
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Figure 4.1: An example of a probability density function of a generalized extreme value distribution. The
red dashed line is the M th return level and the red shaded area is defined in equation 4.5.
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of the red dashed line can be calculated be rearranging the GEV distribution (a derivation can be

found in Coles [70]):

rM = µ− σ

k

[
1−

{
− log

(
1− 1

M

)}−k]
(4.6)

This is the value of thickness that the model predicts will be exceeded at least once in M blocks.

It can be interpreted as an estimation of the smallest thickness that is expected to be found in an

area the size of M blocks.

Extrapolations to areas larger than the inspection region can be performed by calculating the

return level corresponding to a number of blocks greater than the initial sample of minima. For

example, an inspector could estimate the minimum thickness in an area twice the size of the

inspection area by calculating the return level corresponding to M = 2Nblocks. This return level

is the threshold that the model expects would not be exceeded in an area two times the initial

inspection area.

Alternatively, an inspector could extrapolate with the distributional method developed by

Glegola. Glegola showed that the distribution of thickness measurements in an area larger than

one block will be a GEVD with scaled distributional parameters [59]. Prospectively, this method

has the capability to provide more information than the return level method. An extrapolated

distribution would be able to provide a probabilistic description of the possible condition of the

uninspected area, in contrast to a limit which the inspector does not expect to be surpassed.

However, for the purposes of PCI, much of this information is superfluous. An inspector is

mainly interested in ensuring that the thickness of a component remains inside safe limits. This

can be achieved much more easily using the return level method than the distributional method as

an inspector will only have to calculate the return level to achieve this rather than the parameters

of the extrapolated distribution. Subsequently, the focus of this chapter will be on the return level

method, as it promises to be a more suitable tool for the extrapolation of inspection data.

It is impractical to directly validate an extrapolation, it would require data from outside of

the inspection area, which is unavailable to an inspector. However, one can show that the model

constructed is reasonable given the available data and the assumptions made by EVA (which can be

achieved using the blocking method in chapter 3). Once the assumptions made by the model have
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been shown to be reasonable, the uncertainty associated with the extrapolations can be quantified

by calculating a 95% confidence interval around the return level.

In this chapter the uncertainty associated with extrapolation form extreme value models will

be quantified for the first time. To the author’s knowledge no other attempts have been made to

quantify the possible errors that could occur when constructing an extreme value model. This is

an important step in developing a framework in which extreme value models of inspection data

can be used with confidence in industry.

4.1.1 Confidence intervals for the return levels

The uncertainty around the return level that arises from statistical variations can be quantified with

a confidence interval. A 95% confidence interval for the return level is the bounds which contains

95% of the possible estimates of the return level. For example, if 100 models were generated from

different samples from inspections of the component (with the same thickness distribution), 95 of

the estimates will lie within these bounds. Confidence intervals are a reflection of the inspector’s

belief in the return level estimate.

Confidence intervals around the return level can be calculated using the profile likelihood

method. The likelihood function in equation 4.2 can be written as a one dimensional function

of any of the three distributional parameters µ, σ and k by maximising it with respect to the other

two. For example, equation 4.2 can be written in terms of only µ by maximising with respect to

σ and k:

L (µ) = max
σ,k

[L (µ, σ, k|x)] (4.7)

Equation 4.7 is known as the profile likelihood for µ. This equation can be parametrised in terms

of the return level. This is achieved by writing the location parameter, µ, in terms of the return

level in equation 4.6 and substituting into equation 4.7:

µ = rM +
σ

k

[
1−

{
− log

(
1− 1

M

)}−k]
(4.8)
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Thus, for the return level, the profile likelihood is Coles [70, p. 57]:

L (rm) = max
σ,k

[L (rm, σ, k|x)]

= N ln (σ)

−
(

1 +
1

k

) N∑
i=1

ln

1 + k

xi − (rM − σ
ξ

[
1−

{
− log

(
1
M

)}−ξ]
)

k


−

N∑
i=1

1 + k

xi − (rM − σ
ξ

[
1−

{
− log

(
1
M

)}−ξ]
)

k


(4.9)

Equation 4.9 can be used to calculate a confidence interval for the return level with the deviance

function. The deviance function is defined as:

D(rM) = 2(L(r̂M)− L(rM)) (4.10)

where L(r̂M) and L(rM) are the profile likelihoods for an estimate of rM , r̂M , and the true value

of rM . It can be shown that the statistic D(rM) ∼ χ2
d, where χ2

d is the chi-squared function [71]

with d degrees of freedom. d describes the number of factors affecting the likelihood function.

As the deviance statistic follows a χ2 distribution, we can calculate the bounds in which 95%

of its estimates lie. This is defined as the set {θ : D(θ) ≥ cα} where cα is a (1− α) quantile of the

χ2
d distribution. This set is described graphically by figure 4.2.

In all EVA examples in the literature, extrapolated return levels are reported as a single value.

This is a misleading representation of the data. No information about the uncertainty associated

with the extrapolation is revealed. Confidence intervals allow an inspector to quantify some of the

uncertainty associated with the model, which is key understanding the conclusions drawn from

extreme value models.

4.1.2 Chapter Overview

The research in this chapter is split into three sections. The first is a study of the return level as

a method of extrapolation which was performed to investigate whether the return level behaves
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as expected for simulated inspection data. Published research which uses return levels for extrap-

olation from inspection data has used the return level without verifying whether it behaves as

expected for corrosion data [23, 26].

To verify the use of the return level with inspection data, an extreme value model is generated

from simulated inspection data. Return levels corresponding to an increasing number of blocks

are calculated using this model and they are compared to data from a simulated inspection of an

area much larger than the initial inspection. This data is used to verify whether the return level

performs as an effective metric for extrapolation.

In the second study, the calculation of the confidence intervals using the profile likelihood is

described. A large number of extreme value models are generated from different sets of simulated

inspection data. From each model return level confidence intervals are calculated for different

sample and extrapolation sizes. This data is used to examine the mean width of confidence

intervals with increasing extrapolation area.

The third and final section details a direct analysis of the accuracy of the extrapolation. Ex-

treme value models were generated from a simulated inspection of a very large surface. The extreme

value model was used to calculate the return level and its confidence intervals corresponding to

an extrapolation to the total size of the surface. The return level and confidence intervals were

compared to the smallest thickness across the surface. This analysis is used to determine how well

extreme value models perform when they are used to extrapolate to larger areas of a component

and the likelihood of an incorrect assessment using this technique.

4.2 Validating the return level for inspection data

The aim of these simulations is to show that the return level and the calculated confidence intervals

are useful metrics for condition assessment purposes. With this in mind samples of 1000 48 by

48mm Gaussian height distributed Gaussian correlated surfaces and 1000 48 by 48mm exponential

height distributed Gaussian correlated surfaces with mean thickness 10mm, RMS=0.1mm and

λc = 2.4mm were generated using the rough surface algorithm described in chapter 3. These

samples are equivalent to inspections of 2, 304, 000mm2 ( 2.3m2) of a component. Extreme value
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models were constructed from a 240 by 240mm Gaussian and a 240 by 240mm exponential surface

with RMS heights 0.1mm and λc = 2.4mm. The sample minima were extracted from the surfaces

using a block size of 48mm. The model provides a description of the minimum thickness in an area

the size of a single block and was compared to the sample of 1000 48 by 48mm Gaussian correlated

surfaces.

Extrapolations using these models can, conveniently, be considered as extrapolations to mul-

tiples of this block size. The model was used to calculate return levels and their corresponding

confidence intervals to areas ranging from 2 to 1000 blocks. These areas are rescaled in terms of

the initial inspection area, which consisted of 25 blocks, to define the extrapolation ratio:

ER =
EA

IA
(4.11)

where ER is the extrapolation ratio, EA is the extrapolated area and IA is the inspected area. In

terms of the extrapolation ratio, return levels corresponding to extrapolation ratios ranging 0.08

to 40 were calculated. The sample of 1000 surfaces corresponds to ER = 40.

Figure 4.3 and figure 4.4 show box plots of the thickness minima selected from 1000 48 by 48mm

correlated Gaussian surfaces and 1000 48 by 48mm correlated exponential surfaces respectively.

The length of the box is the inter-quartile range of the sample of thickness minima, which is a

measure of spread of the measurements. The solid line in the middle of the box is the median

thickness minimum, whilst the whiskers contain 99% of the thickness minima. Return levels

corresponding to the extrapolation ratios on the x-axis were calculated from the model generated

from both the Gaussian and the exponential surfaces using equation 4.6. These are shown as black

crosses. 95% confidence intervals around these return levels are shown as blue crosses. With an

increasing extrapolation ratio, the return levels decrease, indicating that in a larger area a smaller

minimum thickness is expected.

Broadly speaking figures 4.3 and 4.4 show the same patterns of behaviour. This is encouraging

as it indicates that return level provides a measure that is independent of the distribution. However,

the widths of the confidence intervals are different. For example, at an extrapolation ratio of 40,

the Gaussian data has a confidence interval width of 0.2mm compared to 0.5mm for the exponential
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Figure 4.3: A histogram of the minimum thickness measurements from 1000 48 by 48mm correlated
Gaussian surfaces with mean thickness 10mm, RMS=0.1mm and correlation length 2.4mm. The return
levels (black crosses) and confidence intervals (blue crosses) at each extrapolation ratio calculated from
an extreme value model constructed from a 240 by 240mm Gaussian surface of the same statistics have
been overlaid.
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Figure 4.4: A histogram of the minimum thickness measurements from 1000 48 by 48mm correlated
exponential surfaces with mean thickness 10mm, RMS=0.1mm and correlation length 2.4mm. The return
levels (black crosses) and confidence intervals (blue crosses) at each extrapolation ratio calculated from
an extreme value model constructed from a 240 by 240mm exponential surface of the same statistics have
been overlaid.
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data. This is due to differences in the shape of the generalised extreme value likelihood functions

arising from the Gaussian and exponential distributions. It indicates that the width of the return

levels could have some dependence of the underlying thickness distribution alongside the quality

of the data used to construct the model.

For extrapolation ratios less than 1, the return level is modelling the minimum thickness in

an area less than the inspection area (an area from which the inspection data is taken). Subse-

quently, the confidence intervals for this region are narrower and the return level provides a better

description of the data than the return levels for extrapolation ratios greater than 1. For example,

the return level for the extrapolation ratio of 0.08 is very close to the median of the sample of

thickness minima. This is expected as the return level for this extrapolation ratio will be exceeded

2 once every two blocks, so around 50% of the thickness measurements should be less than this

value. This trend is continued with the return levels for the extrapolation ratios ranging from 0.16

to 1, with the return levels matching up with the appropriate quantiles in the sample.

Once the extrapolation ratio increases to greater than 1, the exact value of the return level

predicted by the model does not necessarily match up with the correct quantile of the thickness

sample. This is expected as extrapolations, by their very nature, will not provide a perfect de-

scription of the data. In these situations, the confidence interval around the return level is key

to interpreting the results of the model. For example, as the extrapolation ratio is increased to

the point where it corresponds to the size of the sample (ER=40), the return level gets closer and

closer to providing bounds for the smallest thickness measurement in the sample. For the sample

of data used for this study, there are no thickness measurements less than the return level with an

extrapolation ratio of 100. However, for a different sample, it is feasible that there could be thick-

ness measurements less than this value due to the extrapolation leading to inaccurate prediction

for return level.

However, the confidence interval around the model’s estimate of return level will contain the

true value of the return level 95% of the time. The confidence interval can be interpreted as the

bounds inside which the smallest thickness measurement in an extrapolated area will lie. Rather

2To clarify, by exceed the return level, I mean that there will be at least one thickness measurement less than
the return level.
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than reporting just a single value for the minimum thickness, the return level, an inspector can

state a range of values and a measure of his confidence that the minimum thickness lies in this

bounds. This will allow a plant operator to make a decision about the condition of a component

with knowledge of the uncertainty around the inspector’s estimate.

The width of the confidence intervals increases with the extrapolation ratio. Ideally an inspector

will try to minimise the extrapolation ratio for the extrapolation they are performing as it will

minimise the width of the confidence bounds around the return level. Knowledge of how large a

confidence interval will be on average, as a function of extrapolation ratio, will allow an inspector

to make a decision about the amount of inspection area required to obtain bounds on the minimum

thickness of a given width. This is addressed in the next section.

4.3 Errors associated with extrapolation

Direct validation of an extrapolation requires data from outside the inspection area. This is

impossible for an inspector to obtain in many applications of PCI due to, for example, constrained

access to the component under inspection. However, the inspector can check that the inspection

data meets the assumptions made by EVA (using the blocking algorithm in chapter 3). If the data

meets the assumptions made by EVA, then the model generated from the inspection data will be

able to provide reasonable description of the condition of the component outside the inspection

area.

In the previous section (section 4.2) it was shown that 95% confidence intervals around an

extrapolated return level are likely to contain the smallest thickness in the extrapolated area. The

width of the confidence intervals are a reflection of the uncertainty around the value of the return

level. Larger confidence intervals imply greater uncertainty around the return level predicted by

the model. There are a number of factors, determined by the way the EV model was constructed,

which determine the width of the confidence intervals. For example, if the inspector has a large

sample of minima, the confidence intervals will be narrower and they will be more confident in the

predictions made by the model. The sample size is determined by the ratio of the block size to the

inspection area. If the minima have been selected using a block size which is a small fraction of
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Block Size/mm Number of minima
24 100
30 64
40 36
48 25
60 16

Table 4.1: The different block sizes and the corresponding number of minina used to generate the extreme
value models.

the inspection area, the measurements in the sample will not be representative of extremes of the

distribution. The model will not provide a good description of the condition of the component.

In terms of an inspection the interpretation of the return level confidence interval is very

important. An inspector may have a large sample of minima, which leads to narrow confidence

intervals, but these minima may not be representative of the extremes of the distribution. Any

predictions made by the model will underestimate the severity of the minimum thickness. In

addition, the narrow confidence intervals could lead the inspector to believe they have a ”good”

estimate of the smallest thickness across the component. It is vital that the model is constructed

using minima which are representative of extremes of the distribution and, as we saw in chapter

3, this is often best achieved with small samples of minima collected using a large block size.

Knowledge of how the confidence intervals behave with different inspection designs will allow

for improvements in the design of partial coverage inspections. With this goal in mind many

confidence intervals were generated using simulated inspections partitioned using different block

sizes. The inspection data was simulated by generating 100 correlated Gaussian surfaces of size 240

by 240mm and 100 correlated exponential surfaces of the same size (using the algorithm described

in 3). The surfaces all had an RMS height 0.1mm and a correlation length of 2.4mm.

From each surface an extreme value model was generated using block sizes corresponding to

different numbers of minima, summarised in table 4.1. The return levels corresponding to extrap-

olation ratios ranging from 0.08 to 400 were calculated, along with the corresponding confidence

intervals. For each set of simulations the average width of the confidence intervals is calculated

and expressed as a percentage of the return levels. This percentage is plotted as a function of the

extrapolation ratio.
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Confidence intervals are an expression of the inspector’s belief in the estimate of the return

level. In the case of the confidence intervals calculated here, they are the bounds in which the

true value of the return level will lie 95% of the time. As the extrapolation ratio is increased past

the size of the inspection area, the size of the confidence intervals relative to the estimate of the

return level will increase. This reflects that, as the extrapolation ratio increases past 1, there is

much less certainty of any predictions made by the model.

Figures 4.5 and 4.6 show the average size of the confidence intervals over all the models,

expressed as a percentage of the return level, as a function of extrapolation ratio. Although

these figures were produced using data collected from surfaces with different distributions, they

show very similar behaviour. The width of the confidence intervals is nearly constant up to an

extrapolation ratio of 1. For extrapolation ratios less than one, the return levels correspond to

areas less than the inspection area. Therefore, the width of the confidence interval is a reflection

of the uncertainty resulting from the sampling variation.

Once the extrapolation ratio increases past 1, the return levels correspond to areas greater than

the inspection area. Consequently the average size of the confidence intervals begins to increase as

there is more uncertainty due to the extrapolation to an area larger than the inspection area. The

rate at which the width of the confidence interval increases with increasing extrapolation ratio, as

the level of uncertainty increases very rapidly with the extrapolation ratio.

Past a certain point, the confidence intervals indicate that estimates of the return level are

no longer a useful tool. The inspector’s role to ensure that the component under inspection is

safe for operation. This includes ensuring that the smallest wall thickness measurement found is

within acceptable bounds3. If the return level confidence interval is too wide then an inspector

would not, with any certainty, be able to draw conclusions about the condition of the component.

For example, in both figure 4.5 and 4.6, at an extrapolation ratio of 400 the average width of the

confidence intervals is at least 30% of the size of the return level, e.g. for a return level of 5mm

and confidence interval of 3.5 to 6.5mm. This is a large range of values in which the return level

could lie. In this case the inspector should either collect more data to improve this extreme value

3”Acceptable bounds” can vary from application to application. The author here assumes that the inspector
has been given some figure for an unacceptable level of damage by the company ordering the inspection.
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Figure 4.5: The average width of the return level confidence intervals, expressed as a percentage of the
return level, calculated from 100 extreme value models constructed from 240mm by 240mm Gaussian
surfaces, as a function of extrapolation ratio. Up to an extrapolation ratio of 1 (the size of the inspection
area), the width of the confidence intervals is constant. Past this point the model is being used to
extrapolate and the confidence intervals grow. The rate of growth is determined by the number of
minima used to construct the model.
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Figure 4.6: The average width of the return level confidence intervals, expressed as a percentage of the
return level, calculated from 50 extreme value models constructed from 240mm by 240mm exponential
surfaces, as a function of extrapolation ratio. Up to an extrapolation ratio of 1 (the size of the inspection
area), the width of the confidence intervals is constant. Past this point the model is being used to
extrapolate and the confidence intervals grow. The rate of growth is determined by the number of
minima used to construct the model.
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Figure 4.7: Extreme value probability plots for sets of minima extracted from a 240mm square correlated
Gaussian surface with RMS=0.1mm and λc = 2.4mm. Thickness minima were extracted using block sizes
of 24mm (black), 40mm (blue), 48mm (red) and 60mm (green). As the block size is increased, the extreme
value models (black dashed lines) become better descriptions of the smallest minima in each sample.
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model, or perform a full inspection of the component.

From this data it seems as if using more minima is the correct approach, the widths of the

confidence intervals are consistently smaller using more minima. However, this should be con-

sidered carefully. To obtain a larger sample, the minima are selected using a smaller block size.

The smaller the block size, the lower the number of thickness measurements in each block. Each

block is a smaller sample of the underlying thickness measurement distribution. As the size of the

sample of thickness measurement in the block decreases, the expected number of extremes in the

sample will decrease. Consequently, it is likely that the minimum thickness measurement in this

block may not be representative of the extremes of the distribution. A model constructed from a

set of minima from these blocks may be inaccurate.

Figure 4.7 shows probability plots of an example model generated from a square Gaussian

surface of size 240mm by 240mm with block sizes from to 24-60mm (100 down to 9 minima).

A probability plot is a method of graphically comparing the model to the set of minima used to

generate it. The y-scale is designed such that the EV model fitted to each set of data is represented

by the straight dashed lines. Estimates of the probability of each thickness measurement are

calculated empirically using equation 2.1 and plotted as crosses. If the model is a good fit the

crosses will lie close to the dashed line.

The models generated using smaller samples of minima (25 and 16) provide better descriptions

of the smallest minima in the sample, with R2=0.99 and 0.98 respectively. This is in contrast to

the model generated using 100 minima, which has R2=0.91. The 100 minima model provides a

good description of the majority of the minima. However, the smallest minima in the sample do

not lie on the straight line. It fails to provide an adequate description of the smallest thicknesses in

the inspection area. This is a key prerequisite for making engineering decisions based on extreme

value models. The model must provide a good description of the smallest thicknessess that could

occur. It is important that the thickness minima used to construct the extreme value model are

taken from the areas of the component most likely to undergo the worst degradation.

Any inaccuracy in the model will propagate into the extrapolation. Models generated using a

small block size, such as the 100 minima model in figure 4.7, will lead to inaccurate extrapolations,
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as the minima selected from the blocks will not provide adequate examples of the thinnest areas

of the component. In this next section, this problem is investigated using a series of simulated

inspections taken from across very large surfaces.

4.4 Testing an extrapolation

In order to determine the quality of extrapolations from models generated using different block

sizes, Gaussian and exponential surfaces (with RMS height of 0.1mm and correlation length of

2.4mm) of size 2400 by 2400mm, 12000 by 12000mm and 24000 by 24000mm were generated.

From each surface 50 different inspection areas of 240 by 240mm (such that the total size of the

surfaces corresponded to extrapolation ratios of 10, 50 and 100) were chosen and EV models were

generated from each inspection area using block sizes ranging from 24 to 60mm (corresponding

to minima sample sizes ranging from 100 down to 16). The EV models generated from these

inspection areas were used to calculate return levels and confidence intervals for extrapolation

ratios corresponding to the size of the surfaces. The return levels and confidence intervals were

averaged over the 50 inspection areas and compared to the smallest thickness measurement across

the surface.

The average return levels and average confidence intervals were plotted as a function of the

number of minima in figures 4.8, 4.10 and 4.12 for the Gaussian surfaces corresponding to extrap-

olation ratios of 10, 50 and 100 respectively. The data collected from the exponential surfaces is

shown in figures 4.9, 4.11 and 4.13. The red crosses are the average confidence bounds on the

return level, the blue cross is the average return level and the dashed line is the smallest thickness

across the entire surface. The average return level in each figure overestimates4 (but is close to)

the minimum thickness across the surface. This is expected as the return level is expected to

overestimate the minimum thickness as, by definition, it is a threshold which will be exceeded at

least once in the extrapolated area. The average return level decreases slightly as the number of

minima in the sample is decreased. This is reflective of the fact that a smaller number of minima

is collected using a larger block size, the average minimum thickness in the sample will be smaller,

4The return level is larger than the minimum thickness.
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Figure 4.8: The average return level (blue crosses) and confidence intervals (red crosses) calculated from
50 different extreme value models constructed using 240mm by 240mm inspections of a Gaussian surface
corresponding to an extrapolation ratio of 10. Each model was constructed using a different number of
minima (x-axis) and the average confidence intervals were compared to the smallest thickness across the
surface (black dashed line).
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Figure 4.9: The average return level (blue crosses) and confidence intervals (red crosses) calculated from 50
different extreme value models constructed using 240mm by 240mm inspections of an exponential surface
corresponding to an extrapolation ratio of 10. Each model was constructed using a different number of
minima (x-axis) and the average confidence intervals were compared to the smallest thickness across the
surface (black dashed line).
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Figure 4.10: The average return level (blue crosses) and confidence intervals (red crosses) calculated from
50 different extreme value models constructed using 240mm by 240mm inspections of a Gaussian surface
corresponding to an extrapolation ratio of 50. Each model was constructed using a different number of
minima (x-axis) and the average confidence intervals were compared to the smallest thickness across the
surface (black dashed line).
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Figure 4.11: The average return level (blue crosses) and confidence intervals (red crosses) calculated from
50 different extreme value models constructed using 240mm by 240mm inspections of an exponential
surface corresponding to an extrapolation ratio of 50. Each model was constructed using a different
number of minima (x-axis) and the average confidence intervals were compared to the smallest thickness
across the surface (black dashed line).
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Figure 4.12: The average return level (blue crosses) and confidence intervals (red crosses) calculated from
50 different extreme value models constructed using 240mm by 240mm inspections of a Gaussian surface
corresponding to an extrapolation ratio of 100. Each model was constructed using a different number of
minima (x-axis) and the average confidence intervals were compared to the smallest thickness across the
surface (black dashed line).
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Figure 4.13: The average return level (blue crosses) and confidence intervals (red crosses) calculated from
100 different extreme value models constructed using 240mm by 240mm inspections of an exponential
surface corresponding to an extrapolation ratio of 10. Each model was constructed using a different
number of minima (x-axis) and the average confidence intervals were compared to the smallest thickness
across the surface (black dashed line).
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resulting in smaller return levels.

The size of the confidence intervals increases as the number of minima is decreased. This is

in agreement with figures 4.5 and 4.6 in the previous section. Encouragingly, and as speculated,

for extrapolation ratios of 10 and 50, the minimum thickness measurement lies within the average

confidence interval. That is, on average, the confidence interval provides bounds in which the

minimum thickness lies. However, this is the average behaviour over 50 different examples. Models

from individual inspections can sometimes predict bounds which do not contain the minimum

thickness. An example of this is shown in figure 4.14, which is an example of the return levels and

confidence intervals for an extrapolation ratio of 50 predicted by a model from a single inspection

area from the 12000 by 12000mm Gaussian surface. The minimum thickness is contained by both

the confidence bounds calculated from the EV models constructed using 16 and 36 minima, but it

lies outside the confidence bounds calculated using 64 and 100 minima.

As the size of the surface increases, the minimum thickness decreases. Simultaneously, the

size of the average return level confidence intervals increases. If the extreme value models are

providing an adequate description of the surface (on average), should remain well within the

confidence intervals. However, the minimum thickness decreases at a faster rate than the growth

of the confidence intervals. Consequently, there is a point where the minimum thickness is no

longer contained by the confidence bounds. At the point the model is not providing an adequate

description of the damage in the extrapolation area. The number of minima (block size) used to

generate the model is key to ensuring that this is unlikely to occur.

In general, the confidence intervals from models generated using larger block sizes (fewer min-

ima) more consistently provide a bounds for the minimum thickness. For the Gaussian surface,

the return level confidence intervals calculated from the models with 16 and 36 minima contained

the minimum thickness in 82% and 76% of cases respectively for an extrapolation ratio of 50,

compared to 68% and 60% for sample size of 64 and 100. For an extrapolation ratio of 100, the

number of models which predict bounds which contain the minimum thickness reduces further.

The confidence intervals only contain the minimum thickness in 44%, 58%, 72% and 68% of case

for models generated with 100, 64, 36 and 16 minima respectively. Arguably the models generated
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Figure 4.14: The return level (blue cross) and confidence intervals (red cross) corresponding to an extrap-
olation ratio of 50 calculated using an extreme value model constructed from a single, randomly selected,
240mm by 240mm inspection of a Gaussian surface corresponding to an extrapolation ratio of 50. The
smallest thickness across the surface is shown as the black dashed line.

105



using the larger block sizes could still be used for extrapolations of this size, the minimum thickness

will lie outside the bounds 30% of the time, but for most applications this error rate will be too

high.

Both of these cases can be compared to the results for an extrapolation ratio of 10. For this

case, the return level confidence intervals contained the minimum thickness for 76%, 82%, 86%

and 90% of the models constructed using 100, 64, 36 and 16 minima respectively. The confidence

intervals contain the minimum the majority of the time. However, it is clear that, even at a small

extrapolation ratio a model generated with fewer minima is able to more accurately model the

thickness measurements in the extrapolation area.

The confidence bounds calculated from models constructed using the exponential behaviour

show a similar trend. For an extrapolation ratio of 10, the confidence interval contained the

minimum thickness across the surface 92%, 86%, 66% and 54% of the time for sample sizes of

16, 36, 64 and 100 minima. With an extrapolation ratio of 50, the minimum thickness lay in the

bounds 92%, 74%, 80% and 70% of the time of the time for sample sizes of 16, 36, 64 and 100.

Finally, with an extrapolation of 100, the bounds contained the minimum thickness in 92%, 80%,

74% and 74% of cases.

The increased error rate that occurs with the combination of a model generated using a large

sample of minima (small block size) and a large extrapolation ratio originates in the bias introduced

into the EV model by the sample of minima. Sample minima collected using smaller block sizes

are on average larger than those collected with larger block sizes. Therefore, the predictions made

by an extreme value model will overestimate the size of the minimum thickness (predict it to

be thicker than it actually is) in the extrapolated area. This leads to an overestimation of the

return level. Consequently, the model will be biased, it will underestimate the probabilities of the

smallest measurements of thickness occurring. This is demonstrated by figure 4.7 and discussed in

the previous section (section 4.3). In addition, as the sample is larger, there is more evidence the

model is ’correct’ so the width of the confidence intervals increases at a slower rate than for smaller

sets of minima (as shown in figure 4.5), which leads to the minimum thickness lying outside the

confidence bounds of the return level.
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4.5 Conclusions

Understanding uncertainty associated with extrapolation is a key part of using extreme value

analysis for partial coverage inspection. In the existing literature, there have not been any studies

of the errors associated with extrapolation from extreme value models, which has been a barrier

to the use of extreme value models in the inspection industry. In this chapter a series of studies of

the uncertainty associated with extrapolation using the return level method are described. Both

Gaussian and exponential surfaces were studied at every stage of this study and it was found that

models constructed from them performed similarly. This is encouraging as it provides evidence

that confirms that EVA is independent of the thickness distribution across the surface as would

be expected from the discussion in section 2.1.

To date, there has been no verification of the return level as a tool for extrapolation. This

is addressed with the first set of simulations which compared the return levels calculated using

an extreme value model constructed using simulated inspection data to simulated inspection data

from a much larger area. The return levels at extrapolation ratios less than 1 match up with the

equivalent quantiles in the larger inspection data. Once the extrapolation ratio increases past 1 the

return level diverges from the equivalent quantile, due to the inherent inaccuracy of extrapolation.

However, it’s shown that the confidence intervals around the return level do contain the true value

of the return level.

Through further study of this data it was suggested that the return level confidence interval

could be used as a range for the minimum thickness in an extrapolated area. The second and third

studies were designed to investigate this possibility. Initially, a large number of extreme value

models were generated from simulated inspection data. These models were used to calculate the

return levels and confidence intervals for various extrapolation ratios. The average width of the

confidence intervals, expressed as a percentage of the return level, was plotted as a function of the

extrapolation ratio.

The width of the confidence interval increased with the extrapolation ratio which reflected that

extrapolations to larger areas are associated with more uncertainty. There is a higher chance that

predictions will be incorrect. It also appears from this data that a larger sample of minima leads

107



to narrower confidence intervals. If the return level confidence intervals do contain the smallest

thickness across the extrapolated area, this would suggest that smaller block sizes (more minima)

would offer narrower bands for the minimum thickness in the extrapolated area.

This was shown to be misleading. The larger samples, extracted from inspection data using a

smaller block size, have a larger mean than samples extracted with the larger block sizes. Conse-

quently, models constructed using this data will tend to overestimate the minimum thickness, this

bias will propagate through the model during an extrapolation. This can be seen both in figure

4.7, where the fit of the data to the model constructed using a smaller block size (the 100 minima

model) was much worse than those constructed with larger block sizes (the 16 and 25 minima

models). This effect can be seen again in the third study, which compared the average confidence

interval generated using models from inspections of very large Gaussian and exponential surfaces

to the smallest thickness across those surfaces.

In section 4.4, it was shown that the minimum thickness will lie in the range of return level

confidence intervals on average. The effectiveness of this method for extrapolation was shown

to strongly depend on the construction of the model and the area to which the inspector is ex-

trapolating. In general, the use of a larger block size (smaller sample of minima) will provide an

extreme model which performs more effectively when extrapolating to larger areas. From the data

presented in this section, it can be suggested that a practical rule of thumb for field use would be

to select a block size which produces a sample of at most 25 minima. This model could be used

to extrapolate to an area with an extrapolation ratio of (at most) 50. The expected width of the

confidence intervals is around 10% of the return level i.e. an inspector could be confident that the

minimum thickness would lie within 10% of the predicted return level.

An inspector can use the data provided in this chapter to look up the error range that can

be expected on the minimum thickness value for the extrapolation ratio and block size they want

to use. This provides an inspector with insights into the amount of area that requires inspection

to achieve an expected level of accuracy on their prediction of minimum thickness. This is a

formidable insight when planning or applying EVA to real inspection cases.

In this chapter, the use of extreme value models for extrapolation has been investigated. The
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data used in the chapter has been generated using a numerical algorithm. Although this algorithm

produces realistic results, it is missing some key features that are found in thickness data collected

using ultrasonic measurement techniques. For example, the data in this chapter does not take

into account any errors or uncertainty that could arise from the scattering of the ultrasonic pulse

by a rough surface. In chapter 5, a method for simulating a large number of ultrasonic thickness

measurements is described. This method will be used in chapter 6 to conduct a joint computational

and experimental study of the effect of surface roughness on the accuracy of ultrasonic thickness

measurements.

109



Chapter 5

Distributed Point Source Method

5.1 Introduction

The majority of data that is used for partial coverage inspection (PCI) is collected using well-

established non-destructive testing techniques. A brief overview of these techniques can be found

in Blitz [8], with ultrasonic thickness measurement being the most commonly used. Ultrasonic

tests are often performed as a C-scan. C-scans are used to construct area colour maps of the

measured thickness. At every point across the inspection area, a thickness measurement is taken

(an example of a scanning pattern is shown in figure 1.1). An image of the measured thickness

distribution is formed by representing each measurement with a coloured patch, the colour or gray

scale chosen to be representative of the measured thickness (figure 1.1C).

Ultrasonically measured thickness measurements are a combination of the interaction of the

ultrasonic pulse with the corroded surface and any noise introduced by the signal processing

algorithm and the signal acquisition system. Figure 5.1 shows examples of ultrasonic signals

collected from a flat surface (figure 5.1(a)) and a rough surface (figure 5.1(b)). Surface roughness

introduces distortion to the signal in figure 5.1(b). This distortion makes it difficult to extract a

measurement of thickness from the signal.

Jarvis and Cegla investigated the stability of three commonly used timing algorithms used to

extract wall thickness measurements from signals collected using a permanently installed shear

wave monitoring system [14]. It was found that the wall thickness estimate changes significantly
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for different instances of a rough surface (with the same statistical description), if a different

algorithm is used. Different timing algorithms will lead to different thickness measurements. This

uncertainty is problematic for PCI as it leads to uncertainty in the extrapolation.

To investigate this effect in relation to PCI, equivalent simulated and experimental ultrasonic

thickness C-scans were performed. This study was published in the Journal of the Acoustical

Society of America [1]. Much of the material presented in the next two chapters (chapters 5 and 6)

has been reproduced from this paper. In this chapter, the model used to simulate the ultrasonics

is described.

Although the DPSM is a promising method for simulating ultrasonics, it has been shown

that there are discrepancies between analytical solutions and the pressure fields calculated by the

DPSM. This has been well-documented and is attributed to poor matching to the uniform pressure

boundary condition, due to the limited number of point sources [72, 73, 74, 75]. Alternative

formulations of the DPSM have been developed with the goal of improving the matching to the

uniform pressure boundary condition [76, 77]. These have shown some success, however, in this

chapter it will be shown that with a slight alteration to the DPSM to better match the boundary

conditions these discrepancies can be removed.

The chapter begins by describing the distributed point source method (DPSM), alongside a

brief comparison to alternative techniques and a review of the literature. It continues with a

demonstration of the problems with the current formulation of the DPSM via a comparison to an

analytical solution. Limitations to the DPSM are discussed and addressed with the development

of an extension to the DPSM which ensures better matching to the boundary conditions of the

model (section 5.4.3).

In this chapter a new extension to the DPSM method is formulated. This extension removes

the limitations of earlier incarnations of the DPSM and allows for fast, accurate simulations of

ultrasonic thickness measurements. The extension of the DPSM described in this chapter is used

in chapter 6 to simulate large numbers of ultrasonic thickness measurements

112



5.2 Modelling reflected ultrasonic signals

Finite element methods (FEM) are the most widely used method for simulating ultrasonics. They

have been used in applications as wide ranging as modelling elastic wave propagation in wave-

guides [78] to simulating the propagation of ultrasonic waves in dental implants [79]. FEMs have

also seen some application in modelling rough defects. For example, Pettit modelled a pulse-echo

inspection of planar rough defects, using a bespoke elastic finite element method [80].

Inspections of engineering components often consist of large numbers of ultrasonic measure-

ments. While FEMs are a sufficient tool for small numbers of simulations of measurements from

rough surfaces, they are too computationally expensive for modelling the number of signals1 re-

quired to simulate a full inspection. Jarvis and Cegla performed a comparative study of the

computational load required by various methods to simulate the reflection of an ultrasonic pulse

from a rough surface [14]. They found that the time taken for the simulation using the FEM was

236 seconds compared to 13 seconds for the distributed point source method (DPSM).

A large contribution to the difference in computational load arises from inclusion of the shear

stress components in FEM models. C-scans are usually performed using a zero-degree longitudinal

wave transducer. It can be assumed that mode conversion has little effect on the received signal

i.e. the acoustic component of the incident and reflected fields can be used to model the physics of

the system. As the systems modelled in this chapter deal exclusively with zero-degree longitudinal

transducers it is prudent to model only the acoustic components.

This could be achieved by changing the FEM to use only the acoustic components. However,

the FEM requires full discretization of the volume of interest. This is expensive from both the

perspective of the memory required to store the mesh and the time required to set it up. Alter-

native formulations of the FEM, such as the boundary element method (BEM) can reduce the

computational cost by only discretizing the boundaries of the volume of interest. However, for

problems with large surface to volume ratios, such as those that will be considered in this chapter,

this efficiency can be lost due to the need for absorbing boundaries.

As an alternative to the family of finite element methods, the distributed point source method

1For a scan of 200mm2 of a component with a separation between measurements of 1mm, the number of thickness
measurements taken is 40, 000.
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(DPSM), which models acoustic fields, can be used to reduce the computational cost of ultrasonic

modelling. A number of different authors have shown that DPSM outperforms finite element

methods in terms of the time required for a simulation [75, 14]. Additionally, DPSM has been

shown to be a very promising tool for modelling the reflection of acoustic waves from rough defects

by Jarvis and Cegla [14].

The DPSM is a mesh-free semi-analytical technique, first used to study the magnetic fields of

complex shaped magnets [81]. The method has been extended to acoustic field calculations [82]

and is being applied to an increasing number of problems. Banerjee et al. have used DPSM to

study elastic wave propagation in sinusoidally corrugated waveguides [83] . It has also been used

to study a variety of scattering problems [82, 72, 84] and to predict the beam from phased array

transducers [85]. More recently it has been used to simulate the scattering from a rough surface

[14] in 2D. A brief outline of the method is given here. Readers interested in more detail on the

DPSM are referred to Placko et al. [86].

5.3 The distributed point source method (DPSM)

5.3.1 Frequency domain calculations

The distributed point source method consists of the placement of point sources across the trans-

ducer face and at the rough surface. Amplitudes of the point sources are calculated directly from

the boundary conditions of the system. Point sources (S2 ) placed where the field strength is known

(S1 ) are termed active point sources, with passive point sources (I2 ) placed where reflections or

scattering occurs (I1 ).

The amplitudes of the active point sources, labelled i = 1..N , for N sources are labelled ASi.

The pressure from the ith point source is given by:

p(r) =
ASie

jkr

r
(5.1)

where r is the distance of a target point from the source, k is the wave number and j is the
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imaginary unit. The point sources (S2 and I2) are offset from the boundary (S1 and I1) by a small

distance (rs), to avoid singularities.

A suitable offset from the transducer face can be calculated analytically. Equating the hemi-

spherical area of a sphere of radius rs to the area associated with each source point a2 as in Placko

et al. [86], gives:

a2 = 2πr2s → rs =
a√
2π

(5.2)

where a is the point source separation. Equation 5.2 provides a guide of what value to choose for

rs, providing consistently good results [86].

Equation 5.1 can be written in matrix form for a set of source points S and a set of target

points T :

PT = QTSAS (5.3)

where the propagation matrix, QTS:

QTS =



eikr11
r11

eikr12
r12

eikr13
r13

. . . eikr1M
r1M

eikr21
r21

. . . . . . . . . . . .

. . . . . . . . . . . . . . .

eikrN1

rN1
. . . . . . . . . . . . eikrNM

rNM


(5.4)

and PT is the vector of pressures at the set of target points T and AS is the vector of source

amplitudes.

If the set of target points is across the transducer face, the pressure at each point is known.

The propagation matrix can be calculated from the positions of the point sources and the target

points. This leaves one vector unknown, the source amplitudes, which can be found by inverting

equation 5.3:

AS2 = Q−1S2S1PS1 (5.5)

Then, the pressure at any set of target points can be calculated by applying the relevant propaga-

tion matrix to AS2.
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If the field from the transducer is calculated at points along the rough surface, the amplitudes

of the passive point sources can be found:

AI2 = −Q−1I2I1QI1S2AS2 (5.6)

The reflected field at any point can then be calculated by propagating AI2 to the points required.

5.3.2 Time Domain

Common practice in wall-thickness measurements is to use time-domain pulses. The calculations

outlined so far are performed in the frequency domain and require extension for time domain pulse

propagation. The method used here follows Jarvis [14]. Alternatively, the time-domain Green’s

function could be used for the calculation, although this approach is unsuited to long pulses [84].

The frequency-domain representation of the outgoing pulse, f(t), is calculated at S1 :

F (ω) =
1√
2π

∫ ∞
−∞

f(t)exp(jωt)dω (5.7)

where F(ω) is the frequency domain of the incident pulse, ω is the angular frequency and t is time.

A monochromatic DPSM calculation is then performed for each frequency component:

PS1 = QS1I2AI1 (5.8)

A single reflection is modelled and the reflected frequency domain at each point in S1 is con-

structed. The arithmetic mean of all of these frequency domain representations, gives the frequency

domain representation of the received signal. The time-domain received signal is calculated by per-

forming an inverse Fourier transform:

f(t) =
1√
2π

∫ ∞
−∞

F (ω)exp(−jωt)dt (5.9)

The outgoing pulse used was a 5MHz Hanning windowed toneburst, with 5 cycles. To reduce

the computational time taken for these simulations, any frequency component with amplitude less
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than 1% of the largest component was set to zero. These components were found to have little

effect on the overall signal.

5.4 Validation of the DPSM code by comparison to an

analytical solution

There is no commercially available software which can perform DPSM calculations. Consequently,

a program was written in C++, to perform the calculations efficiently on Imperial College’s high

performance computing cluster [87]. The program uses the Eigen libraries [88], to handle the ma-

trix inversion and multiplication required for DPSM. The calculations are performed in parallel,

using OpenMP [89] for the field calculations and MPI [90] for the signal calculations, which han-

dle communication between the processors. Fourier transforms are performed using FFTW [91].

There is additional functionality to perform calculations in two dimensions. These require Bessel

functions, which are included using the Boost libraries [92]. To ensure the validity of the program

that was coded, its solutions were compared to an analytical benchmark and a convergence study

was performed.

5.4.1 Analytical Solution for the on-axis field of the resilient disc

The transducer was modelled by assuming a constant pressure across its active element (a disc).

There is an analytical solution for the on-axis pressure [93] of this type of transducer. The pressure,

p, is given as a function of distance, y, as:

p(y) = e−jky − y√
y2 + a2

e−jk
√
y2+a2 (5.10)

where k is the wave-number and a is the radius of the disc. The parameters used for these

simulations are for a 6mm diameter transducer, operating at 5MHz in steel (vL = 5960m/s),

unless otherwise stated.

To derive equation 5.10, two assumptions are made:
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Figure 5.2: Schematic showing the simulation cell for a single thickness measurement. The 6mm 5MHz
longitudinal wave transducer and the rough surface are represented by point sources separated by 0.1mm,
w = 10mm is the mean thickness of the material. The size of the rough surface patch required for the
simulation is determined by the mean thickness of the component. For a 10mm mean thickness the size
of the patch required was 9mm by 9mm. Reproduced from Benstock et al. [1].
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1. Uniform pressure boundary condition: the pressure on the disc is

p(x, y, z) = 1.

2. Zero pressure boundary condition: everywhere on the plane (x,0,z), p(x, 0, z) = 0, where

x2 + z2 > a2.

The resilient disc is an idealised source. In real life, transducers would emit different beams as

the vibration across the surface (and hence the pressure) might not be uniform. However, a uniform

pressure distribution is a commonly used assumption employed to model 0-degree longitudinal

probes. Additionally, the analytical solution provides a readily available standard to verify the

results of the DPSM and to check for convergence.

Equation 5.10 can be used to calculate a reflected analytical signal in a similar manner to the

time domain signal calculation outlined for DPSM (section 5.3). The Fourier transform of the

outgoing signal is taken (equation 5.7) and equation 5.10 is used to calculate the the pressure

for each frequency component (above 1% of the maximum amplitude). These pressures are then

used to form the frequency spectrum of the reflected signal, which is then subjected to an inverse

Fourier transform (equation 5.9) to give the time-domain representation of the reflected signal.

5.4.2 Direct comparison to the analytical solution

The geometrical set-up for these calculations is the same as in figure 5.22. The active source

points (the transducer) are placed on the plane Y=0. The DPSM is used to calculate the pressure

radiating into an acoustic medium with the same density and compressional wave velocity as steel

(i.e. vl = 5960m/s⇒ k = 5.27× 103radsm−1), from the active point sources.

Figure 5.3 shows the on-axis pressure as calculated by DPSM compared to the analytical

solution. This figure clearly demonstrates the discrepancies between the analytical solution and

the field calculated by the DPSM. This difference has been attributed to poor matching of the

uniform pressure boundary condition to the pressure distribution provided by the point sources

[75]. If the uniformity of the boundary conditions was the cause, then simply increasing the number

2with a flat surface of the same dimensions in place of the rough surface
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Figure 5.3: Comparison between the analytical solution and DPSM solution with different point source
densities for the on-axis field (f=5MHz), for a disc of radius 3mm into a medium with c=5960m/s.
Reproduced from Benstock et al. [1].
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it returns to zero. Reproduced from Benstock et al. [1].
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of point sources should improve the results. However, this is not the case. Figure 5.3 shows that

with increasing point source density, the discrepancy remains.

The DPSM does not explicitly satisfy the zero-pressure boundary condition used by the ana-

lytical solution. For the analytical solution a cross section of the pressure distribution across its

surface, would show uniform pressure (equal to unity) across the transducer. At its edges, the

pressure drops immediately to zero. In comparison, the cross-section of the pressure distribution

calculated by DPSM, tapers off slowly (figure 5.4), leading to a ’halo’ around the outside of the

transducer (where the zero-pressure boundary condition is not fulfilled).

5.4.3 Boundary points

The zero-pressure boundary condition can be matched by the addition of a number of boundary

point sources around the outside of the transducer face (figure 5.4). Figure 5.5 is an example of

a discretised 6mm diameter transducer. The boundary points are shown by the red points, which

are positioned around the outside of the transducer. At these points the pressure is set to zero.

The pressure at the blue points is set to one. The addition of the boundary points requires an

extension to the DPSM.

To include boundary point sources, one alters the boundary condition vector and the propaga-

tion matrix in equation 5.5. For M active source points and K boundary points:

QTS′ =



eikr11
r11

eikr12
r12

eikr13
r13

. . . e
ikr1,M+K

r1,M+K

eikr21
r21

. . . . . . . . . . . .

. . . . . . . . . . . . . . .

eikrN1

rN1
. . . . . . . . . . . . e

ikrN,M+K

rN,M+K


(5.11)

where S’ is the set of source points and boundary points. The boundary condition vector is given

by:

P =

IM×1

0K×1

 (5.12)

where 0K×1 is a K dimension vector of zeros. The source amplitudes can then be calculated using
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Figure 5.5: An example of a discretised 6mm diameters circular transducer. The pressure at the blue
points was set to one; the pressure at the red boundary points was set to zero. Reproduced from Benstock
et al. [1].
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equation 5.5, with the altered matrix and vector. Boundary points were found to reduce the

pressure around the edge of the transducer to close to zero (figure 5.4, solid black line), with the

addition of four layers of boundary points (with a point separation of λ
12

).

While the pressure conditions are much more closely matched, there are still some differences

in the pressure profile produced by the DPSM and the profile used for the analytical solution.

This is a consequence of trying to model a continuous boundary condition by a number of point

sources. The pressure profile radius is slightly larger than the prescribed transducer radius (figure

5.4), which would lead to phase differences in the near field and amplitude discrepancies in the

far-field.

An effective radius for this pressure distribution can be calculated. The difference between the

DPSM and analytical solutions across the axis is minimized with respect to the radius. This leads

to close agreement between the analytical and the DPSM solutions (figure 5.6).

Equation 5.10 was also used to calculate the pulse propagated to a single point at (0, 50
3
λ, 0)

and compared to the equivalent DPSM signal. The frequency domain representation of the out-

going signal was calculated using equation 5.7. At each frequency the amplitude at (0, 50
3
λ, 0) was

calculated and used to form the frequency domain representation of the propagated pulse. This

representation was then transformed into the time domain using equation 5.9, which gives the

received signal at (0, 50
3
λ, 0). Close matching between the DPSM (using an active point source

separation of λ
12

) and analytical signals was achieved (figure 5.7), with a 2% maximum differ-

ence of the Hilbert envelopes of the signals. This analytical signals forms the benchmark for the

convergence studies.

5.4.4 Passive point source density

The next part of the validation which needs to be addressed is the passive point source density

across the backwall. An analytical solution for a reflected signal from a flat backwall can be

calculated by reversing the phase of the analytical signal (section 5.4.3). This models the total

distance travelled by the pulse and its reflection from a flat backwall 25
3
λ away from the transducer.

The DPSM was used to calculate the reflected signals from four backwalls with different point
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(dashed black line) with boundary points (f=5MHz). The DPSM calculation was performed with an
active point source separation of λ

12 (0.1mm). The frequency was chosen as it will be used as the centre
frequency of the Hann window pulse used in the simulations in chapter 6. The effective bandwidth of a
5MHz Hann window pulse is 3MHz. Reproduced from Benstock et al. [1].
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source densities. The maximum error on each signal was found by calculating the percentage

difference between the maximum of the DPSM solution and the analytical solution. The passive

point source density when the error is reduced to 1% or less, was used for the calculations. This

was found to be 147λ−2, corresponding to a passive point source separation of approximately λ
12

(figure 5.8).

5.4.5 Backwall size

The active and passive point source densities found in sections 5.4.3 and 5.4.4 were then used

to determine the minimum patch size required. The reflected signal from square patches ranging

from 5 − 11mm (25λ
6

to 45λ
6

) in dimension were calculated using the DPSM and compared to the

analytical signal. The maximum error was calculated in the same way as in section 5.4.4 and

reduced to less than 2% with a patch size of 9mm (figure 5.9), so this was chosen as the patch size

for the C-scan model.

5.4.6 Roughness discretization

The previous sections have found the parameters for which the DPSM simulation of a signal

reflected from a flat backwall has converged. However, this study is concerned with rough surfaces.

Therefore, the parameters need to be checked for a surface of varying height.

A surface with a sinusoidal height variation was used as a model surface. Its amplitude and

wavelength were chosen to be of a similar extent to RMS and correlation lengths which were to

be modelled. The reflected signals from this surface with various point source separations were

calculated using DPSM.

For this case there is no available analytical solution for the reflected signals. Therefore, the

maximum error was found by calculating the percentage difference from the signal calculated with

the largest passive point source density. The calculation was taken to be converged when the

reduction in error was less than 1% upon doubling the number of point sources per unit area. This

was achieved for a point source density of 147λ−2 [100mm−2] (circles in figure 5.8).
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5.5 Summary

The distributed point source method is a fast alternative to more common finite element methods

for simulating ultrasonic thickness measurements. It has been shown that, for the simulation of

acoustic waves, the DPSM is faster than the finite element method by a factor of 10 [14]. In

this thesis it has been used to simulate a large number ultrasonic thickness measurements across

surfaces representative of damage that could occur in a corroded component. Prior to these

simulations, the DPSM was investigated as part of the development of a C++ program. It was

found that, although the DPSM offers a promising new approach to simulating ultrasonic thickness

measurements, results produced by the method differed from equivalent analytical results.

Subsequently, in this chapter, the limitations of the DPSM were investigated and it was found

that the discrepancies between the DPSM and analytical benchmarks arose from differences in

their assumptions. The DPSM does not automatically fulfil the zero pressure assumption made

by the benchmark. This was addressed by the addition of a number of boundary point sources

around the outside of the transducer. At these points, the pressure is set to zero. This led to a

significant improvement in the matching of the results of the DPSM to an analytical benchmark.

A convergence study of the parameters of the DPSM model were performed. The point source

separation, size of the rough surface patch and discretization of the surface roughness were inves-

tigated in order to find the best parameters for simulating an ultrasonic C-scan. It was found that

convergence of the DPSM results was achieved using a 9mm by 9mm square patch of rough surface

with active and passive point source separations of 0.1mm. The simulation parameters selected in

this chapter, along with the new extensions to the DPSM, were used to simulate a large number

of ultrasonic thickness measurements across rough surfaces. The results of these simulations are

presented in the next chapter (chapter 6).
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Chapter 6

Accuracy of ultrasonic thickness C-scans

6.1 Modelling a C-scan

Ultrasonically measured thickness measurements are a combination of the interaction of the ultra-

sonic pulse with the corroded surface and any noise introduced by the signal processing algorithm

and the signal acquisition system [14, 94, 95]. The interaction between the signal processing

algorithm and the distorted signal produced by the rough surface leads to inaccurate thickness

measurements. This is one of many factors which can contribute towards thickness measurement

uncertainty. Most of these can be controlled through careful inspection set-up and procedures.

However, the uncertainty introduced by surface roughness cannot be controlled as it is a feature of

the measured system. This effect need to be quantified in order to understand its effect on condi-

tion assessment as any inaccuracy in the inspection data will propagate through an extrapolation

model and could lead to incorrect conclusions.

Jarvis and Cegla investigated the effect of surface roughness and the choice of timing algorithm

on the accuracy of the thickness measurements [14]. They modelled the behaviour of reflections of

ultrasonic pulses, transmitted from a rectangular transducer, from rough surfaces. A two dimen-

sional distributed point source method was used for the simulations. It was found that increases

in the surface roughness increased the median measured thickness i.e. led to an overestimation

of the actual thickness. The amount of the overestimation varied with the choice of the timing

algorithm.
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In this chapter, a series of simulations and equivalent experimental scans are performed using

the modified three dimensional distributed point source method described in the previous chapter

(chapter 5). In contrast to the work by Jarvis and Cegla [14], the simulated ultrasonic thickness

measurements are taken as a C-scan, as an inspector would collect in the field with a circular

transducer. An analysis of the results of these simulations and experiments more insight into the

effect of surface roughness and choice of timing algorithm on a set of thickness measurements. The

experimental data is used to produce an extreme value model, which is used to provide an example

of these effects on an extrapolation. Prior to this thesis, there has been no study of the effect of

surface roughness on ultrasonic thickness measurements taken as part of a C-scan, nor has any

study of the effect of these errors on an extreme value model been performed.

6.2 Simulation Set-up

The corrosion mapping set-up used in this chapter consists of a 6mm diameter 5MHz longitudinal

wave transducer coupled to the surface using water (or another suitable couplant). There are two

alternatives to couple the transducer to the part: directly placing the transducer on the surface

of the part with a small amount of couplant (a contact scan) or placing the part in a water

bath. In industry most scans are performed as contact scans as it is infeasible to use immersion

scans for in service pipework. The simulations in this chapter model a contact scan as it is less

computationally expensive to model than an immersion scan. In contrast, the experiments use

an immersion scanning set-up to ensure consistent coupling between the transducer and the plate

across the surface of the part.

There are differences between contact and immersion scans which require discussion here. The

transducer is much further away from the rough surface for an immersion scan and the transmitted

ultrasonic pulse has to travel through a much larger region of couplant (the water). Subsequently,

both the ultrasonic footprint on the rough surface will be larger than the contact measurements,

increasing the amount of scattering from the rough surface, and the received signal amplitude will

be smaller than the contact scan, due to the increased distance both the transmitted and reflected

pulse must travel. To reduce the impact of these differences the transducer in the immersion scans
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was positioned as close to the surface of the steel plate as possible. Subsequently the effect of these

differences should be minimized.

For the simulations, the front surface is assumed to be in good condition, so that the transducer

makes a flat contact (figure 5.2) with the component. To make a thickness measurement, a 5MHz

Hanning windowed pulse is then radiated into the steel wall, which is reflected from the internal,

corroded, rough surface and recorded (figure 5.1). The thickness is calculated from the time of

flight of this pulse using one of the algorithms described in 6.2.2. In real situations, multiple

reflected pulses will be received. However, the signal processing is restricted to the first reflection

for the purposes of our study, as it is usually used for thickness measurements.

To obtain a map of wall thickness measurements, the transducer is moved a small distance in

either the X or the Z directions, collecting an ultrasonic signal at each point across the inspection

area. The beam profile at the backwall is collimated, so each measurement will only probe a small

area directly under the transducer. The reflected ultrasonic signal from this patch will consist

of scattered energy from the surface roughness (figures 5.1). Consequently, the signal shape can

change substantially between closely spaced measurements. These two effects lead to a variation in

the thickness measurements across the surface, determined by the characteristics of the transducer

and the surface roughness.

6.2.1 Simulation parameters

The previous chapter described an analysis of the DPSM model which showed which parameters

were required to ensure DPSM simulations with an error of less than 2% in the maximum amplitude

of the Hilbert envelope of the signal. These parameters were used throughout this chapter to

simulate signals collected from a wall thickness C-scan. The beam from the transducer is very

collimated, only probing a small footprint directly under the transducer (a 9mm by 9mm patch).

Therefore, each simulated measurement only needs a small region of the surface to accurately

model the reflected signal. This allows for the C-scan to be split into a large number of independent

measurements, which makes the problem computationally tractable.

Each measurement is represented by a single simulation cell. A cell consists of the transducer
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placed on the (X,0,Z) plane (as in figure 5.2), with a corresponding patch of the rough surface

placed in the (X,25
3
λ,Z) plane. The active point sources which model the transducer are surrounded

by four layers of boundary point sources at which the pressure is set to zero (as in section 5.4.3).

The patches of rough surfaces were taken from three different 200mm square surfaces.

The surfaces were generated with a Gaussian distributed height profile using the algorithm

described in section 3.3, with RMS surface variations of λ
12

, λ
6

and λ
4
, and correlation length

λc = 2λ. These surfaces were split up into 9 by 9mm (7λ by 7λ) patches, with a lateral separation

of 1mm. These patches each correspond to a thickness measurement taken 1mm apart in a square

grid. Ultrasonic simulations for each cell were performed producing a reflected signal. Thicknesses

were calculated from each cell using a timing algorithm described in section 6.2.2 and they were

used to calculate cumulative distribution functions (section 6.4.2) for the surfaces.

6.2.2 Timing algorithms

The transducer operates as a pulse-echo sensor with the only scattering occurring at the pipe

boundaries. The thickness of the component is calculated as:

w =
1

2
(t2 − t1)c (6.1)

where t2 is the time of arrival of the pulse reflected from the rough surface, t1 is the time of arrival

of the reflection from the front of the component and c is the speed of sound. The time of flight

(TOF) is defined as t2 − t1.

There are many ways of measuring the time of flight. The performance of three common timing

algorithms, presented below, is compared as part of this study. In all of the algorithms, the signals

were interpolated, to increase the accuracy of the TOF measurement.
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Envelope peak detection

The Hilbert transform was used to calculate the envelope of the pulse. The time at which the

maximum occurs in this envelope is t2:

t2 = max

(
1

π

∫ ∞
−∞

f(x)

t− x
dx

)
(6.2)

where f(x) is the Hilbert transform of the reflected pulse, x is an integration variable and t is time.

Similarly, t1 is the time at which the maximum of the envelope of the transmitted pulse occurs.

Cross-correlation

The outgoing pulse f(t) and the received pulse g(t) are cross-correlated. For J samples of the

signal, the cross-correlation at sample k is given by:

s(k) = ΣJ
j=0 − g(k + j)f(j) (6.3)

The minus sign in front of g(t) accounts for phase reversal on reflection. The maximum point in

s(k) is the time of flight:

t2 − t1 = t(max (s(k))) (6.4)

where t(max (s(k))) is the time at which the maximum value in s(k) occurs.

Threshold first arrival

The Hilbert transform was used to calculate the envelope of the pulse. The amplitude of the

envelope is normalised relative to its maximum amplitude.

A threshold amplitude was selected and the time when the part of envelope corresponding to

the reflected pulse, crosses the threshold is t2. t1 is the point at which the the envelope of outgoing

pulse crosses the threshold.
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6.3 Experimental Set-up

To further validate the model, 200mm square patches of roughness (RMS= λ
12

, λ
6

and λ
4
, and λc =

2λ) were machined onto three 300mm square mild steel plates. To manufacture the plates, rough-

ness profiles were generated using the method in section 3.3 and used to build a SolidworksTM(Dassault,

Vélizy-Villacoublay) model of the plate. The height profile was machined onto the plate using a

BridgeportTMCNC machine (Series 2 Interact 4, Bridgeport, New York).

The minimum radius of curvature achievable by the CNC machine was 2mm. Any surface

features with a radius of curvature less than 2mm were filtered from the point cloud data, by

performing a spatial Fourier transform of the surface and removing the relevant frequencies. Fur-

thermore the rough surfaces taper down gradually to a flat surface, for the last 2mm of the rough

patch, to allow cutter access. An example of a plate is shown in figure 6.1.

To validate the surface variation of the plates, the TalysurfTM(Taylor Hobson Ltd, UK) surface

profilometer was used to measure the roughness profile of several lines across the surface of each

of the plates. From these profiles, the RMS and correlation length of the surface was calculated.

Figure 6.2 shows the measured RMS surface variation against the target RMS surface variation.

There is good agreement between the RMS of the real surfaces and the RMS of the computer

generated surface. Furthermore, figure 6.2 shows that the measured correlation lengths are all

within 0.2mm of the target correlation length.

The experiments were performed using the set up in figure 6.3(a). An Ultrasonic Sciences

Limited USL Scanner, with an Olympus NDT 5MHz 6mm diameter plane longitudinal transducer

(near field distance 10.8mm1), was used to scan the plates containing the rough surface. The

scanning frame arm draws the transducer across the surface of the plate, sending an ultrasonic

pulse at pre-set positions (a 1mm by 1mm resolution raster scan).

The pulse travels through the water, entering the plate at a distance of 32mm from the trans-

ducer face. Then, the pulse travels through the metal, until it reflects off the rough surface. The

scattered signal is then recorded with the same transducer in the form of a time-trace (A-scan).

The thickness corresponding to each time-trace was extracted in the post-processing using the

1It should be noted that the near field distance for both the simulations and the experiments is approximately
equal i.e. the rough surface is in the far field for both simulations and experiments.
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Figure 6.1: An example of a mild steel plate (300mm by 300mm external dimensions) with a Gaussian
height distributed roughness profile. Reproduced from Benstock et al. [1].
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Figure 6.2: A: a comparison between the measured RMS surface variation using Talysurf plotted as
a function of the RMS surface variation of the surface and the target RMS (black dashed line). B: the
correlation length of the plates extracted using Talysurf plotted as a function of the RMS surface variation
of the surface and the target RMS (black dashed line). Reproduced from Benstock et al. [1].
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previously described timing algorithms.

The rough surface is in the far-field of the transducer. As a consequence the field at the backwall

will be of a very similar shape to that in the simulations, albeit with a reduced amplitude [96].

6.4 Results

6.4.1 Signals

The time domain signals collected from across the surface give insight into the measurement

process. The transmitted pulse travels through the steel plate and is reflected from the rough

surface. Figure 6.3(b) shows a raw A-scan signal acquired by the equipment. It shows the front

reflection from the flat surface of the steel plate and the reflection from the rough surface. We

were only interested in the reflection from the backwall and therefore the time travelled through

the plate was computed by setting the time at which the pulse enters the plate as time zero. The

distance travelled in the steel plate was calculated by multiplying the arrival time of the reflection

by the longitudinal wave velocity in steel (5960 m/s). Subsequently traces containing only the

backwall reflection will be shown (see Figure 14)

The signals in figure 6.4.A were collected from the RMS=0.3mm plate (using the immersion

scanner), from points on the surface a small distance apart (1mm). There is a clear difference

between the two signals. For the solid signal, there is constructive interference between components

of the signal reflected from different parts of the rough surface, leading to a large signal amplitude.

In contrast, for the dashed signal, there is destructive interference between components of the

signal that reflected from different parts of the rough surface, leading to reduced amplitude and

changes in signal shape.

Variations in signal amplitude and shape lead to different thickness measurements. Figure

6.4.B shows the Hilbert envelope of the signals in figure 6.4.A plotted on a dB scale. The 0dB

point on these lines corresponding to the maximum of the Hilbert envelope, which envelope peak

detection (EPD) uses to calculate c · t2. For the solid signal, this point is at 23.5mm, compared to

24.5mm for the dashed signal. Although the actual mean thickness at these two points is about
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Figure 6.3: (a) Schematic showing the experimental set-up. The water path was set to as small as possible
(32mm) to minimize the differences between the contact set up used in the simulations and the immersion
set up in the experiments. This is in the far-field of the transducer (near field distance 10.8mm). (b) An
example of a full A-scan collected by the experimental set up. Reproduced from Benstock et al. [1].140
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Figure 6.4: Two signals from the same rough surface (RMS=0.3mm), illustrating the amount of distortion
that the rough surface can introduce to the pulse shape. The top figure (A) is the raw signal shape and
the bottom (B) is the Hilbert envelope plotted on a logarithmic scale. Reproduced from Benstock et al.
[1].
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the same, the underlying surface morphology leads to alterations in the reflected signal shape and,

therefore, a difference in the measured thickness.

Thickness measurement variation due to changes in pulse shape is determined by the timing

algorithm. The black dashed line in figure 6.4 (bottom) is the -10dB line. The first point where

the signal crosses the line, is used by threshold first arrival (TFA) to calculate the thickness. In

contrast to EPD, there is only a small difference between the thickness measured from the solid

and dashed signals using TFA.

The collected signal can be thought of as superposition of an average coherent pulse, corre-

sponding to the mean thickness of the plate and a random diffuse component, introduced by the

backscatter from the surface morphology. Averaging signals collected across the plate reveals the

shape of the average coherent pulse. As the reflected energy is shared between the diffuse and the

coherent components and the fraction of energy of the diffuse component increases with surface

roughness, for rougher surfaces one would expect the average pulse to drop in amplitude. This

is shown in figure 6.5. For the experimental and simulated data, it can be seen that the average

signal amplitude drops rapidly with increasing RMS surface variation. The collected signal is

being dominated by the random component introduced by the surface roughness. Therefore, for

surfaces with larger RMS surface variations, there will be much larger changes in signal shape and

amplitude, leading to larger variations in the thickness measurement.

One should note that, in figure 6.5, there is some variation in the position of the average signal.

This is because the manufacturing process of the rough surfaces is difficult and complex, and

offsets between the mean planes of the surfaces could not be avoided. Furthermore, the average

pulse shape between the experimental and simulated mean signals (figure 6.5) is different as the

transducer used in the experiments was driven by a pulser, as opposed to the Hanning windowed

pulse used in the simulations. The bandwidth of both pulses is approximately the same.

6.4.2 Empirical cumulative distribution functions (ECDF)

Corrosion maps provide an overview of the condition of a component. However, it is difficult to

draw quantitative conclusions from them. The cumulative distribution function (CDF), offers a
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Figure 6.5: The mean signals from the RMS=0.1mm (dotted), 0.2mm (solid) and 0.3mm (dot-dashed)
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compact presentation of the thickness measurements. Independent statistical distributions can

be clearly distinguished and form the basis for drawing conclusions about the corrosion processes

occurring in a vessel [2]. The CDF can be calculated by sorting the thickness measurements into

ascending order and assigning each a rank from 1 to N (where N is the number of thickness

measurements). The CDF is then:

F (X) = P (x < X) =
i

N + 1
(6.5)

where X is the thickness measurement, i is its rank and N is the total number of measurements.

F (X) = P (x < X) is the probability of measuring a thickness less than X.

Figure 6.6 shows the ECDFs of the thickness measurements from the three different plates,

calculated using EPD. The crosses denote the experimental results and the circles denote the

simulated results. There is close agreement between the simulations and the experiments, both

showing an increasing spread in the measurements with the increase in RMS surface variation.

This is expected, as for increasing RMS surface variation, the reflected signals will become more

incoherent.

The majority of differences between the experimental and simulated ECDFs arises in the tail

(F (x) < 10−3), which corresponds to a small number of measurements (0.1%). The measurements

in the tail underestimate the thickness of the component. These measurements correspond to

signals which have undergone quite large pulse shape changes due to the surface roughness. They

have a large random component resulting from the scattering from the rough surface. This is a

limitation of performing ultrasonic thickness measurements across rough surfaces. In the field, an

inspector will have limited knowledge of the underlying surface morphology and it is, therefore,

very difficult to improve the accuracy of these thickness measurements. However, as it will be seen

later in this chapter, the choice of timing algorithm can help control the extent of the differences.

Figures 6.7 (A,B), 6.8 (A,B) and 6.9 (A,B) show ECDFs for the thickness measurements ex-

tracted from the RMS=0.1, 0.2, 0.3mm plates with different timing algorithms. The graphs labelled

A show the experimental results (with crosses) and the graphs labelled B show the simulated results

(with circles). Each timing algorithm produces a different tail.

The tail of the distribution can be used for extrapolation purposes [2]. For example, one
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Figure 6.7: The empirical cumulative distribution functions for the RMS=0.1mm surface with different
timing algorithms. The blue markers are from EPD, the red from TFA and the green from XC. The
crosses are the experimental data points and the circles are the simulations. The black dashed line is the
ECDF calculated from the point cloud of thickness values used to generate the surface. Reproduced from
Benstock et al. [1].
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Figure 6.8: The empirical cumulative distribution functions for the RMS=0.2mm surface with different
timing algorithms. The blue markers are from EPD, the red from TFA and the green from XC. The
crosses are the experimental data points and the circles are the simulations.The black dashed line is the
ECDF calculated from the point cloud from the point cloud of thickness values used to generate the
surface. Reproduced from Benstock et al. [1].
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Figure 6.9: The empirical cumulative distribution functions for the RMS=0.3mm surface with different
timing algorithms. The blue markers are from EPD, the red from TFA and the green from XC. The
crosses are the experimental data points and the circles are the simulations.The black dashed line is the
ECDF calculated from the point cloud from the point cloud of thickness values used to generate the
surface. Reproduced from Benstock et al. [1].
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could assume that uninspected areas of a component have the same thickness distribution as that

measured over a small sample area. The ECDF can be interpreted as the fraction of measurements

with less than a given thickness [2]. From figure 6.9A, the probability of measuring a thickness

less than x̄− 1mm (at any random measurement point), where x̄ is the mean thickness, is F (x =

−1mm) ≈ 0.002 for EPD and F (x = −1mm) = 0.006 for XC. Interpreting these values as a

percentage of the area, an inspector would conclude that 0.2% of the structure would have a

thickness of less than x̄ − 1mm, using EPD, or 0.6% with XC. The actual percentage of the

component with less than x̄− 1mm thickness is 0.05% (from the point cloud).

Clearly, this has consequences for any extrapolation scheme using ultrasonic thickness measure-

ments. Firstly, the minimum thickness in the uninspected area will be underestimated. Secondly,

ultrasonic thickness measurements of the worst case defect for these surfaces will lead to overesti-

mations of the probability of measuring less than a given thickness; the size of the overestimation

is determined by the timing algorithm used.

The overestimation will get worse with increasing RMS surface variation. In figures 6.7, 6.8

and 6.9 the difference of measured thickness distribution to the point cloud of the actual thick-

ness values, grows with increasing RMS surface variation; the rougher the surface, the larger the

overestimation of the size of the worst case defect.

6.4.3 Standard deviations of the thickness measurements

ECDFs plotted on a semi-log axis are very good for showing differences in the distribution tails;

however, they suppress differences in the bulk of the distribution. For example, it is hard to see

quantitatively from figures 6.7, 6.8 and 6.9 how the overall spread in the measurements varies

with the choice of timing algorithm or surface roughness. The measured thickness distributions in

this chapter are all Gaussian (due to the nature of the the surfaces). Therefore, calculating the

standard deviation of the thickness measurements will give a measure of how the spread in the

measurements changes. By examining the standard deviation as a function of surface roughness,

one can draw conclusions about how much measurement error could be introduced by each timing

algorithm. To determine this, one needs a measure of how much of the standard deviation can be
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attributed to the surface roughness alone.

The expected standard deviation from the surface roughness can be calculated by considering

the patch of surface insonifed by the transducer for each measurement (section 5.4.5). It is assumed

that the thickness which should be measured by the transducer is the mean thickness of this patch.

The expected standard deviation of the thickness measurements is the standard deviation of the

means of the patches.

In figure 6.10A the standard deviation of the thickness measurements is shown as a function of

the RMS surface variation of each surface, for both the simulated and experimental results. The

black dashed line in each figure is the standard deviation expected from the surface roughness.

The top graph shows the standard deviation calculated using EPD, the middle using TFA and the

bottom using XC.

For the RMS=0.2 and 0.3mm plates, the standard deviation of the simulations agrees closely

with the experiments, for all of the timing algorithms. However, for EPD and TFA, the standard

deviation of the RMS=0.1mm experimental thickness measurements is slightly higher than the

simulated results. This is due to other noise sources in the experimental data which become more

significant compared to the signal changes introduced by the roughness when the overall noise is

low.

The effect of incoherent noise is less pronounced for XC, as it relies on pulse shape and it is very

good at rejecting random noise, whilst TFA and EPD rely on the signal exceeding the noise floor

[14]. This is shown by the excellent agreement between the simulated and experimental standard

deviations for XC in figure 6.10A. However, it should be noted that thickness measurements ex-

tracted using XC have a larger standard deviation than both TFA and EPD. The increased spread

introduced by the use of XC is caused by its reliance on pulse shape. For increasing RMS surface

variation, the surface roughness has an increasingly large effect on the reflected pulse; this leads

to a larger standard deviation.

EPD and TFA perform better than XC with increasing surface roughness, as they are not as

susceptible to changes in pulse shape as XC. TFA performs the best out of the three algorithms as

the starting point of a signal, is a more stable estimate of the thickness measurement than the peak
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Figure 6.10: The standard deviation of the thickness measurements plotted as a function of RMS surface
variation, for the EPD (A), TFA (B) and XC (C). The crosses (long dashed line) indicate the simulated
results and the circles (solid line) indicate the experimental results. The black dashed line is the standard
deviation which would be expected, given the point cloud. The wavelength of the centre frequency of the
pulse is λ = 1.2mm. Reproduced from Benstock et al. [1].
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of a pulse. The peak of the pulse moves around with changes in pulse shape (see section 6.4.1). Up

to RMS=0.1mm ( λ
12

), the standard deviations of the measurements for all the timing algorithms

match up well with the expected standard deviations. However, past this point, the standard

deviations increase at a much larger rate than expected; this rate is determined by the choice

of timing algorithm. Therefore, one can conclude that up to 0.1mm ( λ
12

) RMS surface variation,

the spread in the measurements is dominated by the surface roughness, while for RMS surface

variations greater than 0.1mm, it is dominated by errors introduced by the timing algorithm.

6.4.4 Frequency Dependence

A study of the frequency dependence of the standard deviation of the thickness measurements was

also performed, with the same experimental set-up. The plates were scanned using a 3.5MHz 6mm

diameter longitudinal transducer and the standard deviations of the thickness measurements were

calculated. The standard deviations were plotted as a function of the RMS surface variation of

the plates (figure 6.11). It should be noted that RMS surface variation is given here as a fraction

of the incident wavelength. The expected standard deviation (black dashed line) was calculated

using the field at the backwall for a 5MHz transducer (section 6.4.3); the line for 3.5MHz has not

been included as it does not differ significantly from this line.

It is clear from figure 6.11 that the standard deviation increases as a function of RMS
λ

. Up

to RMS
λ

= 0.1 the standard deviation is close to the expected values. However, past this point,

it increases faster than anticipated. This suggests that to obtain a thickness distribution that is

more representative of the actual surface, one should increase the wavelength of the incident pulse

by using a lower frequency transducer. This is somewhat counter-intuitive to the usual thinking

in ultrasonics where an increased frequency (shorter wavelength) is associated with improved res-

olution and accuracy. However, this may conflict with the need for a higher frequency to resolve

the back face echoes in cases where wall-thickness is low.
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6.4.5 Example of an extreme value model generated from inspection

data

The data presented in this section has been submitted as part of a paper to the journal Corrosion

Science.

As an additional step in the analysis of the thickness measurements, an example of an ul-

trasonic thickness C-scan of a steel plate machined with a Gaussian surface with RMS=0.3mm

and λc=2.4mm was processed using the blocking algorithm (chapter 3. As the smallest thickness

measurements from a UT scan are underestimates of the true thickness of a component, one would

expect an extreme value model generated from UT thickness data to overestimate the severity of

damage in an area. Any estimates of the minimum thickness made using an extreme value model

will be smaller than the true minimum thickness.

To investigate this effect the thickness map was processed using the blocking algorithm with

a significance level of 0.05. A block size of 25mm was selected. A set of minima was extracted

from each using the selected block size and a GEVD was fitted to the sample minima. Figure

6.12 shows the extreme value models generated using the sample minima from both the ultrasonic

data (circles) and the point cloud data (crosses). The extreme value models for each set of data

are shown by the dashed lines. Graphically, the models provide a good fit to each set of minima.

The SRP for the ultrasonic data was calculated to be 1.16 for the ultrasonic data and 0.93 for the

model generated from the point cloud data, indicating that the models offer a good representation

of the data.

The model generated from the ultrasonic data overestimates the differences from the mean

thickness compared to the actual surface condition. As a consequence the extreme value model

generated from the ultrasonic data overestimates the severity of the damage across a component.

For example, the smallest thickness in the point cloud data is 8.7mm, which corresponds to a

deviation from the mean thickness of -1.3mm. The return period of this thickness calculated from

the ultrasonic extreme value model is 0.04 scans. The extreme value model generated from the

ultrasonic data is very conservative compared to the true surface condition. This arises from the

differences between the distribution of the minimum thickness for the point cloud data and the
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Figure 6.12: The cumulative distributions functions for the minimum thicknesses selected by the blocking
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ultrasonic thickness data, discussed sections 6.4.2 and 6.4.4.

6.5 Conclusions

The modified distributed point source method (DPSM) described in chapter 5 was used to simulate

C-scans of surfaces representative of a corroded engineering component. Ultrasonic reflections from

around 100,000 rough surfaces were modelled and compared to experimental ultrasonic scans of

the same surfaces. The statistics of the model and the experiments agreed well, showing that the

DPSM simulations are an effective tool to simulate populations of ultrasonic signals from rough

surfaces.

The simulated and experimentally acquired ultrasonic signals from surfaces with three different

RMS surface variations were analyzed using three different timing algorithms in order to extract

thickness measurement data. It was found that the thickness measurement distribution can differ

significantly from the actual surface distribution, especially in the tail of the distributions and at

larger RMS values. Furthermore, the shape of these distributions changed with the choice of the

timing algorithm, which implies that the assessment of a component will be dependent on the

timing algorithm used to extract the thickness measurements from the A-scans.

The effect of the differences between the ultrasonic thickness measurements and the actual

condition of the surface is of particular importance to EVA. Due to these differences, which are

largest in the tails of the distribution, extreme value models generated from the ultrasonic thickness

data will be overly conservative compared to the true condition of the component. Extrapolations

from extreme value models using ultrasonic thickness data will predict thinner thickness values

than actually present.

The standard deviation of the thickness measurements was also investigated. It was found

that up to 0.1mm ( λ
12

) RMS surface variation the standard deviation increased in proportion to

the change in actual surface roughness. However, for larger RMS surface variation the standard

deviation increase of measured thicknesses was larger than that of the underlying surface and

dependent on the choice of timing algorithm. A study of the frequency dependence of the standard

deviation was also performed. It was found that reducing the frequency of the interrogating wave,
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reduced the error introduced by the timing algorithm and the overall standard deviation of the

thickness measurements.

This is counter-intuitive to the general ultrasonic thinking, where increased frequency is as-

sociated with increased resolution and accuracy. The results in this chapter show that thickness

distributions of rough surfaces might be more precisely assessed when interrogated at lower fre-

quency so that RMS
λ

< 0.1.

Additionally, it is shown in this chapter that, the blocking algorithm described in chapter 3,

is capable of processing real ultrasonic thickness measurements. It successfully selected a block

size for an ultrasonic thickness scan of a correlated Gaussian surfaces with RMS height of 0.3mm

and a correlation length of 2.4mm. The model provided a good description of the inspection

data. Furthermore, congruent to the other finding presented in this chapter, extreme value models

constructed using ultrasonic inspection data can overestimate the severity of the damage across a

component because of the physics of the inspection technique.
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Chapter 7

Conclusions

7.1 Thesis Review

Condition assessment is an important part of the maintenance cycle for many engineering compo-

nents. Inspections of a component are carried out at regular intervals, usually during plant shut

down periods. These inspections are time consuming and expensive, due to both the cost of the

inspection and the loss of revenue to the plant operator. Furthermore, full access to a compo-

nent may be restricted due to, for example, other components or insulation. As a result, there is

increasing interest in techniques to improve the efficiency of an inspection.

Partial coverage inspection (PCI) is an example of an approach to solve this problem. PCI

describes the assessment of the condition of an engineering component using a representative

sample of inspection data which is used to extrapolate to and estimate the condition of a larger

area of the component. This thesis has focussed on statistical methods for performing PCI, namely,

extreme value analysis.

Extreme value analysis (EVA) can be used to construct a statistical model of the thinnest areas

of a component from an inspection of a sample area of a component (a full description of EVA

can be found in chapter 2). This model can be used to extrapolate to the minimum thickness in

an area much larger than the initial inspection area. The technique can be applied to data from

conventional inspection techniques, such that all existing sensing technologies can be used.

EVA has not been used more extensively in industry as there is no clear understanding of the
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uncertainties in the analysis, when it is a suitable approach and when it’s not. These are the key

issues addressed by this thesis with the development of a basic framework for performing EVA

with ultrasonic inspection data. This framework includes an approach for selecting the block size

(described in chapter 3) used to partition the thickness map. The approach selects a block size by

looking for evidence that the thickness measurements in each block are independent and identically

distributed. This method was validated using a large amount of simulated inspection data from

surfaces with both Gaussian and exponential roughness profiles.

Once the blocking algorithm has checked that the inspection data meets the assumptions made

by extreme value analysis an extreme value model can be constructed from the inspection data.

An extreme value model gives estimates of the probability of a thickness minimum occurring in an

area the size of one block. By assuming that the damage in the inspection area is representative

of the damage occurring across the uninspected area of the component, this model can be used for

extrapolation.

Extreme value models can be used to calculate return levels. Return levels, associated with

a number of blocks M , are a threshold which will be exceeded at least once in M blocks. Ex-

trapolations are performed by calculating the return level associated with an area larger than the

inspection area.

Return levels are a standard tool for estimating the most extreme members of a distribution

in fields such as hydrology [40] and insurance [38]. However, they have only seen limited use with

inspection data and there were no existing studies on the uncertainties associated with extrapo-

lations using return levels. Consequently, the use of return levels for extrapolation was validated

using simulated inspection data (see chapter 4).

Understanding the uncertainty associated with extrapolation is key to the use of EVA. The

profile likelihood method allows the calculation of 95% confidence intervals around return levels.

Confidence intervals provide a range in which 95% of the estimates of return level will lie. As the

return level is the limit which will be surpassed only once on average, the confidence interval will

provide a bounds in which the smallest thickness measurement in the extrapolated area will lie.

The width of the confidence interval rapidly increases with the size of the extrapolation. Larger
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extrapolations lead to larger confidence intervals. There is more uncertainty around the value of

the return level and as a result the bounds in which the minimum thickness could lie are much

larger. The calculation of confidence intervals for a large number of extreme value models was used

to determine the width of the confidence intervals as a function of the extrapolation ratio1 (see

chapter 4). This information can be used to design an inspection such that the confidence intervals

around the return levels for extrapolations from the inspection data will be of a prescribed size

(on average).

Extrapolations are sensitive to the quality of the inspection data. Errors can be introduced

into inspection data in a number of different ways. A large amount of literature on the source

of errors in inspection data exists. However, it has been shown that the uncertainty introduced

to a thickness measurement by surface roughness is uncontrollable and one of the key parameters

which influences uncertainty [14]. Understanding of the effects of surface roughness on thickness

measurements is important to PCI as any uncertainty in the data will lead to uncertainty in the

extrapolation.

Consequently, simulations of ultrasonic thickness measurements from three Gaussian height

distributed surfaces were performed. These simulations were performed using a bespoke distributed

point source method (DPSM). During the development of the DPSM, a review of the the theory

behind DPSM was performed. It was found that the performance of the DPSM can be improved

by the inclusion of a number of boundary source points, which improve the adherence of the model

to its boundary conditions (chapter 5).

The bespoke DPSM was used to develop a program, written in C++, to perform large numbers

of simulations using Imperial College London’s High Performance Computing systems [87]. It

was used to simulate ultrasonic C-scans of three different rough surfaces, alongside equivalent

experimental C-scans of steel plates onto which the rough surfaces were machined (chapter 6). The

thickness measurement distribution differs from the actual surface distribution, particularly in the

tail of the distributions, an effect which is magnified with increasing surface roughness. In addition,

distribution shape varied with the choice of the timing algorithm, indicating that different timing

algorithms would lead to different extrapolations. The simulated and experimental ultrasonic data

1The ratio of the inspection area to the extrapolated area.
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was used to generate extreme value models. The distortions in the tail of the distributions lead to

overestimations of the extent of the damage in a component. Extrapolations using extreme value

models from ultrasonic thickness data will be conservative compared to the true condition of the

component.

7.2 Main findings of the thesis

7.2.1 Extreme value analysis for partial coverage inspection

Extreme value analysis has been suggested as a possible tool for partial coverage inspection. How-

ever, examples of the use of EVA with real inspection data are quite limited and, prior to this

thesis, limited understanding of the uncertainties and extreme value methodology reduced confi-

dence in its practical applicability. For example, in existing literature, there is no consensus for a

method for selecting the block size required for partitioning the inspection data, nor has there been

any research into the uncertainties associated with extrapolation from an extreme value model.

In this thesis, research into these problems has been described. A framework for using EVA

to build statistical models of the condition of large areas of an engineering component has been

described. The framework begins with a method for selecting the block size, which selects a suitable

block size for a large amount of simulated inspection data from both Gaussian and exponential

surfaces. A method for estimating the uncertainty associated with an extrapolation has been

described and it has been used to estimate the size of inspection area required to extrapolate with

a given level of uncertainty for the first time. The combined knowledge of when EVA is appropriate

and quantification of the uncertainty associated with the model will hopefully have an impact on

EVA’s use in the industry.

Method for selecting block size

Prior to this thesis there was no accepted method for selecting the block size used to construct an

extreme value model which ensured that the assumptions made by EVA were met by the inspection

data. An approach to solve this problem has been described in this thesis. A set of candidate block
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sizes is chosen by the inspector and, for the smallest block size, the thickness map is partitioned

into blocks of that size.

From each block, the empirical cumulative distribution function (ECDF) is calculated and the

ECDF from every pair of blocks is compared using a two-sample Kolmogorov-Smirnov test. This

test checks that the thickness measurements in each block are from the same distribution. If the

tests show that the thickness distribution is the same in every block, the algorithm terminates and

this is the correct block size. Otherwise, the algorithm repeats this process for the next largest

block size until there are no remaining block sizes and we conclude that the inspection data is not

suitable for EVA. The algorithm selects a block size by looking for evidence that the partitioned

data meets the assumptions made by EVA.

This approach was tested with a large amount of simulated inspection data from simulated

inspections of both exponential and Gaussian rough surfaces. It was found to select a suitable

block size for the majority of inspections and generated extreme value models which provided

good descriptions of the data. Block size selection is a trade-off: too small a block size and the

GEVD will not provide a good model for the minimum thicknesses; too large a block size and

accurate estimates of the model parameters are unattainable. The algorithm selected block sizes

which provided a trade-off between minima that are ”extreme enough”2, whilst ensuring there are

an adequate number of minima to fit to a generalised extreme value distribution. As a rule of

thumb, for the surfaces in this study, it was shown that selection of a block size which provided

16 or 25 minima allowed for the construction of a useful extreme value model.

Uncertainty in extreme value extrapolations

Validation of an extrapolation is impossible. It requires data from outside of the inspection area,

which is unavailable to an inspector. However, one can show that the model constructed is rea-

sonable given the available data and the assumptions made by EVA, which can be achieved using

the blocking method in chapter 3. With evidence that the assumptions behind the model are

reasonable, confidence intervals can be used to quantify the uncertainty around the return level.

Extreme value models of simulated inspection data were generated and used to validate the

2That is, they occur in the tails of the underlying thickness distribution.
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return level for extrapolation of inspection data. It was found that the return levels matched up

with the relevant quantiles in a set of data corresponding to an extrapolated area, however, for

larger extrapolations they began to diverge from the correct values. The profile likelihood method

was used to calculate the confidence intervals around the return level and it was shown that the

smallest thickness in the extrapolated area would lie within these bounds. The confidence intervals

around the return level allow an inspector to determine the range in which the smallest thickness

measurement lies.

The confidence intervals for a large number of models were calculated at a number of extrap-

olation ratios. The average width of the confidence intervals was plotted as a function of the

extrapolation ratio. This provides insight into the size of the inspection area required to obtain an

estimate of the minimum thickness in the extrapolation area to within a given percentage error.

Models generated using smaller block sizes, which lead to an increased number of minima, were

shown to give narrow confidence bounds on the return level. However, the minima selected for

these models are not from the tails of the underlying thickness distribution. Consequently, these

models will underestimate the severity of the smallest thickness minima. In congruence with the

conclusions in chapter 3, models generated using 16 or 25 minima tended to provide reasonable

confidence bounds on the return level, whilst ensuring that the model provides accurate estimates

of the most severe minimum thickness.

7.2.2 Accuracy of ultrasonic thickness measurements

Surface roughness introduces distortion to ultrasonic signals collected as part of an inspection. It is

difficult to consistently extract a thickness measurement from a distorted signal. Different timing

algorithms lead to different thickness measurements. This results in uncertainty as to what the

true value of thickness is. Any uncertainty in the inspection data will lead to uncertainty in the

extrapolation.

Prior to this research project, the effects of surface roughness and the timing algorithm were

poorly documented. Consequently, joint computational and experimental studies were performed

to investigate the effect of the surface roughness on ultrasonic C-scan data. This research was
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presented in two parts: the development of a fast and accurate distributed point source method,

and the results of the simulated and joint experimental scans of three Gaussian height distributed

surfaces.

To simulate a large number of ultrasonic thickness measurements a fast, accurate simulation

method is required. The method chosen was the distributed point source method as it has been

shown to be faster than more common finite element methods [14]. An extension to the DPSM was

described. It was shown that, with the addition of boundary source points, improved the matching

of the DPSM solution to an analytical benchmark. This extension to the DPSM was implemented

in a C++ code to perform calculations efficiently on Imperial College’s high performance computing

cluster [87]. A full suite of convergence studies was performed in order to ensure the accuracy of

the program.

The program was used to simulate C-scans of surfaces representative of a corroded engineering

component using a 6mm diameter 5MHz longitudinal transducer. Concurrently, experimental

C-scans of the same surfaces machined onto steel plates were performed. The simulated and

experimentally acquired ultrasonic signals from the surfaces, were processed with three different

timing algorithms to extract thickness measurements. The tail of the thickness measurement

distribution differs significantly from the actual surface distribution, particularly for surfaces with

larger RMS heights. The shape of these distributions changed with the timing algorithm, which

implies that the assessment of a component will be dependent on the timing algorithm used to

extract the thickness measurements from the A-scans.

It was found that up to 0.1mm ( λ
12

) RMS surface variation (with a correlation length of 2.4mm

the standard deviation of the thickness measurements increased in proportion to the change in

actual surface roughness. For RMS heights greater than this the standard deviation increase of

measured thicknesses was larger than that of the underlying surface and dependent on the choice

of timing algorithm. A further study of the frequency dependence of the standard deviation was

also performed, it was found that decreasing the frequency of the interrogating wave reduced the

error introduced by the timing algorithm and the overall standard deviation of the thickness mea-

surements. This is counter-intuitive to the general ultrasonic thinking, where increased frequency
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is associated with increased resolution and accuracy. As a final step, to investigate the effect of

this bias on extrapolation models, the simulated ultrasonic thickness maps were processed using

the blocking algorithm. It was found that, relative to the true component condition, the extreme

value models overestimated the extent of the damage occurring across the component.

In terms of recommendations that could be made from this data, it is the author’s opinion

that the use of a threshold first arrival type timing algorithm will reduce the effect of scattering

from a rough surface on the smallest thickness measurements. Furthermore, the frequency of the

interrogating ultrasonic pulse should be reduced in order the further reduce the underestimation

of the smallest thickness measurements.

7.3 The next steps

In this thesis, a framework for performing EVA with inspection data has been described. The

possible errors that can occur during extrapolation have been investigated and discussed. However,

this work has been performed using inspection data generated using simulations and experiments

in a laboratory. Real inspection data is much more complex than these examples. Further work is

required to develop the framework in this thesis into a robust tool which can handle the complicated

inspection data which can arise during a real inspection. Inspectors must be confident that the

methodology they are following is suitable for the majority of data they are collecting. Any

framework developed for use in industry needs be able to handle more complicated thickness

distributions than those described in this thesis.

Real inspection data can consist of multiple thickness measurement distributions each resulting

from a different damage mechanism. In order to use EVA to build effective and accurate models us-

ing this data, a method for separating out the distributions from different mechanisms is required.

An initial investigation into methods of separating the general corrosion thickness measurements

from the pitting thickness measurements was described in chapter 3 and the complexity of imple-

menting such a method inside an EVA framework is discussed. This investigation shows that it is

indeed possible to automate the classification of thickness measurements. However, it requires fur-

ther work in order to handle an arbitrary number of damage mechanisms and to determine exactly
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how it could be implemented within an extreme value framework. The author recommends that

this method would be a good starting point for further investigation of the application of EVA to

real inspection data.

Furthermore, real inspection data can also contain errors or missing data. A procedure to

handle this erroneous data needs to be developed and incorporated into the framework. The

development of an approach to detect or to remove this data will allow for the full automation of

EVA of real inspection data. If future work is able to address the issues described in this chapter,

EVA will develop into a powerful tool for condition assessment of engineering components.
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