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Abstract

Documentation that accompanies the file UMATHTH.f - a combination of
ABAQUS user subroutines (UMATHT + UMAT + UEXTERNALDB) to
model coupled mechanical deformation and hydrogen diffusion, including
multi-trapping. If using this code for research or industrial purposes, please
cite:

R. Fernández-Sousa, C. Betegón, E. Mart́ınez-Pañeda. Analysis of the influ-
ence of microstructural traps on hydrogen assisted fatigue. Acta Materialia
199: pp. 253-263 (2020)

The files can be downloaded from www.imperial.ac.uk/mechanics-materials
and www.empaneda.com, along with many other UEL, UMAT and USDFLD
subroutines.
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1. Introduction

Hydrogen originating from water vapour, aqueous electrolytes or gaseous
environments significantly increases cracking susceptibility and fatigue crack
growth rates in metals [1, 2]. As a consequence, there is an increasing inter-
est in developing mechanistic models for predicting this so-called hydrogen
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embrittlement phenomenon [3–6].

Hydrogen atoms can reside at interstitial lattice sites and microstructural
trapping sites, such as dislocations, grain boundaries, voids, carbides and in-
terfaces. Traps act as hydrogen sinks, slowing diffusion, and are typically
characterised by their binding energy WB and density NT . The energy bar-
rier that must be overcome for the hydrogen to detrap increases with ∣WB ∣;
hydrogen will be strongly retained in deep traps ∣WB ∣ > 60 kJ/mol but can
be easily released from shallow traps ∣WB ∣ < 30 kJ/mol. Quantifying this
partitioning of hydrogen atoms between lattice and trapping sites is of ut-
most importance in predicting diffusion and embrittlement; see, e.g., [7–9]
and references therein.

This report is supplementary to our recent work, Ref. [9], and accom-
panies UMATHTH.f, a combination of ABAQUS user element subroutines
to model hydrogen diffusion and trapping, coupled with mechanical defor-
mation. A comprehensive description of the underlying theoretical model
is provided in Section 2, while details of the ABAQUS implementation are
given in Section 3. Some readers might wish to jump directly to Section
4, where usage instructions are provided together with a simple validation
example. An effort is allocated to provide a very easy to follow description
of the underlying theory and the code, accessible for everyone.

2. Hydrogen transport

We deal with transport of diluted species; that is, the concentration of
hydrogen is small compared to the concentration of the metal solvent. As a
rule of thumb, a mixture containing several species can be considered dilute
when the concentration of the solvent is more than 90% mol. Hydrogen atoms
occupy normal interstitial lattice sites (NILS) and additionally can reside at
trapping sites such as interfaces or dislocations. We adopt the common
assumptions of the literature (see, e.g., [10, 11]) and base our modelling on
the equilibrium theory presented by Oriani. The subscript L refers to lattice
sites and the subscript T to trap sites. It is assumed that traps are isolated
(i.e., do not form an extended network). Hence, hydrogen transport between
trap sites is by lattice diffusion.
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2.1. Hydrogen lattice solubility

In the literature two different but equivalent definitions of the lattice
hydrogen concentration CL can be found, these are described below.

2.1.1. Approach 1: NL is the density of solvent atoms

One could, as in (e.g.) Ref. [10], define the hydrogen concentration in
normal interstitial lattice sites as:

CL = NLβθL (1)

where NL denotes the density of the host metal lattice measured in solvent
atoms per unit volume, β is the number of hydrogen atoms that can reside in
each lattice site/atom, and θL is the lattice occupancy fraction (0 < θL < 1).
In lay terms, NL (units of atoms Fe/m3 in steel) is the amount of metal
atoms per unit volume, β (units of atoms H/atoms Fe) is the amount of
hydrogen atoms that correspond to each metal atom, and θL (dimensionless)
denotes the amount of these hydrogen sites that have been actually occupied
by hydrogen atoms (which is small, θL << 1, as we are dealing with diluted
species). Consequently, the concentration is given in atoms H/m3 (other
typical units are wppm or mol H/m3). Thus, both β and NL are material
properties (related to the metal solvent) and θL (and consequently CL) de-
pend on the environment and the diffusion of hydrogen. If VM is the molar
volume of the host lattice expressed in units of volume per lattice mole, one
can write

NL =
NA

VM
=
NAρM
MM

(2)

where NA = 6.022 × 1023 atoms per mole is Avogadro’s number. As depicted
in (2), the molar volume equals the molar mass/atomic weight divided by
the density VM = MM/ρM . In the case of iron at 293 K, the density equals
ρM = 7.87×103 kg/m3 and the atomic weight MM = 55.8×10−3 kg/mol. This
necessarily implies,

NL =
NAρM
MM

=
6.022 × 1023 [at/mol] ⋅ 7.87 × 103 [kg/m3]

55.8 × 10−3 [kg/mol]
= 8.46 × 1028 [at/m3]

(3)
and one should note that β is typically taken to be equal to 6, as indirect
evidence indicates tetrahedral site occupancy rather than octahedral site oc-
cupancy at room temperature in α-iron (see [12]). For fcc iron, β = 1 is
usually assumed, resulting from the more favourable octahedral site occu-
pancy (β = 2 for tetrahedral).
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2.1.2. Approach 2: NL is the density of lattice sites

Alternatively, as in (e.g.) Ref. [12], the lattice hydrogen concentration
can be defined as:

CL = NLθL (4)

where NL denotes instead the number of lattice sites per unit volume. Ac-
cordingly, in bcc iron (where β = 6):

NL =
βNAρM
MM

=
6 [sites/at] ⋅ 6.022 × 1023 [at/mol] ⋅ 7.87 × 103 [kg/m3]

55.8 × 10−3 [kg/mol]
=

= 5.1 × 1029 [sites/m3] (5)

In the present implementation we follow this second approach.

2.2. Trapped hydrogen concentration

We have seen that hydrogen dissolved in metals can be divided into two
groups: the lattice hydrogen, which moves freely through the lattice, or the
trapping hydrogen, which is trapped in microstructural defects such as dis-
locations, grain boundaries, voids, carbides and interfaces. These traps can
be reversible or irreversible, and can also be classified as saturable or unsat-
urable. Reversible traps are those that can immobilize and release hydrogen
while irreversible traps are those that absorb hydrogen and prevent it from
escaping. However, one should note that the term irreversible is not fun-
damentally correct but rather pragmatic, as leakage can always take place
for a sufficiently long timescale or a sufficiently high temperature. Assuming
Oriani’s equilibrium (see below), there is a relation between the occupancy
of traps and the lattice hydrogen concentration based on the trap binding
energy, WB.

We will consider the case of multiple traps [9]. Thus, the hydrogen con-
centration in the ith type of trapping site can be defined as:

C
(i)
T = θ

(i)
T α(i)N

(i)
T (6)

where NT is the number of traps per unit volume, α is the number of atom
sites per trap and θT is the trap occupancy (again, 0 < θT < 1). Hence,
αNT is the number of trapping sites per unit volume. Some authors (see,
e.g., [12]) take α to be equal to 1 (one hydrogen site per trap) while others
consider larger values (e.g., α = 6 in [13]). These differences are related to
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the concept of atom/site and the binding energy. If α denotes the number
of sites per trap, then unequivocally α = 1 (and NT tells us how many sites
exist). But α may also denote the number of hydrogen atoms that can be
stored in each trap (e.g., in a dislocation α = 30). However, not all of those
atoms will have the same binding energy, so we choose here to adopt α = 1
and consider apparent/average binding energies (e.g., WB = −20.2 kJ/mol for
a dislocation). It is also quite common to provide the magnitude of the group
αNT and not of each individual component (see, e.g., Ref. [14]). Accordingly,
we re-formulate (6) as:

C
(i)
T = θ

(i)
T N

(i)
T (7)

where NT ≡ NTα is the trap density (trapping sites per unit volume). The
total concentration of hydrogen for a system with n traps then reads:

C = CL +C
(1)
T +C

(2)
T + ⋅ ⋅ ⋅ +C

(n)
T = CL +

n

∑
i

C
(i)
T (8)

Accordingly,

∂C

∂t
=
∂C

∂CL

∂CL
∂t

+
n

∑
i

∂C

∂C
(i)
T

∂C
(i)
T

∂t
(9)

2.3. Oriani’s equilibrium theory

Oriani’s equilibrium theory [15] results in a Fermi-Dirac relation between
the occupancy of the ith type of trapping sites and the fraction of occupied
lattice sites

θ
(i)
T

1 − θ
(i)
T

=
θL

1 − θL
K(i), (10)

with K(i) being the equilibrium constant for the ith type of trap with binding
energy W

(i)
B ; given by

K(i) = exp
⎛

⎝

−W
(i)
B

RT

⎞

⎠
. (11)

where the trap binding energy WB (i.e., the energy required for a hydrogen
atom to escape a trap site and move into a lattice site) is inherently negative.
And the parameters R and T respectively represent the gas constant (8.3144
J mol−1 K−1) and the absolute temperature. Oriani’s equilibrium theory can
be used when the trap filling kinetics are very rapid, which is usually the case
[16]. In other words, this equilibrium argument is realistic when the lattice
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diffusion relaxation times are relatively long compared to the time required
to replenish or deplete the traps.

The implications of Oriani’s equilibrium can be readily quantified. First,
note that (10) can be rewritten as,

1

θL
=
⎛

⎝

1

θ
(i)
T

− 1
⎞

⎠
K(i) + 1 (12)

Implying that larger values of K lead to smaller lattice occupancies θL,
and consequently, a smaller amount of CL relative to CT for a fixed total
hydrogen concentration C. As shown in (11), the equilibrium constant K
increases with (the absolute value of) the binding energy WB. Hence, deep
traps (strong, irreversible) with larger ∣WB ∣ will absorb more lattice hydrogen
and act as sinks that will slow diffusion. Secondly, note that one can merge
(4), (12) and (11), leading to,

NL

CL
=
⎛

⎝

1

θ
(i)
T

− 1
⎞

⎠
exp

⎛

⎝

−W
(i)
B

RT

⎞

⎠
− 1 (13)

and one can accordingly choose representative values of θT , and plot CL ver-
sus WB. We do so in Fig. 1 by adopting NL = 5.1 × 1029 sites/m3, which is
an appropriate choice for bcc iron, as discussed before.

It is observed that deep traps (high ∣WB ∣): (i) increase the weight of CT
relative to CL (i.e., absorb more C than weak traps), and (ii) get filled at low
CL levels (i.e., if CL is high, then θT ≈ 1). So, as soon as there is hydrogen
in the system, the hydrogen atoms will occupy the deep traps, as this is
more energetically favourable. These deep traps will get full soon, and the
hydrogen will then distribute through the lattice. Examples of deep traps
with high binding energies include carbides of alloying elements (WB = −72
kJ/mol) or grain boundaries (WB = −48 kJ/mol) [13]. In contrast, weaker
traps are dislocations, where ∣WB ∣ is on the order of 20 kJ/mol. As evident
from Fig. 1, these shallow traps with binding energies larger than −20 kJ/mol
are effectively empty (θT ≈ 0) unless CL is very high, on the order of 10 wt
ppm (4.68 × 1025 at H/m3) or higher.
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Figure 1: Implications of Oriani’s equilibrium; sensitivity of the trap occupancy θT to the
lattice hydrogen concentration CL and the trap binding energy WB . Taken from [9].

In many alloys, especially in bcc lattices, conditions of low occupancy
θL << 1 are usually assumed, because NL >> CL, such that

θL
1 − θL

≈ θL (14)

and consequently, by considering (4), (7) and (10)

C
(i)
T =

K(i)CLN
(i)
T /NL

1 +CLK(i)/NL

=
K(i)CLN

(i)
T

NL +CLK(i)
(15)

which characterizes the equilibrium relationship between CL and CT in terms
of material parameters. Thus, as the temperature increases and K decreases,
the concentration of hydrogen in traps will decrease for a fixed CL [10, 17].
Finally, some insight into the process of equilibrium trap-filling at fixed tem-
perature and NT can be obtained by differentiating the previous equation:

∂C
(i)
T

∂CL
=
C
(i)
T (1 − θ

(i)
T )

CL
=

K(i)NLN
(i)
T

(K(i)CL +NL)
2 (16)
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2.4. Hydrogen diffusion

Even though mass concentration is the sought variable, the thermody-
namic driving force for diffusion is the chemical potential gradient ∇µ. The
mass flux is related to ∇µ via Onsager coefficients Lij, which denote the
action of force j on component i; a negative sign indicates that the net
movement of i-type hydrogen atoms, i.e. hydrogen flux Ji, occurs from high
to low chemical potential regions:

Ji = −
n

∑
j=1

Lij∇µj (17)

Such that, for example, considering the lattice sites:

JL = −LLL∇µL (18)

One can develop a generalised model account for both lattice and trapping
fluxes (see [18]). Here, we follow the common assumption that the mobility
between trapping sites is considered close to zero: DTT ≈ 0, because traps are
not connected or because their deep potential energy well prevents hydrogen
from diffusing. Hence, only the lattice flux is considered: J ≡ JL and µ ≡ µL.
The Onsager coefficient is related to Einstein’s equation of diffusion, such
that

LLL =
D

RT
CL (19)

where D is the lattice diffusivity, which is understood to be independent of
the hydrostatic stress. The chemical potential is given by,

µ = µ0 +RT ln
θL

1 − θL
− V̄HσH (20)

where µ0
i denotes the chemical potential in the standard state, V̄H the par-

tial molar volume of hydrogen in solid solution (an overbar usually denotes
a partial molar quantity) and σH the hydrostatic stress.

Substituting (19)-(20) into (18) gives:

J = −D
CL

(1 − θL)
(
∇CL
CL

−
∇NL

NL

) +
D

RT
CLV̄H∇σH (21)
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This expression can be simplified by taking into consideration that the
interstitial sites concentration is usually assumed to be constant: ∇NL = 0.
Thus,

J = −D∇CL +
D

RT
CLV̄H∇σH (22)

And the derivative of the flux with respect to the lattice hydrogen con-
centration equals:

∂J

∂CL
=
D

RT
V̄H∇σH (23)

2.5. Mass balance

Fluxes, due to the chemical potential gradient, and hydrogen concentra-
tions are related through the requirement of mass conservation. Thus, in a
volume V of surface S and outward normal n:

d

dt ∫V
C dV + ∫

S
J ⋅n dS = 0 (24)

where d/dt is the time derivative. For simplicity, let us define the total
hydrogen concentration in traps as,

CT = ∑
i

C
(i)
T (25)

Considering the total concentration as C = CL +CT , the strong form can
be readily obtained by making use of the divergence theorem and noting that
(24) must hold for any arbitrary volume,

dCL
dt

+
dCT
dt

= −∇ ⋅ J (26)

By considering (22), one reaches:

dCL
dt

+
dCT
dt

=D∇2CL −
DV̄H
RT

∇(CL∇σH) (27)

Using Oriani’s equilibrium, an effective diffusion coefficient can be defined
as:

De =D
CL

CL +∑iC
(i)
T (1 − θ

(i)
T )

, (28)
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and the hydrogen transport equation reads

D

De

∂CL
∂t

=D∇2CL −∇(
DCL
RT

V̄H∇σH) , (29)

A complete description of the weak form and the corresponding finite
element discretization can be found in Ref. [19].

2.6. Dislocation trapping schemes

We have assumed so far that the trap density is a material property that
remains constant throughout the analysis. This is appropriate for most trap
types but not dislocation trapping sites, as the dislocation density evolves
with the applied load. Several schemes have been proposed through the years
to capture how the density of dislocation trap sites, N

(d)
T , evolves with me-

chanical straining. Laws have been proposed from a purely phenomenological
perspective, relating N

(d)
T to macroscopic quantities such as the equivalent

plastic strain εp, but also from a more mechanistic viewpoint, based on dis-
location densities ρ. By assuming one trap site per atomic plane threaded
by a dislocation, the following relation between the dislocation density ρ and
the trap site density N

(d)
T can be identified:

N
(d)
T =

1

b
ρ (30)

where the pre-factor is the inverse of the Burgers vector. In the case of fcc
metals it can be expressed as,

N
(d)
T =

√
2

a
ρ (31)

with a being the lattice parameter. Slip in fcc crystals occurs along the close
packed plane: specifically, the slip plane (plane of greatest atomic density)
is of type {111}, and the slip direction (close-packed direction within the
slip plane) is of type ⟨1̄10⟩. In the bcc case, slip occurs along the plane
of shortest Burgers vector as well; however, unlike fcc, there are no truly
close-packed planes in the bcc crystal structure. Thus, a slip system in bcc
requires heat to activate. Some bcc materials (e.g. α-Fe) can contain up
to 48 slip systems. There are six slip planes of type {110}, each with two
⟨111⟩ directions (12 systems). There are 24 {123} and 12 {112} planes each
with one ⟨111⟩ direction (36 systems, for a total of 48). While the {123} and
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{112} planes are not exactly identical in activation energy to {110}, they are
so close in energy that for all intents and purposes they can be treated as
identical. For the specific slip plane {110} and direction ⟨111⟩ we have:

N
(d)
T =

2
√

3a
ρ (32)

where again the Burgers vector corresponds to the inverse of the prefac-
tor. With these considerations, we proceed to describe some of the most
commonly used constitutive laws for determining N

(d)
T from the deformation

state of the material, all of which have been implemented in the code.

2.6.1. Kumnick and Johnson [20] & Sofronis and McMeeking [10]

For models based on the equivalent plastic strain, such as [10, 12, 21], phe-

nomenological expressions are needed to relate N
(d)
T and εp. A very popular

model in the literature since the pioneering work by Sofronis and McMeek-
ing [10], is that by Kumnick and Johnson [20]. They carried out permeation
tests on pure iron subjected to hydrogen gas charging and found that the
trap density in iron increases sharply with deformations at low deformation
levels and then increases more gradually with further deformation. A good
fit to their data is given by:

logNT = 23.26 − 2.33 exp (−5.5εp) (33)

It immediately follows from (33) that,

NT = 1023.26−2.33 exp(−5.5εp) [sites/m3] (34)

One should note that the experiments were conducted in uniaxial condi-
tions, implying that the important role of plastic strain gradients in increasing
the dislocation density is not accounted for [3, 22, 23].

2.6.2. Kumnick and Johnson [20] & Krom et al. [12]

Krom et al. [12] argue that a factor depending on the strain rate should
be included to ensure a correct hydrogen balance. Consider for simplicity a
one-trap model. As the concentration of trapped hydrogen CT depends on
the trap density NT , and the latter depends on the plastic deformation, by
means of the chain rule one reaches:

∂CT
∂t

=
∂CT
∂CL

∂CL
dt

+
∂CT
∂NT

dNT

dεp
∂εp

∂t
(35)
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Recall that,
∂CT
∂CL

=
CT (1 − θT )

CL
(36)

and from (7) immediately follows that ∂CT /∂NT = θT . Consequently, the
partial derivative of the hydrogen concentration in trap sites with respect to
time is

dCT
dt

=
CT (1 − θT )

CL

dCL
dt

+ θT
dNT

dεp
dεp

dt
(37)

The model depicted before can be therefore extended, with (27) being

(1 +
CT (1 − θT )

CL
)
dCL
dt

+ θT
dNT

dεp
dεp

dt
=D∇2CL −∇(

DCL
RT

V̄H∇σH) (38)

or, by making use of the effective diffusion constant,

D

De

∂CL
∂t

+ θT
dNT

dεp
dεp

dt
=D∇2CL −∇(

DCL
RT

V̄H∇σH) (39)

In a similar manner, we can again use the multivariable chain rule to
reformulate (9) as:

∂C

∂t
=
∂C

∂CL

dCL
dt

+
∂C

∂NT

dNT

dεp
∂εp

∂t
(40)

The derivative of the total hydrogen concentration with respect to NT

can be readily obtained from (15),

∂C

∂NT

=
∂CL + ∂CT

∂NT

=
KCL

KCL +NL

(41)

And finally recall that one should also estimate the term dNT /dεp. The
experiments of Kumnick and Johnson [20] were adopted by Krom et al. [12];
thus, considering (34), one reaches:

dNT

dεp
=

12.815

109
exp (−5.5εp)1023.26−2.33 exp(−5.5εp) ln 10 = 29.5 exp (−5.5εp)NT

(42)
where we have already taken into consideration that, in our implementation,
the units used for NT are sites/mm3.
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2.6.3. Gilman [24] & Dadfarnia et al. [14]

Sofronis and co-workers (see, e.g., Refs. [14, 25]) have presented a dislocation-
based relationship, using (30) and building upon the work of Gilman [24].
The dislocation density, in line length per cubic meter, is related to the plastic
strains via:

ρ =

⎧⎪⎪
⎨
⎪⎪⎩

ρ0 + γεp for εp < 0.5

1016 for εp ≥ 0.5
(43)

where ρ0 = 1010 line length/m3 denotes the dislocation density for the an-
nealed material and γ = 2.0 × 1016 line length/m3. The magnitude of γ is
obtained experimentally, and differs from other works [26]. A rate-dependent
term can also be included as:

∂C

∂t
=
∂C

∂CL

dCL
dt

+
∂C

∂NT

dNT

dρ

∂ρ

∂t
(44)

2.6.4. Taylor [27] & Fernandez-Sousa et al. [9]

Mart́ınez-Pañeda and co-workers [4, 9, 28, 29] have shown the plastic
strain gradients and geometrically necessary dislocations play a significant
role in crack tip mechanics and hydrogen diffusion. Recently, a formulation
was presented in Ref. [9] that enables capturing the role of both geometrically
necessary dislocations (GNDs) and statistically stored dislocations (SSDs) in
hydrogen embrittlement.

Capturing how the trap density for dislocations N
(d)
T evolves with the ap-

plied load requires estimating the dislocation density ρ. This can be achieved
by following Taylor’s [27] dislocation model and accordingly relate the shear
flow stress to ρ, the shear modulus µ and the Burgers vector b as

τ = 0.5µb
√
ρ. (45)

The dislocation density ρ comprises the sum of the density ρSSD for sta-
tistically stored dislocations (SSDs) and the density ρGND for geometrically
necessary dislocations (GNDs):

ρ = ρSSD + ρGND. (46)

The GND density is defined by:

ρGND = r̄
ηp

b
, (47)
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where r̄ is the Nye-factor and ηp is the effective plastic strain gradient, which
is defined as follows [22, 30]:

ηp =

√
1

4
ηpijkη

p
ijk with ηpijk = ε

p
ik,j + ε

p
jk,i − ε

p
ij,k , (48)

where εpij is the plastic strain tensor. The tensile flow stress σf is proportion-
ally related to τ via the Taylor factor M such that, considering (45)-(47),

σf =Mτ = 0.5Mµb

√

ρSSD + r̄
ηp

b
. (49)

Here, M = 2.9 for bcc metals. The SSD density ρSSD can be determined from
(49) knowing the relation in uniaxial tension (η = 0) between the flow stress
and the material stress-strain curve as follows

ρSSD = (
σreff (εp)

0.5Mµb
)

2

, (50)

where σref is a reference stress and f(εp) is a non-dimensional function de-
termined from the uniaxial stress-strain curve. Substituting back into (49),
one reaches

σf = σref
√
f 2 (εp) + `ηp (51)

where ` is the intrinsic material length. If the length parameter is set to
zero or f 2 (εp) outweighs the GND contribution `ηp, the model recovers con-
ventional von Mises plasticity. Once ρ is known, Eq. (30) can be used to
estimate the trap density for dislocations. For simplicity, in this implemen-
tation only conventional plasticity will be considered and therefore ρ = ρSSD.
As with the previous schemes, a rate-dependent term (not considered here)
can be implemented using (44).

3. ABAQUS implementation

In the following we shall describe the peculiarities of the finite element
implementation in ABAQUS. As in [2, 18, 31, 32], this is achieved by ex-
ploiting the analogy with heat transfer and making use of two subroutines:
a UMATHT for the diffusion problem and a UMAT for the mechanical prob-
lem.
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3.1. Analogy to the heat transfer problem

In the absence of a heat source, the energy balance for a stationary solid
can be expressed as:

∫
V
ρU̇ qdV + ∫

S
J qdS = 0 (52)

ρU̇ q = −∇J q (53)

The heat flux J q depends on the temperature gradient according to
Fourier’s law. And U q is the internal energy per unit mass, with the su-
perscript q being employed to denote heat related variables. By setting the
density equal to 1, the total hydrogen concentration can be regarded as the
internal energy per unit mass, see Eq. (24), being both conserved quanti-
ties in the global balance. At constant pressure, the variation of energy and
temperature can be defined as specific heat capacity cp:

U̇ q = cpṪ (54)

The following relations can be therefore envisaged:

Table 1: Analogy of variables between heat transfer and diffusion analysis

Heat equation Mass diffusion equation

ρcp
∂T
∂t +∇J

q = 0 ∂C
∂t +∇J = 0

U̇ q = cpṪ
∂C
∂t =

∂(CL+CT )

∂t

Degree of freedom: T Degree of freedom: CL

Heat flux: J q Hydrogen flux: J

Heat capacity: cp 1 (unity)

ρ density 1 (unity)

3.2. UMATHT subroutine

The numerical implementation is carried on in ABAQUS by means of a
UMATHT subroutine. A number of variables must be defined in the sub-
routine, whose equivalence to heat transfer and mass diffusion variables are
defined in Table 2.

15



Table 2: Quantities that need to be defined in a UMATHT subroutine

UMATHT variable Heat transfer Mass diffusion

U U q C

DUDT ∂Uq

∂T
∂C
∂CL

DUDG(NTGRD) ∂Uq

∂∇T
∂C

∂∇CL

FLUX(NTGRD) J q J

DFDT(NTGRD) ∂Jq

∂T
∂J
∂CL

DFDG(NTGRD,NTGRD) ∂Jq

∂∇T
∂J

∂∇CL

Where the variable NTGRD is the number of spatial gradients of tempera-
ture. One should note that ∇CL does not need to be computed, as it is given
by ABAQUS to the subroutine through the variable DTEMDX (∇T ). The
subroutine gives as input the following variables at the beginning of the in-
crement: total hydrogen concentration C(U), lattice hydrogen concentration
CL (TEMP) and gradient of the lattice hydrogen concentration ∇CL (DTEMDX).
Moreover, it provides as well the incremental lattice hydrogen concentration
∆CL (DTEMP). So, the first step is to work with the current CL value, which
is assigned to a variable CL:

CL=TEMP+DTEMP

Now, let us consider each term individually. First, we shall define the
total hydrogen concentration at the end of the increment, U. This is given
by: (recall that ∆a = ȧ∆t)

C(t +∆t) = C(t) +
∂C

∂t
∆t =

∂C

∂CL

∂CL
∂t

∆t +
∂C

∂CT

∂CT
∂t

∆t (55)

U=U+DUDT*DTEMP+DU2

Here, the variable DUDT is addressed below and the variable DU2 corresponds
to the rate-dependent term of the dislocation trapping law; i.e., either zero
or the second term in Eqs. (40) or (44). For example, for the model by Krom
et al. [12] (Section 2.6.2), considering (41) and (42):

DU2 ≡
∂C

∂NT

dNT

dεp
∂εp

∂t
=

KCL
KCL +NL

29.5 exp (−5.5εp)NT∆εp (56)
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While for the case of Dadfarnia et al. [14] (Section 2.6.3), the variable
DU2 corresponds to the second term in (44); i.e., considering (41) and (43):

DU2 ≡
∂C

∂NT

dNT

dρ

∂ρ

∂t
=

KCL
KCL +NL

1

b
γ∆εp (57)

And one should be careful with the units, as in (43) the dislocation den-
sity is given in m−2 but we have chosen to work in mm−2 instead. In both
dislocation-based or εp-based dislocation trapping schemes there is an ob-
vious coupling with the mechanical problem. This can be easily addressed
in ABAQUS exploiting the fact that the solution-dependent state variables
(STATEV) are shared between UMAT and UMATHT subroutines.

Let us consider now the term DUDT, which is given by:

∂C

∂CL
=
∂CL
∂CL

+∑
i

∂C
(i)
T

∂CL
= 1 +∑

i

C
(i)
T (1 − θ

(i)
T )

CL
= 1 +∑

i

K(i)NLN
(i)
T

(K(i)CL +NL)
2

(58)

DUDT=1.D0+DUDT2

DUDT2=0.d0

do k1=1,ntraps

DUDT2=DUDT2+xNt(k1)*xK(k1)*xNl/((xK(k1)*CL+xNl)**2.d0)

end do

where ntraps is the number of traps, xNt≡ N
(i)
T , xK≡ K(i), and xNl≡ NL.

On the other hand the term DUDG, equivalent to ∂CL/∂∇CL, is zero. Each
component of the flux J (FLUX) is given by:

J = −D∇CL +
D

RT
CLV̄H∇σH (59)

FLUX(i)=-D*DTEMDX(i)+D*CL*Vh*sig(i)/(R*T)

where sig(i) is the gradient of the hydrostatic stress, ∇σH , whose compu-
tation will be addressed below. Accordingly, the term DFDT reads,

∂J

∂CL
=
D

RT
V̄H∇σH (60)

DFDT(i)=D*Vh*sig(i)/(R*T)
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and in both the definition of the flux and its derivative, one should be careful
with the units when defining the gas constant (R). The term V̄HσH/(RT )

must be non-dimensional. Assuming that the stresses are given in MPa
(N/mm2), then R = 8314 N mm/(mol K). Note that the gas constant also
appears in the calculation of the equilibrium constant K, see (11). This
means that the binding energy, WB, should be given in units of N mm/mol
(remember, 1 kJ/mol ≡ 106 N mm/mol).

Finally, it remains to define the variable DFDG, given as follows:

∂J

∂∇CL
= −DI (61)

DFDG(i,i)=-D

with I being the identity matrix, as only the diagonal terms in ∂J
∂∇CL

are
non-zero (only ∇xCL is involved in the x component of J).

In addition to the quantities required by ABAQUS, one might chose to
define additional quantities for visualisation such as (e.g.) the trapped hy-
drogen concentration, as per (15).

3.2.1. General case: θL not much smaller than 1

Note that, if the approximation θL << 1 cannot be assumed (e.g., fcc
metals), then (14) does not hold. Consequently, the computation of DUDT

will be affected, and should be re-formulated as:

∂C

∂CL
=
∂CL
∂CL

+∑
i

∂C
(i)
T

∂CL
= 1 +∑

i

K(i)NLN
(i)
T

((K(i) − 1)CL +NL)
2 (62)

DUDT=1.D0+DUDT2

DUDT2=0.d0

do k1=1,ntraps

DUDT2=DUDT2+xNt(k1)*xK(k1)*xNl/(((xK(k1)-1)*CL+xNl)**2.d0)

end do

Also, for computing the concentration in each trap C
(i)
T , one cannot longer

use (15), which should instead read:

C
(i)
T =

CLN
(i)
T K(i)

NL + (K(i) − 1)CL
(63)
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3.3. Gradient of the hydrostatic stress

The mechanical behaviour of the solid will be described using conventional
plasticity and will not be elaborated here. A user material (UMAT) subrou-
tine is used, which corresponds to the UMAT for power law hardening plastic-
ity available to download at www.imperial.ac.uk/mechanics-materials/codes/
and www.empaneda.com/codes; the reader is referred to the accompanying
documentation for details. What will be addressed here is the computation
of hydrostatic stress gradient, a feature specific to this problem and thus not
available in the original UMAT subroutine.

The quantity ∇σH is computed using a relatively simple differentiation
scheme at the element level. First, the magnitude of σH is interpolated
through its values at the Gauss points in the isoparametric space and af-
terwards ∇σH is computed by differentiation of the shape functions. This
procedure is outlined below for the particular case of a plane strain quadrilat-
eral element with 8 nodes and 4 integration points, extension to other types
of elements can be performed in a relatively straightforward manner. More
sophisticated approaches exist and the reader is referred to Ref. [19] and the
associated code for alternatives.

The hydrostatic stress values within the element can be readily obtained
from its values at the Gauss integration points (σH)k

σH =
4

∑
k=1

N
′

k(x, y) (σH)k (64)

where N
′

k(x, y) is the interpolation function in global coordinates. By per-
forming the classic isoparametric mapping, the coordinate transformation
is:

x =
4

∑
k=1

Nk(ξ, η)xk (65)

y =
4

∑
k=1

Nk(ξ, η)yk (66)

where Nk(ξ, η) is the shape function vector. For convenience, the interpola-
tion function in local coordinates takes the same form as the shape functions
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and (64) becomes:

σH =
4

∑
k=1

Nk(ξ, η) (σH)k (67)

Accordingly, linear shape functions are adopted,

Ni =
1

4
(1 + ξiξ) (1 + ηiη) (68)

with ξi and ηi denoting the integration point coordinates in the isoparametric
space.

1 2

3 4

1 2

34

8

5

6

7

Figure 2: Nodal and integration point numbering adopted for a quadrilateral plane strain
quadratic finite element

.

The numbering scheme in this Gauss point-based interpolation is depicted
in Fig. 2. The differentiation of the shape functions readily follows:

∂Ni

∂ξ
=

1

4
ξi (1 + ηηi) (69)

∂Ni

∂η
=

1

4
ηi (1 + ξξi) (70)

Which, by means of the chain rule, can be easily converted to the global
coordinate system,

[

∂Nk

∂x
∂Nk

∂y

] = J−1 [
∂Nk

∂ξ
∂Nk

∂η

] (71)
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with J being the Jacobian matrix:

J =
∂(x, y)

∂(ξ, η)
= [

∂x
∂ξ

∂y
∂ξ

∂x
∂η

∂y
∂η

] =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

4

∑
k=1

∂Nk

∂ξ
xk

4

∑
k=1

∂Nk

∂ξ
yk

4

∑
k=1

∂Nk

∂η
xk

4

∑
k=1

∂Nk

∂η
yk

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(72)

The hydrostatic stress gradient ∇σH is then computed as:

(∇σH)x =
4

∑
i=1

∂Ni

∂x
(σH)i (73)

(∇σH)y =
4

∑
i=1

∂Ni

∂y
(σH)i (74)

This operations take place inside of the UMAT subroutine, and the in-
formation is then passed to the UMATHT. Both UMAT and UMATHT are
integration point level subroutines but it is obvious that the computation of
∇σH requires access to the magnitude of σH in all the integration points of
the elements. This is achieved by means of a Fortran module (the modern
version of common blocks).

4. Usage instructions

We proceed to showcase the use of the subroutine by validating with an
example from the literature; specifically, Fig. 3 of the multi-trap analysis by
Dadfarnia et al. [14].

4.1. Abaqus/CAE and input file

The first step is to create the model in Abaqus/CAE. The procedure is
the same as with standard Abaqus models with the following subtleties:

� Depending on the trapping scheme used, some unit sensitive variables
have been hard-coded assuming that mm is choice of unit for length.

� The material has to be defined as a user material, of the thermome-
chanical type, with a number of solution-dependent variables. (General
→ Depvar: 16 & General → User Material - Thermomechanical). The
material properties are described below. Also, the density must be
defined, and given the value 1.
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� The loading step is of the type coupled temperature-displacement. This
step type assumes an instantaneous application of the boundary condi-
tions, which might be suitable for the hydrogen-related ones but poten-
tially not for the mechanical ones. One option is to change the loading
to ramp-type and then define a constant amplitude to be associated
with the hydrogen boundary conditions. Another option is to make
use of a DISP subroutine. Also, recall that the total step time is not
a pseudo-time. If the time stepping is chosen to be automatic, the
maximum allowable nodal temperature change in an increment must
be specified (deltmx; ∆Tmax); the choice is a trade-off between conver-
gence rates and precision.

� SDV, Solution dependent state variables, have to be requested as Field
Output (as well as displacement, nodal temperatures, reaction forces
and other relevant quantities). (Field Output Request - State/Field/User/Time:
SDV, Solution dependent state variables)

� The element type has to be substituted by a coupled mechanical-
thermal element (i.e., CPE8RT instead of CPE8R).

� Initial and boundary conditions related to hydrogen transport are de-
fined as temperature initial or boundary conditions (DOF11).

The mechanical and thermal properties are respectively listed in Tables 3
and 4. The mechanical behaviour is characterised by conventional von Mises
plasticity, with an isotropic power law hardening as follows:

σ = σY (1 +
Eεp

σY
)

N

(75)

where σY is the initial yield stress, E is Young’s modulus and N is the strain
hardening exponent. If the model by Fernandez-Sousa et al. [9] is used,
the density of statistically stored dislocations is hard-coded assuming mm as
length unit and a bcc material. MPa units should be used for E and σY .
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Table 3: List of user defined properties for the UMAT subroutine.

PROPS Variables UMAT

1 E - Young’s modulus

2 ν - Poisson’s ratio

3 σY - Initial yield stress

4 N - Strain hardening exponent

The thermal properties are related to the mass diffusion problem. The
code is arranged in a way that can be used with an arbitrary number of traps
n; the number of traps is automatically recognised depending on the number
of PROPS defined on the thermal side. PROPS(2) is a flag variable that de-
fines the type of analysis that is going to be conducted. If equal to 0, all the
trap densities are made equal to 0, and the analysis considers lattice diffu-
sion only, overriding the W

(i)
B and N

(i)
T definitions. If equal to 1, the analysis

makes zero W 1
B and N1

T , which correspond to the binding energy and the trap
density of the first trap type. The first trap type is associated to dislocations
to facilitate the use of the dislocation trapping schemes described in Section
2.6. The scheme by Kumnick and Johnson [20] & Sofronis and McMeeking
[10] (Section 2.6.1) is activated if the flag variable equals 2. When equal to
3, we use the scheme by Krom et al. [12], also based on Ref. [20] but in-
cluding a rate-dependent term (Section 2.6.2). The dislocation-based model
by Sofronis and co-workers (Section 2.6.3) is activated with PROPS(2)=4 -
this scheme will be used in this verification example, following Dadfarnia et
al. [14]. Finally, PROPS(2)=5 activates the model by Fernandez-Sousa et
al. [9] neglecting the influence of plastic strain gradients and GNDs.
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Table 4: List of user defined properties for the UMATHT subroutine for the case of three
trap types.

PROPS Variables UMATHT

1 D - Lattice diffusion coefficient

2 Flag: 0 - CT = 0; 1 - C
(1)
T = 0; 2 - [10]; 3 - [12]; 4 - [14]; 5 - [9]

3 W
(1)
B - Binding energy, trap type 1 (dislocations)

4 N
(1)
T - Trap density, trap type 1 (dislocations)

5 W
(2)
B - Binding energy, trap type 2

6 N
(2)
T - Trap density, trap type 2

7 W
(3)
B - Binding energy, trap type 3

8 N
(3)
T - Trap density, trap type 3

The remaining PROPS are associated with the binding energy and the
trap density of each trap type. First, dislocations must be defined. As many
trap types as required are defined afterwards in any order; Table 4 shows as
example the case where 3 trap types are considered. The trap density should
be defined in units of sites/mm3 and the binding energies should be given in
N mm/mol, as discussed in Section 3.2.

The choices of solution-dependent variables SDVs are motivated by the
history-dependent nature of the problem and visualisation. A total of 16
SDVs are considered in the case of a 3-trap system, as listed in Table 5.
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Variable SDVs numbering
Axial elastic strains - εe11 , εe22 , εe33 SDV1, SDV2, SDV3

Shear elastic strains - εe12 SDV4

Axial plastic strains - εp11 , εp22 , εp33 SDV5, SDV6, SDV7

Shear plastic strain - εp12 SDV8

Equivalent plastic strain - εp SDV9

Incremental equivalent plastic strain - ∆εp SDV10

Dislocation density (SSDs) - NT = ρ SDV11

Hydrogen concentration on trap 1 (dislocations) - C
(1)
T SDV12

Hydrogen concentration on trap 2 - C
(2)
T SDV13

Hydrogen concentration on trap 3 - C
(3)
T SDV14

Trapped hydrogen concentration - CT SDV15

Total hydrogen concentration - C SDV16

Table 5: List of solution dependent state variables for the case of three traps types.

4.2. Boundary value problem and results

We validate our implementation with the crack tip hydrogen distributions
calculated by Dadfarnia et al. [14]. As in Ref. [14], a boundary layer model
is used. Hence, as described in Fig. 3, the crack region is contained by a
circular zone and a remote Mode I load KI is applied by prescribing the
horizontal ux and vertical uy displacement components of the nodes at the
remote circular boundary:

ux(r, θ) =KI
1 + ν

E

√
r

2π
cos(

θ

2
) (3 − 4ν − cos θ) (76)

uy(r, θ) =KI
1 + ν

E

√
r

2π
sin(

θ

2
) (3 − 4ν − cos θ) (77)

where r and θ denote the radial and angular coordinates of a polar coor-
dinate system centred at the crack tip. Plane strain conditions and finite
deformations are considered. An initial crack tip blunting radius is defined
r0 = 0.5 µm, rendering an initial crack tip opening displacement of b0 = 1 µm.
The outer radius is chosen to be 300,000 times larger than r0.
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0

Figure 3: Sketch of the numerical model: boundary layer formulation, with mechanical
and diffusion boundary conditions.

The sample is not pre-charged and accordingly an initial condition is de-
fined: CL(t = 0) = 0. In Ref. [14], the hydrogen pressure ramps from 0 to
15 MPa in one second, leading to a concentration of Cb = 2.659 × 1013 H
atoms/mm3 at a time of t = 1 s. Thus, the step is defined as ramp type.
The mechanical boundary conditions are introduced by means of a DISP
subroutine, the load is ramped up to t = 1 s, where it reaches a magnitude of
KI = 30 MPa

√
m.

The mechanical properties read E = 201,880 MPa, ν = 0.3, σY = 595
MPa, and N = 0.059. The lattice diffusion coefficient equals D = 0.01271
mm2/s and three types of traps are considered. (1) Dislocations, with a

binding energy of W
(d)
B = 20.2 × 106 N mm/mol and a trap density given

by the dislocation-based scheme of Sofronis and co-workers (PROPS(2)=4,

Section 2.6.3). (2) Grain boundaries, with W
(c)
B = 58.6 × 106 N mm/mol and

N
(c)
T = 8.464 × 1013 sites/mm3. And (3) carbides, with W

(c)
B = 11.5 × 106 N

mm/mol and N
(c)
T = 8.464 × 1017 sites/mm3. Note that we introduce WB as

a positive number.

The results obtained after a time of t = 1 s are shown in Fig. 4 in terms of
the hydrogen concentration ahead of the crack tip for the various trap types.
The results exhibit a very good agreement with those obtained by Dadfarnia
et al. [14]. One should note that the files provided do not incorporate the
chemical strains considered in Ref. [14]. Also, the value of Burgers vector
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used in Ref. [14] is slightly different than the one adopted here (0.2725 versus
0.202 nm), and the density of lattice sites is given assuming tetrahedral site
occupancy (β = 6 [12]) and not β = 1. The user would have to make those
changes to reproduce the results of the figure. In addition, defining a small
initial concentration (C0 = 1 × 1010 H atoms/mm3) makes the solution more
stable [10], enabling achieving accurate results with a higher value of ∆Tmax
(i.e., using larger time increments).
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Dadfarnia et al. (2011)

Present

Figure 4: Normalised hydrogen concentration ahead of the crack after a time of t = 1 s:

total C (lattice and trapped), trapped at carbides C
(C)
T , trapped at dislocations C

(D)
T , and

trapped at grain boundaries C
(GB)
T . Symbols denote the (digitized) results by Dadfarnia

et al. [14] while lines denote the predictions of the present implementation.

5. Conclusions

If the code or the documentation provided here are useful please cite:
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R. Fernández-Sousa, C. Betegón, E. Mart́ınez-Pañeda. Analysis of the influ-
ence of microstructural traps on hydrogen assisted fatigue. Acta Materialia
199: pp. 253-263 (2020)

Do not hesitate to contact for further clarifications.
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model for elastic-gradient-plastic solids undergoing hydrogen embrittle-
ment, Journal of the Mechanics and Physics of Solids 143 (2020) 104093.

28



[7] D. Li, R. P. Gangloff, J. R. Scully, Hydrogen Trap States in Ultrahigh-
Strength AERMET 100 Steel, Metallurgical and Materials Transactions
A: Physical Metallurgy and Materials Science 35 A (3) (2004) 849–864.

[8] A. Turnbull, Perspectives on hydrogen uptake, diffusion and trapping,
International Journal of Hydrogen Energy 40 (47) (2015) 16961–16970.

[9] R. Fernández-Sousa, C. Betegón, E. Mart́ınez-Pañeda, Analysis of the
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