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A B S T R A C T   

In this study, we use the mechanism-based strain gradient plasticity theory to evaluate both crack tip dislocation 
density behaviour and the coupled effect of the material plastic properties and the intrinsic material length on 
non-linear amplitude factors. The two planar classical stress–strain states are examined, namely, plane strain and 
plane stress, both under pure mode I and pure mode II loading conditions. The constitutive relations are based on 
Taylor’s dislocation model, which enables gaining insights into the role of the increased dislocation density 
associated with large gradients in plastic strain near cracks. The material model is implemented in a commercial 
finite element (FE) software package using a user subroutine, and the nonlinear stress intensity factors (SIF) are 
evaluated as a function of the intrinsic material length, characterising the scale at which gradient effects become 
significant. As a result of the FE calculations of dislocation density distributions, the effects of both the fracture 
mode and the stress–strain state are determined. In pure mode I, the geometrically necessary dislocation (GND) 
density is located symmetrically with respect to the blunted crack tip. On the contrary, under pure mode II, the 
GND density becomes concentrated in the blunted and sharp parts of the crack tip. In this case, fracture initiation 
is shown to be likely to occur near the blunted region of the crack tip, where both the stress triaxiality and the 
GND density are at their maximum. The relation between the equilibrium state of dislocation densities and the 
intrinsic material length as well as the plastic SIF as a function of the work hardening exponent is discussed.   

1. Introduction 

Strain gradient plasticity (SGP) models have received significant 
attention in the past three decades [1,2]. By incorporating the role of 
plastic strain gradients, and their associated length scale parameters, 
SGP models have enabled capturing the size effects observed in metals at 
small scales, as well as regularising otherwise ill-posed boundary value 
problems at the onset of material softening. Several strain gradient 
models have been developed to numerically capture scale size effects 
[3–8]. Based on dislocation analysis, Fleck and Hutchinson [3,4] 
developed a strain gradient theory, where one or several length 
parameter(s), l, were introduced to balance the dimensions of strains 
and strain gradients. This length was considered an intrinsic material 
length, dependent on the microstructure of the material. Fleck and 
Hutchinson’s [3,4] theory assumes that material hardening is influenced 
by both GNDs and statistically stored dislocations (SSDs). This disloca
tion hardening interpretation was first proposed by Ashby [9], who 
stated that the resistance to dislocation motion is caused by secondary 

dislocations piercing the slip planes, which multiply during plastic 
deformation and increase slip resistance. In that study, a distinction was 
made between SSDs, accumulating during uniform deformation, and 
GNDs, which are required to preserve lattice compatibility. Using ten
sion and torsion on polycrystalline copper wires, Liu et al. [10] 
compared the experimental and theoretical evaluations of three 
phenomenological SGP theories to demonstrate that the size effects 
observed in plastic flow were primarily due to the GND density gener
ated as a result of plastic strain gradients. In continuum-like models, one 
way of establishing a theoretical connection with the underlying dislo
cation density is by means of Nye’s dislocation tensor [11,12]. Fleck 
et al. [13] assumed that Nye’s dislocation density tensor provided a 
direct measure of the number of GNDs associated with slip gradients. 
Evers et al. [14] indicated that owing to heterogeneity, the GND density 
can be computed to satisfy the requirement of restoring the compati
bility of the crystallographic lattice. 

Calcagnotto et al. [15] investigated two methodologies to calculate 
the GND density from electron backscatter diffraction (EBSD) data. 
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Based on the assumption of a series of twist subgrain boundaries in the 
cylinder, each containing two perpendicular arrays of screw disloca
tions, the misorientation angle is considered to be related to the GND 
density. The second method to evaluate GND densities is based on the 
calculation of the full dislocation density tensor. GNDs are characterised 
by the Burgers vector b (slip direction) and the tangent vector t (dislo
cation line direction). An experimental study of the dislocation density 
behaviour under low-cycle deformation was conducted by Jiang et al. 
[16]. EBSD was combined with high spatial resolution digital image 
correlation (HR-DIC) to explore full-field plastic strain distributions, 
together with finite element (FE) modelling, to understand the micro
crack nucleation mechanisms. It was found that the geometry of the 
inclusion plays a significant role in increasing local stress; however, the 
nucleation of cracks is not exclusively dependent on the inclusion ge
ometry, and a major role is also played by local GND accumulation and 
plastic slip. Recently, Das et al. [17] provided a comprehensive review of 
the theoretical background related to the computation of Nye’s dislo
cation tensor and the underlying GND density in plastically deformed 
materials. 

The role of GNDs in crack tip mechanics has received significant 
theoretical attention [18–20]. The plastic zone adjacent to the crack tip 
is physically small and exhibits steep plastic strain gradients, which 
must be accommodated by an increased GND density that provides an 
additional source of work hardening and strengthening. Relative to 
continuum models considering only the role of SSDs, such as von Mises 
plasticity theory, these dislocation hardening and strengthening mech
anisms lead to a significant increase in the crack tip stress level. This 
stress elevation provides a mechanistic rationale for brittle fracture in 
the presence of plasticity [21]. In the context of stationary crack tip 
analyses, Qu et al. [18] calculated the contours of both GND and SSD 
densities at the crack tip. The density of GNDs was found to be large 
around the crack tip but rapidly decreased away from it, while the 
density of SSDs decreased more gradually at the same distance. Using 
both mechanism-based and phenomenological SGP theories, Martínez- 
Pañeda and Niordson [22] revealed localized strain hardening near 
crack tips, promoted by GNDs. Recently, Martínez-Pañeda and Fleck 
[23] showed that higher-order SGP models predicted an elastic stress 
state very close to the crack tip, akin to a dislocation-free zone. In terms 
of crack growth resistance, Wei and Hutchinson [24] and Martínez- 
Pañeda et al. [25] used strain gradient plasticity to show that conven
tional plasticity analyses overestimated the crack growth resistance of 
metals. 

Only a few studies related to both mode I and mode II based on a 
strain-gradient-dependent plasticity model have been reported in the 
literature. Xia and Hutchinson [26] presented plain strain results for the 
pure mode I and mode II fields for a limited class of solids whose 
dependence on strain gradients was through a single invariant curva
ture. Huang et al. [27] applied the SGP theory to investigate the 
asymptotic field (stresses and coupled stresses) near a mixed-mode crack 
tip in elastic and elastic–plastic materials with strain gradient effects. 
More recently, Goutianos [28] considered a finite strain version of Fleck 
and Hutchinson [29] theory to identify the relationship between the 
material length scales and the plastic deformation at the crack tip of 
Mode I and mixed-mode cracks. 

The aforementioned investigations reveal the significant influence of 
strain gradients on a wide range of fracture mechanics problems. 
However, there is a need to systematically characterise the role of plastic 
gradients in general mixed-mode fracture, and to establish a connection 
with the underlying dislocation hardening mechanisms. To achieve this, 
we use the conventional mechanism-based strain gradient (CMSG) 
plasticity theory, which provides a relationship between macroscopic 
quantities such as strains and strain gradients with mesoscopic variables 
such as SSD and GND densities, via Taylor’s dislocation model. Differ
ences between two classical stress–strain states, namely plane strain and 
plane stress, are examined under pure mode I and pure mode II loading 
conditions. Nonlinear amplitude factor solutions are determined across 

a wide range of material work hardening conditions, and the role of the 
intrinsic material length and a coupled effect of these parameters are 
identified and discussed. 

2. Governing equations of conventional mechanism-based strain 
gradient plasticity theory 

Huang et al. [30] formulated the conventional theory of mechanism- 
based SGP, which is a lower-order theory based on Taylor’s [31] 
dislocation model. In this theory, the strain gradient effect is induced via 
the incremental plastic modulus and thus the model is free from the 
requirements of higher-order approaches, facilitating numerical imple
mentation. Herein, only a brief description of the theory is provided. For 
more details, the reader is referred to the work by Huang et al. [30]. Both 
CMSG plasticity and its higher-order counterpart, usually referred to as 
MSG plasticity, are based on Taylor’s dislocation model. Accordingly, 
the shear flow stress τ is defined as a function of dislocation density ρ, 
Burgers vector b, and the shear modulus μ as follows: 

τ = αμb
̅̅̅ρ√
, (1)  

where α is an empirical coefficient ranging from 0.3 to 0.5. A value of 0.5 
is assumed throughout this work. The dislocation density ρ is composed 
of the density ρS for SSDs and the density ρG for GNDs, such that 

ρ = ρS + ρG (2) 

The SSD density is related to the flow stress and the material 
stress–strain curve in uniaxial tension, where gradient effects are non- 
existent, such that 

ρS =
[
σref f

(
εP)/Mαμb

]2 (3) 

The GND density is related to the effective plastic strain gradient ηP, 
by 

ρG = r
ηP

b
(4)  

where r is the Nye factor, which is approximately 1.90 for face-centered- 
cubic polycrystals. The measure of the effective plastic strain gradient ηP 

was introduced by Gao et al. [6] in the form of three quadratic invariants 
of the plastic strain gradient tensor ηp

ijk as: 

ηp =
(

c1ηp
iikηp

jjk + c2ηp
ijkηp

ijk + c3ηp
ijkηp

ijk

)1/2
. (5) 

The coefficients were determined to be c1 = 0, c2 = 1/4, and c3 =

0 from three dislocation models for bending, torsion, and void growth, 
respectively. The components of the plastic strain gradient tensor ηp

ijk are 
computed from the plastic strain tensor εp

ij as: 

ηp
ijk = εp

ik,j + εp
jk,i − εp

ij,k (6) 

The tensile flow stress is related to the shear stress through Taylor’s 
factor M such that, considering Eqs. (1)-(3), 

σflow = Mτ = Mαμb
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

ρS + r
ηP

b

√

, (7)  

where M is taken to be equal to 3.06 for fcc metals. Considering the 
definition for the SSD density in Eq. (3), one can reformulate the flow 
stress as 

σflow = σref
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
f 2(εP) + lηP

√
, (8)  

where 

l = 18α2( μ/σref
)2b (9)  

is the intrinsic material length in CMSG plasticity. For metallic mate
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rials, the internal material length typically ranges between 1 and 10 µm 
[32]. Assuming a power-law hardening relation, a potential choice for 
the reference stress σref and the material function f(εp) is given by 

σ = σref f (εp) = σy

(
E
σy

)N(
εp +

σy

E

)N
(10)  

Here, σy denotes the initial yield stress, and N is the plastic work hard
ening exponent (0 ≤ N < 1). 

The constitutive prescriptions provided so far are common to both 
MSG (higher-order) and CMSG (lower-order) plasticity models. In the 
latter, the use of higher-order stresses is avoided by using a viscoplastic 
approach. Thus, the plastic strain rate is defined as a function of the 
effective stress σe, rather than its rate, as follows: 

ε̇p
= ε̇

(
σe

σflow

)m

= ε̇

⎡

⎢
⎣

σe

σref
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
f 2(εp) + lηp

√

⎤

⎥
⎦

m

(11)  

where m is the rate-sensitivity exponent. Values of m > 5 have been 
shown to provide a response significantly close to the rate-independent 
limit. In this study, m = 20 was selected to simulate a rate-independent 
behaviour. Accordingly, the governing equations are therefore essen
tially the same as those in conventional plasticity and the plastic strain 
gradient comes into play through the incremental plastic modulus. Thus, 
the material Jacobian can be readily obtained from the following 
expression, 

σ̇ij = Kε̇kkδij + 2μ
[

ε̇′

ij −
3ε̇
2σe

(
σe

σflow

)m

σ′

ij

]

(12)  

where ε̇′

ij is the deviatoric strain rate tensor. As with other continuum 
strain gradient plasticity models, the CMSG theory is intended to model 
a collective behaviour of dislocations and is therefore not applicable at 
scales smaller than the dislocation spacing. In terms of crack tip ana
lyses, this implies that CMSG plasticity predictions should be taken with 
caution for distances below 100 nm to the crack tip. 

3. Material properties, loading conditions and finite element 
approach 

To establish the crack behaviour under pure mode I and mode II, 

numerical calculations were performed covering a wide range of mate
rial properties by employing a compact tension shear (CTS) specimen, 
arguably the most popular testing configuration in mixed-mode studies 
(Fig. 1). A unit thickness t is assumed, such that the stress intensity 
factors can be formulated as a function of the crack length a and the 
specimen width B as follows [33]: 

K1 =
P
Bt

̅̅̅̅̅
πa

√ sinβ
1 − a

B

⎡

⎢
⎣

0.26 − 2.65 a
B− a

1 + 0.55 a
B− a − 0.08

(
a

B− a

)2

⎤

⎥
⎦

1/2

(13)  

K1 =
P
Bt

̅̅̅̅̅
πa

√ cosβ
1 − a

B

⎡

⎢
⎣

− 0.23 + 1.4 a
B− a

1 + 0.67 a
B− a + 2.08

(
a

B− a

)2

⎤

⎥
⎦

1/2

(14) 

Pure mode I is obtained when the force P is applied in a direction β =

90◦ , whereas pure mode II is achieved by applying the force P in a di
rection β = 0◦ (Fig. 1). The angle β is measured from the plane of the 
original notch in the specimen. The crack faces remained traction-free in 
the two fracture modes considered. 

One of the purposes of the present work is the estimation of 
stress–strain state (plane strain and plane stress) and material properties 
effects under both fracture modes. To this end, the material length scale 
was ranged from 1 to 20 μm, while the influence of the strain hardening 
exponent will be assessed by spanning the range N = 0.075 to N = 0.4, 
forming the basis for the parametric study. 

To compare the mode I and mode II loading conditions, FE- 
computations are performed for the same remote elastic SIFs, namely, 
K1 = K2 = 7.3 MPa⋅m0.5. The analysis was addressed to pure mode I and 
pure mode II fracture state, and the elastic SIFs were normalized as 
K1,2 = K1,2/σy

̅̅
l

√
. The material properties and loading conditions are 

summarized in Table 1. 
The CMSG plasticity theory described in Section 2 was implemented 

in the FE-code ANSYS [34] by means of a user material subroutine 
USERMAT. The implementation of mechanism-based SGP theories has 
been described in more detail in Refs. [35,36]. It should be emphasised 
that geometrical and material non-linearities are accounted for in the 
present implementation; rigid body rotations for the strains and stresses 
are carried out by means of the Hughes and Winget algorithm [37]. 

We modelled a CTS specimen (Fig. 1) of in-plane dimensions 80 ×
136 mm with initial relative crack length a/w = 0.5. The initial crack tip 
was assigned a radius of curvature ρ = 60 nm. The results presented were 
obtained with an initial notch root radius of approximately 10− 5 times 
the characteristic crack dimension. Several different root radii were 
investigated and, as in the boundary layer calculations, we found that 
the stress and strain distributions were not dependent on the initial root 
radius when the crack tip was blunted beyond approximately three 
times the initial root radius. Also, the effect of the crack blunting radius 
was negligible at distances ahead of the crack tip where continuum 
models apply. Thus, the solutions were independent of the initial root 
radius and could be interpreted as those pertaining to an initially sharp 
crack. A mesh sensitivity analysis led to a characteristic element size of 
h = 6 nm that yields mesh-independent results [36]. A highly refined 
mesh was used near the crack tip (see Fig. 2). A typical mesh for the CTS 
specimen geometry has approximately 1,155,000 elements. 

Fig. 1. Compact tension shear (CTS) specimen. Pure Mode I conditions are 
given by β = 90◦ while pure Mode II conditions are given by β = 0◦. Dimensions 
are given in mm. 

Table 1 
Material properties and loading conditions.  

E 
GPa 

σy 

MPa 
ν N K1 

MPa⋅m0.5 
K2 

MPa⋅m0.5 
l 
μm 

K1,2 = K1,2/σy
̅̅
l

√

100 200 0.3 0.075–0.4 7.3 7.3 1 36.70 
5 16.41 
10 11.60 
20 8.21  
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4. Crack tip stress behaviour 

4.1. Hoop and effective stress radial distributions 

In this section, we obtain the mode I and mode II plane strain and 
plane stress near-tip fields for cracks in elastic–plastic materials with 
strain gradient effects. Fig. 3 illustrates the influence of the mode frac
ture type (I/II) and the plastic work hardening exponent on the hoop σθ/

σY and effective normalized von Mises stress σe/σY distribution ahead of 
the crack tip at θ = 0◦ in the CTS specimen. 

The results depicted in Fig. 3(a,b) reveal several interesting effects. 
First, in agreement with the literature, incorporating the role of plastic 
strain gradients leads to a stress elevation within microns ahead of the 
crack tip. Far away from the crack tip, CMSG plasticity and conventional 
plasticity (l = 0, denoted as CPS) agree, but gradient effects become 
dominant within microns to the crack tip and this leads to a notable 
stress elevation. Second, strain gradient effects appear to be more sig
nificant in plane stress than in plane strain conditions. For example, see 
Fig. 3(a), the hoop stress at 0.2 µm to the crack tip is 5 times larger than 
the conventional plasticity solution in plane stress, while only 2.5 times 
larger under plane strain conditions. A higher susceptibility to the role of 
plastic strain gradients under in-plane stress conditions can be consid
ered counter-intuitive, as the plastic zone size Rp is smaller in plane 
strain, which would result in a larger l /Rp ratio relative to the plane 

Fig. 2. FE mesh with the initial crack tip radius. The characteristic element size 
is approximately 6 nm. 

Fig. 3. Comparison of stress distributions ahead of the crack tip (θ = 0◦): (a) hoop σθ and (b) effective stress σe for conventional (CPS) and gradient (CMSG) plasticity 
for mode I at N = 0.2; (c) plane strain and (d) plane stress results for different values of the strain hardening exponent N and both mode I and mode II loading 
conditions. Material properties: l = 5 μm, σy/E = 0.002, ν = 0.3, K1,2 = 16.4. 
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stress case, for a given applied load. However, as it will be shown later 
on, when comparing across different stress states a larger plastic region 
does not necessarily translate into a larger gradient-dominant region, 
where GNDs and plastic strains govern the mechanical response. The 
effective von Mises stress distribution is shown in Fig. 3(b). The plane 
stress results, for both conventional and strain gradient plasticity, lead to 
higher stress levels due to the presence of a non-zero out-of-plane stress 
σzz. Otherwise, the trends are similar to those observed with the hoop 
stress. 

In Fig. 3(c,d), the remote load K1,2/σY
̅̅
l

√
of the applied SIFs is K1,2 =

16.4, with the length parameter being l = 5 μm, and the plastic work 
hardening exponent values ranging as follows: N = 0.075, 0.2, and 0.4. 
The stress level increases with N from 0.075 to 0.4, in agreement with 
expectations, and for both mode I and mode II, the asymptotic crack tip 
fields appear to exhibit some sensitivity to the strain hardening expo
nent. Under plane strain conditions, the normalised effective stress is 
larger for mode II loading, relative to mode I. However, under plane 
stress conditions, the mode I and mode II normalised effective stress 
distributions appear to be rather similar. The trends observed in Fig. 3(c, 
d) persist for different levels of K1,2 and for different values of the 
intrinsic parameter l. 

Our computations confirm that large strain gradients exist near the 
crack tip, owing to the high stress and strain singularity. One of the 
important implications of the results depicted in Fig. 3(c,d) for CMSG 
plasticity is the sensitivity of the asymptotic stress singularity to mode I/ 
II fracture and the strain hardening exponent N. As mentioned earlier, 
the subject of our analysis is the local material behaviour in the vicinity 
of a crack with an initial, finite blunting radius at the tip. In this region, 
under pure mode I loading conditions, the crack blunts along the di
rection of loading. However, under the pure mode II scenario, an 
opposite type of deformation develops at the upper and lower flanks of 
the crack tip; that is, sharpening in the upper region with blunting in the 
lower region. Creager and Paris [38], McMeeking [39], O’Dowd and 
Shih [40], and Mikkelsen and Goutianos [41] found that, except in the 
immediate vicinity of the blunted crack tip, the stress state coincides 
with the typical sharp crack tip stress field. Therefore, in the subsequent 
presentation of the singularity exponent, we consider the region within a 
distance of 5⋅10− 6 ≤ r/a ≤ 5⋅10− 4 from the crack tip, where the singu
larity of the effective stress distribution is uniform. The asymptotic crack 

tip singularity indexes obtained are presented in Table 1, for varying 
material length scale l values, strain hardening exponent N, and both 
mode I and mode II conditions within plane stress and plane strain 
states. 

Several interesting features can be inferred from the results shown in 
Table 2. First, the singularity values for the mode I plane strain and 
plane stress are larger than those obtained for pure mode II at an 
equivalent stress–strain state. Moreover, the singularity exponents are in 
all cases (including mode II) larger than the classical linear elastic result 
r− 1/2. Thus, SGP models based on Taylor’s dislocation theory appear to 
predict a stronger singularity than linear elastic solids for both plane 
strain and plane stress under mode I and mode II loading conditions. Shi 
et al. [44] also found a higher stress singularity than that of linear 
elasticity in the case of the higher-order MSG plasticity model under 
mode I conditions; they concluded that the stresses scale as r− 2/3 in the 
vicinity of the crack tip. Second, the magnitude of the stress singularity 
exhibits some sensitivity to the intrinsic material length parameter l, 
with differences becoming more noticeable for larger strain hardening 
values. For the case of N = 0.4, larger values of l appear to bring the 
solution closer to the linear elastic result. The singularity exponents 
estimated differ from those reported in the literature. They are similar to 
those reported for MSG plasticity [42,43] but exhibit a sensitivity to the 
strain hardening exponent. And are higher than those reported for 
higher order phenomenological strain gradient plasticity models 
[24,26,44,45]. 

4.2. Stress triaxiality angular distributions 

The role of stress triaxiality conditions on the fracture behaviour of 
elastic–plastic materials has always been a topic of significant interest 
[39,46–49]. A local parameter of stress triaxiality and crack tip 
constraint was proposed by Henry and Luxmoore [50] as follows: 

h =
σkk

(
3

̅̅̅̅̅̅̅̅̅
SijSij

√ ) (15)  

where σkk and Sij are the hydrostatic and deviatoric stresses. The angular 
distribution of h is computed here using CMSG plasticity as a function of 
N, the distance ahead of the crack r/l and the fracture mode – results are 
shown in Fig. 6. Both plane stress and plane strain results are shown and 
the polar angle θ is measured from the symmetry line in front of the 
crack tip. 

Consider first the mode I case. The results shown in Fig. 4a show that 
the maximum triaxiality levels in the plane strain mode I near-tip fields 
in materials with strain gradient effects can be up to 5 times larger than 
those relevant to plane stress conditions, for N = 0.2. As shown in 
Fig. 4b, these differences increase with smaller strain hardening expo
nents. The constraint effect ahead of a crack tip at the polar angle θ =
0◦ in the CTS specimen under mode I plane strain conditions increases 
with a variation in the hardening exponent from 0.075 to 0.4. A strong 
sensitivity of the stress triaxiality parameter h on the distance from the 
crack tip and the strain hardening exponent is observed. The sequence of 
curves in Fig. 4a as a function of crack tip distance demonstrates the 
typical distribution due to the blunting of the crack tip. Now, let us turn 
our attention to the mode II results, Figs. 4b and 4d. It is observed that 
the plane stress and plane strain results in Figs. 4b and 4d are much 
closer to each other than for pure mode I. This statement holds true for 
various distances from the crack tip r/l and work hardening exponents 
N. The distributions of the triaxiality parameter for mode II are almost 
insensitive to variations in the work hardening and crack tip distance. 
The reduction in triaxiality observed for the mode II conditions is 
accompanied by an increase in plastic deformations, which in turns 
contributes to transitioning to a more ductile fracture scenario. How
ever, in the high-constraint case, produced by the pure mode I plane 
strain conditions, the triaxial stress increases significantly while the 
plastic strain in the θ = 0◦ case remains relatively low. These conditions 

Table 2 
Values of crack tip singularity exponent γ.   

Plane strain 

Mode I Mode II 

N ¼
0.075 

N ¼ 0.2 N ¼ 0.4 N ¼
0.075 

N ¼ 0.2 N ¼ 0.4 

l = 1 
μm 

− 0.654 − 0.657 − 0.666 − 0.542 − 0.568 − 0.572 

l = 5 
μm 

− 0.651 − 0.665 − 0.632 − 0.526 − 0.547 − 0.532 

l = 10 
μm 

− 0.658 − 0.666 − 0.608 − 0.513 − 0.536 − 0.514 

l = 20 
μm 

− 0.658 − 0.661 − 0.593 − 0.500 − 0.527 − 0.502   

Plane stress 

Mode I Mode II 

N ¼
0.075 

N ¼ 0.2 N ¼ 0.4 N ¼
0.075 

N ¼ 0.2 N ¼ 0.4 

l = 1 
μm 

− 0.621 − 0.617 − 0.617 − 0.525 − 0.523 − 0.544 

l = 5 
μm 

− 0.648 − 0.645 − 0.597 − 0.506 − 0.512 − 0.517 

l = 10 
μm 

− 0.672 − 0.642 − 0.582 − 0.501 − 0.521 − 0.510 

l = 20 
μm 

− 0.659 − 0.639 − 0.543 − 0.501 − 0.514 − 0.504  
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favour cleavage fracture. In general, the stress triaxiality trends are 
similar to those reported for conventional plasticity, as plastic strain 
gradients contribute to both the effective stress and the hydrostatic 
stress. 

In contrast to mode I, under the pure shear condition the triaxial 
stress has two maxima, which are located at angular coordinates of θ =
±(65–75)◦ and almost coincide for both plane strain and plane stress 
states (Figs. 4b and 4d). Fig. 4 depicts the triaxial stress variation as a 
function of the material plastic properties under two fracture mode 
conditions. In agreement with expectations, the triaxial stress level de
creases as the mode changes from I to II. This trend has a significant 
effect on the distribution of dislocation densities, as the dislocation 
behaviour is likely to be influenced by stress triaxiality. Therefore, the 
distributions of the stress triaxiality parameter shown in Fig. 4 are 
further used to analyse the dislocation density behaviour at the crack tip 
in accordance with the present theory of Taylor-based gradient 
plasticity. 

5. Plastic stress intensity factors for mode I/II behaviour 

One of the main elements of the structure of stress, strain, and 
displacement fields at the crack tip are scale factors in the form of 
amplitude coefficients or stress intensity factors (SIFs). These factors 

have the physical meaning of measures of near-field loading close to the 
crack tip and are generally dependent on the applied load, the cracked 
body configuration, and the elastic–plastic material properties. There 
are limited studies in the literature on stress intensity factors in SGP, and 
these studies are limited to a few particular cases and do not have suf
ficient generalization. First, to formulate the problem for the crack tip 
fields, Xia and Hutchinson [26] determined, similar to the classical HRR 
solution, the plastic SIF, and derived a new amplitude factor, which was 
related to the dimensionless angular variations for dominant stress 
components. Later, Huang et al. [27] proposed several equations for the 
elastic and plastic amplitude factors for the asymptotic crack tip fields in 
materials with strain gradient effects. It is stated that under the condi
tion of pure elasticity, as well as elastic–plastic strain gradient materials 
with a separated or integrated law of hardening, the dominant stress and 
coupled stress fields in mode I are governed by two independent pa
rameters. Recently, Shlyannikov et al. [36] presented numerical and 
analytical formulations for the plastic SIFs, which are measures of crack 
tip stress amplitude and are applicable in the domain of validity of 
CMSG plasticity. 

In this section, following Shlyannikov et al. [36], we adopt the nu
merical formulation for the amplitude AFEM

P (r, θ) and plastic stress in
tensity KFEM

P factors for CMSG plasticity, which are given by: 

Fig. 4. Mode I and mode II angular distributions of the stress triaxiality at K1,2 = 16.4 as a function of different (a,b) locations ahead of the crack tip (for N = 0.2) and 
(c,d) strain hardening exponent (for r/l = 0.04). Material properties: σy/E = 0.002, ν = 0.3 and l = 5 μm. 
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σFEM
e (r, θ) = KFEM

P rγ σ̂FEM
e (r, θ) (16)  

AFEM
P (r, θ) = σFEM

ij (r, θ)/σ̂FEM
ij (r, θ) (17)  

KFEM
P = AFEM

P /rγ . (18)  

where r = r/l is the nondimensional distance to the crack tip and γ is the 
power of the stress singularity. In Eqs. (16) and (17), the angular dis
tributions of the stress component σ̂FEM

ij (r, θ) are normalised, such that 

σ̂FEM
e,max =

(
3/2SFEM

ij SFEM
ij

)1/2

max
= 1 and σFEM

ij = σFEM
ij /σY . For all the 

considered combinations of the intrinsic material length parameter l and 
the plastic work hardening exponent N under plane strain and plane 
stress states and mode I and mode II loading conditions, the values of the 
power of stress singularity γ are listed in Table 2. The constitutive laws 
for the CMSG model are some of the simplest generalisations of the J2 
flow theory of plasticity that include strain gradient effects. Our calcu
lations indicate that stresses have a variable singularity near the crack 
tip and are governed by the plastic stress intensity factor KFEM

P in 
accordance with Eq. (18), which is determined from the condition of 
matching the numerical solution. As in conventional plasticity, we 
demonstrate that a plastic stress intensity factor KP can be defined, 
which exhibits a constant value within the region of gradient dominance 

for a fixed value of N. 
The calculation of the plastic SIF KFEM

P reveals an almost uniform 
magnitude over the gradient dominated zone ahead of the crack tip. 
Consequently, we take the converged value of KFEM

P and plot its radial 
distributions in Fig. 5 under the mode I and II plane stress and plane 
strain states for different values of the intrinsic material length l and the 
plastic work hardening exponent N. The results show the sensitivity of 
the employed parameter of fracture resistance KFEM

P in the assessment of 
the coupled effects of parameters l and N. A monotonic decrease of the 
plastic SIFs is observed when increasing the material length parameter 
from 1 to 20 μm. The smaller values of the plastic SIF obtained with 
increasing l are a consequence of the larger influence of plastic strain 
gradients, which increase plastic flow resistance. Independently of the 
magnitude of the CMSG plasticity length scale, a higher level of the 
plastic SIF can be observed for mode II case, relative to mode I condi
tions – see Fig. 5a. This can be rationalised with the triaxiality results 
observed before – plastic dissipation is notably higher under mode II 
fracture conditions. 

An important conclusion regarding the numerical results depicted in 
Figs. 5c and 5d is that for the same values of the remote elastic SIFs K1,2, 
the magnitude of the plastic SIFs KFEM

P monotonically increases with the 
work hardening exponent N. It follows from Figs. 5c and 5d that the 
plastic SIFs increase more gradually than the elastic ones owing to the 

Fig. 5. Plane strain and plane stress plastic SIF behaviour as a function of (a,b) the material length parameter l and (c,d) the remote normalized elastic SIFs for 
different fracture modes and strain hardening exponents N. 
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redistribution of stresses in the plastic region of the crack tip. With 
respect to the classical elastic SIFs, the new plastic factors KFEM

P differ in 
the plane strain and plane stress states and exhibit the property of being 
sensitive to the coupling effect of the material scale of length and the 
work hardening exponent, which is important from the perspective of 
practical applications. 

6. GND and SSD density distributions 

We proceed to analyse the GND and SSD density behaviour as pre
dicted by Taylor’s model and CMSG plasticity, see Eqs. (3)–(4). It is well 

known that the plastic deformation of metals is typically accommodated 
by dislocation motion. The progress of slipping dislocations through the 
material controls the mechanical properties, such as yield strength, work 
hardening, and crack growth resistance. Both GNDs and SSDs are related 
to work hardening; however, their nucleation and local contributions 
are slightly different: GNDs arise owing to plastic strain gradients (lat
tice curvature), whereas SSDs are thought to evolve as a function of the 
total plastic strain. As in previous sections, we aim at assessing the 
coupling of material properties and SGP effects. To this end, a wide 
range of values for the plastic work hardening exponent N and the 
intrinsic material length parameter l are used in the computations. In 

Fig. 6. Comparison of plane strain and plane stress GND and SSD density radial distributions for different loading conditions and plastic material properties: σy/E =

0.002, ν = 0.3, (a,b,e,f) l = 5 μm, (c,d) N = 0.2. 
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particular, N is varied between 0.075 and 0.4, while the material length 
scale is varied between 1 and 20 μm. Changing the stress–strain state by 
considering both plane strain and plane stress within pure mode I and 
mode II fracture conditions enables us to further expand the scenarios 
where gradient effects and dislocation behaviour will be assessed. The 
sensitivity of the results to the remote load is explored and the quantity 
K1,2/σy

̅̅
l

√
is varied across a wide range of 8.21–36.7. Our numerical 

results in this section on the distribution and evolution dislocation 
densities are presented as radial and angular fields of both GND and SSD 
densities, including colour illustrations of the corresponding contours in 

the vicinity of the crack tip. 

6.1. Radial dislocation density distributions 

GND density distributions obtained from the first-order mechanism- 
based SGP analysis for mode I and mode II are compared under plane 
strain and plane stress in Figs. 6a and 6b, respectively. Here, r denotes 
the radial distance from the tip, which is normalized by the intrinsic 
material length parameter l. The applied mode I and mode II SIFs are 
K1,2 = 16.4 and the intrinsic material length equals l = 5 μm. The plastic 

Fig. 7. Contour plots of GND and SSD densities (in m− 2) for plane strain and plane stress under mode I and mode II loading conditions. Dislocation densities become 
significant close to the crack tip. Material properties: σy/E = 0.002, ν = 0.3, l = 5 μm, and N = 0.2. 
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work hardening effect is significant for r/l < 1, because the GND density 
increases by nearly an order of magnitude when N varies from 0.4 to 
0.075. In mode I, the stress dislocation density is elevated slightly above 
the plane stress distributions (Fig. 6a), and they are closer to each other 
for the mode II distributions (Fig. 6b). 

The radial variations in the densities ρG and ρS of GNDs and SSDs 
along θ = 0◦ are shown in Figs. 6c and 6d as a function of the intrinsic 
material length parameter l. The radial distance of the material in the 
undeformed state is normalised by the crack length a because, in this 
case, we consider the variation of the material scale factor l. Here, ρS and 
ρG are related to the uniaxial stress–plastic strain relation and the 
effective plastic strain gradient, as ρG = rηP/b and ρS =
[
σref f

(
εP)/Mαμb

]2, according to Eqs. (3) and (4), respectively. From the 
results in Figs. 6c and 6d, it can be seen that under both mode I and mode 
II plane strain conditions, the total dislocation density decreases when 
the intrinsic material length parameter l changes from 1 to 20 μm. The 
smaller the length scale the smaller the capacity of the material to 
harden with plastic strain gradients, and thus the larger the degree of 
plastic deformation. Recall from Eq. (8) that strain gradient hardening 
becomes less important as the term associated with the equivalent 
plastic strain becomes large relative to the gradient term lηp. 

As shown in Figs. 6c and 6d, the distributions of the SSD and GND 
densities are notably different. The GND density ρG is large around the 
crack tip, but rapidly decreases away from it. On the contrary, the SSD 
density ρS is not as large as that of ρG around the crack tip, but decreases 
much more slowly than ρG away from it. Both ρS and ρG are above 1014 

m− 2 near the crack tip, but the magnitude of the GND density can be 

roughly 3 orders of magnitude larger than the SSD density in the vicinity 
of the crack tip. The results emphasise the role of GNDs in governing the 
mechanical behaviour of solids at very short distances ahead of the crack 
tip. Figs. 6c and 6d assess the influence of varying the strain hardening 
exponent N. It can be observed that, the smaller the strain hardening 
exponent, the larger the GND density, with very little sensitivity 
observed for the SSD density. Thus, results suggest that a material with 
low conventional hardening capacity will lead to a larger accumulation 
of GNDs. Comparisons of plane strain and plane stress GND and SSD 
density radial distributions for different fracture modes I and II are 
shown in Figs. 6e and 6f, respectively. The results are expressed as a 
function of the normalized crack tip distances r/l for two different values 
of the strain hardening exponent N = 0.075 and 0.4, with the applied 
mode I and mode II SIF of K1,2 = 16.4, and an intrinsic material length 
equal to l = 5 μm. The fracture mode effect on both GND and SSD density 
behaviour is significant, particularly under plane strain conditions. In 
addition, in all the cases considered, the GND and SSD dislocation 
densities for mode II are higher than that for mode I if r/l > 0.05, but a 
change in trend is observed closer to the crack tip. 

6.2. Contour plots for dislocation densities 

The colour contour plots of the GND and SSD densities are shown in 
Fig. 7 for plane strain and plane stress mode I and mode II loading 
conditions. The unit of dislocation density is m− 2 and, for illustrative 
purposes, the GND ρG and SSD ρS density contours in Fig. 7 are selected 
in the range of 1⋅1015–5⋅1016 m− 2. The plots are shown for the strain 
hardening exponent N = 0.2, the applied mode I and mode II SIF K1,2 =

Fig. 8. Near crack tip contour plots of GND and SSD densities (in m− 2) for plane strain and plane stress under mode I and mode II loading conditions. Material 
properties: σy/E = 0.002, ν = 0.3, l = 5 μm, and N = 0.2. 
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16.4, and the material length l = 5 μm. Qualitatively, the contours of the 
GND density in Fig. 7 under plane strain and plane stress show a similar 
shape to that of the plastic zone surrounding a crack. For the particular 
case of plane strain and mode I loading, our results are in good agree
ment with the GND distributions obtained by Qu et al. [18]. The 
behaviour of the SSD density for mode II under the plane strain and 
plane stress states in Fig. 7 reveals that a large area with high SSD 
density values is located behind the crack front. 

More detailed information on the dislocation density fields is given 
by the GND and SSD contours in Fig. 8, which are shown on the scale of 
the radius of curvature of the crack tip. The comparison of the contours 
for the GND and SSD densities reveals that in the nearest crack tip re
gion, the GND density ρG fields are more uniform, with a gradual 
decrease in intensity with increasing distance from the crack tip. The 
maximum values of the GND dislocation density on the considered scale 
reaches a magnitude of 1⋅1018 m− 2. The GND density dislocation dis
tribution in Fig. 8 under mode I plane strain and plane stress uniformly 
covers the blunted crack tip. Under the pure mode II condition, the re
sults show that the GNDs are concentrated on the upper blunt crack tip 
side and the lower sharp corner. When we relate this tendency to the 
stress triaxiality distributions shown in Figs. 4b and 4d, we can infer that 
the higher values of stress triaxiality occur at the same upper and lower 
crack tip regions with a high GND density. Small quantitative differences 
in the GND density distribution tendency between these two regions can 
be observed, such that the maximum value of ρG is reached in the upper 
blunt region. Assuming that fracture initiates at the location at which the 
dislocation density is high, we can infer that under the pure mode II 
condition, the initiation of crack growth will occur at the upper region of 
the crack tip. This assumption is in good agreement with experimental 
results obtained for different materials [51,52]. The concentration of 
SSD densities in these regions is less pronounced. Thus, high stress 
triaxiality locations tend to have high dislocation densities associated 
with them. 

6.3. Angular dislocation density distributions 

The angular distribution of the GND density ρG is shown in Fig. 9 
under various loading conditions and stress–strain states, where ρGcosθ 
and ρGsinθ constitute the axes (rectangular Cartesian coordinates). Re
sults are shown for intrinsic length scales of l = 5 and 20 μm, applied 
mode I and mode II SIFs of K1,2 = 16.4 and 8.2, strain hardening 
exponent of N = 0.2, and normalized crack tip distances of r/a = 5⋅10− 6, 
1⋅10− 5, and 1.5⋅10− 5. These selected r values cover the region closest to 
the crack tip blunting area and the strain gradient dominated zone with 
a uniform stress singularity index. As before, the following material 
parameters σy/E = 0.002 and ν = 0.3 are used. In agreement with ex
pectations, the GND region expands with decreasing crack tip distance 
r/a; the results are consistent with those depicted in Fig. 7. For all the 
considered distances to the crack tip, the regions of dislocation densities 
ρG for modes I and II are different, but their relative size is similar. It is 
also seen that the intrinsic material length parameter l has a moderate 
effect on the qualitative shape of the GND density angular distributions 
under both plane strain and plane stress states. 

A more detailed analysis of the influence of the plastic properties of 
the material on the angular distributions of the GND density is presented 
in Fig. 10. The distributions of the GND densities are presented for the 
distance r/l = 0.08, which is located in the region where the stress 
distribution exhibits a rather uniform singularity. The plastic work 
hardening exponent N changes from 0.075 to 0.4, the remote normalized 
mode I and mode II SIF is K1,2 = 16.4, and the intrinsic material length is 
l = 5 μm. 

The pattern of contours for the GND density ρG plotted in Fig. 10 
appears to depend strongly on the plastic work hardening exponent N, as 
well as on the fracture mode I/II. Varying of N from a nearly elastic state 
with N = 0.4 to extended plasticity at N = 0.075 causes the GND density 

contours to increase in size under both plane strain and plane stress 
conditions. The dislocation density contours for N = 0.075 are approx
imately five times larger than those at N = 0.4. A similar behaviour is 
observed for a wide range of values of the material length parameter l. 

We proceed to investigate the angular distribution of the SSD density 
and to compare it with the results obtained for the GND density for 
different strain hardening exponents and stress states – results are shown 
in Fig. 11. These distributions of the dislocation densities are given for 
the distance r/l = 0.72, plastic work hardening exponent values of N =
0.2 and 0.4, remote normalized mode I SIF of K1 = 16.4, and intrinsic 
material length parameter of l = 5 μm. 

From the data presented in Fig. 11, it follows that for the same dis
tance to the crack tip r/l = 0.72, opposite situations can occur in the 
absolute values of the GND and SSD dislocation densities, depending on 
the plastic properties of the material. Thus, for a sufficiently ductile 
material with N = 0.2 (Fig. 11a), the GND values prevail over the SSD 
values under the plane strain and plane stress states, and the maximum 
dislocation density is located at different angular coordinates that do not 
coincide with the line θ = 0◦ ahead of the crack tip. For a material with a 
much higher strain hardening exponent N = 0.4 (Fig. 11b), higher values 
are observed for the SSD density in comparison to those for the GND 
density under the same loading conditions. 

7. Discussion 

The present analysis of the radial (Fig. 6) and angular (Figs. 9–11) 
density distributions of GNDs and SSDs, ρG and ρS, is fundamental to 
understand the effects of plastic material properties and strain gradients 
on crack tip mechanics. Our results imply that at small distances to the 
crack tip r/l, the gradient term lηP suppresses the effect of the plastic 
properties of the material. As the distance to the crack tip increases, the 
contributions of ρG and ρS become comparable, and for r/l > 0.7, the 
influence of plastic properties, characterised by the value of the plastic 
work hardening exponent N in the first term in Eq. (8), f2( εP), prevails 
over the gradient effects. 

Jiang et al. [16] used EBSD and HR-DIC to measure dislocation 
densities and showed that the range of variation in the GND density 
values is on the order of 1014–1016 m− 2. A higher resolution is limited by 
the capabilities of the measurement tools. Taking into account the re
sults of our numerical calculations, wherein the GND density varies in 
the range of 1013–1018 m− 2, it can be assumed that the given order of 
experimental values of the GND density 1014–1016 m− 2 corresponds to a 
distance to the crack tip at which the contributions of the GND and SSD 
densities are comparable to each other. Therefore, problems may arise in 
the interpretation of experimental data, also because of the density of 
the SSD being difficult to determine and identify. The results in Fig. 11 
indicate that, depending on the crack tip distance, there can be opposite 
assessments of the maxima of the GND and SSD densities. 

From an experimental perspective, it is useful to establish the radial 
coordinate of the equilibrium state of the dislocation densities. To this 
end, we introduce the density locations ratio in the following form: 

Rd =
ρG

ρS
= r

ηP

b

[
Mαμb

σref f (εP)

]2

= 0.988
ηpl

(
εp + σy/E

)2N (19) 

Equality of this ratio Rd = 1 sets the distance ahead of the crack tip 
where an equilibrium state of dislocation densities is attained. Fig. 12 
shows the relation between the coordinates of the equilibrium state of 
dislocation densities Rd = 1 and the intrinsic material length as well as 
the plastic SIF KFEM

P , as a function of the work hardening exponent N. 
Here, the dimensionless coordinate (r/l)|Rd=1 

is the distance from the 
crack tip where the Rd ratio is equal to unity. As expected, a higher 
degree of plastic dissipation in the solid due to the combination of ma
terial properties (l = 1 μm and N = 0.075) and a mode II plane stress 
state, postpone the boundary of the equilibrium state of dislocation 
densities relative to a case where plasticity is reduced, such as l = 20 μm 

V. Shlyannikov et al.                                                                                                                                                                                                                           



Theoretical and Applied Fracture Mechanics 116 (2021) 103128

12

Fig. 9. Plane strain and plane stress angular distributions of GND density for mode I and mode II as a function of the material length parameter (a-d) l = 5 μm and (e- 
h) l = 20 μm and locations ahead of the crack tip: 1- r/a = 5⋅10-6, 2- r/a = 1⋅10-5, 3- r/a = 1.5⋅10-5. Material properties: σy/E = 0.002, ν = 0.3 and N = 0.2. 
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and N = 0.4 and mode I plane strain conditions. A preliminary analysis 
reveals that there is a strong relationship between the plastic SIF KFEM

P 
and the coordinate of the equilibrium state of dislocation densities Rd. 
This is further explored in Figs. 12c and 12d. As observed before (Fig. 5), 
a high value of the plastic SIF KFEM

P tends to be associated with a high 
GND density (and vice versa). The differences between plane strain and 
plane stress states with a variation in the hardening exponent N are more 
significant for mode I, as shown in Figs. 12a and 12c. Figs. 12b and 12d 
indicate that the stress–strain state (plane strain or plane stress) does not 

have a significant effect on the behaviour of the Rd ratio under pure 
mode II. 

One of the key novelties of the study by Jiang et al. [16] was to 
experimentally obtain the GND density maps. The authors mentioned 
that it is impossible to directly correlate the accumulated in-plane 
effective strain with the GND density distribution. Furthermore, the 
local progressive development of plastic strain is modulated by local 
strain hardening, typically due to back stresses associated with the 
accumulation of the measured GND density as well as the presence of 

Fig. 10. Plane strain and plane stress angular distributions of GND density for mode I and mode II as a function of the work hardening exponent N at a location ahead 
of the crack tip r/l = 0.08. Material properties: σy/E = 0.002, ν = 0.3, and l = 5 μm. 

Fig. 11. Comparison of plane strain and plane stress angular distributions of GND and SSD densities for mode I as a function of the work hardening exponent N at a 
location ahead of the crack tip r/l = 0.72. Material properties: σy/E = 0.002, ν = 0.3, and l = 5 μm. 
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SSDs, which are more difficult to measure. In the case of the crack tip 
with a finite radius of curvature as a result of the formed GND structure, 
the distribution of stress and strain may be more uniform relative to a 
sharp crack. Potentially, this is related to regions of high GND density 
ahead of the crack tips, indicating that the analysis of dislocation also 
plays a significant role in SGP theory. To this end, the introduced co
ordinate of the equilibrium state of the dislocation densities Rd can serve 
as an additional basis for a conservative assessment of the outer 
boundary of the dominance region of gradient theories of plasticity. 

8. Conclusions 

We have comprehensively investigated the stationary crack tip fields 
of a material characterised by the mechanism-based strain gradient 
plasticity theory, which is grounded on Taylor’s dislocation model. Our 
analysis spans both plane stress and plane strain stress states, as well as 
pure mode I and pure mode II loading conditions. Moreover, the inter
play between plastic properties and strain gradient length scale is 
examined by mapping a wide range of values. A particular focus of this 
work is the study of the behaviour of dislocation densities – angular and 
radial distributions of the density of geometrically necessary disloca
tions (GNDs) and statistically stored dislocations (SSDs) are computed, 
for varying stress states, fracture modes, hardening parameters and 
values of the intrinsic material length. The main findings of our work are 

as follows:  

1. For a given remote elastic stress intensity factor, gradient effects 
appear to be stronger under plane stress conditions than under plane 
strain conditions. These differences are intrinsic to mode I fracture, 
with mode II conditions showing a very similar effective stress dis
tribution ahead of the crack tip for both plane stress and plane strain 
states.  

2. The numerical results reveal that the crack tip singularity depends on 
the fracture mode I/II. In all cases, the power of the stress singularity 
exceeds that of linear elasticity; under pure mode I values range from 
− 0.543 to − 0.672 while for mode II the range is − 0.500 to − 0.572. 
Also, crack tip fields do not have a separable solution and the crack 
tip stress fields exhibit a strong sensitivity to the work hardening 
exponent N and the intrinsic material length scale l.  

3. Nonlinear amplitude factor solutions for mechanism-based strain 
gradient plasticity are determined. These plastic stress intensity 
factors decrease with increasing material length scale l and with 
decreasing strain hardening exponent N, being more sensitive to the 
latter. 

4. The density of GNDs is large around the crack tip, but rapidly de
creases away from the crack tip. On the contrary, the density of SSDs 
is not as large as that of GNDs around the crack tip, but decreases 
much more slowly away from it. The GND density magnitudes agree 

Fig. 12. Material length parameter (a,b) and plastic SIF (c,d) versus coordinate of the equilibrium state of dislocation densities for plane strain and plane stress under 
mode I and mode II as a function of the work hardening exponent N. Material properties: σy/E = 0.002, ν = 0.3. 
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with experimental data except for distances very close to the crack 
tip, where measurements can be compromised by resolution issues.  

5. A coupled effect of the fracture mode and the stress–strain state is 
identified on the dislocation density behaviour. In pure mode I, the 
GND density is located symmetrically with respect to the blunted 
crack tip. Under pure mode II, the GND density becomes concen
trated in the blunted and sharpened parts of the crack tip. In this 
case, fracture is shown to be likely to initiate near the blunted region 
of the crack tip, where both the stress triaxiality and the GND density 
are at their maximum. 
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[36] V. Shlyannikov, E. Martínez-Pañeda, A. Tumanov, A. Tartygasheva, Crack tip fields 

and fracture resistance parameters based on strain gradient plasticity, Int. J. Solids 
Struct. 208–209 (2021) 63–82. 

[37] T. Hughes, J. Winget, Finite rotation effects in numerical integration of rate 
constitutive equations arising in large-deformation analysis, Int. J. Numer. 
Methods Eng. 15 (1980) 1862–1867. 

[38] M. Creager, P.C. Paris, Elastic field equations for blunt cracks with reference to 
stress corrosion cracking, Int. J. Fract. 3 (1967) 247–252. 

[39] R.M. McMeeking, Finite deformation analysis of crack-tip opening in elastic-plastic 
materials and implications for fracture, J. Mech. Phys. Solids. 25 (1977) 357–381. 

[40] N.P. O’Dowd, C.F. Shih, Family of crack-tip fields characterized by a triaxiality 
parameter - I. Structure of fields, J. Mech. Phys. Solids 39 (1991) 989–1015. 

[41] L.P. Mikkelsen, S. Goutianos, Suppressed plastic deformation at blunt crack-tips 
due to strain gradient effects, Int. J. Solids Struct. 46 (2009) 4430–4436. 

[42] M. Shi, Y. Huang, H. Jiang, K.C. Hwang, M. Li, The boundary-layer effect on the 
crack tip field in mechanism-based strain gradient plasticity Int, J. Fract. 112 
(2001) 23–41. 

[43] M. Shi, Y. Huang, H. Gao, K.C. Hwang, Non-existence of separable crack tip field in 
mechanism based strain gradient plasticity, Int. J. Solids Struct. 37 (2000) 
5995–6010. 

[44] Y. Wei, J.W. Hutchinson, Steady-state crack growth and work of fracture for solids 
characterized by strain gradient plasticity, J. Mech. Phys. Solids 45 (1997) 
1253–1273. 

[45] J.Y. Chen, Y. Wei, Y. Huang, J.W. Hutchinson, K.C. Hwang, The crack tip fields in 
strain gradient plasticity: the asymptotic and numerical analyses, Eng. Fract. Mech. 
64 (5) (1999) 625–648. 

[46] F.A. McClintock, A criterion for ductile fracture by the growth of holes, J. Appl. 
Mech. 35 (1968) 363–371. 

[47] J.R. Rice, D.M. Tracey, On the ductile enlargement of voids in triaxial stress fields, 
J. Mech. Phys. Solids 17 (1969) 201–217. 

[48] S. Aoki, K. Kishimoto, T. Yoshida, M. Sakata, A finite element study of the near 
crack tip deformation of a ductile material under mixed mode loading, J. Mech. 
Phys. Solids 35 (1987) 431–455. 

[49] W. Brocks, D. Klingbeil, G. Kuenencke, D.Z. Sun, Applications of the Gurson model 
to ductile tearing. In: Constraint Effects in Fracture, Theory and Applications. 
ASTM STP 1244. ASTM, West Conshohocken, PA, 1995; 232-254. 

[50] B.S. Henry, A.R. Luxmoore, The stress triaxiality constraint and the Q-value as 
ductile fracture parameter, Engng. Fract. Mech. 57 (1997) 375–390. 

[51] V. Shlyannikov, Mixed-mode static and fatigue crack growth in central notched 
and compact tension shear specimens, in: Mixed-Mode Crack Behavior. ASTM STP 
1359, ASTM, West Conshohocken, PA, 1999; 279-294. 

[52] V. Shlyannikov, D. Fedotova, Distinctive features of crack growth rate for assumed 
pure mode II conditions, Int. J. Fatigue 147 (2021), 106163. 

V. Shlyannikov et al.                                                                                                                                                                                                                           

http://refhub.elsevier.com/S0167-8442(21)00229-9/h0005
http://refhub.elsevier.com/S0167-8442(21)00229-9/h0005
http://refhub.elsevier.com/S0167-8442(21)00229-9/h0010
http://refhub.elsevier.com/S0167-8442(21)00229-9/h0010
http://refhub.elsevier.com/S0167-8442(21)00229-9/h0015
http://refhub.elsevier.com/S0167-8442(21)00229-9/h0015
http://refhub.elsevier.com/S0167-8442(21)00229-9/h0020
http://refhub.elsevier.com/S0167-8442(21)00229-9/h0020
http://refhub.elsevier.com/S0167-8442(21)00229-9/h0025
http://refhub.elsevier.com/S0167-8442(21)00229-9/h0025
http://refhub.elsevier.com/S0167-8442(21)00229-9/h0030
http://refhub.elsevier.com/S0167-8442(21)00229-9/h0030
http://refhub.elsevier.com/S0167-8442(21)00229-9/h0035
http://refhub.elsevier.com/S0167-8442(21)00229-9/h0035
http://refhub.elsevier.com/S0167-8442(21)00229-9/h0040
http://refhub.elsevier.com/S0167-8442(21)00229-9/h0040
http://refhub.elsevier.com/S0167-8442(21)00229-9/h0040
http://refhub.elsevier.com/S0167-8442(21)00229-9/h0045
http://refhub.elsevier.com/S0167-8442(21)00229-9/h0045
http://refhub.elsevier.com/S0167-8442(21)00229-9/h0050
http://refhub.elsevier.com/S0167-8442(21)00229-9/h0050
http://refhub.elsevier.com/S0167-8442(21)00229-9/h0050
http://refhub.elsevier.com/S0167-8442(21)00229-9/h0055
http://refhub.elsevier.com/S0167-8442(21)00229-9/h0055
http://refhub.elsevier.com/S0167-8442(21)00229-9/h0060
http://refhub.elsevier.com/S0167-8442(21)00229-9/h0060
http://refhub.elsevier.com/S0167-8442(21)00229-9/h0060
http://refhub.elsevier.com/S0167-8442(21)00229-9/h0065
http://refhub.elsevier.com/S0167-8442(21)00229-9/h0065
http://refhub.elsevier.com/S0167-8442(21)00229-9/h0070
http://refhub.elsevier.com/S0167-8442(21)00229-9/h0070
http://refhub.elsevier.com/S0167-8442(21)00229-9/h0070
http://refhub.elsevier.com/S0167-8442(21)00229-9/h0075
http://refhub.elsevier.com/S0167-8442(21)00229-9/h0075
http://refhub.elsevier.com/S0167-8442(21)00229-9/h0075
http://refhub.elsevier.com/S0167-8442(21)00229-9/h0080
http://refhub.elsevier.com/S0167-8442(21)00229-9/h0080
http://refhub.elsevier.com/S0167-8442(21)00229-9/h0080
http://refhub.elsevier.com/S0167-8442(21)00229-9/h0085
http://refhub.elsevier.com/S0167-8442(21)00229-9/h0085
http://refhub.elsevier.com/S0167-8442(21)00229-9/h0085
http://refhub.elsevier.com/S0167-8442(21)00229-9/h0090
http://refhub.elsevier.com/S0167-8442(21)00229-9/h0090
http://refhub.elsevier.com/S0167-8442(21)00229-9/h0090
http://refhub.elsevier.com/S0167-8442(21)00229-9/h0095
http://refhub.elsevier.com/S0167-8442(21)00229-9/h0095
http://refhub.elsevier.com/S0167-8442(21)00229-9/h0100
http://refhub.elsevier.com/S0167-8442(21)00229-9/h0100
http://refhub.elsevier.com/S0167-8442(21)00229-9/h0100
http://refhub.elsevier.com/S0167-8442(21)00229-9/h0105
http://refhub.elsevier.com/S0167-8442(21)00229-9/h0105
http://refhub.elsevier.com/S0167-8442(21)00229-9/h0110
http://refhub.elsevier.com/S0167-8442(21)00229-9/h0110
http://refhub.elsevier.com/S0167-8442(21)00229-9/h0115
http://refhub.elsevier.com/S0167-8442(21)00229-9/h0115
http://refhub.elsevier.com/S0167-8442(21)00229-9/h0120
http://refhub.elsevier.com/S0167-8442(21)00229-9/h0120
http://refhub.elsevier.com/S0167-8442(21)00229-9/h0125
http://refhub.elsevier.com/S0167-8442(21)00229-9/h0125
http://refhub.elsevier.com/S0167-8442(21)00229-9/h0125
http://refhub.elsevier.com/S0167-8442(21)00229-9/h0130
http://refhub.elsevier.com/S0167-8442(21)00229-9/h0130
http://refhub.elsevier.com/S0167-8442(21)00229-9/h0135
http://refhub.elsevier.com/S0167-8442(21)00229-9/h0135
http://refhub.elsevier.com/S0167-8442(21)00229-9/h0140
http://refhub.elsevier.com/S0167-8442(21)00229-9/h0140
http://refhub.elsevier.com/S0167-8442(21)00229-9/h0145
http://refhub.elsevier.com/S0167-8442(21)00229-9/h0145
http://refhub.elsevier.com/S0167-8442(21)00229-9/h0150
http://refhub.elsevier.com/S0167-8442(21)00229-9/h0150
http://refhub.elsevier.com/S0167-8442(21)00229-9/h0155
http://refhub.elsevier.com/S0167-8442(21)00229-9/h0160
http://refhub.elsevier.com/S0167-8442(21)00229-9/h0160
http://refhub.elsevier.com/S0167-8442(21)00229-9/h0165
http://refhub.elsevier.com/S0167-8442(21)00229-9/h0165
http://refhub.elsevier.com/S0167-8442(21)00229-9/h0175
http://refhub.elsevier.com/S0167-8442(21)00229-9/h0175
http://refhub.elsevier.com/S0167-8442(21)00229-9/h0180
http://refhub.elsevier.com/S0167-8442(21)00229-9/h0180
http://refhub.elsevier.com/S0167-8442(21)00229-9/h0180
http://refhub.elsevier.com/S0167-8442(21)00229-9/h0185
http://refhub.elsevier.com/S0167-8442(21)00229-9/h0185
http://refhub.elsevier.com/S0167-8442(21)00229-9/h0185
http://refhub.elsevier.com/S0167-8442(21)00229-9/h0190
http://refhub.elsevier.com/S0167-8442(21)00229-9/h0190
http://refhub.elsevier.com/S0167-8442(21)00229-9/h0195
http://refhub.elsevier.com/S0167-8442(21)00229-9/h0195
http://refhub.elsevier.com/S0167-8442(21)00229-9/h0200
http://refhub.elsevier.com/S0167-8442(21)00229-9/h0200
http://refhub.elsevier.com/S0167-8442(21)00229-9/h0205
http://refhub.elsevier.com/S0167-8442(21)00229-9/h0205
http://refhub.elsevier.com/S0167-8442(21)00229-9/h0210
http://refhub.elsevier.com/S0167-8442(21)00229-9/h0210
http://refhub.elsevier.com/S0167-8442(21)00229-9/h0210
http://refhub.elsevier.com/S0167-8442(21)00229-9/h0215
http://refhub.elsevier.com/S0167-8442(21)00229-9/h0215
http://refhub.elsevier.com/S0167-8442(21)00229-9/h0215
http://refhub.elsevier.com/S0167-8442(21)00229-9/h0220
http://refhub.elsevier.com/S0167-8442(21)00229-9/h0220
http://refhub.elsevier.com/S0167-8442(21)00229-9/h0220
http://refhub.elsevier.com/S0167-8442(21)00229-9/h0225
http://refhub.elsevier.com/S0167-8442(21)00229-9/h0225
http://refhub.elsevier.com/S0167-8442(21)00229-9/h0225
http://refhub.elsevier.com/S0167-8442(21)00229-9/h0230
http://refhub.elsevier.com/S0167-8442(21)00229-9/h0230
http://refhub.elsevier.com/S0167-8442(21)00229-9/h0235
http://refhub.elsevier.com/S0167-8442(21)00229-9/h0235
http://refhub.elsevier.com/S0167-8442(21)00229-9/h0240
http://refhub.elsevier.com/S0167-8442(21)00229-9/h0240
http://refhub.elsevier.com/S0167-8442(21)00229-9/h0240
http://refhub.elsevier.com/S0167-8442(21)00229-9/h0250
http://refhub.elsevier.com/S0167-8442(21)00229-9/h0250
http://refhub.elsevier.com/S0167-8442(21)00229-9/h0260
http://refhub.elsevier.com/S0167-8442(21)00229-9/h0260

	Mode I and mode II stress intensity factors and dislocation density behaviour in strain gradient plasticity
	1 Introduction
	2 Governing equations of conventional mechanism-based strain gradient plasticity theory
	3 Material properties, loading conditions and finite element approach
	4 Crack tip stress behaviour
	4.1 Hoop and effective stress radial distributions
	4.2 Stress triaxiality angular distributions

	5 Plastic stress intensity factors for mode I/II behaviour
	6 GND and SSD density distributions
	6.1 Radial dislocation density distributions
	6.2 Contour plots for dislocation densities
	6.3 Angular dislocation density distributions

	7 Discussion
	8 Conclusions
	Declaration of Competing Interest
	Acknowledgements
	References


