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Interaction of Void Spacing
and Material Size Effect
on Inter-Void Flow Localization
The ductile fracture process in porous metals due to growth and coalescence of micron
scale voids is affected not only by the imposed stress state but also by the distribution of
the voids and the material size effect. The objective of this study is to understand the inter-
action of the inter-void spacing (or ligaments) and the resultant gradient-induced material
size effect on void coalescence for a range of imposed stress states. To this end, three-
dimensional finite element calculations of unit cell models with a discrete void embedded
in a strain gradient-enhanced material matrix are performed. The calculations are
carried out for a range of initial inter-void ligament sizes and imposed stress states char-
acterized by fixed values of the stress triaxiality and the Lode parameter. Our results
show that in the absence of strain gradient effects on the material response, decreasing
the inter-void ligament size results in an increase in the propensity for void coalescence.
However, in a strain gradient-enhanced material matrix, the strain gradients harden the
material in the inter-void ligament and decrease the effect of inter-void ligament size on
the propensity for void coalescence. [DOI: 10.1115/1.4049022]
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1 Introduction
In porous metals, void coalescence often drives the onset of the

macroscopic flow localization that marks the end of uniform defor-
mation and acts as a precursor to failure, as well as the initiation and
propagation of ductile cracks [1–3]. Previous studies suggest that
for conventional plasticity theory, where no material length scale
enters the constitutive law (the absence of stress/strain
gradient-induced size effect), a decrease in the inter-void spacing
promotes void coalescence [4,5] and results in the collapse of the
yield surface [6,7]. While for a fixed inter-void spacing, it is well
established that the imposed stress state has a pronounced effect
on the onset of void coalescence in the conventional plasticity
theory. For example, it has been shown that an increase in the
imposed stress triaxiality (a ratio of the first to second stress invari-
ant) promotes void growth and early onset of void coalescence [8–
11]. Void coalescence is simply the event where the plastic flow
localizes within the inter-void ligaments and successively links
the neighboring voids [9]. The plastic flow localization within the
inter-void ligament, however, will induce plastic strain gradients
that in turn may affect the strengthening and hardening of the mate-
rial. This raises a fundamental question: how does the interaction of
inter-void spacing (or ligament size) and the gradient-induced mate-
rial size effect affect the localization of plastic flow causing void
coalescence for a given stress state?
The gradient-induced size effect resulting in strengthening and

hardening in metals has been confirmed in many material tests
involving nonuniform deformation including indentation [12,13],
torsion [14], and bending [15]. The size-dependent material
response on the micron scale in metal plasticity implies that the

growth of micron-sized voids also exhibits significant size effects
[16,17]. In general, it has been shown that the gradient-induced
size effect leads to slower growth rates for smaller voids [18–22].
An accurate representation of void coalescence due to plastic flow
localization within micron-sized inter-void ligaments, therefore,
also requires material models that represent stresses over the rele-
vant length scales. Phenomenological theories describing the
strengthening and hardening due to plastic strain gradients
express the plastic work in terms of both plastic strain and plastic
strain gradient, thereby introducing a length scale into the material
model. Herein, the strain gradient plasticity theory proposed by
Gudmundson [23] is used, which includes both dissipative (nonre-
coverable) and energetic (recoverable) gradient contributions within
a small strain formulation based on viscoplasticity. The mathemat-
ical formulation and associated variational structure originate from
Fleck and Willis [24], and the material model is implemented into
the commercial finite element software ABAQUS using a user
element (UEL) subroutine [25].
The objective of this study is to understand the interaction of the

inter-void spacing (or ligament size) and the resultant
gradient-induced material size effect on void coalescence for a
range of imposed stress states. To achieve this, three-dimensional
finite element unit cell calculations for a periodic array of initially
spherical voids embedded in a strain gradient-enhanced material
matrix are carried out. Several unit cell geometries have been ana-
lyzed to investigate the effect of inter-void ligament size under mul-
tiple loading conditions. The imposed stress states are characterized
by fixed values of the stress triaxiality and the Lode parameter (a
measure of the third stress invariant). The value of the Lode param-
eter is shown to affect the evolution of voids in computations
involving conventional plasticity theory [5,26–29] and in experi-
ments [30–32] only at relatively low stress triaxiality levels.
However, it is likely that in an anisotropic material matrix [33]
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with anisotropy introduced by the void distribution [5], as for the
present investigation, the effect of the Lode parameter can be impor-
tant even at high stress triaxialities.
Our results show that for a conventional material matrix, increas-

ing the inter-void ligament size results in an increase in the critical
stress to void coalescence, up to a threshold value of inter-void lig-
ament size. The sensitivity of the critical stress to the inter-void lig-
ament size is found to increase with the increasing stress triaxiality.
The quantitative effect of the Lode parameter is found to be small
for the stress triaxiality values varying from 1 to 3. However, for
inter-void ligament sizes below the threshold value, the critical
stress is smallest for a Lode parameter value of −1, whereas
above the threshold value, the critical stress is smallest for a Lode
parameter value of 0. For a void in a strain gradient-enhanced mate-
rial matrix, the value of the critical stress for void coalescence
increases with the increasing length parameter, i.e., increasing gra-
dient effect. This effect of the length parameter on the critical stress
magnitude is found to increase with increasing imposed stress
triaxiality and decreasing inter-void ligament size. This is because
at higher stress triaxiality values and for smaller inter-void ligament
sizes, there is an increase in the propensity for plastic flow localiza-
tion that introduces strong plastic strain gradients and in turn
hardens the ligament. This mechanism leads to a decrease in the
dependence of critical stress on the inter-void ligament size with
the increasing length parameter. The gradient-induced strengthen-
ing also tends to homogenize the deformation in the unit cell,
thus decreasing the effect of the Lode parameter.
The structure of this article is as follows. Section 2 frames the

study and presents the numerical method. The unit cell geometries
considered, the method utilized to impose proportional loading
throughout the deformation history, and the strain gradient plastic-
ity material model are presented in Sec. 2. The numerical results are
presented and discussed in Sec. 3. Finally, the key results and con-
clusions of this study are summarized in Sec. 4.

2 Problem Formulation and Modeling Approach
This work considers a limit load-type analysis to determine the

critical stress level at which a given microstructure configuration
loses load-carrying capacity. Hence, an elastic-perfectly plastic
material model is employed. The configuration of the unit cell
and the simulation setup is described in Sec. 2.1, while the approach
to prescribe a constant value of stress triaxiality and Lode parameter
is outlined in Sec. 2.2.

2.1 Unit Cell Geometry and Finite Element Mesh. Three-
dimensional finite element calculations are carried out to model
the response of an array of spherical voids with initial radius r0,
Fig. 1. The unit cell has edge lengths 2a0i along the three coordinate
axes, xi (i= 1, 2, 3), and inter-void spacings thereby equal
2l0i = 2a0i − 2r0. Symmetry about three planes perpendicular to
the coordinate axes implies that only 1/8 of the unit cell needs to
be modeled.
For all unit cells considered, the initial void volume fraction is

f0 = 0.01, where f0 = (4/3πr30)/(8a
0
1a

0
2a

0
3). The initial void radius,

r0, is kept constant, while the cell dimensions are varied to
achieve various initial inter-void spacings as given in Ref. [5].
The geometric parameters for the different cell dimensions are
given in Table 1. For all unit cells, a01/r0 = a02/r0. Finite element
meshes for four unit cell configurations are shown in Fig. 2. The
modelling setup does not account for softening due to void evolu-
tion since a small strain formulation is used. It is assumed that the
unit cell represents the material condition immediately before
failure, neglecting the deformation history leading to this state.
Hence, model predictions for the loss of load-carrying capacity
signal the onset of localization. The critical equivalent stress at
the onset of localization is recorded and reported in Sec. 4.

2.2 Numerical Method. The unit cells are subject to pre-
scribed displacements, and the boundary conditions applied to the
faces of the cell are as follows:

u1(a
0
1, x2, x3) = U1(t), T2(a

0
1, x2, x3) = T3(a

0
1, x2, x3) = 0

u2(x1, a02, x3) = U2(t), T1(x1, a02, x3) = T3(x1, a02, x3) = 0

u3(x1, x2, a03) = U3(t), T1(x1, x2, a03) = T2(x1, x2, a03) = 0

(1)

The applied symmetry boundary conditions are as follows:

u1(0, x2, x3) = 0, T2(0, x2, x3) = T3(0, x2, x3) = 0

u2(x1, 0, x3) = 0, T1(x1, 0, x3) = T3(x1, 0, x3) = 0

u3(x1, x2, 0) = 0, T1(x1, x2, 0) = T2(x1, x2, 0) = 0

(2)

In Eq. (1), U1(t) is prescribed, and the time history of the dis-
placements U2(t) and U3(t) are determined, such that a prescribed
stress state is maintained. The loading direction is fixed in stress
space by enforcing constant ratios between the normal stress com-
ponents throughout the deformation history such that

Σ22 = ρ2Σ11, Σ33 = ρ3Σ11 (3)

where ρ2 and ρ3 are constants. The overall stress components Σij are
found by volume averaging over all elements, such that
Σij =

�
VσijdV/V , where V is the unit cell volume.

The overall effective stress, Σe, and the overall hydrostatic stress,
Σh, are given by

Σe =
1��
2

√
����������������������������������������������
(Σ11 − Σ22)2 + (Σ22 − Σ33)2 + (Σ33 − Σ11)2

√

Σh =
1
3
(Σ11 + Σ22 + Σ33)

Table 1 Geometric parameters for the various unit cells
considered for f0=0.01

a01/r0 = a02/r0 a03/r0 l01/r0 = l02/r0 l03/r0

6.06 1.43 5.05 0.43
5.55 1.70 4.55 0.70
5.21 1.94 4.21 0.95
4.97 2.12 3.97 1.12
4.58 2.50 3.58 1.50
4.18 3.00 3.18 2.00
3.75 3.75 2.75 2.75

Note: Based on Ref. [5].

Fig. 1 Schematic showing the periodic arrangement of voids in
the x2 and x3 plane. The distribution along the x1 direction is not
shown for simplicity.
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which in terms of the relative stress ratios become

Σe = Σ11
1��
2

√
������������������������������������
(1 − ρ2)

2 + (ρ2 − ρ3)
2 + (ρ3 − 1)2

√

Σh = Σ11
1
3
(1 + ρ2 + ρ3)

The stress triaxiality, T, and the Lode parameter, L, are given by

T =
Σh

Σe
=

��
2

√

3
1 + ρ2 + ρ3������������������������������������

(1 − ρ2)
2 + (ρ2 − ρ3)

2 + (ρ3 − 1)2
√ (4)

and

L =
2Σ22 − Σ11 − Σ33

Σ11 − Σ33
=
2ρ2 − 1 − ρ3

1 − ρ3
(5)

The overall effective strain, Ee, is given by

Ee =

��
2

√

3

����������������������������������������������
(E11 − E22)2 + (E22 − E33)2 + (E33 − E11)2

√
(6)

where the strain components, Eij, are found in a way analogous to
the stress components.

2.2.1 Multiple Point Constraints. The macroscopic normal
stress components vary throughout the deformation, but the stress
ratios are maintained in each increment of the simulation according
to Eq. (3). This is achieved by creating multi point constraints
through the user subroutine MPC in ABAQUS, which enables enforc-
ing relationships between degrees-of-freedom in one or more nodes.
Additional degrees-of-freedom are added to impose boundary

conditions on all sides of the model while prescribing the stress
ratios. Three dummy nodes, Ni, are created outside of the mesh
and connected to one connector node, M, in the mesh as shown
in Fig. 3. This connection is made through spring elements
(SPRING2 elements from the ABAQUS element library). The

displacement in the x1 direction is then prescribed at the
N1-dummy node, while the displacements (in the x2 and x3 direc-
tions) corresponding to the desired stress triaxiality and Lode
parameter are calculated and applied to the N2 and N3 dummy
nodes. The displacement of the connector node, M, is coupled to
the displacement of the nodes located at (a01, x2, x3), (x1, a

0
2, x3)

and (x1, x2, a03) in the direction of the respective face normals. In
this way, the displacement of the dummy nodes, Ni, is linked to
the unit cell.
The displacement of the dummy nodes, Ni, is related to the

forces, Fi, at the faces of the unit cell through

Fi = ki(u
Ni
i − uMi ) with i = 1, 2, 3 (7)

and ki being the spring element constants given by
ki = E(Ai/a0i ) × 10−1, where the factor of 10−1 is introduced to sta-
bilize the numerical solution, following Ref. [34]. The forces, Fi, are
the resultant of all traction across the corresponding surface and
relates to the macroscopic stresses through

Σ11 =
F1

A1
, A1 = a02a

0
3

Σ22 =
F2

A2
, A2 = a01a

0
3

Σ33 =
F3

A3
, A3 = a01a

0
2

(8)

where Ai is the area over which the forces act. Combining Eqs. (3),
(7), and (8) gives the dummy node displacements

ρ2 =
Σ22

Σ11
= const. ⇒ uN2

2 = uM2 + ρ2
A2

A1

k1
k2

(uN1
1 − uM1 )

ρ3 =
Σ33

Σ11
= const. ⇒ uN3

3 = uM3 + ρ3
A3

A1

k1
k3

(uN1
1 − uM1 )

(9)

where ρ2 and ρ3 are input values for the stress ratio, u
Nj

i is the dis-
placement of dummy node j in the direction of xi, uMi is the displa-
cement in xi direction of the connector node M, Ai are areas from
Eq. (8), and ki are the spring element constants. Another relevant
procedure for imposing multiple point constraints without spring
elements can be found in Ref. [35].
The calculations are carried out for three values of Lode

parameter, L=−1, 0, and 1. The Lode parameter values L=−1
(Σ11 >Σ22=Σ33) and L= 1 (Σ11=Σ22 >Σ33) correspond to overall
axisymmetric stress states, while L= 0 (Σ11 >Σ22 >Σ33) correspond

Fig. 3 The spring elements for the multiple point constraints
connected to one connector node, M, in the finite element mesh

Fig. 2 Finite element meshes showing 1/8 of the unit cell with an
initially spherical void of radius r0 in the center giving an initial

void volume fraction of f0=0.01 for (a)
l01
r0

=
l02
r0

= 5.06;
l03
r0

= 0.43,

(b)
l01
r0

=
l02
r0

= 4.21;
l03
r0

= 0.95, (c)
l01
r0

=
l02
r0

= 3.58;
l03
r0

= 1.5, and

(d)
l01
r0

=
l02
r0

= 2.75;
l03
r0

= 2.75. The number of elements ranges

from 1896 for (a) to 2512 for (d).
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to an overall state of shear plus hydrostatic stress. For each value of
Lode parameter, three triaxialities are considered, T= 1, 2, and 3.
The values for ρ2 and ρ3 to achieve these stress states are given in
Table 2.
The calculations were carried out using the commercial finite

element code ABAQUS with the gradient theory applied to the
matrix material through a UEL subroutine. The reader is referred
to Ref. [25] for further details on the implementation. The calcula-
tions use 20-node user-defined elements. The number of elements in
the finite element meshes is varied from a minimum of 1896 to a
maximum of 2512 elements, Fig. 2.

2.3 Material Model: Strain Gradient Plasticity. The
gradient-enhanced constitutive model employed is based on the vis-
coplastic strain gradient plasticity theory proposed by Gudmundson
[23] in the context of the mathematical formulation in terms of
minimum principles proposed by Fleck and Willis [24]. For the dis-
sipative version considered, the theory accounts for internal elastic
energy storage due to elastic strain and dissipation due to the plastic
strain rate, ε̇ pij , and its spatial gradient, ε̇ pij,k. Contributions from
plastic strain gradients to free energy is ignored. The principle of
virtual work (PVW) in Cartesian components is expressed by

∫
V

σijδε̇ij + (qij − sij)δε̇
p
ij + τijkδε̇

p
ij,k

( )
dV

=
∫
S
Tiδu̇i + tijδε̇

p
ij

( )
dS

(10)

where σij and sij= σij− 1/3δijσkk are the Cauchy stress tensor and the
stress deviator, respectively. The micro-stress, qij, is work conjugate
to the plastic strain rate, ε̇ pij , and τijk is a higher order stress, work
conjugate to the plastic strain rate gradient, ε̇ pij,k . The right-hand
side of the PVW includes the conventional traction, Ti= σijnj
work conjugate to the boundary displacement rate, u̇i, and the
higher order traction, tij= τijknk, work conjugate to the plastic
strain rate, ε̇ pij . Here, the outward unit normal to the surface S is
ni. Balance laws for the stress quantities are given by

σij,j = 0 and qij − sij − τijk,k = 0 (11)

where the first set of equations is the conventional equilibrium equa-
tions in the absence of body forces, and the second set is the higher
order equilibrium equations. The higher order boundary conditions
are imposed such that the void surface is higher order traction free,

while symmetry conditions are imposed at the exterior of the cell
through ɛ12= 0.

2.4 Constitutive Equations. The rate-dependent viscoplastic
formulation employs a potential to account for plastic dissipation
as follows:

Φ Ė
p
, E p

[ ]
=
∫Ė p

0
σc Ė

p′
, E p

[ ]
dĖ

p′
(12)

where σc is the gradient-enhanced effective stress, related to the
current matrix flow stress through σc = σF[E p] Ė

p
/ε̇0

( )m
, with ε̇0

denoting the reference strain rate and m denoting the rate sensitivity
exponent. The material in this study does not undergo strain hard-
ening, making σF independent of Ė

p
and equal to the material

yield stress Σ0. The viscoplastic law is implemented following the
algorithm presented in Ref. [36] to efficiently approach the rate-
independent limit. A gradient-enhanced effective plastic strain
rate is given by

Ė
p( )2

=
2
3
ε̇ pij ε̇

p
ij + L2Dε̇

p
ij,k ε̇

p
ij,k (13)

and the associated work conjugate gradient-enhanced effective
stress by

σ2c =
3
2
qijqij +

1

L2D
τijkτijk (14)

where LD is a dissipative constitutive length parameter that enters
for dimensional consistency. The superscript D refers to dissipative
quantities, and the dissipative stress quantities are given by

qDij =
2
3
σc

ε̇ pij
Ė

p , τDijk = L2Dσc
ε̇ pij,k
Ė

p (15)

The dissipative length parameter controls the strengthening size
effect with an increase in the dissipative length parameter giving
an increase in the apparent yield stress in the presence of strain gra-
dients, see Refs. [37,38]. This work is a limit load analysis, which,
by definition, is done to determine the overall yield criterion for a
given, specific configuration. Limit load analyses normally idealize
materials as perfectly plastic. To avoid strain hardening from the
energetic gradient contributions, the energetic length parameter,
LE, has been set to zero in this work, and, consequently, the corre-
sponding energetic quantities are omitted.

3 Numerical Results and Discussion
Throughout, the following material parameters are used: Σ0/E=

0.001, ν= 0.3, and m= 0.01, where Σ0 is the yield stress, E is
Young’s modulus, ν is the Poisson ratio, andm is the strain rate sen-
sitivity exponent. The value of m is considered sufficiently small
for the results to approximate a rate-independent material response.
The influence of the Lode parameter, L, the stress triaxiality, T, and
the normalized length parameter, LD/r0, is studied. The effect of the
inter-void ligament size is discussed in combination with the other
parameters, L, T, and LD/r0.

3.1 Critical Equivalent Stress at Localization. Figure 4 pre-
sents the equivalent stress–strain curves for two distinct Lode
parameters, L=−1 and 1, but for a fixed stress triaxiality, T= 3,
and a fixed inter-void ligament size of l3/r0= 1.5. The equivalent
stress–strain curves are depicted for three length parameters,
being, LD/r0= 0.2, 0.5, and 1 as well as for the conventional
limit, where LD/r0= 0.
The material response shows a clear effect of plastic strain gradi-

ents, such that the larger the length parameter, the higher the equiv-
alent stress level. This means that an increase in the stress level is
obtained when downscaling the microstructure and, thus, yielding

Table 2 Input parameters determining the prescribed stress
state

L T ρ2 ρ3

−1
1 + 2ρ2
3(1 − ρ2)

ρ3
1 + 2ρ2
3(1 − ρ2)

1 0.4 0.4
2 0.625 0.625
3 0.727273 0.727273

0
1 + ρ2��
3

√
(1 − ρ2)

1 + ρ3
2

��
3

√
T − 1��
3

√
T + 1

1 0.634 0.268

2 0.776 0.552
3 0.8386 0.6772

1
2 + ρ2

3(1 − ρ2)
1

3T − 2
3T + 1

1 1 0.25
2 1 0.57
3 1 0.70
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of the material is delayed due to the increasing strain gradient
strengthening. The critical equivalent stress, Σc

e/Σ0, signaling local-
ization (and coalescence) is taken to be at the plateau of the equiv-
alent stress–strain curve. Several ways exists to establish a
coalescence criteria based on either critical stress or strain. The
method employed in this study is inspired by the work of
Ref. [39]. The critical stresses have been extracted from the end
of the equivalent stress-strain curves (as shown in Figs. 4(a) and
4(b)). Taking the example of Fig. 4(a), the conventional material
(LD/r0= 0), the difference between the equivalent stress at Ee=
0.02 and 0.01 is less than 0.04%.

3.2 Conventional Material: Effect of the Inter-Void
Ligament Size. The conventional limit, LD/r0= 0, is considered
to set the scene for the study of material size effects. The focus
here is the effect of inter-void ligament size on the critical stress
at localization under various loading conditions.
First, three values of the Lode parameter are considered, L=−1,

0, and 1, for a fixed stress triaxiality, T= 2. Figure 5 shows the crit-
ical equivalent stress as a function of the inter-void ligament size.
For the six smallest inter-void ligaments, the critical equivalent
stress is seen to increase when the inter-void ligament becomes
bigger irrespective of the value of the Lode parameter. The increase
in the critical stress ties to localization occurring more easily in

small inter-void ligaments lowering the load-carrying capacity of
the unit cell. As the inter-void ligament size increases, the l3 liga-
ment can sustain a higher stress level before localization, leading
to an increase in critical equivalent stress. Also, for the six smallest
inter-void ligaments, an increase in the critical stress is found with
the increasing Lode parameter values. Thus, the lowest critical
equivalent stress is found for L=−1. The dependence on the
Lode parameter can be rationalized by considering the imposed
stress state. In comparison to the other cases, the relative stress com-
ponent, ρ3, is the largest when L=−1 (see Table 2), and localization
is therefore expected in the l3 ligament at a lower overall deforma-
tion. In contrast, the ρ3 takes the lowest value for L= 1, resulting in
delayed localization and the highest critical equivalent stress
obtained. In Ref. [5], void coalescence was found to occur along
the ligament with the smallest applied stress for L>−1. For all
Lode parameters, the relative stress component in the l3 ligament
will be smallest as ρ3 is always the lowest stress ratio. For L=
−1, coalescence occurs in the direction of the smallest inter-void
ligament size. This corresponds to the l3 ligament for all geometries
except when l3/r0= 2.75 as this is a perfect cube, Table 1.
There is, however, a shift in the localization pattern when the l3

ligament becomes sufficiently wide, for example, a drop in the coa-
lescence stress is found for l3/r0= 2.75 for L= 0. The load-carrying
capacity of the material increases when the distribution of voids
diverge from a regular array, i.e., when l3/r0≠ 2.75. However, the
load-carrying capacity will decrease if the arrangement of the
voids is such that the inter-void ligament size, in any direction, is
too small (e.g., l3/r0 < 2). At the configuration with l3/r0= 2.75,
there is no bias toward the l3 ligament since the unit cell takes a
cubic shape. The shift in the localization is especially prominent
for L= 0 (a state of combined hydrostatic tension and shear)
where plastic flow localizes at ≈45 deg across the cubic unit cell,
leading to an early loss of load-carrying capacity. The shift in the
localization is demonstrated by depicting the contours of the effec-
tive plastic strain for two distinct unit cells (l3/r0= 1.5 and 2.75)
subjected to L= 0 and T= 2 in Figs. 6 and 7. The material response
remains conventional such that LD/r0= 0, and the loading condi-
tions are described by L= 0 and T= 2. For the conventional mate-
rial, the second term of Eq. (13) is zero (LD= 0) and the term
gradient-enhanced effective plastic strain refers to the time integra-
tion of only the first term of Eq. (13). For the elongated unit cell
(l3/r0= 1.5), localization is seen to occur in the smallest ligament,
l3, whereas localization is seen to occur along two corners of the
cubic unit cell (l3/r0= 2.75), indicating that the deformation is local-
ized along ≈45 deg, i.e., across the diagonal. Figure 6 shows the
contour of equivalent plastic strain across the faces of the cell,
while Figs. 7(a) and 7(b) show the contour of the effective plastic

Fig. 4 Equivalent stress–strain curve for an inter-void ligament size of l3/r0=1.5 under loading conditions giving Lode parameters
of (a) L=−1 and (b) L=1 and a triaxiality of T=3

Fig. 5 Critical equivalent stress versus normalized inter-void
ligament size for three values of the Lode parameter with T=2
and LD/r0=0
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strain in the diagonal cross section of both unit cells at an overall
effective strain of Ee = 0.03. By comparing the two contours, it is
seen that plastic flow is observed across the entire cross section,
indicating localization at ≈45 deg for the cubic model, l3/r0=
2.75. In contrast, the plastic flow is constricted for l3/r0= 1.5
shown top right in Fig. 7.
Next, the effect of stress triaxiality is considered. In Fig. 8, the

critical stress for a conventional material, LD/r0= 0, is shown as a
function of the inter-void ligament size for T= 1, 2, and 3 for a
fixed value of the Lode parameter, L=−1. In the conventional
limit, a high level of stress triaxiality yields low critical stress for
all ligament sizes considered. The reason being that a high stress
triaxiality corresponds to higher relative stress components, ρ2
and ρ3. Figure 8 shows little effect of ligament size on the critical
equivalent stress for the low value of triaxiality. For T= 1, the rela-
tive stress transverse to the main loading direction is insufficient to
invoke localization in the inter-void ligament and the effect of the
ligament size will be limited. The cell instead undergoes macro-
scopic localization and, consequently, does not exhibit a profound
dependence on the inter-void ligament size. This is in line with
results presented in Ref. [1], where T= 1 has been found to be
the limit below which the onset of macroscopic localization is

essentially simultaneous with void coalescence. The results for
T = 2 and T= 3 in Fig. 8 show that the critical equivalent stress is
dependent on inter-void ligament size.
A small drop in the critical equivalent stress is seen to occur for

the largest ligament for all values of triaxiality in Fig. 8 The effect is
most prominent for the highest triaxiality, T= 3. Figure 9 shows the
contour gradient-enhanced effective plastic strain of the cubic cell
(l3/r0= 2.75) at an effective stress of Ee = 0.08. At a sufficiently
large strain, plasticity is seen to initiate at the corner opposite to
the void. Due to the symmetry of both the loading condition
(Σ2 =Σ3 for L=−1) and the unit cell, bands of plastic deformation
are observed to stretch across the x1− x2 and x1− x3 faces, ulti-
mately lowering the coalescence stress giving the drop as shown
in Fig. 8.
The effect of gradient strengthening in the matrix material is

introduced through the length parameter LD (see Sec. 2.3). One
can imagine downscaling the microstructure when increasing the
value of LD/r0. Three values of the length parameter, LD/r0= 0.2,
0.5, and 1, are considered in the following for all combinations of
the Lode parameter, L=−1, 0, 1, and stress triaxiality, T= 1, 2,
3. Figure 10 shows the critical effective stress, Σc

e/Σ0, as a function
of the inter-void ligament size, l3/r0, for all combinations. The

Fig. 7 Distribution of effective plastic strain along a cut from
corner to corner for L=0, T=2, and LD/r0=0 at Ee = 0.03 for
two geometries: (a) l3/r0=1.5 and (b) l3/r0=2.75. (a) Shows that
plasticity has not localized along 45 deg and for this geometry
localization is favored in the smaller ligament, while (b) shows
that a band, indicated by the dotted line, has formed at a 45
deg angle to the main loading axis (the x1 axis), thus lowering
the critical effective stress.

Fig. 6 Distribution of effective plastic strain for L= 0, T=2, and
LD/r0=0, for l3/r0=1.5 to the left and l3/r0=2.75 to the right at a
macroscopic effective strain of Ee = 0.03. For l3/r0=1.5, localiza-
tion is favored in the smallest ligament, l3. For the cubic unit cell,
however, there is no bias toward any of the ligaments and defor-
mation localizes along ≈45deg, i.e., across the diagonal.

Fig. 8 Critical equivalent stress versus normalized inter-void
ligament size for three values of the stress triaxialities with
L=−1 and LD/r0=0

Fig. 9 Bands of plastic flow in the cubic unit cell (l3/r0=2.75)
and LD/r0=0 at an overall equivalent strain of Ee = 0.08. The
loading conditions applied to give an axisymmetric stress state
with L=−1 and T=2. Note the rotated coordinate system to
show the symmetry of the plastic flow given by the cubic unit
cell and ρ2= ρ3 for L=−1.
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results obtained for a conventional material, LD/r0= 0, are presented
as a reference (see Sec. 3.2).
The general observation is that the critical stress at localization

increases with the magnitude of the length parameter (downscaling
the microstructure). However, the critical stress has a natural upper
bound where the gradient strengthening is so severe that the entire
matrix material yields. At such large values of the length parameter,
the effect of the Lode parameter, stress triaxiality, and inter-void lig-
ament size vanish and the critical equivalent stress is identical for all
combinations of geometry and loading condition. The threshold
value is evident from Figs. 10(a)–10(i).
Figures 11(a)–11(c) show how the length parameter affects the

plastic flow in the unit cells by comparing contours of the
gradient-enhanced plastic equivalent strain, Ep (see Eq. (13)) for a
ligament size of l3/r0= 1.5 subject to L=−1 and T= 3. The con-
tours are extracted at an overall equivalent strain of Ee = 0.02.
Figure 11(a) displays the conventional material response where
localization occurs in the l3 ligament. At the same level of the
overall deformation, a significantly lower effective plastic strain is
observed in Figs. 11(b) and 11(c) when increasing the length param-
eter. For LD/r0= 0.2, Fig. 11(b), some plasticity is seen to develop
in the l3 ligament, but far less than in the conventional case, while

the plasticity has barely initiated at this level of the deformation for
LD/r0= 0.5, Fig. 11(c). The corresponding equivalent stress is
shown in Figs. 11(d )–11( f ). It is seen that the level of stress in
the unit cell increases with the increasing length parameter. The crit-
ical equivalent stress is seen to increase with the increased length
parameter in Fig. 10, and the material can therefore withstand
higher stresses.
Figure 12 shows the change in the deformation mechanism that

occurs with the increased gradient strengthening. The contour of
the normalized rate of equivalent plastic strain, Ė

p
/Ėe, is shown

for the unit cell with the smallest inter-void ligament, l3/r0= 0.43
under loading conditions giving L= 1 and T= 3 for the conven-
tional material with LD/r0= 0 and the material with the greatest gra-
dient strengthening contribution, LD/r0= 1. Figure 12(a) shows that
plastic deformation has developed and localized in the l3 ligament,
as expected for a conventional material at this loading condition.
For the matrix surrounding the l3 ligament, plasticity is reduced
in favor of localization in the l3 ligament. However, for the gradient
strengthened material, plasticity is not only less developed, in line
with the gradient strengthening, but also smeared out across the
unit cell, see Fig. 12(b). Localization is to a little extent observed
in the l3 ligament, but overall the entire cell experiences plasticity.

Fig. 10 The critical equivalent stress as a function of the smallest inter-void ligament size. Three values of the Lode parameter are
considered, L=−1, 0, and 1. For each Lode parameter, three values of the stress triaxiality are considered, T=1, 2, and 3. Through-
out, the parameters Σ0/E=0.001, ν=0.3, and m=0.01 are used. The initial void volume fraction is f0=0.01. The length parameter
that enters through the gradient plasticity theory is LD/r0=0.2, 0.5, and 1. A conventional material is modeled with LD/r0=0 and
used as a reference.
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This is indicative of a change in deformation mechanism along the
lines of the one observed in Ref. [1] for a stress triaxiality of
1. However, here it is seen with an increasing length parameter.
As LD/r0 increases, the cell is more likely to undergo simultaneous
macroscopic localization and void coalescence in contrast to a con-
ventional material where the cell predominantly undergoes void
coalescence for the same loading conditions.
The combined effect of the stress triaxiality (for a fixed Lode

parameter) and the length parameter is visualized by the rows in
Fig. 10, while the combined effect of the Lode parameter (for a
fixed stress triaxiality) and length parameter is visualized by the
columns in Fig. 10. Qualitatively, for a fixed stress triaxiality
value, the length parameter has a nearly identical impact for all
values of the Lode parameter; the critical stress increases with the
increasing length parameter. It is, however, interesting that the
drop in coalescence stress the cubic unit cell (l3/r0= 2.75) subject
to L= 0 diminishes with the increasing length parameter for all
values of stress triaxiality, Figs. 10(d )–10( f ). This is because
increased gradient strengthening delays the intensification of the
plastic flow and homogenizes the plastic strain field.
For the lowest stress triaxiality value, T= 1, the effect of the

length parameter is small. Nonetheless, the plastic strain gradients
that build up around the void give rise to the small increase in

gradient strengthening. For the loading conditions giving T= 1,
the onset of localization is significantly delayed, thus allowing the
material to withstand higher critical stress with a smaller depen-
dence on the inter-void ligament size. The deformation mechanism
prevailing at this low value of triaxiality, where macroscopic local-
ization and void coalescence occur simultaneously [1], implies that
the gradients surrounding the void will not influence the critical
equivalent stress to a great extent, as the deformation takes place
in the entire unit cell.
For a higher value of stress triaxiality, T= 2, the effect of

the length parameter is more prominent as shown in Fig. 10,
and the smaller the inter-void ligament size, the greater the effect
of the length parameter is. This is because, at higher stress triaxiality
values, the plastic flow tends to localize in the inter-void ligaments
as the ligaments diminish in size. The localization induces large
plastic strain gradients that in turn contribute to strengthening.
The gradient-induced strengthening in the inter-void ligament
then inhibits further plastic flow localization and delays void coales-
cence. Although not shown here, for L=−1 and T= 2, the gradient
strengthening is sufficiently large that increasing the value of LD/r0
from 1 to 2 has a negligible effect. For the intermediate length
parameter, LD/r0= 0.5, the effects of triaxiality and inter-void liga-
ment size are still visible but greatly reduced due to the smaller
degree of gradient strengthening. For the smallest value of the
length parameter, LD/r0= 0.2, the critical equivalent stress values
follow those of the conventional material, just at a higher relative
level for all inter-void ligament size considered. For L= 0 and
L = 1, for T= 2, the same effect is seen. The most pronounced
effect of the length parameter is seen for L=−1, T= 3, and l3/
r0 = 0.43 as this configuration has the lowest critical effective
stress for the conventional material, but shows the same critical
stress for LD/r0= 1 as in the remaining results.

4 Summary and Conclusions
The interaction of the inter-void ligament size and the

gradient-induced material size effect on void coalescence is inves-
tigated for a range of imposed stress states, here characterized by
fixed values of the stress triaxiality and the Lode parameter. To
this end, three-dimensional finite element unit cell calculations for
a single initially spherical void embedded in strain
gradient-enhanced material matrix are carried out. A conventional
material matrix (absence of gradient induced strengthening
effects) is considered as reference. Increasing the length parameter,
and thereby the gradient effect, is equivalent to downscaling the
microstructure. All microstructures considered in this work
contain voids that are below a critical flaw size [40]. Thus, plasticity
theory will reign the material response as the voids are considered
too small to be treated as cracks.
The results for the conventional material show that the critical

coalescence stress increases when increasing the inter-void liga-
ment size. The effect of the inter-void ligament size is, however,
dependent on the imposed stress triaxiality, such that the effect of
the inter-void ligament size increases with the increasing stress
triaxiality. However, above a certain threshold for the inter-void lig-
ament size, the results show a slight decrease in the critical stress.
This drop has to do with a transition from plastic flow localization
within the smallest inter-void ligament to plastic flow localization at
≈45 deg to the main loading axis. The transition in the plastic flow
localization pattern is found to be particularly pronounced for a
Lode parameter of L= 0. However, irrespective of the Lode param-
eter value, the transition occurs as the unit cells approach a cubic
geometry.
For a void embedded in a strain gradient-enhanced material

matrix, the value of the critical coalescence stress increases with
the increasing length parameter, i.e., increasing the gradient
strengthening effect. The effect of the length parameter is found
to intensify with the increasing imposed stress triaxiality and the
decreasing inter-void ligament size. This is due to a propensity

Fig. 11 Distribution of gradient-enhanced effective plastic
strain for L=−1, T=3, and l3/r0=1.5 for (a) the conventional
material, LD/r0=0, (b) LD/r0=0.2, and (c) LD/r0=0.5 at a macro-
scopic effective strain of Ee = 0.02. The effective stress, Σe, for
the same configuration is shown in the cells at the bottom,
also here with (d) the conventional material, (e) LD/r0=0.2, and
(f) LD/r0=0.5.

Fig. 12 Change in deformation mode with the increased length
parameter for l3/r0=0.43 with loading conditions described by
L =1 and T=3. The conventional material with LD/r0=0 is
shown in (a), while (b) shows a gradient enriched material with
LD/r0=1.
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for plastic flow localization in the inter-void ligament when the lig-
ament is small and the stress triaxiality high. Plastic flow localiza-
tion introduces large plastic strain gradients, which in turn
strengthens the ligament and delays further localization of the
plastic flow. The strengthening from plastic strain gradients also
leads to a weakened dependency in the critical coalescence stress
on the inter-void ligament size. Finally, the results show that
there exists a natural upper bound where the gradient strengthening
is so severe that the entire matrix material yields. For very large
values of the length parameter, the effect of the imposed stress
state and the inter-void ligament size vanish, and the critical equiv-
alent stress is identical for all combinations of the unit cell geometry
and the loading conditions considered.
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